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Relaying Protocols for Two Co-located Users
Michael Katz and Shlomo Shamai (Shitz)

Abstract

We consider a wireless network where a remote source wishes to send information to one of two

co-located users, and where the second user can serve as a relay. The source’s transmission is subjected

to quasi-static flat Rayleigh fading, while the transmissions of the users experience a fixed amplitude

gain with uniform random phase, capturing their mutual proximity. All communications share the same

time/bandwith resources, and channel state information is known only to the receivers. We propose

relaying protocols which are based on Wyner-Ziv quantization at the relay, and demonstrate their high

efficiency (in terms of expected throughput) with respect to previously reported relaying schemes based

on amplify-and-forward and decode-and-forward. We further incorporate into the cooperative scheme the

notion of successive quantization with respect to the relay’s observation, and match it with a broadcast

transmission approach in the relay to destination link, relying on the inverse relation which exists between

the amount of side information at the destination, and the capacity of the relay to the destination

link. Finally, we consider a hybrid amplify-quantize-decode-and-forward scheme which exhibits superior

performance in some situations.

Keywords— Ad-hoc networks, amplify and forward, broadcast strategy, cooperative diversity, decode

and forward, expected throughput, fading channels, outage capacity, quantize and forward, relay channel,

sensor networks, successive refinement, wireless networks.

I. INTRODUCTION

Cooperative strategies for wireless networks are drawing a lot of attention in recent years, mainly due

to the proliferation of stand alone wireless networks which do not rely on any fixed infrastructure to

facilitate the communications between the nodes in the network. Moreover, these networks are typically

employed in a fading environment, rendering the transmitted signals susceptible to severe attenuations in
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their received strength. In such settings, it becomes necessary for the nodes in the network to cooperate

at the physical layer in order to increase the achievable information rates between any pair of users and

to ensure robustness of the communications to changes in channel conditions.

The study of the relay channel [1], [2] is of fundamental importance to cooperation in wireless networks,

since it captures the ability of a user to assist in transferring information from a source to its destination

- a situation which is prevalent in wireless networks due to the sharing of the wireless medium among

all users. Unfortunately, the capacity of the relay channel is only known for some specific cases (e.g.

degraded and reversely degraded relay channel, semi-deterministic relay channel, relay channel with

feedback) which do not apply directly to common wireless settings. Recently, however, there has been

some extensive work reported concerning the capacity of the relay channel and its implications on

cooperation in wireless channels [3]–[14] (and references therein). In fact, the capacity of the relay

channel was recently established for some wireless channel models where the relay terminal is in close

proximity to the source terminal and where there is phase uncertainty at the transmitters.

One of the key ingredients to cooperation in wireless channels in general and in the wireless relay

channel in particular is intimately related to the notion of cooperative diversity which is associated with

the ability of the users to share their antenna resources and achieve some of the gain promised by using

multiple antenna arrays. This idea was introduced in [15], [16] and developed in follow up works, e.g.

[17]–[26] (and references therein).

While the optimal strategy for employing relays in wireless networks is not yet understood, several

approaches have already been suggested in the literature. One approach is to have the relay first decode

the message sent by the source (if it can), and then re-encode it and re-transmit the same message to

the destination. While this strategy was used to obtain the capacity of the degraded relay channel [2],

recently it was used for wireless outage settings and named decode-and-forward [18]. Another approach,

called amplify-and-forward, is to let the relay simply send a scaled version of its received observation

to the destination, releasing itself from the need to actually decode the message. A disadvantage of

this approach is the noise amplification which is incurred by the relay’s action. Yet a third strategy,

compress-and-forward [3], [12] suggests that the relay send a quantized version of its received signal

to the destination. This strategy is actually based on the achievable rate suggested in [2]. Cooperative

schemes which combine several relaying notions are also discussed in [3], [12]. Due to the surging

interest in relays and cooperative approaches in wireless channels, we are unable to include and discuss

all of the relevant and important contributions, and we refer the reader to the (far from complete) list of

references [27]–[48] (and references therein).
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In a recent work [49], [50] a form of decode-and-forward strategy was proposed and analyzed for

a network consisting of a remotely located source, sending information to one of K physically co-

located users. As opposed to standard half duplex schemes which allocate two equal and orthogonal

time/bandwidth slots for the transmission of the source and that of the relay, a variable length coding

scheme was suggested where the relay takes just the time needed to decode the message before re-

encoding and re-transmitting the message anew, and where the relay’s transmission is concurrent with

that of the source.

In this paper we consider the same setting as in [50] when specialized to two co-located users. The

source wishes to send information to one of two users, where the second user (if present) can serve

as a relay. The transmission of the source is affected by quasi-static flat Rayleigh fading, while the

transmission between the users is subject to a fixed amplitude gain with uniformly distributed random

phase, capturing the close proximity enjoyed by the users with respect to the remote source. Under

stringent delay constraints, which prohibit the rescheduling of the message to a later time when channel

conditions improve, we propose several cooperative transmission strategies tailored for such a setting and

asses them by their average rate performance.

The relaying protocols we suggest are based on the notion of Wyner-Ziv quantization [51], which

refers to the relay quantizing its received observation of the source’s symbol, while relying on side

information which is available at the destination receiver. This side information is due to the correlation

which exists between the relay’s observed signal and that of the destination. The “amount” of correlation

(or side information) depends on the fading gains of the relay and the destination. High gains imply large

correlation, while small fading gains result in reduced correlation.

We note that this approach is not new. In fact, it was used to establish one of the achievable rates for

the general relay channel [2]. Recently, this scheme was proposed for wireless relay channels [3], [12]

showing good behavior for relays which are in close proximity to the destination. A key feature of the

Wyner-Ziv quantization scheme is that the relay, while ignorant of the actual side information available to

the destination receiver, must know its statistics. For fixed channels, where the channel gains are known

to everyone (as in [3]), or in the case of pure phase fading [12] which does not change the statistics of

the destination’s received signal, the scheme can be employed successfully. However, when the signal

from the source to the destination undergoes a more general fading (unknown to the relay), the relay

has trouble implementing this quantization approach. We suggest to circumvent this problem by letting

the relay assume some minimal level of side information available at the destination, and quantize its

received observation based on this level. When the actual side information at the destination is larger, the
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scheme works. Otherwise, we have an outage event, since the side information is not sufficient to solve

the ambiguity incurred by the relay in the binning process associated with the Wyner-Ziv quantization.

The quantization approaches discussed above generally use the error free link, which is available

between the relay and the destination, in order to convey the quantized and binned information. This

information transfer is done using a code which assumes that the destination considers the transmission

coming from the source as noise. Therefore, the capacity of this link is governed by the received power

of the transmission coming from the source, which in turn is determined by the fading gain experienced

by the destination. For high channel gains, this capacity is reduced, and for small channel gains it is

increased. It follows that there is an inverse relation between the capacity of the error free link between

the relay and destination on the one hand, and the amount of side information available at the destination

on the other. When the channel gain of the destination is high, it has a high level of side information,

but limited capacity in the relay to destination link. Contrarily, when the destination’s gain is low, this

implies small correlation with the relay’s observed signal but a high capacity of the link coming from

the relay.

This interesting relation suggests that when the destination enjoys a high quality signal coming from

the source (corresponding to a high fading gain), the relay should quantize its received observation using

fewer bits. This is both because the capacity from the relay to the destination is now limited, and also

because the destination has enough side information to reconstruct the quantized information from the

relay. On the other hand, when the destination’s observation is of poor quality (corresponding to a low

fading gain), the relay should perform the quantization using more bits, since in this case, the destination

has only limited side information, and hopefully the link from the relay to the destination (which now

has higher capacity) can accommodate the higher rate associated with the relay’s transmission. In other

words, the relay would want to send less information in the error free link when its capacity is low, and

more information when its capacity is high.

A way for automatically adapting the transmission rate to the actual instantaneous capacity of a quasi-

static flat Rayleigh fading channel (with channel state information known to the receiver only) was

suggested in [52], [53] (see also [46], [54], [55]). We incorporate this approach in the following way.

The relay produces two information streams. The first stream is the quantized and binned information

associated with the Wyner-Ziv quantization which assumes a high level of side information at the

destination (corresponding to a high channel gain of the destination, or small capacity of the error

free link from relay to destination). The second stream is associated with the Wyner-Ziv coding for the

case of a low level of side information. The relay then matches these rates with a broadcast approach,
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such that when the capacity of the error free link is low (i.e. when the channel gain of the destination

is relatively high) the first stream gets decoded, and when the capacity of the error free link is high,

both streams get decoded. In this way, when the destination enjoys a high channel gain, it only gets

the first stream, which is enough since it has a lot of side information, and when the channel gain of

the destination is low, it gets both information streams which it now needs in order to fully recover the

quantized information because in this case it has little side information.

We note that the idea of coding the relay’s observation for two possible levels of side information

available to the decoder is closely related to the notion of successive refinement in the Wyner-Ziv context

(see [56] and references therein). Note, however, that in [56], there is an increasing relation between

the amount of side information available at the decoder and the code rate used to describe the desired

observation. The more side information available, the more rate is used to give a better description. In

our setting, the situation is reversed. Coding is done first for the case of high side information (which

requires little bits for description), and more code is needed to describe the relay’s observation if there

is only little side information available.

Finally, we propose a cooperative scheme which combines several of the notions associated with the

operation of relays. In this strategy, relying on limited feedback from the destination, the relay tries to

decode the message transmitted by the source, and while doing so, it either quantizes and forwards if

some minimal side information is available to the destination’s disposal, or just amplifies and forwards.

Once it decodes the message it re-encodes it and re-transmits the message using a new codeword as was

done in [50].

