
Learning Spatial and Temporal Filters for

Single-Trial EEG Classification

Dmitry Model and Michael Zibulevsky

May 7, 2005

Abstract

There is a wide variety of electroencephalography (EEG) analysis methods.
Most of them are based on averaging over multiple trials in order to increase
signal-to-noise ratio. The method introduced in this article is a single trial

method. Our approach is based on the assumption that the ”real brain
signal” of each task is smooth, and is contained in several sensor channels. We
propose two stage preprocessing. At first, we use spatial filtering, by taking
weighted linear combination of sensors. At the second step, we perform
time-domain filtering. Both stages are performed blindly, by maximizing
the between class discrimination and minimizing the total variation of result
average or , alternatively, suppressing the signal at the windows, where it is
known to be absent. No other information on signals of interest is assumed
to be available.

1 Introduction

People have speculated that EEG might be used as alternative communica-
tion channel, which allows the brain to act bypassing peripheral nerves and
muscles, since electroencephalography was first described by Hans Berger in
1929 [1]. First simple communication systems, that were driven by electrical
activity recorded from the head, appeared about three decades ago [2]. In
the past years, it has been shown that it is possible to recognize distinct
mental precesses from online EEG (see, for example [3, 4, 5, 6]). By associ-
ating certain EEG patterns to simple commands, it is possible to control a
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computer, creating an alternative communication channel, which is usually
called Brain-Computer Interface (BCI) [2, 7].

One of the most complicated problem of the BCI is classifying very noisy
EEG signals, obtained by registering the brain activity of the subject. The
first approach suggests dealing with this problem by requiring extensive train-
ing, in order to teach the subject to acquire self-control over a certain EEG
components, such as sensorimotor µ-rhythm [7] or slow cortical potentials [8].
This ability to create certain EEG patterns at will is translated by BCI sys-
tem to cursor movement [7, 9] or selection of letters or words on computer
monitor [10, 8].

The second approach suggests developing subject-specific classifiers to rec-
ognize different cognitive processes from EEG signals [4, 5, 11]. In this case,
the typical BCI procedure consists of two stages. First, the person trains the
system by concentrating on predefined mental tasks. Usually two different
tasks are used in the training. BCI registers several EEG samples of each
task. Then, the training data is being processed in order to build a classifier.
In the second stage, the subject concentrates on one of the tasks again, and
the system automatically classifies the EEG signals. The key for successful
classification is a good preprocessing of raw data. The objective of this pa-
per is to develop preprocessing methods, which will improve the classification
accuracy.

Some preprocessing methods explore the fact that the signal of interest is
contained in several sensor channels, since the skull and scalp cause a spatial
smearing of the cortical signals. Those methods suggests spatial filtering, in
order to increase signal-to-interference ratio and maximize the between-class
discrimination [12, 13]. However, these methods make no explicit use of the
time courses of EEG signals.

The proposed method is based on the assumption that the signal of in-
terest of each task is temporary smooth (i.e. has limited total variation)
and/or is expected to be small in certain time windows, where the task is
not performed. We propose two stage preprocessing algorithm. At first, we
perform spatial filtering, by taking weighted linear combination of sensors.
At the second step, we perform time-domain filtering. Both stages are per-
formed blindly. Filter coefficients are found by optimizing the between class
discrimination and the smoothness of result average. No other information
on signals of interest is assumed to be available. Our simulations shows, that
the proposed preprocessing significantly improves the classification rate, with
respect to unprocessed data (simple sum of channels or choosing the best sen-
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sor).
We have also developed misclassification rate lower bound, which is ap-

plicable for the experiments with synthesized signals. This bound shows how
well can we perform signal reconstruction (and further classification) based
on spatial integration only. Our simulations shows, that in majority of cases
we reach the bound or stay very close to it. If we use time-domain filtering
in addition to spatial integration, then we perform even better.

This paper is organized as follows. In Section 2 we describe the first stage
of our preprocessing method, which is based on spatial integration. In Sec-
tion 3 we develop additional method for spatial filtering based on Eigenvalue
Decomposition. In Section 4 we develop a bound, which shows how well can
we perform signal reconstruction (and further classification) based on spatial
integration only. In section 5 we describe the second stage of our algorithm,
which is based on time-domain filtering. Section 6 is devoted to computa-
tional experiments. Finally, conclusions are summarized in Section 7.

