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Abstract

A feature selection algorithm is presented based on the global minimization of a data-
dependent generalization error bound. Feature selection and scaling algorithms often lead
to non-convex optimization problems, which in many previous approaches were addressed
through gradient descent procedures, which can only guarantee convergence to a local
minimum. We propose an alternative approach, whereby the global solution of the non-
convex optimization problem is derived by an equivalent convex conic optimization problem.
Highly competitive numerical results on both artificial and real-world data sets are reported.
The relation of the algorithm to the support vector machine algorithm is also discussed.

Keywords: Feature Selection, Dimensionality Reduction, Classification, Generalization
Error Bounds, Statistical Learning Theory.

1. Introduction

This paper presents a new approach to feature selection for classification where the goal is
to learn a decision rule from a training set of pairs Sn =

{

x(i), y(i)
}n

i=1
, where x(i) ∈ R

d are

input patterns and y(i) ∈ {−1, 1} are the corresponding labels. The goal of a classification
algorithm is to find a separating function f(·), based on the training set, which will generalize
well, i.e. classify new patterns with as few errors as possible. Feature selection schemes
often utilize, either explicitly or implicitly, scaling variables, {σj}d

j=1, which multiply each

feature. The aim of such schemes is to optimize an objective function over σ ∈ R
d.

Feature selection can be viewed as the special case σj ∈ {0, 1}, j = 1, . . . , d, where a feature
j is removed if σj = 0. The more general case of feature scaling is considered here, namely
σj ≥ 0, j = 1, . . . , d. Clearly feature selection is a special case of feature scaling.

The overwhelming majority of feature selection algorithms in the literature, separate the
feature selection and classification tasks, while solving either a combinatorial or a non-
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convex optimization problem (Grandvalet and Canu, 2003), (Weston et al., 2000), (Weston
et al., 2003), (Perkins et al., 2003), (Guyon et al., 2002), (Bradley and Mangasarian, 1998).
Additionally, an overview of feature selection algorithms is available in (Guyon and Elisseeff,
2003). In either case there is no guarantee of efficiently locating the global optimum. This
is particularly problematic in large scale classification tasks which may initially contain
several thousand features. Moreover, the objective of many feature selection algorithms is
not related to the Generalization Error (GE). Even for global solutions of such algorithms
there is no theoretical guarantee of proximity to the minimum of the GE.

To overcome the above shortcomings we propose a feature selection algorithm based on the
Global Minimization of an Error Bound (GMEB). This approach consists of simultaneously
finding the optimal linear classifier and the optimal scaling factors of each feature by mini-
mizing a GE bound. As in previous feature selection algorithms, a non-convex optimization
problem must be solved. A novelty of this paper is the use of the equivalent optimization
problems concept (Boyd and Vandenberghe, 2004, pp. 130-136), whereby a global optimum
is guaranteed in polynomial time.

The development of the GMEB algorithm begins with the design of a GE bound for feature
selection. This is followed by formulating an optimization problem which minimizes this
bound. Invariably, the resulting problem is non-convex. To avoid the drawbacks of solving
non-convex optimization problems, an equivalent convex optimization problem is formulated
whereby the exact global optimum of the non-convex problem can be computed. Next the
convex optimization task is reduced to a rotated conic quadratic programming problem for
which efficient solvers are available.

Additionally, the GMEB algorithm can function as a linear classifier for classification prob-
lems in which feature selection is not required. A link to the standard Support Vector
Machine (SVM) is established in the absence of feature selection. Comparative numerical
results on both artificial and real-world datsets are reported.

2. Optimization background and notation

The notation and definitions were taken from (Boyd and Vandenberghe, 2004). All vectors
are column vectors unless transposed. The nonnegative real numbers are termed R+. The
domain of function f is denoted by dom f . Vectors with all components zero or one are
denoted 0,1 respectively. Componentwise inequality between vectors x and y are denoted
by x ¹ y. The significance of the matrix inequality, A º B, between two symmetric matrices
A and B is that the eigenvalues of the matrix A−B are nonnegative. The relative interior
of set C is denoted by relintC. Finally, diag (x) is a diagonal matrix with diagonal entries
x1, . . . , xn.