A few words regarding notation. We use the notation (x)1 to designate min(1, x). Throughout the

paper, all logarithms are taken with respect to the base e. The notation 1A(x) designates the indicator

function, which equals 1 whenever x ∈ A and zero otherwise. The notation CN (
0, σ2, σ2

)
designates

a complex Gaussian random variable whose real and imaginary components are independent Gaussian

random variables each with mean zero and variance σ2. X∗ denotes complex conjugation. The notations

Xn
P−→ X and Xn

D−→ X stand, respectively, for convergence of random variables in probability and

in distribution as defined in [57]. Finally, we use E(·) to denote the expectation operator.

The rest of the paper is organized as follows. Section II describes our considered model; Section

III presents preliminary results concerning the amplify-and-forward and decode-and-forward schemes

and variations thereof; Section IV presents a cooperative scheme based on quantization and forwarding;

Section V extends the quantization scheme using the ideas of successive quantization combined with

a broadcast approach; Section VI presents numerical results demonstrating the performance of our
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proposed schemes and concluding remarks are given in Section VII. Proofs and derivations are deferred

to Appendixes A–D.

s

1

2

a1

a2

√
Qejθij

Fig. 1. A network with two co-located users

II. SYSTEM MODEL

We consider the setting discussed in [50] when specialized to the case of two users. For completeness

we reiterate the main features of the model. The system consists of a wireless network in which a

remotely located source s wishes to send information to one of two co-located users (as depicted in Fig.

1). The information is transmitted over a shared wireless medium where all transmissions coming from

the source are subjected to flat Rayleigh fading. The fading coefficients between the source and the users

are denoted by a1, a2 and are modelled by two independent zero mean unit variance circularly symmetric

complex Gaussian random variables. Assuming a quasi-static fading dynamics, the fading coefficients are

taken to be constant over a coherence time equivalent of N symbols1, and independent from one block of

N symbols to the next. The co-location of the two users is captured by assuming that the gain governing

the transmission between the users is
√

Qejθij , (i, j) ∈ {(1, 2), (2, 1)}, where
√

Q is a fixed amplitude

and θij is a random phase uniformly distributed over [−π, π) also assumed fixed during one block of

symbols and independent from one block to the next. The fading coefficients are assumed to be known

to the receivers only. Specifically, receiver 1 knows a1 and the random phase θ21 associated with the

transmission from user 2, and similarly user 2 has full knowledge of the fading coefficient a2 and of

the random phase θ12 associated with the transmission of user 1. Since the source is not informed of

1N is assumed large enough to allow Shannon theoretic arguments to hold.
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the phases θij and since user 1 (resp. user 2) is ignorant of θ12 (resp. θ21), it follows that the signals

transmitted by the source and user 1 (resp. user 2) can not be coherently combined at the receiver of

user 2 (resp. user 1). The situation would remain the same even if user 1 (resp. user 2) knew the phase

θ12 (resp. θ21). Therefore, without loss of generality we assume that θij = 0, (i, j) ∈ {(1, 2), (2, 1)}.

Finally, we assume that each user is equipped with a transmitter and a receiver capable of working in

full duplex.

It is assumed that at the beginning of each fading block, a message arrives at the source intended for

one of the two users, which we call the destination, the identity of which is assumed to be chosen at

random with equal probability. Stringent delay constraints stipulate that the message be delivered from the

source to the destination within a period of one fading block. In particular, scheduling the transmission

of the message to a later time is not permitted. During this period, the other user, which we call the

relay, can assist the source in relaying the message to the destination.

By definition of the network it is implicitly assumed that the destination is not transmitting throughout

the fading block2. It is therefore more convenient to denote the two users as user d (the destination)

and user r (the relay), where either (d, r) = (1, 2) or (d, r) = (2, 1). Assuming an AWGN channel, the

received signals at the relay and the destination at time n, n = 1, 2, . . . , N , are modelled by

Yr(n) = arX(n) + Zr(n)

Yd(n) = adX(n) +
√

QXr(n) + Zd(n) (1)

where X(n) and Xr(n) are the symbols transmitted during the n-th symbol interval by the source and

the relay, respectively, ar and ad are the fading coefficients of the relay and destination, respectively,

and Zr(n) and Zd(n) are the AWGNs at the relay and destination respectively, both modelled by i.i.d.

circularly symmetric complex Gaussian random variables with zero mean and unit variance. It will be

convenient to denote the squared magnitude of the fading coefficients by νd = |ad|2 and νr = |ar|2 each

of which is exponentially distributed with unit mean.

III. PRELIMINARY RESULTS

In this section we examine several basic (and by now standard) cooperative schemes suited for the

network described in section II. The problem here falls within the outage regime, and we use the expected

2Such an assumption can be easily accommodated by assuming that the identity of the recipient is announced by the source

at the beginning of the transmission at a negligible cost of rate.
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throughput (see [50]) as a figure of merit when comparing between the performance of these schemes.

This measure, which is defined as the probability of successful decoding when attempting to communicate

at some rate R multiplied by this rate, can be interpreted as the long term average rate which can be

delivered by the network to any particular user.

A. Decode-and-Forward (DF)

We begin by restating the cooperative strategy which was suggested in [50] for this type of network.

This scheme can be considered as a variant of the relaying approach where the relay first decodes the

message transmitted by the source, and only then re-encodes and retransmits the same message to the

destination [18]. Some previous implementations of the decode-and-forward scheme assumed some form

of orthogonality between the resources used to deliver the information from the source to the relay, and

those which are used to transport the information from the relay to the destination, e.g. [18], [58]. In our

setting the protocol assumes that all transmissions are carried out using the same channel resources, i.e.

time and bandwidth.

The strategy is based on the observation that users enjoying favorable channel conditions are able

to decode the message by observing only the first m out of N (m ≤ N ) symbols of the codeword.

We briefly describe this strategy (for more details see [50]). The source starts transmitting a code word

describing a message intended for one of the users. If this user is the strongest among the two in the

sense that its fading coefficient is greater, then no cooperation takes place. If on the other hand, the

destination is the weaker user among the two, then once the strong user decodes the message (typically

before the end of the block), it starts transmitting the same message using another predetermined code

book acting together with the source as a double transmit antenna array. The expected throughput in this

case is given by [50]

RDF
av (R, P, Q) �= R Pr {IDF > R}

= Re−
eR−1

P +
Re

2
P

P

∫ eR

max(1,eR−Q)
e
− 1

P
exp

{
R log(1+ Q

u )
log(u+Q)−R

}
− u

P

du (2)

where IDF is a random variable designating the average mutual information conveyed to the destination

in some fading block.

B. Amplify-and-Forward (AF)

Another standard approach for operating the relay in such a setting is the amplify-and-forward approach

[18]. Here the relay, adhering to a causality restriction, transmits in every symbol interval a scaled version
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of its received observation from the previous symbol interval. In our setting this means that the signals

received by the relay and destination are now given by

Yr(n) = arX(n) + Zr(n)

Yd(n) = adX(n) + βYr(n − 1) + Zd(n)

= adX(n) + β
[
arX(n − 1) + Zr(n − 1)

]
+ Zd(n)

= adX(n) + βarX(n − 1) + βZr(n − 1) + Zd(n), n = 1, 2, . . . , N (3)

where β =
√

q(|ar|2)
1+|ar|2P is the amplifying gain employed by the relay r which results in a reception power

of q(|ar|2) at the receiver of the destination d, where q(·) is some decentralized power policy satisfying

q(0) = 0

0 ≤ q(u) ≤ Q (4)

lim
u→∞ q(u) = Q

q′(u) ≥ 0.

The rational behind these constraints is based on the intuitive assumption that as the observation of the

relay gets better and better, it is desirable to transmit this observation to the destination with greater and

greater power. To clarify this idea, consider the two extreme cases. If ar = 0, the relay receives just

noise, and therefore it does not pay to amplify this noise and only make it worse for the destination to

try and decode the message. On the other hand, if the relay receives the source’s symbol with absolute

certainty (i.e., when |ar| → ∞) then it pays to use the maximum available power at the relay’s disposal

in order to transmit this observation to the destination.

Effectively, the channel viewed by the destination is a one tap ISI channel. Since the channel coefficients

are unknown to the transmitter, we assume that i.i.d. signaling is employed, in which case the average

mutual information between the source and the destination in some fading block is shown in Appendix

A to be

IAF(q) = log
(

1 + P
νd(1 + νrP ) + νrq(νr)

1 + νrP + q(νr)

)

+ log

⎛
⎜⎝1

2
+

1
2

√√√√1 −
(

2P
√

q(νr)νrνd

(1 + νdP + q(νr))
√

1 + νrP

)2
⎞
⎟⎠ (5)
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where the second term on the right hand side (RHS) of (5) lies in the interval [− log 2, 0]. It follows that

a trivial upper bound to the mutual information (5) is given by discarding the second term in (5), namely

IAF(q) ≤ IAF-UB(q) �= log
(

1 + P
νd(1 + νrP ) + νrq(νr)

1 + νrP + q(νr)

)
. (6)

It would be desirable to find which decentralized power control policy at the relay maximizes the expected

throughput in the amplify-and-forward strategy, and also what this maximal throughput is. A partial answer

to these questions is given by the following propositions. Recall from [50] that the performance of the

best user is given (irrespective of the co-location gain) by

RBU
av (R, P ) = 2Re−

eR−1
P − Re−2 eR−1

P .

Proposition 1: For any power control policy satisfying (4), the expected throughput of the AF protocol

is upper bounded by the performance of the best user, i.e.

RAF
av (R, P, Q, q(·)) �= R Pr {IAF(q) > R} ≤ RBU

av (R, P ).

Proof: See Appendix B.

Proposition 2: The power control policy given by

q∗(u) =

⎧⎨
⎩ 0, u < eR−1

P

Q, u ≥ eR−1
P

. (7)

is asymptotically optimal for Q → ∞ in the sense that

lim
Q→∞

RAF
av (R, P, Q, q∗(·)) = RBU

av (R, P ).

Proof: See Appendix C.