2 Spatial Integration Method

2.1 Data Description

In our simulation we use several data sets, recorded with different number
of sensors, sampling rate, etc. Details on these data sets are available in
Section 6. Here we provide the general description of the data format, which
we use in our preprocessing method.

Suppose EEG data was recorded using S channels. Single trial signals,
corresponding to one of the two possible mental tasks were taken from the
raw data, synchronized by some external stimuli or cue, and they are T

samples long. Each single trial is stored in the T × S matrix. Let us denote
X1

l , 1 ≤ l ≤ L trials that belong to the first class, and X2
m , 1 ≤ m ≤ M

trials that belong to the second class.
If we produce the averaging across the trials, we obtain

X1
avg =

1

L

L
∑

l=1

X1
l X2

avg =
1

M

M
∑

m=1

X2
m

where X1
avg and X2

avg are T × S matrices.
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2.2 The Method

In our model, we assume that each sensor records the following signal:

xi(t) = ais
j(t) + ni(t) (1)

where ai is the coupling coefficient for sensor i, ni(t) denotes the noise and
background activity recorded by the sensor and sj(t) , j ⊂ {1, 2} is the
response to one of the two possible mental tasks.

We will use a linear estimate of single trial signals

ŝ1
i = X1

i w , ŝ2
j = X2

j w (2)

where w is the S × 1 weighting vector.
The average of the estimated signals is:

ŝ1
avg = X1

avgw , ŝ2
avg = X2

avgw (3)

Using the above notation, we can formulate our objective as finding the
weighting vector w such, that will maximally discriminate between the av-
erage estimated signals ŝ1

avg and ŝ2
avg, while keeping single trial estimated

signals ŝ1
l and ŝ2

m (1 ≤ l ≤ L , 1 ≤ m ≤ M) smooth. The smoothness can
measured by the total variation, defined by

TV =
L

∑

l=1

T−1
∑

t=1

y1
l (t) +

M
∑

m=1

T−1
∑

t=1

y2
m(t) (4)

where y1
l (t) = |ŝ1

l (t + 1) − ŝ1
l (t)| , 1 ≤ t ≤ T − 1

and y2
m(t) = |ŝ2

m(t + 1) − ŝ2
m(t)| , 1 ≤ t ≤ T − 1

This leads to following objective function:

min
w

−
∥

∥ŝ1
avg − ŝ2

avg

∥

∥

2

2
+ µTV (5)

s.t. ‖w‖2 = 1

where µ is a tradeoff parameter, which is intended to balance between smooth-
ness of signals and between class discrimination. We are forcing the norm of
weighting vector w to remain constant in order to prevent degenerate solution
of ‖w‖ → ∞ or ‖w‖ → 0.
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If we substitute expressions for ŝ1
avg,ŝ

2
avg and TV from equations (2),(3)

and (4), the objective function (5) becomes:

min
w

−
∥

∥X1
avgw − X2

avgw
∥

∥

2

2
+ µ

(

L
∑

l=1

∥

∥Y 1
l w

∥

∥

1
+

M
∑

m=1

∥

∥Y 2
mw

∥

∥

1

)

(6)

s.t. ‖w‖2 = 1

where ‖·‖1 is the first norm and

Y 1
l (t, i) = X1

l (t + 1, i) − X1
l (t, i) , 1 ≤ t ≤ T − 1

Y 2
m(t, i) = X2

m(t + 1, i) − X2
m(t, i) , 1 ≤ t ≤ T − 1

note that y1
l = Y 1

l w, y2
m = Y 2

mw.

2.3 Getting Rid of the Tradeoff Parameter

In objective (6) there is a need to choose a value for a tradeoff parameter µ.
Although we have found out by our simulations, that the optimization result
is quite robust to the change of value of µ, the need to subjectively asses
the tradeoff parameter is still an essential drawback. In this subsection, we
propose an elegant way to rewrite the objective function in such a way, that
it will contain no parameter any more.