2.1 Definitions

Definition 1 (LMI) The condition

A(x) = x1A1 + . . . + xnAn ¹ B

where B, Ai ∈ Sm, i.e. symmetric matrices of dimensions [m×m], is called a linear matrix
inequality (LMI) in x ∈ R

n.
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Definition 2 (Epigraph) The epigraph of a function f : R
n → R is defined as

epi f = {(x, t)|x ∈ dom f, f(x) ≤ t}

which is a subset of R
n+1.

Definition 3 (Quasiconvex function) A function f : R
n → R is called quasiconvex if

its domain and all its sublevel sets

Sα = {x ∈ dom f |f(x) ≤ α} ,

for α ∈ R, are convex.

For example the function f(x) =
√

|x| is quasiconvex but is not convex. A function is
quasiconcave if −f is quasiconvex.

Definition 4 (Perspective of a function) If f : R
n → R, then the perspective of f is

the function g : R
n+1 → R defined by

g(x, t) = tf(x/t),

with domain
dom g = {(x, t)|x/t ∈ dom f, t > 0}.

The perspective operation preserves convexity: If f is a convex function, then so is its
perspective function g. For proof see (Boyd and Vandenberghe, 2004, p.89).

2.2 Generic optimization problems

The standard optimization problem is one of the form

minimize f0(x)
subject to fi(x) ≤ 0 i = 1, . . . , m

hj(x) = 0 j = 1, . . . , p,
(1)

with variable x ∈ R
n. The set of points for which the objective and all the constraint

functions are defined,

D = (∩m
i=0dom fi) ∩ (∩p

j=1domhj)

is called the domain of the optimization problem (1). A point x ∈ D is feasible if it satisfies
the constraints fi(x) ≤ 0, i = 1, . . . , m and hj(x) = 0, j = 1, . . . , p.

A convex optimization problem is a problem of the form (1) in which the functions fi(x) :
R

n → R, i = 0, . . . , m, are convex and the functions hj(x) : R
n → R, j = 1, . . . , p, are affine

(Boyd and Vandenberghe, 2004, pp. 136-137).

A quasiconvex optimization problem is a problem of form (1) in which f0(x) is quasiconvex,
the functions fi(x) : R

n → R, i = 1, . . . ,m, are convex and the functions hj(x) : R
n → R,

j = 1, . . . , p, are affine.
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A semidefinite program (SDP) has the form

minimize cT x
subject to x1F1 + . . . + xnFn + G ¹ 0

Ax = b,
(2)

where G,F1, . . . , Fn ∈ Sk, and x ∈ R
n, b ∈ R

b, A ∈ R
m×n. The inequality is a LMI.

The epigraph form of the standard problem (1) is the problem

minimize t
subject to f0(x) − t ≤ 0

fi(x) ≤ 0 i = 1, . . . , m
hj(x) = 0 j = 1, . . . , p,

(3)

with variables x ∈ R
n and t ∈ R. The pair (x, t) is optimal for (3) if and only if x is optimal

for (1) and t = f0(x).

2.3 Duality

Consider the optimization problem (1), under the assumption that its domainD is nonempty.
The Langrangian L : R

n × R
m × R

p → R associated with the problem (1) is defined as

L(x; λ, ν) = f0(x) +
m

∑

i=1

λifi(x) +

p
∑

j=1

νjhj(x),

with domL = D × R
m × R

p. The variable λi is termed the Lagrange multiplier associated
with the ith inequality constraint fi(x) ≤ 0; similarly the variable νj is termed the Lagrange
multiplier associated with the jth equality constraint hj(x) = 0. The vectors λ and ν are
called the dual variables associated with problem (1).

The dual function g : R
m×R

p → R is defined as the minimum value of the Lagrangian over
x ∈ R

n: for λ ∈ R
m and ν ∈ R

p,

g(λ, ν) = inf
x∈D

L(x, λ, ν).

When the Lagrangian is unbounded below in x, the dual function takes on the value −∞.

The dual problem associated with problem (1) is

maximize g(λ, ν)
subject to λ º 0.

(4)

In the context of duality, the original problem (1) is termed the primal problem. The optimal
values of the primal problem (1) and the dual problem (4) are p⋆, d⋆ respectively. If d⋆ = p⋆

then strong duality holds.