Note that if the relay knew whether it is the strongest or the weakest user, it could either transmit

with full power or stay silent, respectively. In the former case, assuming Q → ∞, the relay effectively

transforms the destination to the best user by overlaying its “good” observation over the “bad” version of

the destination. In the latter case, by staying silent, the performance is also that of the best user (which

is the destination in this case).

However, when the relay does not have this information (as in our model), and must decide which

power to use based only on its own fading gain, it is not immediately clear if such a policy exists which

can attain the optimal (best user) performance even asymptotically. Proposition 2 establishes that this in

fact is possible.

While this power control policy does not necessarily maximize the actual expected throughput of the

amplify-and-forward scheme for arbitrary Q, the intuition behind it is clear. Let the relay amplify and
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forward when it has some confidence in the quality of its received observation. The policy q∗(u) ensures

that the relay amplifies and forwards when it receives the source’s codeword with a quality which enables

it to decode the message with high probability. The asymptotic optimality of this policy is confirmed by

numerical results in the sequel (see section VI).

Using this power control policy we get the following expected throughput

RAF
av (R, P, Q, q∗(·)) =

= R

∫ ∞

0
Pr

⎧⎪⎨
⎪⎩log

(
1 + P

νd(1 + νrP ) + νrq
∗(νr)

1 + νrP + q∗(νr)

)
+

+ log

⎛
⎜⎝1

2
+

1
2

√√√√1 −
(

2P
√

q∗(νr)νrνd

(1 + νdP + q∗(νr))
√

1 + νrP

)2
⎞
⎟⎠ > R

∣∣∣∣∣νr

⎫⎪⎬
⎪⎭ e−νr dνr

= Re−
eR−1

P

(
1 − e−

eR−1
P

)
+

+ R

∫ ∞

eR−1
P

Pr

⎧⎨
⎩log

(
1 + P

νd(1 + νrP ) + νrQ

1 + νrP + Q

)
+

+ log

⎛
⎝1

2
+

1
2

√
1 −

(
2P

√
Qνrνd

(1 + νdP + Q)
√

1 + νrP

)2
⎞
⎠ > R

∣∣∣∣∣νr

⎫⎬
⎭ e−νr dνr (8)

= Re−
eR−1

P

(
1 − e−

eR−1
P

)
+ R

∫ ∞

eR−1
P

dνr

∫ ∞

0
dνd 1{A(R,P,Q)}(νd, νr)e−νd−νr

where

A(R, P, Q) �=

⎧⎨
⎩νd, νr ≥ 0 : log

(
1 + P

νd(1 + νrP ) + νrQ

1 + νrP + Q

)
+

+ log

⎛
⎝1

2
+

1
2

√
1 −

(
2P

√
Qνrνd

(1 + νdP + Q)
√

1 + νrP

)2
⎞
⎠ > R

⎫⎬
⎭

and (8) follows because when νr < 1
P

(
eR − 1

)
the integrand reduces to Pr {log (1 + νdP ) > R}.

C. Amplify-Decode-and-Forward (ADF)

The first two schemes, namely decode-and-forward and amplify-and-forward can be combined to form

a hybrid scheme which we call amplify-decode-and-forward. In this approach, assuming that the relay

has sufficient channel conditions to decode the message before the block ends (i.e. log (1 + νrP ) > R),

the relay amplifies-and-forwards its received observations until it is able to decode the message, and then

it re-encodes the message and starts emitting a fresh codeword describing the same message, just as if

August 9, 2005 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 12

it were another transmitting antenna. For the amplify part, we use the same power control policy which

was used for the amplify-and-forward scheme. That is if channel conditions do not allow the relay to

decode the message, the relay remains silent throughout the fading block.

Denote by ε
�=
(

R
log(1+νrP )

)1
the fractional time within a codeword when the relay decodes the

message. Then, the expected throughput for the amplify-decode-and-forward cooperative scheme is given

by

RAF
av = Re−

eR−1
P

(
1 − e−

eR−1
P

)
+ R

∫ ∞

eR−1
P

dνr

∫ ∞

0
dνd 1{B(R,P,Q)}(νd, νr)e−νd−νr (9)

where

B(R, P, Q) �=

⎧⎨
⎩νd, νr ≥ 0 : ε

⎡
⎣log

(
1 + P

νd(1 + νrP ) + νrQ

1 + νrP + Q

)
+

+ log

⎛
⎝1

2
+

1
2

√
1 −

(
2P

√
Qνrνd

(1 + νdP + Q)
√

1 + νrP

)2
⎞
⎠
⎤
⎦+ (1 − ε) log(1 + νdP + Q) > R

⎫⎬
⎭ .

IV. QUANTIZE-AND-FORWARD (QF)

We now examine an entirely different approach for employing the relay in our co-located setting. In

this approach the relay terminal who receives the noisy observation of the source’s transmitted symbol Yr,

sends a quantized version of this observation, U , to the destination. The quantization is done in the Wyner-

Ziv [51] spirit, making use of the correlation between Yr and Yd which is available at the destination

receiver. The relay uses its own code book in order to convey reliably the quantized information to

the destination. The destination first decodes this information while considering the signal coming from

the source as noise, and then cancels out the relay’s codeword. Finally, the destination completes the

reconstruction of the quantized information, U , and combines it together with its own received signal in

an optimal manner in order to decode the message. This is a modification of techniques employed in

general relay channels [2, Thm. 6] and in wireless relay channels [3], [12]. The channel model in this

case can be written as

Yr(n) = arX(n) + Zr(n)

Yd(n) = adX(n) + Zd(n) (10)

where the relay can send information to the destination on a separate channel the capacity of which is

governed by νd and given by

Crd(νd) = log
(

1 +
Q

1 + νdP

)
.

August 9, 2005 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 13

Note that the capacity of the link between the relay and the destination is a monotonically decreasing

function of the gain νd. That is when the received source’s power at the destination is high, it interferes

more severely with the transmission coming from the relay and vice verse.

Lets focus on the quantization procedure which is to be carried out by the relay. The relay wishes

to send a quantized version of its received signal, Yr, while relying on the statistical dependence which

exists between Yr and the signal received by the destination, Yd. Note that this statistical dependence is

also governed by the fading coefficient of the destination, namely νd. Large values of νd imply higher

correlation between Yr and Yd, whereas small values of νd imply that Yr and Yd have less correlation

between them. In other words, the correlation between Yr and Yd is a monotonically increasing function

of νd.

A. An Upper Bound - The relay knows νd

We first assume that the relay has full knowledge of the fading gain experienced by the destination,

νd. The results in this sub section will later be used for the actual strategy where the relay does not have

such knowledge, and in any case can be considered as a performance upper bound for the actual scheme.

We begin by stating the following proposition which is a direct consequence of [2, Thm. 6] (see also

[3], [12]).

Proposition 3: For the network described in section II in which the fading gains ar and ad are held

fixed, where ar is known to the relay, and ad is known to both the relay and the destination, the rate R

is achievable3, where

R = sup I(X; Yd, U) (11)

subject to the constraint

I(U ; Yr) − I(U ; Yd) ≤ Crd(νd), (12)

and where the supremum is over all random variables U satisfying the Markov property U ⇐⇒ Yr ⇐⇒
Yd.

3A coding scheme which achieves this rate is the block Markov encoding approach [2, Thm. 6], where the message is

partitioned into many long blocks, and where in every block the relay sends a quantized version of its previous received block of

observations. The destination, after decoding the relay’s transmission containing the quantized and binned information, cancels

out the relay’s codeword, and uses its received symbols from the previous block in order to resolve the ambiguity incurred by

the binning process.
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We now propose a strategy suited for the case where the network is experiencing slow quasi-static fading

as described above, and the relay has full knowledge of the fading gain experienced by the destination,

νd. The relay chooses the auxiliary random variable U to be a degraded version of Yr, namely

U = Yr + W (13)

where W ∼ CN
(
0, σ2

2 , σ2

2

)
is independent of X , Zr, and Zd and σ2 is a parameter to be optimized.

In Appendix D we derive expressions for the mutual information terms in (11) and (12), and these are

given by

I(X; Yd, U) = log
(

1 + νdP +
νrP

1 + σ2

)
(14)

I(U ; Yr) − I(U ; Yd) = log

(
1 + σ2 + νrP

1+νdP

σ2

)
≤ log

(
1 +

Q

1 + νdP

)
. (15)

As is seen in (14), in order to maximize I(X; Yd, U) the relay must choose4 the smallest possible σ2

such that the constraint (15) is not violated. In other words, the relay must choose σ2 to satisfy

1 + σ2 + νrP
1+νdP

σ2
= 1 +

Q

1 + νdP
(16)

which yields

σ2(P, Q, νr, νd) =
1
Q

(
1 + (νd + νr) P

)
. (17)

Therefore, the rate which can be delivered to the destination in each fading block is given by

IQF-UB = log
(

1 + νdP +
νrPQ

1 + νdP + νrP + Q

)
. (18)

where the subscript QF-UB stands for the quantization and forwarding upper bound where the value of

νd is known to the relay. We now calculate the expected throughput associated with this upper bound.

To this end we compute the probability of successful decoding. First consider the conditional probability

4Note that the relay chooses a new appropriate value of σ2 at each fading block depending on the value of νr and νd. For

each such σ2 an appropriate code book must be constructed and delivered to the destination receiver. This can be accommodated

by designing multiple code books for a large but finite number of possible values of νr and νd. Then, the only thing that must

be conveyed to the destination receiver is the value of νr which can be done at a negligible cost of rate. The destination then

knows which code book to use. Our results can then be approached as close as desired by choosing a finer and finer grid for

νr and νd.
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of successful decoding given νd. For νd < eR−1
P we have

Pr {IQF-UB > R|νd} = Pr
{

νrPQ

1 + νdP + νrP + Q
> eR − 1 − νdP

∣∣∣∣νd

}

= Pr

{
νr >

(
eR − 1 − νdP

)
(1 + νdP + Q)

PQ − (eR − 1 − νdP ) P

∣∣∣∣νd

}

Note that this probability vanishes for νd < 1
P

(
eR − 1 − Q

)
and assumes the value of unity whenever

νd > eR−1
P . Averaging the conditional probability over νd we get

Pr {IQF-UB > R} = e−
eR−1

P +
∫ 1

P
(eR−1)

max(0, 1
P

(eR−1−Q))
exp

{
−
(
eR − 1 − νP

)
(1 + νP + Q)

PQ − (eR − 1 − νP ) P

}
e−ν dν (19)

and the expected throughput is thus

RQF-UB
av (R, P, Q) = Re−

eR−1
P + R

∫ 1
P

(eR−1)

max(0, 1
P

(eR−1−Q))
exp

{
−
(
eR − 1 − νP

)
(1 + νP + Q)

PQ − (eR − 1 − νP ) P

}
e−ν dν.