For beginning, let’s notice, that the norm and the sign of the vector w

have no significance. We are interested only in relative to each other values
of its elements. In other words, we want to find such w, which will satisfy
two conditions. First, it will minimize a value of TV - the second term of (6),
when a value of the first term is constant. Second, it will minimize a value of
the first term, when a value of TV is constant. Now, let’s write the objective
function which will satisfy the above conditions1:

min
w

L
∑

l=1

∥

∥Y 1
l w

∥

∥

1
+

M
∑

m=1

∥

∥Y 2
mw

∥

∥

1
(7)

s.t.
∥

∥X1
avgw − X2

avgw
∥

∥

2

2
= 1

1Alternatively, we may switch role of main term and constraint of objective (7)
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One can notice, that above objective function satisfies the first condition
at the solution point by definition. The second condition is also satisfied.
This can be proved in the following way. Suppose wopt is a solution of (7).
Let’s assume by contradiction, that there exist wnew, such that TV (wnew) =
TV (wopt) and

∥

∥X1
avgwnew − X2

avgwnew

∥

∥

2
= c2 < 1. In such a case, w = 1

c
wnew

would satisfy the constraint, while TV (w) < TV (wopt). This contradicts the
assumption, that wopt is a solution of (7). Thus, the second condition also
holds.

Although the problems (6) and (7) are not completely equivalent, the
problem (7) can be viewed as such, that optimally (and automatically)
chooses the tradeoff parameter µ. The following example will explain, what
do we mean by optimality. Suppose ŵ is a solution of (6) for some value of
µ and wopt is a solution of (7). Then, according to what we have proven,
wopt (after re-scaling) will provide smaller or equal value of TV for the same
degree of between class discrimination, and greater or equal between class
discrimination for the same value of TV . This is true for any value of µ, thus
wopt is really the optimal solution.

The alternative view of the objective (7) is from basis pursuit perspec-
tive [14]. The TV term in (7) may be replaced by the l1 norm of coefficients of
signal representation in some basis (i.e. short-time Fourier transform, wavelet
transform, etc.), which is expected to be sparse (see for example [15, 16]).

2.4 Optimization

Since it is a constrained optimization problem, it is convenient to minimize
the objective function (7) by Lagrange Multipliers technique. For this pur-
pose, we will need to calculate the gradient of the main and the constraint
terms.

Before we proceed, we should notice, that the main term of (7) is not
differentiable. Hence, for optimization, we will use the smooth approximation
of absolute value function.

ψ(t) = c(
|t|

c
− log(1 +

|t|

c
)) (8)

Note that ψ′(t) is defined at t = 0:

ψ′(t) =
t

c + |t|
(9)
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The approximation becomes more accurate, when c → 0.
The modified problem will receive the following form:

min
w

L
∑

l=1

1T ψ
(

Y 1
l w

)

+
M

∑

m=1

1T ψ
(

Y 2
mw

)

(10)

s.t.
∥

∥X1
avgw − X2

avgw
∥

∥

2
= 1

where 1 is a vector of ones, and the application of ψ(·) to a vector is element-
wise.

Let’s denote the the main term of (10) as f(w), and rewrite the constraint
to be

g(w) = ‖Xavgw‖2
2 = wT XT

avgXavgw

where Xavg = X1
avg − X2

avg.
Now, we can easily calculate the gradients of f(w) and g(w), using the

matrix derivations and the chain rules:

∇f(w) =
L

∑

l=1

(

Y 1
l

)T
ψ′

(

Y 1
l w

)

+
M

∑

m=1

(

Y 2
m

)T
ψ′

(

Y 2
mw

)

(11)

∇g(w) = XT
avgXavgw (12)

This calculus is sufficient for minimizing the objective function (10) using
Lagrange Multipliers method.