Theorem 5 (Slater (Boyd and Vandenberghe, 2004)) Consider primal problem (1).
We assume without loss of generality that the first k inequality constraints are affine. If
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(1) is a convex optimization problem, then strong duality holds if there exists x ∈ relintD
with:

1. fi(x) ≤ 0, i = 1, . . . , k.

2. fi(x) < 0, i = k + 1, . . . , m.

3. hj(x) = 0, j = 1, . . . , p.

An application of Theorem 5 is given in Lemma 18.

Lemma 6 (Schur’s complement) Consider a matrix X ∈ Sn partitioned as

X =

[

A B
BT C

]

,

where A ∈ Sk. If detA 6= 0, the matrix

S = C − BT A−1B

is called the Schur complement of A in X. If A ≻ 0, then X º 0 if and only if S º 0.

3. The Generalization Error Bounds

We establish GE bounds which are used to motivate an effective algorithm for feature scal-
ing. Consider a sample Sn = {(x(1), y(1)), . . . , (x(n), y(n))}, x(i) ∈ X ⊆ R

d, y(i) ∈ Y, where
(x(i), y(i)) are generated independently from some distribution P . A set of nonnegative
variables σ = (σ1, . . . , σd)

T is introduced to allow the additional freedom of feature scaling.

For a soft classifier f , the 0 − 1 loss is the probability of error given by P (yf(x) ≤ 0) =
EI (yf(x) ≤ 0), where I(·) is the indicator function.

Definition 7 The margin cost function φγ : R → R+ is defined as φγ(z) = 1−z/γ if z ≤ γ,
and zero otherwise. Note that I (yf(x) ≤ 0) ≤ φγ(yf(x)).

Consider a classifier f for which the input features have been rescaled, namely f(Σx) is used
instead of f(x). Let F be some class of functions and let Ên denote the empirical mean.
Using standard GE bounds, one can establish that for any choice of σ, with probability at
least 1 − δ, for any f ∈ F

P (yf(Σx) ≤ 0) ≤ Ênφγ (yf(Σx)) + Ω(f, δ, σ), (5)

for some appropriate complexity measure Ω depending on the bounding technique.

The scaling variables σ transform the linear classifiers from f(x) = wT x + b to f(x) =
wT Σx + b, where Σ = diag(σ). It may seem at first glance that these classifiers are
essentially the same since w can be redefined as Σw. However, the role of σ is to offer an
extra degree of freedom to scale the features independently of w, in a way which can be
exploited by an optimization algorithm as we will show below.

Unfortunately, (5) cannot be used directly when attempting to select optimal values of the
variables σ because the bound is not uniform in σ. In particular, we need a result which
holds with probability 1 − δ for every choice of σ.
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Definition 8 The indices of training patterns with labels {−1, 1} are denoted by I−, I+

respectively. The cardinalities of the sets I−, I+ are n−, n+ respectively. The empirical
mean of the second order moment of the jth feature over the training patterns belonging to
indices I−, I+ are

v−j =
1

n−

∑

i∈I
−

(

x
(i)
j

)2
, v+

j =
1

n+

∑

i∈I+

(

x
(i)
j

)2

respectively.

Theorem 9 Fix B, r, γ > 0, and suppose that {(x(i), y(i))}n
i=1 are chosen independently at

random according to some probability distribution P on X×{±1}, where ‖x‖ ≤ r for x ∈ X .
Define the class of functions F

F =
{

f : f(x) = wT Σx + b, ‖w‖ ≤ B, |b| ≤ r, σ º 0
}

.

Let σ0 be an arbitrary positive number, and set σ̀j = 2max(σj , σ0). Then with probability
at least 1 − δ, for every function f ∈ F

P (yf(x) ≤ 0) ≤ Ênφγ (yf(x)) +
2B

γ





√
n+

n

√

√

√

√

d
∑

j=1

v+
j σ̀2

j +

√
n−
n

√

√

√

√

d
∑

j=1

v−j σ̀2
j



 +
Λ(σ, γ, δ)√

n
,

where K(σ) = (B‖σ̀‖ + 1)r,

Λ(σ, γ, δ) =
2r

γ
+ K(σ)

√

√

√

√2
d

∑

j=1

ln log2

σ̀j

σ0
+ K(σ)

(

2

γ
+ 1

)

√

2 ln
2

δ
.

The proof appears in appendix A.