(20)

B. The relay does not know νd

We now present a strategy which is suited for the setting where the relay only has access to its own

fading realization. We propose the following “outage” approach. The relay assumes that the realization of

νd is in the interval [a, b], where a and b are parameters to be optimized. The outage event is associated

then with Pr {νd 
∈ [a, b]}. Note then that, under no outage:

Crd(νd) ≥ Crd(b).

Furthermore, the side information between Yr and Yd is lower bounded by taking the left edge of the

interval, a. Let this side information be designated by Y
(a)
d . In other words Y

(a)
d =

√
aX + Zd. The

idea is that the relay can perform the quantization assuming that the side information available to the

receiver is Y
(a)
d , and send the quantized information via a channel with capacity Crd(b). In reality, the

side information available to the destination decoder is larger and it will be able to decode as if it really

had only Y
(a)
d . This is so because the destination receiver can mimic this worst case assumption by

scaling its channel output and adding independent Gaussian noise. Furthermore, by similar arguments,

the codes which the relay uses in order to convey reliably the quantized information via the r → d link,

will be decoded correctly even if νd < b. We therefore have the following corollary:

Corollary 1: For the network described in section II in which the fading gains ar and ad are held

fixed, where ar is known to the relay and ad is known to the destination, the rate R is achievable, where

R = sup
a<b

sup
U

I(X; Yd, U) (21)
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subject to the constraint

I (U ; Yr) − I
(
U ; Y (a)

d

)
≤ Crd(b), (22)

where the internal supremum is over all random variables U satisfying the Markov property U ⇐⇒
Yr ⇐⇒ Y

(a)
d .

Note that if νd > b, the destination will not be able to decode the quantized information sent by the

relay, because the code which the relay used assumed that the interference from the source is limited

by the value of νd = b. If this happens, the destination might not be able to cancel out this codeword,

and it will be in a worse situation than if the relay had remained silent altogether. It would therefore be

desirable if the destination could somehow signal the relay to stop its transmission if such a situation

occurs, and try to decode the message on its own.

If on the other hand νd < a, then the destination will be able to decode the relay’s information, but

due to inadequate side information it will probably not be able to decode the auxiliary U . In this case,

it will be left only with its own observation of the source. Note that in this case, the transmission from

the relay does not do much harm, but does not provide any help either.

We will assume that in an outage situation of both kinds, the relay is notified to stay silent and refrain

from transmitting. In other words, under no outage, the destination can reconstruct the auxiliary random

variable U , and when outage does occur, it is on its own.

We now wish to develop a corresponding expression for the expected throughput of this cooperative

transmission scheme. We select the random variable U as in (13). Appropriate expressions are obtained

similarly to (14) and (15) by replacing νd → a in I (U ; Yd) and νd → b in Crd(νd), namely

I(X; Yd, U) = log
(

1 + νdP +
νrP

1 + σ2

)
(23)

I(U ; Yr) − I
(
U ; Y (a)

d

)
= log

(
1 + σ2 + νrP

1+aP

σ2

)
≤ log

(
1 +

Q

1 + bP

)
. (24)

As in the case of the upper bound in IV-A, the aim is to choose the smallest possible σ2. However, this

value of σ2 can no longer depend on νd. In this case the relay chooses the smallest possible σ2 such that

the constraint (24) is not violated. In other words

1 + σ2 + νrP
1+aP

σ2
= 1 +

Q

1 + bP
(25)

which yields

σ2(P, Q, a, b, νr) =
1
Q

(
1 + bP + νrP

1 + bP

1 + aP

)
. (26)
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So when there is no outage the source can transfer to the destination a rate

IQF = log

(
1 + νdP +

νrPQ

1 + bP + νrP
1+bP
1+aP + Q

)
. (27)

As in the previous case, we assume that if an outage occurs, the relay remains silent.

Next, for any a < b we calculate the expected throughput of the scheme. We begin with the conditional

probability of successful decoding given νd. For νd ∈ [a, b] and νd < eR−1
P we have

Pr {IQF > R|νd} = Pr

{
νrPQ

1 + bP + νrP
1+bP
1+aP + Q

> eR − 1 − νdP

∣∣∣∣νd

}

= Pr

{
νr >

(
eR − 1 − νdP

)
(1 + bP + Q)

PQ − (eR − 1 − νdP ) P 1+bP
1+aP

∣∣∣∣νd

}
.

Note that this probability vanishes for νd < 1
P

(
eR − 1 − Q1+aP

1+bP

)
and assumes the value of unity

whenever νd > eR−1
P . Furthermore, if νd 
∈ [a, b] and νd < eR−1

P then decoding is not possible. Averaging

the conditional probability over νd we get

Pr {IQF > R} = e−
eR−1

P +
∫ b

a
1[ξ1,ξ2](ν) exp

{
−
(
eR − 1 − νP

)
(1 + bP + Q)

PQ − (eR − 1 − νP ) P 1+bP
1+aP

}
e−ν dν (28)

where

ξ1 =
1
P

(
eR − 1 − Q

1 + aP

1 + bP

)

ξ2 =
1
P

(
eR − 1

)
and the expected throughput is thus

RQF
av (R, P, Q, a, b) = Re−

eR−1
P + R

∫ b

a
1[ξ1,ξ2](ν) exp

{
−
(
eR − 1 − νP

)
(1 + bP + Q)

PQ − (eR − 1 − νP ) P 1+bP
1+aP

}
e−ν dν (29)

Finally, this throughput can be further optimized (numerically) over a and b. Inspection of (29) shows

that there is no point in choosing b > 1
P

(
eR − 1

)
. This is because for any value of a, increasing the

value of b beyond 1
P

(
eR − 1

)
only decreases the integrand without enlarging the effective interval of

integration. We can therefore assume that b ≤ 1
P

(
eR − 1

)
. Note further that for any value of b, we can

restrict the values of a to satisfy a > ξ1 without losing optimality. To see this, assume that a < ξ1.

Then by increasing a, we are reducing ξ1, thus enlarging the interval of integration, and also increasing

the integrand. We can continue this procedure until the point where ξ1 = a. It follows that the expected

throughput can be written slightly in simpler form, namely

RQF
av (R, P, Q, a, b) = Re−

eR−1
P + R

∫ b

a
exp

{
−
(
eR − 1 − νP

)
(1 + bP + Q)

PQ − (eR − 1 − νP ) P 1+bP
1+aP

}
e−ν dν (30)
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where the rate can be optimized over positive a and b which satisfy

1
P

(
eR

1 + Q
1+bP

− 1

)
≤ a ≤ b ≤ 1

P

(
eR − 1

)
.

C. Amplify-Quantize-Decode-and-forward (AQDF)

Note that in the QF protocol, the relay continues to quantize and forward even though it might have

been able to decode the message before the end of the block. For instance, if νr > 1
P

(
eR − 1

)
, then the

relay is able to decode the message after only �εN� symbols (where ε is as defined in section III-C).

It would therefore be desirable to let the relay stop quantizing and forwarding and start sending a new

code word, if and when it decoded the message. This will allow the destination to start enjoying a mutual

information of

ITD = log (1 + νdP + Q)

where TD stands for full transmit diversity, instead of only

IQF = log

(
1 + νdP +

νrPQ

1 + bP + νrP
1+bP
1+aP + Q

)
.

Note further that we assumed in the QF protocol that the relay remains silent in the event that the value

of νd either does not provide sufficient side information needed to fully decode the quantized information

coming from the relay (the case where νd < a), or that it does not provide sufficient capacity in the relay

to destination link (the case where νd > b). We have noticed by numerical observations, though, that

the latter case is less disturbing, because b is optimally chosen such that if νd > b, the destination can

decode the message by itself. In the former case, however, when νd < a the destination has practically no

chance to decode the message. This can be improved by letting the relay amplify and forward whenever

νd < a and the relay’s observation is strong enough (i.e. νr > 1
P

(
eR − 1

)
).

In other words we would like to combine the three strategies: AF, QF, and DF. Assuming that the relay

knows whether or not νd < a, it can either amplify and forward (if νd < a) or quantize and forward (if

a ≤ νd ≤ b) until it is able, if at all, to decode the message, and then send a new codeword. This scheme

requires some feedback from the destination, telling the relay which scheme is best to use in each fading

block, however this feedback is limited to one bit of information per fading block, which can be sent

from the destination with little impact on the system’s performance.