3 Learning Spatial Integration weights through

Eigenvalue Decomposition

In this section, we propose a solution of objective function similar to (7) by
Eigenvalue Decomposition (EVD). Let’s have a look at the following problem:

max
x

‖Ax‖2
2 (13)

s.t. ‖x‖2
2 = 1

where A is matrix, and x is a vector. If we rewrite the main term as ‖Ax‖2
2 =

xT AT Ax = xT
(

AT A
)

x, then it can be easily seen, that a solution for above
problem is an eigenvector, which corresponds to the largest eigenvalue of
matrix B = AT A.
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Now, let’s return to the objective function (7), more precisely to its al-
ternative2 :

max
w

‖Xavgw‖2
2 (14)

s.t. ‖Y w‖2
2 = 1

where Xavg = X1
avg−X2

avg. Matrix Y is a block-matrix, composed of matrices
Y 1

l , 1 ≤ l ≤ L and Y 2
m, 1 ≤ m ≤ M placed one under another; i.e. if matrices

Y 1
l and Y 2

m have dimensions of T−1×S, then a matrix Y will have dimensions
of (L + M)(T − 1) × S.

We can produce the change of variables in (14) in order to make it look
like (13). Let’s rewrite the constraint term: ‖Y w‖2

2 = wT Y T Y w. If matrix Y
is a full rank (which is very likely for the noisy data), the matrix C = Y T Y

has a Cholesky factorization3 C = UT U . Now, the constraint can be written
as ‖Y w‖2

2 = wT Y T Y w = wT UT Uw. If we introduce a new variable x = Uw

(w = U−1x), then the objective (14) can be written as:

max
x

∥

∥XavgU
−1x

∥

∥

2

2
(15)

s.t. ‖x‖2
2 = 1

which exactly resembles the problem (13). Thus we know, that a solution
of (15) is an eigenvector νmax, which corresponds to the largest eigenvalue,

λmax, of matrix B = (XavgU
−1)

T
XavgU

−1 = U−1T XT
avgXavgU

−1. Hence, the
solution of (14) is w = U−1νmax.

The important advantage of this approach, is that it doesn’t require it-
erative optimization, but needs only a few simple algebraic steps. However,
the difference of objective (14) is that in the TV term, the l1 norm was
replaced by l2 norm. Thus it doesn’t measure Total Variation any more.
Nonetheless, our simulations shows, that using approach described in this
subsection, we achieve similar results, with comparison to those, achieved
using objective (10).

2Note, that objective (14) is quadratic, quadratically constrained. A TV term also
appears with a l2 norm, and thus can not represent Total Variation any more.

3If matrix Y is not full rank, we may use a regularization C = Y T Y + αI, where α is
a small constant, and I is an identity matrix
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4 Theoretically Best Spatial Integration

In some (unpractical) situations, we can evaluate the bound for the best
theoretically achievable separations of signal from noise, using spatial filter-
ing. This can be done if the ’sensor measurement’ data is synthesized in the
following way:

X = sarta
T + N (16)

In above formula, the ’sensor measurement’ T × S matrix X is obtained by
mixing artificial signal, represented in T × 1 vector sart with S × 1 coupling
vector a, and and adding T × S noise matrix N .

If we know both background noise covariance matrix N and the mixing
vector a in (16), we can find the best weighting vector w solving the following
problem4:

min
w

‖Nw‖2
2 = wT Rw

s.t.
∥

∥sarta
T w

∥

∥

2

2
= 1 (17)

where R = NT N is the noise covariance matrix.
The artificial signal sart can be normalized ‖sart‖2 = 1, hence the con-

straint in (17) can be simplified:

min
w

wT Rw (18)

s.t. aT w = 1

Note, that in above equation, we want to find w, which maximally sup-
press the noise, while keeping the norm of unmixing vector constant. And one
can state, that this task differs from the task of the objective function (10).
But actually in both cases we want to perform the de-noising of the signal
of interest. In this sense, the solution of (18) can be viewed as theoretically
best achievable limit and thus a good reference point for comparison.