Note that v−j and v+
j are related to the variance of the j th feature of the respective classes.

Thus the bound of Theorem 9 is related to the between class variance. In previous work,
for example (Meir and Zhang, 2003), the training points were treated without regard to
their labels. In this approach the bound would have been related to the overall variance of
each feature.

Remark 10 We note that Theorem 9 assumed that the ℓ2 norm is used to define the con-
straint on w. In fact, the techniques developed in (Meir and Zhang, 2003) allow us to derive
bounds which hold for any convex constraint. In particular, one can use ℓp norms of the
form ‖w‖p, and derive appropriate generalization bounds.

In principle, we would like to minimize the r.h.s. of (6) with respect to the variables w, σ, b.
However, in this work the focus is only on the data-dependent terms in (6), which include
the empirical error term and the weighted norms of σ. Note that all other terms of (6) are
of the same order of magnitude (as a function of n), but do not depend explicitly on the
data. It should be commented that the extra terms appearing in the bound arise because
of the assumed unboundedness of σ. Assuming σ to be bounded, e.g. σ ¹ s, as is the case
in most other bounds in the literature, one may replace σ by s in all terms except the first
two, thus removing the explicit dependence on σ.

6



Peleg and Meir January 11, 2005

The data-dependent terms of the GE bound (6) are the basis of the objective function

1

nγ

n
∑

i=1

φγ

(

y(i)f(x(i))
)

+
4
√

n+

nγ

√

√

√

√

d
∑

j=1

v+
j σ2

j +
4
√

n−
nγ

√

√

√

√

d
∑

j=1

v−j σ2
j , (6)

where the variables are subject to wT w ≤ 1, σ º 0. The transition was performed by
setting B = 1 and replacing σ̀ by 2σ (assuming that σ > σ0).

Due to the fact that only the sign of f determines the estimated labels, it can be multiplied
by any positive factor and produce identical results. The constraint on the norm of w
induces a normalization on the classifier f(x) = wT x + b, without which the classifier is
not unique. However, by introducing the scale variables σ, the classifier was transformed
to f(x) = wT Σx + b. Hence, despite the constraint on w, the classifier is again not unique.
If the variable γ in (6) is set to an arbitrary positive constant then the solution is unique
again. This is true because γ appears in (6) only in the expressions b

γ , σ1
γ , . . . , σd

γ . By setting
γ = 1 the new objective function is

1

n

n
∑

i=1

φ1

(

y(i)f(x(i))
)

+
C+

√
n+

n

√

√

√

√

d
∑

j=1

v+
j σ2

j +
C−

√
n−

n

√

√

√

√

d
∑

j=1

v−j σ2
j , (7)

where C+ = C− = 4. In many classification algorithms the final classifier is based on a
choice of a hyperparameter. In (7) there is a tradeoff between the penalty on the training
errors and the number of features and a tradeoff between the second moment of each class.
However, since current bounding techniques are not sufficiently tight, the values of C+, C−
from the bound are not appropriate for all classification problems. Therefore we propose
that C+, C− are chosen via a Cross Validation (CV) scheme. These hyperparameters enable
fine-tuning a general classifier to a specific classification task.

Next, a generalization error bound for linear classification without feature scaling is pre-
sented. The following bound is presented to show that the addition of the scaling variables
is indispensable. The bound of Theorem 11 is different from the bound of Theorem 9.

As opposed to the case where feature scaling is allowed, here the parameter γ is not super-
fluous. Therefore the bound is uniform with respect to the margin parameter γ.

Theorem 11 Let the conditions of Theorem 9 hold, except that σj = 1 for all j (i.e. no
feature scaling is allowed). Let γ0 be an arbitrary positive number and set γ̀ = 2 max(γ, γ0).
Then with probability at least 1 − δ for all f ∈ F , where F = {f : f(x) = wT x + b, ‖w‖ ≤
B, |b| ≤ r}, and for all γ ≥ γ0,

P (yf(x) ≤ 0) ≤ Ênφγ (yf(x)) +
1

nCγ̀
+

Λ(γ, δ)√
n

(8)

where K = (B + 1)r, vj = 1
n

∑n
i=1

(

x
(i)
j

)2
,

Λ(γ, δ) = K
(√

2 ln log2
γ̀
γ0

+
√

2 ln 2
δ

)

,

C =

(

4B
√

∑d
j=1 vj + 2r

√
n + 2K

√

2n ln 2
δ

)−1

.
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Note that the separation of the training examples according to their labels can be easily
performed in Theorem 11 as in Theorem 9. However it would only change the value of C,
which is a data-dependant constant.