As in the ADF protocol, ε designates the fractional time within the code word when the relay had

succeeded to decode the message. Based on the previous results, the mutual information which is conveyed
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to the destination conditioned on νd is given by:

IAQDF =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε

⎡
⎣log

(
1 + P νd(1+νrP )+νrq∗(νr)

1+νrP+q∗(νr)

)
+ log

⎛
⎝1

2 + 1
2

√
1 −

(
2P
√

q∗(νr)νrνd

(1+νdP+q∗(νr))
√

1+νrP

)2
⎞
⎠
⎤
⎦

+(1 − ε) log(1 + νdP + Q), νd < a

ε log
(

1 + νdP + νrPQ
1+bP+νrP 1+bP

1+aP
+Q

)
+ (1 − ε) log (1 + νdP + Q) ,

a ≤ νd ≤ 1
P

(
eR − 1

)
log (1 + νdP ) , νd > 1

P

(
eR − 1

)
where q∗(·) is as defined in (7). For νd < a, the conditional probability of successful decoding given νd

is given by

Pr {IAQDF > R|νd} =
∫ ∞

0
1{C(R,P,Q,νd)}(νr)e−νr dνr

=
∫ ∞

eR−1
P

1{C(R,P,Q,νd)}(νr)e−νr dνr

where

C(R, P, Q, νd)
�=⎧⎨

⎩νr : ε

⎡
⎣log

(
1 + P

νd(1 + νrP ) + νrQ

1 + νrP + Q

)
+ log

⎛
⎝1

2
+

1
2

√
1 −

(
2P

√
Qνrνd

(1 + νdP + Q)
√

1 + νrP

)2
⎞
⎠
⎤
⎦

+ (1 − ε) log (1 + νdP + Q) > R

⎫⎬
⎭ . (31)

For a ≤ νd ≤ 1
P

(
eR − 1

)
, the conditional probability of successful decoding given νd is given similarly

by

Pr {IAQDF > R|νd} =
∫ ∞

0
1{D(R,P,Q,νd)}(νr)e−νr dνr (32)

where

D(R, P, Q, νd)
�={

νr : ε log

(
1 + νdP +

νrPQ

1 + bP + νrP
1+bP
1+aP + Q

)
+ (1 − ε) log (1 + νdP + Q) > R

}
.

For νd > eR−1
P , Pr {IAQDF > R|νd} = 1. Finally, the expected throughput of the AQDF protocol is given
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by

RAQDF
av (R, P, Q, a) = R Pr {IAQDF > R}

= R

∫ ∞

0
Pr {IAQDF > R|νd} e−νd dνd

= Re−
1
P

(eR−1) + R

∫ a

0

∫ ∞

eR−1
P

1{C(R,P,Q,νd)}(νr)e−νr−νd dνr dνd+

+ R

∫ 1
P

(eR−1)

a

∫ ∞

0
1{D(R,P,Q,νd)}(νr)e−νr−νd dνr dνd

where we have chosen to follow the intuition gained by the numerical optimization of the QF protocol

with respect to the parameter b, and assumed that b = 1
P

(
eR − 1

)
. This throughput can further be

optimized over a.

V. SUCCESSIVE QUANTIZATION AND BROADCAST TRANSMISSION USING TWO INFORMATION

LEVELS

As was mentioned earlier, the QF protocol does not handle well the situation where the fading gain of

the destination is less than a. In such a case, the destination has to rely on its own to decode the message, a

task which is impossible, as a is less than 1
P

(
eR − 1

)
. The AQDF protocol tries to improve this drawback

by letting the relay amplify and forward in such a case. We now take a different approach for handling

this situation. We wish to extend the QF scheme by introducing the concept of successive quantization

and combining it with a broadcast based transmission approach [59] for the relay to destination link.

To be more specific, the relay, which does not know the fading realization νd, performs two successive

quantization operations of Yr. In the first case, it assumes that the fading realization of the destination is

in the interval [a, b] for some 0 ≤ a ≤ b. This implies that the side information available at the destination

is at least Y
(a)
d , while the capacity of the link between the relay and the destination is at least Crd(b).

The relay codes (a degraded version U of) its received signal Yr assuming the above side information

using a rate ρ1. Next, the relay performs successive quantization of Yr assuming that νd is less than

a. Since the relay does not know the amount of side information actually available (depending on the

actual realization of νd), it assumes that no side information at all is available at the destination. For this

purpose it codes Yr using an additional rate ρ2. By the results of Appendix D the coding rates ρ1 and
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ρ2 are given by

ρ1 = I(U ; Yr) − I
(
U ; Y (a)

d

)
= log

(
1 + σ2 + νrP

1+aP

σ2

)

ρ2 = I
(
U ; Y (a)

d

)
= log

(
1 + σ2 + νrP

1 + σ2 + νrP
1+aP

)
.

where the parameter σ2 is the controlled distortion between the received signal Yr and its quantized

version U , in other words the quantization “noise”.

The meaning of these two rates is the following. If the realization of νd is in the interval [a, b], then

by Corollary 1, a mutual information of I(X; Yd, U) can be conveyed to the destination provided that

the capacity of the link between the relay and the destination is at least ρ1. If, however, νd < a, then

the destination will not be able to reproduce the quantized version of Yr without receiving an additional

rate of ρ2. Recall that the coding scheme which is used to establish achievability of the rate I(X; Yd, U)

uses a Wyner-Ziv type of scheme, where the mutual information term I
(
U ; Y (a)

d

)
represents the side

information which is needed to resolve the ambiguity present in the relay’s transmission. If this mutual

information is not available to the destination, it must be supplied to it via the relay to destination link,

and that is represented by the additional rate ρ2.

To conclude, if νd ∈ [a, b] the relay has to deliver less information to the destination, because the

destination has more side information. On the other hand, if νd < a, the destination has little side

information, and the relay has to compensate this by sending more information in the relay to destination

link. Note that this behavior is in perfect match with the available capacity in the relay to destination

link. When νd ∈ [a, b] the capacity of the link can be assumed at least Crd(b), while in the case where

νd < a the capacity is at least Crd(a) > Crd(b).

We now address the communication between the relay and the destination. We propose a broadcast

approach [52], where the relay transmits two streams of information, allocating the power between the

streams according to some parameter α ∈ [0, 1]. The rates of the two information streams are given by

R1 = log
(

1 +
αQ

1 + bP + ᾱQ

)

R2 = log
(

1 +
ᾱQ

1 + aP

)

where the first rate can be decoded by the destination as long as νd < b, and the second rate can be

decoded if νd < a by decoding the first stream and cancelling it out from the received signal. The first

stream is used for the first coding rate ρ1, while the second stream is used for the additional rate ρ2

which is needed if the side information is not sufficient at the destination (νd < a).
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In other words, when the channel conditions associated with the link between the relay and the

destinations are good, i.e., νd < a, the destination has little side information, so it will decode both

streams of information needed to reproduce U . When the channel is poor, the destination can decode

only one stream, however this is enough as it has better side information in this case. The question is how

the relay should choose σ2 and α and how it should match the quantization rates ρ1, ρ2 to the channel

rates R1, R2.

We now state a more precise definition of this strategy. Fix the values of a and b, and assume that

the fading gain of the relay in some fading block is νr. The relay selects a power allocation parameter

α = 1 − ᾱ = f(P, Q, a, b, νr) and a distortion parameter σ2 = g(P, Q, a, b, νr) such that

ρ1 = log

(
1 + σ2 + νrP

1+aP

σ2

)
≤ log

(
1 +

αQ

1 + bP + ᾱQ

)
= R1.

This selection ensures that if the fading νd is in the interval [a, b], the auxiliary random variable U

associated with the value of σ2 will be reproduced exactly by the destination. Next, the relay uses its

remaining power to send the rate ρ2. This rate will be decoded if

ρ2 = log

(
1 + σ2 + νrP

1 + σ2 + νrP
1+aP

)
≤ log

(
1 +

ᾱQ

1 + νdP

)
. (33)

The mutual information conveyed to the destination is given by

ISQF =

⎧⎨
⎩ I(X; Yd, U), νd ∈ [a, b] or

{
νd ∈ [0, a] and eq. (33) is satisfied

}
I(X; Yd), otherwise

(34)

The best expected throughput which can be obtained by this strategy is given by

RSQF
av (R, P, Q) = max

a,b,f,g
R Pr {ISQF > R} (35)

where the maximization is carried out over all constants a and b and over all functions f and g. By

choosing small values of σ2 (with appropriate values of α close to unity to accommodate the required rate

demand ρ1) the relay increases the mutual information enjoyed by the destination in the interval [a, b].

But this makes the reception of the second rate less likely to occur, implying an information rate of only

I(X; Yd) in the event that νd 
∈ [a, b]. Larger values of σ2 enable to reduce the necessary power allocation

α and increase the probability that the second stream gets decoded. In this case, the rate I(X; Yd, U)

has a better chance of being delivered to the destination even if νd < a. Note that the QF protocol is

actually one special case of this generalized strategy where

f(P, Q, a, b, νr) ≡ 1

g(P, Q, a, b, νr) =
1
Q

(
1 + bP + νrP

1 + bP

1 + aP

)
.
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in which case the relay maximizes I(X; Yd, U), but this rate is delivered to the destination only if

νd ∈ [a, b].

A. The Simplified-Successive-Quantize-and-Forward (SSQF) Protocol

We now examine a simplified SQF protocol. Here the relay selects the smallest possible distortion

parameter σ2, such that the auxiliary random variable U is always reconstructed at the receiver as long

as νd ∈ [0, b], implying that a rate of I(X; Yd, U) will always be delivered to the destination as long as

νd ∈ [0, b]. If νd ∈ [0, a] the destination receiver needs both information streams to decode U (because

it has little side information), and when νd ∈ [a, b], the destination decodes only the first information

stream which is enough to reconstruct U with the help of the side information available. As before we

assume that a and b are fixed parameters (to be optimized later on).