We can solve the problem (18) using Lagrange Multipliers:

min
w

wT Rw − λ
(

aT w − 1
)

The gradient of above objective is given by: g(w) = Rw−λaT . The solution
is obtained if g(w) = 0 ⇒ wth = λR−1a. Note, that wth can be found up to

4Note, that we want to perform the de-noising by weighted sum of channels. Thus, the
idea of subtracting the noise matrix is not relevant.
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scaling and sign, hence every real λ 6= 0 can be chosen. If we take λ = 1 we
get the final formula for wth:

wth = R−1a (19)

5 Time-Domain Filtering

Signals, reconstructed by one of the spatial filtering methods, will still suffer
from noise contamination, which can be further reduced by the second stage
of preprocessing - time-domain filtering of the estimated signals (2).

The problem in applying filtering is that we do not know in advance which
filter to use, because the signals of interest as well as background activity
noise are unknown. Thus, we propose to find a suitable filter by learning,
based on the same criteria used for finding spatial filter: maximize between
class discrimination, while keeping the resulting signal smooth.

So, we want to find filter h[n], 1 6 n 6 Nfilt, which will further discrim-
inate between reconstructed signals ŝ1

avg[n] and ŝ2
avg[n]:

max
h[n]

∥

∥

(

ŝ1
avg[n] − ŝ2

avg[n]
)

∗ h[n]
∥

∥

2

2
(20)

where ∗ denotes convolution.
Since, we are working with discrete time, time-limited signals, lets define

X̃1
avg to be (T − Nfilt + 1) × Nfilt matrix, j-th column of which contains

ŝ1
avg[n], j 6 n 6 (T −Nfilt +j), e.i. in j-th column of X̃ there is a shifted by

(j−1) signal ŝ1
avg[n], which is also truncated by (j−1) taps at the beginning

and (Nfilt − j) taps at the end, in order to be (T − Nfilt + 1) taps in the
length. In the same manner we can define matrix X̃2

avg, columns of which will

contain shifted replicas of ŝ2
avg[n]. And finally, matrix X̃avg = X̃1

avg − X̃2
avg.

Now, one can easily notice, that the following expression:

max
wfilt

∥

∥

∥
X̃avgwfilt

∥

∥

∥

2

2
(21)

is equivalent to equation (20) under following conditions:
wfilt[n] = h[Nfilt + 1 − n], and convolution in (20) is also appropriately
truncated to be (T − Nfilt + 1) taps in the length. In this manner, we’ve
succeeded in representing a convolution in an matrix form.
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Now, let’s continue with matrix manipulations, and represent TV term
in the matrix form as well. Let’s define signle trial matrices X̃1

i and X̃2
i ,

exactly in the same manner as X̃1
avg and X̃2

avg, using ŝ1
i [n] and ŝ2

j [n] (defined
by (2)) instead of ŝ1

avg[n] and ŝ2
avg[n] respectively.

We will continue, by definition of

Ỹ 1
l (t, i) = X̃1

l (t + 1, i) − X̃1
l (t, i) , 1 ≤ t ≤ T − 1

Ỹ 2
m(t, i) = X̃2

m(t + 1, i) − X̃2
m(t, i) , 1 ≤ t ≤ T − 1

which closely resembles matrices Y 1
l and Y 2

m defined under (6).
Finally, we introduce a matrix Ỹ , which is a block-matrix, composed of

matrices Ỹ 1
l , 1 ≤ l ≤ L and Ỹ 2

m, 1 ≤ m ≤ M placed one under another; i.e. if
matrices Ỹ 1

l and Ỹ 2
m have dimensions of (T −Nfilt)×Nfilt, then a matrix Ỹ

will have dimensions of (L + M)(T − Nfilt) × Nfilt.
After those preparations, we can represent a problem of time-domain

filtering in an familiar form:

max
wfilt

∥

∥

∥
X̃avgwfilt

∥

∥

∥

2

2
(22)

s.t.
∥

∥

∥
Ỹ wfilt

∥

∥

∥

2

2
= 1

which exactly resemble the problem (14), already solved in subsection 3.
Thus, the solution developed in subsection 3 can be used to solve the prob-
lem (22).