Similarly to the feature scaling bound, the objective function for classification without
feature scaling is,

1

n

n
∑

i=1

φγ

(

y(i)f(x(i))
)

+
1

2nCγ
, (9)

subject to ‖w‖ ≤ 1. In Section 5 we will derive the algorithm based on Theorem 11 and
uncover its relation to the standard SVM algorithm.

4. Derivation of the GMEB algorithm

The problem of minimizing (7) can be expressed as

minimize 1
n1T ξ +

C+
√

n+

n

√

∑d
j=1 v+

j σ2
j +

C
−

√
n
−

n

√

∑d
j=1 v−j σ2

j

subject to wT w ≤ 1

y(i)(
∑d

j=1 x
(i)
j wjσj + b) ≥ 1 − ξi, i = 1, . . . , n

ξ, σ º 0,

(10)

with variables w, σ ∈ R
d, ξ ∈ R

n, b ∈ R.

Remark 12 Consider a solution of problem (10) in which σ⋆
j = 0 for some feature j. Only

the constraint wT w ≤ 1 affects the value of w⋆
j . A unique solution is established by setting

σ⋆
j = 0 ⇒ w⋆

j = 0. If the original solution w⋆ satisfies the constraint wT w ≤ 1 then the
amended solution will also satisfy the constraint and will not affect the value of the objective
function.

We begin by converting the second and third terms of the objective function (7) into con-
straints. The purpose of this step is to allow convexification techniques which can’t be
applied directly to problem (10).

Lemma 13 Denote optimization problem I as

minimize f(x)
subject to g(x) ≤ a

x ∈ X ,

and optimization problem II as

minimize f(x) + bg(x)
subject to x ∈ X ,

where b > 0. Let xa
1 and xb

2 be the global solutions of problems I and II with parameters
a and b, respectively. Then for any value of parameter b in problem II, for the parameter
a = g(xb

2) holds xa
1 ≡ xb

2.

8
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Proof.

First we will show that given a = g(xb
2) the solution xa

1 of problem I is active. Then we will
prove that in this case xa

1 ≡ xb
2.

We will falsely assume that for a = g(xb
2) the solution xa

1 of problem I is inactive. Hence
g(xa

1) < a = g(xb
2). Additionally, since xa

1 is a global solution of problem I and xb
2 is a

feasible point of problem I then f(xa
1) ≤ f(xb

2). Combining the inequalities with b > 0 we
get f(xa

1) + bg(xa
1) < f(xb

2) + bg(xb
2). On the other hand since xb

2 is a global solution of
problem 2 then f(xa

1) + bg(xa
1) ≥ f(xb

2) + bg(xb
2). This is a contradiction.

Consequently the solution xa
1 of problem I is active and g(xa

1) = a = g(xb
2). Denote opti-

mization problem III as

minimize f(x) + ba
subject to g(x) = a

x ∈ X .

The minimizer and minimal value of problem III are the same as those of problem II. Since
the term ba is a constant, the minimizer of problem III is the minimizer of problem I. ¤

In accordance with the equivalence relationship of Lemma 13 we propose to solve the prob-
lem

minimize 1T ξ
subject to wT w ≤ 1

y(i)(
∑d

j=1 x
(i)
j wjσj + b) ≥ 1 − ξi, i = 1, . . . , n

R+ ≥ ∑d
j=1 v+

j σ2
j

R− ≥ ∑d
j=1 v−j σ2

j

ξ, σ º 0

(11)

with variables w, σ ∈ R
d, ξ ∈ R

n, b ∈ R.

The functions wjσj in the second inequality constraints are neither convex nor concave (in
fact they are quasiconcave). To make matters worse, the functions wjσj are multiplied by

constants −y(i)x
(i)
j which can be either positive or negative. Consequently problem (11)

is not a convex optimization problem. The objective of Section 4.1 is to find the global
minimum of (11) in polynomial time despite its non-convexity.