In this case, the mutual information conveyed to the receiver whenever νd ∈ [0, b] is always given by

log
(
1 + νdP + νrP

1+σ2

)
, and the relay wishes to select the smallest possible σ2 such that the following

two constraints are met,

ρ1 = log

(
1 + σ2 + νrP

1+aP

σ2

)
≤ log

(
1 +

αQ

1 + bP + ᾱQ

)
= R1

ρ2 = log

(
1 + σ2 + νrP

1 + σ2 + νrP
1+aP

)
≤ log

(
1 +

ᾱQ

1 + aP

)
= R2

These two conditions are equivalently written as

σ2 ≥ 1
αQ

(
1 +

νrP

1 + aP

)
(1 + bP + ᾱQ) �= g1 (νr, P, Q, a, b, α) (36)

σ2 ≥
νrP

(
aP − ᾱQ

1+aP

)
ᾱQ

− 1 �= g2 (νr, P, Q, a, α) (37)

Note that g1 (νr, P, Q, a, b, 1) and g2 (νr, P, Q, a, 0) are both finite. Moreover, g1 and g2 are both mono-

tonic functions of α in the interval [0, 1], but of opposite direction. For α → 0, g1 is unbounded, and for

α → 1 g2 is unbounded. It is therefore desirable to select α such that

max
{
g1 (νr, P, Q, a, b, α) , g2 (νr, P, Q, a, α)

}
(38)

is minimized. This selection is obtained by choosing α which satisfies:

g1 (νr, P, Q, a, b, α) = g2 (νr, P, Q, a, α) .

Solving for α one gets

α∗ =
(1 + aP + νrP ) (1 + bP + Q)

(1 + aP + νrP ) (1 + bP + Q) + aP 2νr(1 + aP )
. (39)
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Substituting (39) in g2 we get that the optimal σ2 satisfies

νrP

1 + σ2
=

νrPQ

1 + bP + Q + νrP
[

1+bP
1+aP + aP

] (40)

Therefore, the mutual information conveyed to the destination is given by

ISSQF = log

⎛
⎝1 + νdP +

νrPQ

1 + bP + Q + νrP
[

1+bP
1+aP + aP

]
⎞
⎠ . (41)

By comparing ISSQF with IQF (equation (27)) it can be seen that we are reducing the mutual information

conveyed by this scheme, but hopefully making it more likely to actually be delivered when channel

conditions are less favorable. We now compute the probability of successful decoding. As usual, we first

consider the conditional probability given νd. For the case νd ∈ [0, b] and νd < eR−1
P we have

Pr {ISSQF > R|νd} = Pr

⎧⎨
⎩ νrPQ

1 + bP + Q + νrP
[

1+bP
1+aP + aP

] > eR − 1 − νdP

∣∣∣∣νd

⎫⎬
⎭

= Pr

⎧⎨
⎩νr >

(
eR − 1 − νdP

)
(1 + bP + Q)

PQ − (eR − 1 − νdP ) P
[

1+bP
1+aP + aP

]∣∣∣∣νd

⎫⎬
⎭

Note that this probability vanishes for νd < 1
P

(
eR − 1 − Q

1+bP

1+aP
+aP

)
and assumes the value of unity

whenever νd > eR−1
P . Averaging the conditional probability over νd we get

Pr {ISSQF > R} = e−
eR−1

P +
∫ b

0
1[η1,η2](ν) exp

⎧⎨
⎩−

(
eR − 1 − νP

)
(1 + bP + Q)

PQ − (eR − 1 − νP ) P
[

1+bP
1+aP + aP

]
⎫⎬
⎭ e−ν dν

(42)

where

η1 =
1
P

(
eR − 1 − Q

1+bP
1+aP + aP

)

η2 =
1
P

(
eR − 1

)
and the expected throughput is thus

RSSQF
av (R, P, Q, a, b) = Re−

eR−1
P +

+ R

∫ b

0
1[η1,η2](ν) exp

⎧⎨
⎩−

(
eR − 1 − νP

)
(1 + bP + Q)

PQ − (eR − 1 − νP ) P
[

1+bP
1+aP + aP

]
⎫⎬
⎭ e−ν dν (43)

Finally, this throughput can be further optimized (numerically) over a and b.
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VI. NUMERICAL RESULTS, COMPARISONS, AND DISCUSSION

In this section we report the results of numerically computing the expected throughput of the various

protocols described in the previous sections. It is instructive to compare these protocols with some or all

of the four cases described below:

1) No-cooperation (NC): In this case, the source is not helped by the relay who remains silent

throughout the transmission. The expected throughput in this case is given [50] by

RNC
av (R, P ) = Re−

eR−1
P .

2) Transmitting to the best user (BU): This is when the source transmits only to the best user, and

the other user remains silent. The corresponding expected throughput is given by [50]

RBU
av (R, P ) = 2Re−

eR−1
P − Re−2 eR−1

P .

3) Transmit Diversity (TD): Here the relay is assumed to fully cooperate with the source. This situation

is equivalent to the assumption νr → ∞. The corresponding throughput is

RTD
av (R, P, Q) = R Pr

{
log(1 + νdP + Q) > R

}

=

⎧⎨
⎩ R, R < log(1 + Q)

Re−
eR−1−Q

P , R > log(1 + Q)
.

4) Receive Diversity (RD): Here the two co-located users are assumed to be able to fully cooper-

ate between themselves. This situation is equivalent to the assumption Q → ∞. The expected

throughput is given by

RRD
av (R, P ) = R Pr

{
log (1 + (νr + νd)P ) > R

}
= R Pr

{
νd + νr >

1
P

(
eR − 1

)}

= R

(
1 +

eR − 1
P

)
e−

eR−1
P (44)

where (44) follows because νd + νr is a chi-square random variable with 4 degrees of freedom.

Note that as opposed to all the protocols discussed in this paper, cases 1, 2, and 4 do not depend on

the co-location gain Q.

A. The Basic Protocols

We begin with the performance of the three basic protocols, namely, DF, AF, and ADF. It is important

to realize that the throughput of all these schemes is upper bounded by the performance of the best user.
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In the DF protocol, if |ad| > |ar|, then user r stays silent at least until user d decodes the message, so the

performance is just that of the best user. If, on the other hand, |ar| > |ad|, then even if Q is enormous,

user d will not be able to decode the message before user r does. At best, it will decode the message a

short time afterwards, so again we are bounded by the best user’s performance. Next, by proposition 1,

the performance of the AF protocol for any power policy, in particular for the policy q∗(·), is bounded
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Fig. 2. Expected throughput, P = 10 dB.
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by that of the best user. Finally, consider the ADF protocol. If the relay does not succeed to decode the

message before the destination does, then the scheme reduces to the AF scheme, which was shown to

perform worse than the best user’s performance. If the relay does succeed to decode the message before

the destination does, then it was the strongest user, and in particular, the destination does not decode the

message any sooner.

The performance of these protocols is shown in Fig. 2 for P = 10 dB. Since we are considering a

setting were the users are co-located, it is natural to assume that the co-location gain is typically larger

than the power level at which the users hear the remote source. We therefore examine three values

of co-location gain, namely, Q = 10, 15, and 20 dB. These values correspond to situations where the

co-location is limited, moderate, or high, respectively. A common feature of the expected throughput

analysis of these protocols is that they all exhibit a peek for some choice of rate R, which we call the

maximizing attempted rate or simply the maximizing rate. One way of comparing between the protocols

is by examining their maximal achievable expected rates at the maximizing rate. In this respect, it seems

that the ADF outperform both the AF and DF protocols, where the DF has the weakest performance.

However, when the co-location gain is only limited, both the AF and ADF suffer some degradation for

rates above the maximizing rate. This degradation can be attributed to the suboptimal decentralized power

control policy which we employed in those schemes. Recall that q∗(·) was shown to be optimal only

when the co-location gain is large. The results seem to confirm this result. It seems that this choice is

good when the co-location gain approaches ∞, but becomes far from optimal when the co-location gain

is small. Of course, as we increase the co-location gain Q, all protocols approach the performance of the

best user, reflecting the fact that they are all bounded by this performance.

B. Quantization Based Protocols

In all of the preceding protocols, the performance was bounded by the performance of the best user. We

turn now to the more efficient protocols, which are all based on Wyner-Ziv quantization. Fig. 3 depicts

the performance of the QF, AQDF, and SSQF protocols. For high co-location gains, the SSQF protocol

seems to achieve the highest maximal throughput, almost closing the gap with respect to QF-UB upper

bound (which assumes the relay knows νd). However, for rates higher than the maximizing rate, and for

lower co-location gains, the performance of the SSQF falls below that of the other protocols. The AQDF

protocol seems to be more robust in those situations, keeping its close proximity to the QF-UB upper

bound in a wide range of rates and co-location gains.

It is interesting to examine the relationship between the SSQF and AQDF protocols more closely.
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Fig. 3. Expected throughput for quantization based protocols, P = 10 dB.

Recall that the quantization procedure is different in both cases. In AQDF the quantization is performed

only if νd ∈ [a, b], and in SSQF it is performed for all νd ∈ [0, b]. That is why the quantization noise

in SSQF is larger than in AQDF (Compare eq. (26) for AQDF with eq. (36) for SSQF). When the co-

location gain factor Q is high, then despite the fact that the quantization in SSQF is slightly more noisy

(as to allow reconstruction for low values of νd), and despite that it does not contain the DF part, it is
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still better than AQDF. This happens for two reasons: a) By results of [12] it is known that QF is better

than DF when the relay is very close to the destination (i.e. when Q is large), so the lack of the DF

component in SSQF is not too harmful. b) The QF part for νd < a is better than just AF in this case.

On the other hand, when Q is small, the quantization in SSQF becomes very inefficient, such that it is

worse than AF, and the lack of the DF part becomes more dominant.

These results further show that the usage of such protocols seems to be beneficial when the co-location

gain is at least moderately higher than the power level of the received source’s transmission. The QF

protocol appears to yield large benefit only when the co-location is relatively large.

Another interesting question which arises with respect to these protocols is how one should select

the endpoints of the interval [a, b] in which the fading gain of the destination must fall in order for the

quantization and forwarding scheme to work. Some insight may be gained by looking at the optimal

values of a and b which were obtained numerically for the QF protocol (see Fig. 4).
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Fig. 4. Optimal values of a and b for the QF protocol, P = 10 dB.