There is an alternative choice of the matrix Ỹ . It can represent an back-
ground activity noise, which we also want to minimize, instead of TV . This
idea may be even more appealing, because we minimize the background noise
directly, and not some measure of it - Total Variation. This is really a good
approach, if the background activity is stationary. The only problem is how
to obtain the noise, without desired signal? One of the ways to do it is il-
lustrated in Figure 1(a): if we start to register the response well in advance,
then at the beginning we will record an background activity only. Our sim-
ulations shows, that an alternative choice of the matrix Ỹ is better for real
EEG recordings. On the synthetic data, we’ve preferred the initial choice -
matrix Ỹ containing TV .

Finally, the only open question left, is how to choose the optimal order
Nfilt of FIR filter h[n]. We have no closed solution for this issue. In our
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Figure 1: (a) Signal left to the dashed vertical line can be treated as back-
ground noise. The actual response appear after the dashed vertical line.
(b)Cross Validation error rate for different values of Nfilt. One can notice,
that real test error (dashed line) is highly correlated with CV error. This
enables us to choose the optimal order of FIR filter.

experiments, we have chosen its value based on cross validation on the train-
ing data: we have calculated the CV error for different values of Nfilt, and
then have chosen the one, which gives the lowest error rate. Figure 1(b)
illustrates, that the CV error rate and test error rate are highly correlated.

6 Computational Experiments

In order to show the feasibility of our approaches and make a comparison
between them, we’ve conducted several experiments, using both synthetic
and real signals. In artificial data synthesis we’ve used both white gaussian
noise and real EEG signals as a background noise. In this section we provide
a results of our simulations.

6.1 Real EEG Signals

In this experiment, we used the data obtained from two BCI competitions,
held in years 2002 [17] and 2003 [18]. The goal of above competitions was
to validate signal processing and classification methods for Brain Computer
Interfaces. Data set consists of single-trials of spontaneous EEG activity,
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one part labelled (training data) and another part unlabelled (test data).
The goal was to infer labels for the test set, by prepossessing the training
data. Inferred test labels should have maximally fit the true (but unknown
to participants) test labels.

6.1.1 BCI competition 2002

This data set, obtained from public website [17], consists of EEG signals,
that were recorded from one subject in sessions with few minute’s breaks in
between. The subject was sitting in a normal chair, relaxed arms resting on
the table, fingers in a standard typing position at the computer keyboard
(index fingers at ’f’, ’j’ and little fingers at ’a’,’;’). The task was to press
two chosen keys with the corresponding fingers in a self-chosen order and
timing (’self-paced key typing’). A total of 516 keystrokes was done at an
average speed of 1 key every 2.1 seconds. Brain activity was measured with
27 Ag/AgCl electrodes at 1000 Hz using a band-pass filter from 0.05 to 200
Hz.

Further, windows 1500 ms long were cut out of the continuous raw signals
each ending at 120 ms before the respective keystroke. The reason for
choosing the endpoint at −120 ms is that before this point the classification
based on measuring EMG activity only is still close to chance. 100 trials
equally spaced over the whole experiment were defined to be the test set,
leaving 413 labelled trials for training.

We used the training data for preprocessing. We’ve applied all our meth-
ods described in previous sections - wopt, wEV D and wfilt. We’ve tried several
classifiers for classification (we used ”pr-tools” classification toolbox, that can
be obtained from the public web site [19]), including nearest mean, k near-
est neighbor (k-nn) [20] and Support Vector Machines (SVM) with different
kernels [21]. All classifiers have provided similar results. Under these circum-
stances, we’ve preferred to use the simplest one - nearest mean classifier. The
result of classification error, both of 10-fold Cross-Validation [22] and test
error5, are summarized in Table 1. The best result reported by competition
organizers was 4% error rate.

5Test error was calculated when real labels were published by competition organizers.

13



wopt wEV D wfilt simple sum best sensor
10-fold CV 15% 15% 14% 51% 40%

Test 9% 9% 7% 50% 47%

Table 1: Classification results (error rate in %) of BCI competition 2002
data set. Each column corresponds to a different method of preprocessing.
Both10-fold Cross-Validation and test error results are provided.

wopt wEV D wfilt simple sum best sensor
10-fold CV 27% 27% 27% 43% 37%

Test 26% 27% 26% 39% 33%

Table 2: Classification results (error rate in %) of BCI competition 2003
data set. Each column corresponds to a different method of preprocessing.
Both10-fold Cross-Validation and test error results are provided.