4.1 Convexification

In this paper the informal definition of equivalent optimization problems is adopted from
(Boyd and Vandenberghe, 2004, pp. 130–135): two optimization problems are called equiv-
alent if from a solution of one, a solution of the other is found, and vice versa. Instead
of detailing a complicated formal definition of general equivalence, the specific equivalence
relationships utilized in this paper are either formally introduced or cited from (Boyd and
Vandenberghe, 2004).

The functions wjσj in problem (11) are not convex and the signs of the multiplying constants

−y(i)x
(i)
j are data dependant. The only functions that remain convex irrespective of the

sign of the constants which multiply them are linear functions. Therefore the functions
wjσj must be transformed into linear functions.

9
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However, such a transformation must also maintain the convexity of the objective function
and the other constraints. For this purpose the change of variables equivalence relationship,
described in Theorem 14, was utilized.

Theorem 14 (Change of variables) Consider optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m.

(12)

Suppose φ : R
n → R

n is one-to-one, with image covering the problem domain D, i.e.,
φ(domφ) ⊇ D . We define functions f̃i as

f̃i(z) = fi(φ(z)), i = 0, . . . , m

Now consider the problem

minimize f̃0(z)

subject to f̃i(z) ≤ 0, i = 1, . . . , m
(13)

with variable z. Problems (12) and (13) are said to be related by the change of variable x =
φ(z) and are equivalent: If x solves the problem (12), then z = φ−1(x) solves problem(13);
if z solves problem (13), then x = φ(z) solves problem (12).

The proof is detailed in (Boyd and Vandenberghe, 2004, p.130).

The transformation φ : R
d × R

d → R
d × R

d was used on the variables w, σ:

σj = +
√

σ̃j , wj =
w̃j

√

σ̃j
, j = 1, . . . , d (14)

where domφ = {(σ̃, w̃)|σ̃ º 0}. If σ̃j = 0 then σj = wj = 0 without regard to the
value of w̃j , in accordance with remark 12. Transformation (14) is clearly one-to-one and
φ(domφ) ⊇ D.

Theorem 15 The problem

minimize 1T ξ

subject to y(i)(w̃T x(i) + b) ≥ 1 − ξi, i = 1, . . . , n
∑d

j=1

w̃2
j

σ̃j
≤ 1

R+ ≥ (v+)T σ̃
R− ≥ (v−)T σ̃
ξ, σ̃ º 0

(15)

with the variables w̃, σ̃ ∈ R
d, b ∈ R, ξ ∈ R

n is convex and equivalent to the primal non-convex
problem (11) with transformation (14).

Note that since w̃j = wjσj , the new classifier is f(x) = w̃T x + b. Therefore there is no
need to use transformation (14) to obtain the desired classifier. Also one can use Schur’s
complement (Lemma 6) to transform the non-linear constraint into a sparse LMI constraint

[

Σ w
wT 1

]

º 0.

10
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Thus problem (15) can be reformulated as a SDP problem. The primal problem therefore,
consists of n + 2d + 1 variables, 2n + d + 2 linear inequality constraints and a LMI of
[(d + 1)× (d + 1)] dimensions. Although the primal problem (15) is convex, it heavily relies
on the number of features d which is typically the bottleneck for feature selection problems.
To alleviate this dependency the dual problem is formulated.

Remark 16 If one of the constraints R+ ≥ (v+)T σ̃ or R− ≥ (v−)T σ̃ is active and the
other one inactive, then Problem 15 reduces to the l1 SVM problem where each feature j
was first divided by v+

j or v−j respectively.

4.2 The dual optimization problem

In this section the dual optimization problem associated with problem (15) is formulated,
leading to a simpler optimization problem and further insights regarding the primal problem
(15).

Theorem 17 (Dual problem) The dual optimization problem associated with problem
(15) is

maximize 1T µ − µ1 − R+µ+ − R−µ−

subject to
(

∑n
i=1 µiy

(i)x
(i)
j , 2µ1, (µ+v+

j + µ−v−j )
)

∈ Kr , j = 1, . . . , d

µT y = 0
0 ¹ µ ¹ 1
µ+, µ− ≥ 0,

(16)

where Kr is the Rotated Quadratic Cone (RQC) Kr = {(x, y, z) ∈ R
n × R × R|xT x ≤

2yz, y ≥ 0, z ≥ 0}. The optimization variables are µ ∈ R
n, µ1, µ+, µ− ∈ R.