Fig. 4 depicts the behavior of the optimal values of a and b for P = 10 dB and for two values

of co-location gain. As was mentioned at the end of section IV-B, the value of b can be restricted to

b ≤ 1
P

(
eR − 1

)
with no loss in performance. The numerical results confirm this fact, and further suggest

that b should be exactly equal to 1
P

(
eR − 1

)
in a wide range of co-location gains and attempted coding

rates. In other words, we would like the destination receiver to receive helpful information from the relay
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starting at the moment when its fading gain no longer allows it to decode the message alone (i.e. when

νd < 1
P

(
eR − 1

)
).

As for a, one would like to select the smallest a possible, so as to cover as much “bad” fading

realization of the destination, but not too small, as then the amount of side information which is assumed

available to the destination will be too small, causing an overloading of the link from the relay to the

destination with the quantized information from the relay. The optimal value of a determines the best

trade off from the standpoint of the expected throughput.

Another observation can be made with respect to the size of the quantize-and-forward fading window

[a, b]. When the co-location gain is large, it allows to assume less side information available at the

destination, since the channel between the relay and the destination can accommodate transmission of

more information. When capacity of the relay to destination link is small, however, more side information

is needed by the destination in order to decode the quantized information, rendering the value of a higher.

We can further examine the optimal values of a and b for the SSQF protocol. These values are

depicted in Fig. 5. Note that as in the QF protocol we can restrict the optimization to b ≤ 1
P

(
eR − 1

)
at no performance cost. Here also it appears that the best choice is in fact b = 1

P

(
eR − 1

)
. A common

behavior in all cases of co-location gain is that when the rate is small, it is best to assume no side

information at all and simply transmit the whole quantized information by the relay. As the rate increases,

it is better to assume that some side information might be available to the destination, and rely on the

opposite match between the side information available at the destination and the capacity of the relay to

destination link.

VII. CONCLUSIONS

We have explored several cooperative strategies tailored for situations in wireless networks where co-

located users can act as potential relays for one another, and where channel state information is available

only to the receivers. Two groups of protocols were examined. The first group of protocols includes

variations of decode-and-forward and amplify-and-forward. A common feature of these protocols is that

their performance is upper bounded by the performance of the best user, and that they approach this

performance as the co-location gain increases. Among these protocols, the hybrid ADF protocol showed

the best behavior.

The second group of protocols was based on the notion of Wyner-Ziv quantization at the relay. That

is, the relay quantizes its received observation of the source’s transmitted symbol relying on the side

information available at the destination, and sends this quantized information to the destination over
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Fig. 5. Optimal values of a and b for the SSQF protocol, P = 10 dB.

an error free link in which the source’s transmission is considered by the destination as noise. Since

channel state information is known only locally (by the receivers), the relay has trouble knowing even the

statistics of the signal received by the destination. In order to be able to perform the efficient quantization,

a sub-optimal scheme was proposed where the relay assumes some minimal level of side information

available when performing the quantization. An inverse relation which exists between the amount of side

information available to the destination, and the capacity of the error free link between the relay and

the destination was utilized, where a successive quantization at the relay was matched with a double

stream broadcast transmission strategy. Finally a hybrid scheme which encompasses three notions of

relay operation in one scheme was proposed and analyzed.

Numerical results demonstrated the superiority of the quantization approaches with respect to the basic

schemes, which do not involve quantization. Among these protocols, the scheme based on successive

quantization and a broadcast approach yields the best maximal expected rate for high co-location gains.

However, when one operates at lower co-location gains or higher coding rates than the maximizing

rate, the performance of the hybrid AQDF protocol seems to give better performance. It is noted that the

schemes based on quantization all approach the performance of a full receive diversity scheme employing

two fully cooperating receive antennas.

While the optimal relaying strategy remains unknown in general, it has been observed [12] that decode-
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and-forward schemes are more suited in cases where the relay enjoys favorable channel conditions with

respect to the destination. For instance, in some wireless networks this strategy even achieves capacity

(see discussion in section I). On the other hand, when the relay is close to the destination, quantization

schemes offer better performance. Our setting deals with the latter scenario, and in this respect conforms

to the reported findings.

These observations together with the successful performance of the AQDF scheme point to the direction

of hybrid schemes. It appears that a good relaying scheme should be flexible in the sense that the relay

could adapt its operation depending upon channel conditions (to which it has access to). From our results

it appears that the ability of the relay to decode the message or the inability thereof plays a crucial role in

determining in which way the relay should best act. This role is more pronounced when the co-location

gain is high.

It would be of interest to examine ways in which these quantization schemes can be extended to

settings with multiple co-located relays. While a general extension seems somewhat challenging, our

results can be readily used to gain some insight into the possible performance of a multi–relay system.

For instance, consider the case where there are K co-located users. One can examine a suboptimal

scheme where the strongest relay (in the sense that it enjoys the best channel conditions) quantizes and

forwards its observation to the destination. Such a scheme, which serves as a lower bound to the general

multi–relay system, can be analyzed by applying our results for the two-relay case, after modifying the

statistics of the best relay’s fading gain. An upper bound can be obtained by allowing all the relays to

cooperate. This situation is equivalent to a single super–relay which has K − 1 receive antennas and

K − 1 transmit antennas, and the results here can be used to assess this case as well after some straight

forward modifications.

APPENDIX A

AN ISI CHANNEL

The channel (3) can equivalently be written as

Yd(n) = adX(n) + βarX(n − 1) + Z̃d(n), n = 1, 2, . . . , N (45)

where Z̃d(n) = βZr(n − 1) + Zd(n) and E

[
Z̃d(n)Z̃∗

d(m)
]

= (β2 + 1)δnm. In this case, the average

mutual information between the source and the destination assuming i.i.d. signalling over long blocks is
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given by [60]–[62]

IAF =
1
2π

∫ π

−π
log

(
1 +

P

β2 + 1
(|ad + βare

−jω|2)) dω

=
1
2π

∫ π

−π
log

(
1 +

P

β2 + 1
(
νd + β2νr + 2β

√
νrνd cos ω

))
dω

=
1
π

∫ π

0
log

(
1 +

P
(
νd + β2νr

)
β2 + 1

+
2Pβ

√
νrνd

β2 + 1
cos ω

)
dω

= log

⎛
⎜⎜⎝

1 + P (νd+β2νr)
β2+1 +

√(
1 + P (νd+β2νr)

β2+1

)2 −
(

2Pβ
√

νrνd

β2+1

)2

2

⎞
⎟⎟⎠

= log

⎡
⎣(1 +

P
(
νd + β2νr

)
β2 + 1

)⎛
⎝1

2
+

1
2

√
1 −

(
2Pβ

√
νrνd

β2 + 1 + P (νd + β2νr)

)2
⎞
⎠
⎤
⎦

= log
(

1 + P
νd(1 + νrP ) + νrq(νr)

1 + νrP + q(νr)

)
+ log

⎛
⎜⎝1

2
+

1
2

√√√√1 −
(

2P
√

q(νr)νrνd

(1 + νdP + q(νr))
√

1 + νrP

)2
⎞
⎟⎠ .

APPENDIX B

PERFORMANCE OF AF IS BOUNDED BY THE PERFORMANCE OF THE BEST USER

By definition of the expected throughput it suffices to show that for every policy q(·) satisfying (4)

IAF-UB(q) ≤ log
(
1 + max {νd, νr}P

)
.

Consider the function f(x) defined for x ∈ [0, Q] by

f(x) �=
νd(1 + νrP ) + νrx

1 + νrP + x

whose derivative equals

f ′(x) =
(νr − νd) (1 + νrP )

(1 + νrP + x)2
.

If νr > νd the function f(x) achieves its maximum value at x = Q. Conversely, if νr ≤ νd the function

achieves its maximum value for x = 0. Now consider the case where the relay is the stronger user, i.e.
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νr > νd. Then

IAF-UB − log
(
1 + max {νd, νr}P

)
= IAF-UB − log (1 + νrP )

= log
(

1 + P
νd(1 + νrP ) + νrq(νr)

1 + νrP + q(νr)

)
− log (1 + νrP )

≤ log
(

1 + P
νd(1 + νrP ) + νrQ

1 + νrP + Q

)
− log (1 + νrP )

= log
(1 + νdP + Q)(1 + νrP )

1 + νrP + Q
− log (1 + νrP )

= log
1 + νdP + Q

1 + νrP + Q

< 0 (46)

Next, if the destination is strongest, i.e. νr ≤ νd, we have

IAF-UB − log
(
1 + max {νd, νr}P

)
= IAF-UB − log (1 + νdP )

= log
(

1 + P
νd(1 + νrP ) + νrq(νr)

1 + νrP + q(νr)

)
− log (1 + νdP )

≤ log (1 + νdP ) − log (1 + νdP )

= 0 (47)

proving the proposition.

APPENDIX C

ASYMPTOTIC OPTIMALITY OF q∗(·)
We prove the proposition in several steps. We first show that the policy q∗(·) maximizes the expected

throughput associated with the mutual information upper bound, namely

RAF-UB
av (R, P, Q, q(·)) = R Pr {IAF-UB(q) > R} . (48)
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To this end, denote by pAF-UB
d (q) the probability of successful decoding by the destination associated

with (48). This probability is given by

pAF-UB
d (q) = Pr {IAF-UB(q) > R}

= Pr
{

log
(

1 +
P (νrνdP + νd + νrq(νr))

1 + νrP + q(νr)

)
> R

}

= Pr
{

log
(1 + νdP + q(νr))(1 + νrP )

1 + νrP + q(νr)
> R

}

= Pr
{

νd >
1
P

[
eR

(
1 +

q(νr)
1 + νrP

)
− 1 − q(νr)

]}

=
∫ ∞

0
Pr

{
νd >

1
P

[
eR

(
1 +

q(u)
1 + uP

)
− 1 − q(u)

] ∣∣∣∣νr = u

}
pνr

(u) du

Since Pr {νd > α | νr = β} = e−α, α ≥ 0, β ≥ 0, and pνr
(α) = e−α, it follows that

pAF-UB
d (q) =

∫
A(R,P,Q)

exp
{
− 1

P

[
eR

(
1 +

q(u)
1 + uP

)
− 1 − q(u)

]
− u

}
du +

∫
A(R,P,Q)

e−u du, (49)

where A(R, P, Q) �= {u ∈ [0,∞) : fq(u) ≥ 0} and where fq(u) is defined by

fq(u) �=
1
P

[
eR

(
1 +

q(u)
1 + uP

)
− 1 − q(u)

]
, u ≥ 0.