6.1.2 BCI competition 2003

The data set for that competition [18] is similar to the previous one (self-
paced key typing). This time the average typing rate was 1 key per second.
Totally, there are 416 epochs of 500 ms length each ending 130 ms before a
key press. 316 epochs are labelled (training set), the remaining 100 epoches
are unlabelled (test set).

This data set was harder for classification than a previous one, because
provided epochs are shorter (only 500 ms) and are cut earlier (130 ms) prior
to keystroke. As result, all our methods (as well as results reported by
organizers) showed higher error rates.

We used the training data for preprocessing, trying out all proposed ap-
proaches - wopt, wEV D and wfilt. Again, we used nearest mean classifier for
classification. The result of classification error of 10-fold Cross-Validation

and test error are summarized in Table 2. The best result reported by com-
petition organizers was error rate of 16%.

6.1.3 Response to Visual Stimuli

For this experiment we’ve used the data, that was recorded in the laboratory
for Evoked Potentials in the Technion - Israel Institute of Technology. We
have not conducted the new experiment for our purposes, but rather we have
used the data that were already recorded for some other research [23]. We
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wopt wEV D wfilt simple sum best sensor
NM 7.7% 4.8% 4.8% 39.2% 30.2%
k-nn 2.2% 3.3% 2.8% 27.8% 18.9%
SVM 5.9% 4.6% 4.9% 50% 50%

Table 3: 10-fold Cross-Validation error rate (in %) on Visual Stimuli data set.
Each column corresponds to a different methods of preprocessing. Results
of applying 3 different classifiers are shown: Nearest Mean (NM), k-nn (with
k=3) and SVM with exponential kernel.

are grateful to Hillel Pratt for providing us with these EEG recordings.
This EEG data was obtained during the following procedure. The subject

was shown a sequence of 3 different images, at some predefined and constant
over-trials pace. After the sequence of three images was shown, the subject
had to respond, by pressing a button. The trials were repeated with period-
icity of 7 seconds. The delay between the first and the second images in the
sequence was 1.5 seconds, and 2.5 seconds between the second and the third
images. Then, the subject was given 3 seconds for respond. Each session
consisted of approximately 30 trials. There were several sessions, with some
minutes break in between. The EEG data was recorded by 23 electrodes,
with sampling rate of 256 samples per second.

In this experiment, we were interested in distinguishing a response to vi-
sual stimuli from the absence of response, i.e. regular background activity.
We have built two classes of signals from the row data: the first class rep-
resented the response to visual stimuli (image was shown), and the second
class represented the absence of visual stimuli (regular background activity).
In order to build the first class, we’ve cut from the row data the segments,
which start at the times when the first image is shown and are 300 time
samples in length. The second class was built from segments, started 300
time samples before the third image is shown, and ended exactly at the time
when the third image is displayed.

We have divided the data into the training and the test sets. Then, we
have applied all our approaches. This time, the k-nn and SVM with ex-
ponential kernel classifiers demonstrated considerably better performance,
with respect to nearest mean classifier. The results of 10-fold cross valida-
tion are summarized in the Table 3. The test error is provided in Table 4.
Reconstructed signals are shown in Figure 2.
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wopt wEV D wfilt simple sum best sensor
NM 15% 10% 10% 40% 35%
k-nn 8.3% 5% 3.3% 35% 20%
SVM 6.7% 5% 3.3% 50% 41.7%

Table 4: Test error rate (in %) on Visual Stimuli data set. Each column
corresponds to a different methods of preprocessing. Results of applying 3
different classifiers are shown: Nearest Mean (NM), k-nn (with k=3) and
SVM with exponential kernel.
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Figure 2: Experiment with visual stimuli data set. One can easily tell, that
the dotted line represents the signal with background activity only, while the
solid line corresponds to the signal which contains the response. (a) - signals
reconstructed by wEV D; (b) - signals reconstructed by wEV D and further
filtered by wfilt
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6.2 Artificial Signals

We decided not to stop the evaluation of our approach after two previous
experiments, and generated synthetic data set, which should resemble the
real experiments. The idea was to mix some smooth signal (two different
signals, s1

art and s2
art, for two different classes) into background noise N .