We now wish to characterize the set A(R, P, Q). Note that from the constraints (4) it follows that

fq(0) =
1
P

[
eR

(
1 +

q(0)
1 + uP

)
− 1 − q(0)

]

=
eR − 1

P
.

Next, observe that since

fq(u) =
1
P

[
eR

(
1 +

q(u)
1 + uP

)
− 1 − q(u)

]

=
1
P

[
q(u)(eR − 1 − uP )

1 + uP
+ eR − 1

]
(50)

it follows that for any u < eR−1
P , there holds fq(u) ≥ 0. Finally, note that from the derivative of fq(u),

namely,

Pf ′
q(u) = eR q′(u)(1 + uP ) − q(u)P

(1 + uP )2
− q′(u)

=
q′(u)(1 + uP )(eR − 1 − uP ) − eRPq(u)

(1 + uP )2
(51)

it follows that the function fq(u) is monotonically decreasing for all u > eR−1
P . It therefore follows that

fq(u) either has one zero crossing, or it is nonnegative for all u. Since limu→∞ fq(u) = eR−1−Q
P , then
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if R < log(1 + Q) there is one zero crossing, and if R ≥ log(1 + Q) there is no zero crossing. We can

therefore rewrite (49) as follows

pAF-UB
d (q) =

∫ u∗

0
exp

{
− 1

P

[
eR

(
1 +

q(u)
1 + uP

)
− 1 − q(u)

]
− u

}
du + e−u∗

, (52)

where u∗ is the unique solution to the equation fq(u) = 0 for R < log(1 + Q), and u∗ = ∞ for

R ≥ log(1 + Q). We now claim that this probability is maximized for the power control policy

q∗(u) =

⎧⎨
⎩ 0, u < eR−1

P

Q, u ≥ eR−1
P

. (53)

To verify this it suffices to show that fq∗(u) ≤ fq(u), ∀u ≥ 0, for any power control q(u) satisfying

(4). But this holds because for all u ≥ 0 there holds

fq∗(u) − fq(u) =
1
P

[
eR

(
1 +

q∗(u)
1 + uP

)
− 1 − q∗(u)

]
− 1

P

[
eR

(
1 +

q(u)
1 + uP

)
− 1 − q(u)

]

=
1
P

(
eR

1 + uP
− 1

)
(q∗(u) − q(u))

≤ 0.

It therefore follows that the expected throughput (48) is maximized for this selection. The second step is

to show that the performance associated with the mutual information upper bound and q∗(·) approaches

the performance of the best user as Q → ∞, namely

lim
Q→∞

RAF-UB
av (R, P, Q, q∗(·)) = RBU

av (R, P ).

To see this compute the expected throughput corresponding to q∗(·) for all Q, by substituting q∗(·) into

(52), namely

RAF-UB
av (R, P, Q, q∗(·)) = RpAF-UB

d (q∗)

= R

∫ eR−1
P

0
exp

{
−eR − 1

P
− u

}
du+

+ R

∫ u∗

eR−1
P

exp
{
− 1

P

[
eR

(
1 +

Q

1 + uP

)
− 1 − Q

]
− u

}
du + Re−u∗

,

where

u∗ =

⎧⎨
⎩

(1+Q)(eR−1)
(1+Q−eR)P , R < log (1 + Q)

∞, R ≥ log(1 + Q)
.
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For fixed R, and large enough Q we can write

RAF-UB
av (R, P, Q, q∗(·)) = Re−

eR−1
P

(
1 − e−

eR−1
P

)

+ R

∫ (1+Q)(eR−1)
(1+Q−eR)P

eR−1
P

exp
{
− 1

P

[
eR

(
1 +

Q

1 + uP

)
− 1 − Q

]
− u

}
du

+ Re
− (1+Q)(eR−1)

(1+Q−eR)P . (54)

Since u∗ −−−−→
Q→∞

eR−1
P , it follows that the second term in (54) approaches zero, yielding

lim
Q→∞

RAF-UB
av (R, P, Q, q∗(·)) = Re−

eR−1
P

(
1 − e−

eR−1
P

)
+ Re−

eR−1
P

= 2Re−
eR−1

P − Re−2 eR−1
P

= RBU
av (R, P ) (55)

Finally, we show that the expected throughput associated with the upper bound and the expected through-

put associated with the true performance coincide for the policy q∗(·) as Q → ∞, i.e.

lim
Q→∞

[
RAF-UB

av (R, P, Q, q∗(·)) − RAF
av (R, P, Q, q∗(·))] = 0. (56)

Recall that

RAF-UB
av (R, P, Q, q∗(·)) = R Pr {T1(Q) > R}

RAF
av (R, P, Q, q∗(·)) = R Pr {T1(Q) + T2(Q) > R}

where T1(Q) and T2(Q) are the first and second terms, respectively, of the AF mutual information (5)

for the policy q∗(·). Note that for all 0 < ε < log 2

Pr {|T2(Q)| > ε} =
∫ ∞

0
Pr

{ √
q∗(νr)νrνd

(1 + νdP + q∗(νr))
√

1 + νrP
>

1
2P

√
1 − (2e−ε − 1)2

∣∣∣∣νr

}
e−νr dνr

=
∫ ∞

eR−1
P

Pr
{ √

Qνrνd

(1 + νdP + Q)
√

1 + νrP
>

1
2P

√
1 − (2e−ε − 1)2

∣∣∣∣νr

}
e−νr dνr

≤
∫ ∞

eR−1
P

Pr

{ √
Q(1 + νrP )νd

(1 + νdP + Q)
√

1 + νrP
>

1
2
√

P

√
1 − (2e−ε − 1)2

∣∣∣∣νr

}
e−νr dνr

= e−
eR−1

P Pr
{ √

Qνd

1 + νdP + Q
>

1
2
√

P

√
1 − (2e−ε − 1)2

}

≤ e−
eR−1

P Pr
{

νd >
Q

4P

(
1 − (

2e−ε − 1
)2)}

= e−
eR−1

P exp
{
− Q

4P

(
1 − (

2e−ε − 1
)2)} −−−−→

Q→∞
0

August 9, 2005 DRAFT



SUBMITTED TO THE IEEE TRANSACTIONS ON INFORMATION THEORY 38

which implies that T2(Q) P−−−−→
Q→∞

0. Next, observe that (55) implies that

T1(Q) D−−−−→
Q→∞

log (1 + max {νr, νd}P ) . (57)

By [57, Theorem C.3] it follows that T1(Q) + T2(Q) D−−−−→
Q→∞

log (1 + max {νr, νd}P ), which implies

(56). Combining (55) and (56) yields the result.

APPENDIX D

DERIVATION OF EQUATIONS (14) AND (15)

We start with the object function

I(X; Yd, U) = I(X; Yd) + I(X; U |Yd)

= I(X; Yd) + H(U |Yd) − H(U |X, Yd)

(a)
= I(X; Yd) + H(U |Yd) − H(U |X) (58)

where (a) is due to the Markovity of Yd ⇐⇒ X ⇐⇒ Yr ⇐⇒ U . The first term in (58) is easily given

by

I(X; Yd) = log
(
1 + |ad|2P

)
.

As for the third term in (58), since U = arX + Zr + W it follows that

H(U |X) = H(Zr + W |X) = log
(
πe

(
1 + σ2

))
.

We now address the second term in (58). Consider the random vector [U Yd]T whose covariance matrix

is given by

Σ = E

⎡
⎣ U

Yd

⎤
⎦ [U∗, Y ∗

d ] =

⎛
⎝νrP + 1 + σ2 ara

∗
dP

ada
∗
rP |ad|2P + 1

⎞
⎠

and whose log-determinant is given by

log det Σ = log
((|ar|2P + 1 + σ2

) (|ad|2P + 1
)− |ar|2|ad|2P 2

)

= log
(
|ar|2P +

(
1 + σ2

) (|ad|2P + 1
))

The second term in (58) can now be written as

H(U |Yd) = H(U, Yd) − H(Yd)

= log det (πeΣ) − log
[
πe

(|ad|2P + 1
)]

= log πe

(
1 + σ2 +

|ar|2P
|ad|2P + 1

)
(59)
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Combining all three terms in (58) we have

I(X; Yd, U) = log
(
1 + |ad|2P

)
+ log

(
πe

(
1 + σ2 +

|ar|2P
|ad|2P + 1

))
− log

(
πe

(
1 + σ2

))
= log

(
1 + |ad|2P

)
+ log

(
1 +

|ar|2P
(|ad|2P + 1) (1 + σ2)

)
.

Next, we wish to express the Wyner-Ziv constraint (15). First, note that

I(U ; Yr) = log
(

1 +
|ar|2P + 1

σ2

)

= log
(

1 + σ2 + |ar|2P
σ2

)
. (60)

Next, since I(U ; Yd) = H(U) − H(U |Yd) and since H(U) = log πe
(|ar|2P + 1 + σ2

)
, using (59) we

get

I(U ; Yd) = log πe
(
1 + σ2 + |ar|2P

)− log πe

(
1 + σ2 +

|ar|2P
1 + νdP

)

= log

(
1 + σ2 + |ar|2P
1 + σ2 + |ar|2P

1+νdP

)
(61)

By combining (60) and (61) we get the Wyner-Ziv constraint

I(U ; Yr) − I(U ; Yd) = log

(
1 + σ2 + |ar|2P

1+νdP

σ2

)
.
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