We modelled our signals to be T time samples in length. Thus, artificial
signals, s1

art and s2
art, are T × 1 vectors. Moreover, we assumed S channel

data, hence the dimensions of single trial and noise matrices (Xi and Ni

respectfully) are T × S. The weights, with which the artificial signal sart

reaches each channel (column of Xi), were randomly chosen and organized
in S × 1 mixing vector a. This leads to the following data synthesis model:

X1
l = s1

arta
T + Nl

X2
m = s2

arta
T + Nm

(23)

6.2.1 White Gaussian Background Noise

In this experiment, the noise matrix Ni was generated as white gaussian noise
(150 × 25 matrix, generated independently for each trial). The mixing vec-
tor m was randomly generated (each element in m is uniformly distributed
between [−1; 1]). This experiment setup stands up for ”real” problem of 25
sensors and 150 time samples in each trial. We have generated 1200 trials.
First 200 trials (approximately 100 of each class) were used for preprocessing
(finding unmixing vector w). Remaining 1000 trials were used for classifica-
tion by the nearest mean algorithm [22].

The preprocessing was done by one of our methods - wopt, wEV D and wfilt.
We have compared results of classification of data preprocessed by different
methods. In addition we have compared our results with unprocessed data
(simple sum over all sensors) and choosing the best sensor. Fortunately, in the
artificial data experiments, we have the good reference point for comparison
- results obtained by applying wth (19). As shown in Section 4, this method
serves as an upper bound of signal de-noising by weighted sum. Classification
results (by Nearest Mean Classifier) are displayed in the Table 5. Three rows
refer to three different SNR6 of artificial signal.

6SNR refer to average signal-to-noise ratio at each sensor in single trial. Since mixing
weights mi of artificial signal sart are randomly generated, we’ve taken the average value
of mi = 0.5
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Figure 3: Experiment with artificial signals and Random Gaussian back-
ground noise: (a) - artificial signals; (b) - signals restored by simple sum of
channels; (c) - signals restored by wopt; (d) - signals restored by wopt and
further filtered by wfilt.

wopt wEV D wfilt wth sum of sensors best sensor
SNR=-10dB 0.0% 0.0% 0.0% 0.0% 43.7% 14.0%
SNR=-15dB 3.5% 3.3% 1.4% 2.7% 44.1% 36.7%
SNR=-20dB 20.3% 20.4% 13.7% 17.1% 49.0% 41.7%

Table 5: Experiment with artificial signals and White Gaussian background
noise: Classification Error Rate in % . The first column shows an average
SNR, measured at each sensor.
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wopt wEV D wfilt wth sum of sensors best sensor
SNR=-20dB 2.5% 1.3% 1.1% 0.0% 51.6% 43.3%
SNR=-25dB 10.5% 10.3% 10.0% 0.7% 50.5% 50.1%
SNR=-30dB 25.7% 22.6% 21.9% 1.3% 52.9% 49.5%

Table 6: Experiment with artificial signals and real EEG recordings as a
background noise: Classification Error Rate in %. The first column shows
an average SNR, measured at each sensor.

6.2.2 Real EEG Background Noise

In the second experiment, we have used real EEG signals as the background
noise N (150× 22 matrix for each trial). The rest of the setup is identical to
the previous case. Classification results are displayed in the Table 6.

7 Conclusions

We’ve presented an two-stage preprocessing algorithm. It extracts the desired
response from multi-channel data, by means of spatial integration in the first
stage, and time-domain filtering at the second stage. This preprocessing
is essential for the classification. Our experiments shows, that the miss-
classification rate achieved on the preprocessed data is significantly lower,
than an error rate obtained by classifying unprocessed signals (simple sum
of channels, best channel). In addition, in our simulations on synthetic data
we show, that the error rate, achieved after the first stage of preprocessing,
reaches (or is very close to) the lower bound, developed for spatial integration
methods. Moreover, if we apply the second stage of proposed algorithm -
time-domain filtering, we receive the error rate even lower than an above
bound.
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