The proof is given in appendix B. The dual problem (16) is a RQC problem which can
be solved efficiently with conic programming solvers. The number of variables is n + 3,
there are 2n+2 linear inequality constraints, a single linear equality constraint and d RQC
inequality constraints. In order to use the dual problem to derive the solution of the primal
problem, strong duality must hold.

Lemma 18 (Strong duality) Strong duality holds between problem (15) and problem (16).

Proof. The primal problem (15) is a convex optimization problem. The point

w̃ = 0, σ̃ =
1

2
min

{

R+

1T v+
,

R−
1T v−

}

1, b = 0, ξ = 1,

is in the relative interior of the problem domain which satisfies the Slater conditions in
theorem 5. ¤

In order to extract the primal solution from the dual solution we propose the following
theorem.

11
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Theorem 19 (Extracting the primal solution from the dual solution) Consider an
equivalent problem to the dual problem (16):

maximize f0(µ, µ1, µ+, µ−)
subject to s = XY µ

s2
j

4µ1
− (µ+v+

j + µ−v−j ) ≤ 0, j = 1, . . . , d

µT y = 0
0 ¹ µ ¹ 1
µ+, µ− ≥ 0,

(17)

where the objective function is defined as

f0(µ, µ1, µ+, µ−) =

{

1T µ − µ1 − R+µ+ − R−µ− if µ1 ≥ 0
−∞ otherwise.

The primal solution {w̃, b} is equal to the lagrange multipliers of the equality constraints
s = XY µ and µT y = 0 respectively.

The proof is given in appendix C.

4.3 The GMEB algorithm

The GMEB algorithm consists of the following steps:

1. In order to avoid a dependency on the mean of the features, as a preprocessing step,
the features of the training patterns should be set to zero mean and the features of
the test set shifted accordingly.

2. Derive the solution {w̃, b} by doing one of the following:

(a) Solve the primal optimization problem (15).

(b) Solve the dual optimization problem (16) and use Theorem 19 to calculate {w̃, b}.

The final classifier is

f(x) = sign
(

w̃T x + b
)

.

5. Relation to the standard SVM algorithm

In this section we explore the relation of the proposed GMEB algorithm to the standard
SVM algorithm. In the absence of feature scaling, minimizing (9) produces the SVM clas-
sifier with a specific choice of the SVM hyperparameter C. The problem of minimizing (9)
can be expressed as

minimize
1

γ

(

1T ξ +
1

2C

)

subject to y(i)(wT x(i) + b) ≥ γ − ξi, i = 1, . . . , n
wT w ≤ 1
ξ º 0,

(18)

12
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where the classifier is sgn
(

wT x + b
)

.

Problem (18) is a quasiconvex optimization problem with a convex over a linear objective
function and convex constraints.

Theorem 20 Consider problem

minimize 1
2‖ŵ‖2 + C1T ξ̂

subject to y(i)(ŵT x(i) + b̂) ≥ 1 − ξ̂i, i = 1, . . . , n

ξ̂ º 0.

(19)

Problem (19) is equivalent to problem (18) with the transformation w = ŵ/‖ŵ‖2, b =
b̂/|ŵ‖2, ξ = ξ̂/‖ŵ‖2, γ = 1/‖ŵ‖2.

The proof is an application of Lemma 23 of equivalence which is proved in appendix D.

Note that the classifier sgn
(

ŵT x+b̂
‖ŵ‖2

)

of problem (18) is equivalent to the classifier sgn
(

wT x + b
)

of the problem (19) because it is multiplied by a positive constant1. Thus the only difference
between the classifier of the GMEB algorithm without feature scaling to a standard SVM
algorithm with the linear kernel and C from theorem 11 is that in the SVM algorithm the
norm of w is squared.

6. Experiments

Several algorithms were comparatively evaluated on a number of artificial and real world
two class problem datasets. The GMEB algorithm is a linear classifier and therefore it was
compared only to linear classifiers.

6.1 Algorithms

The GMEB algorithm was compared to the linear SVM (standard SVM with linear kernel),
the l1 SVM classifier (Fung and Mangasarian, 2000) and the RFE algorithm (Guyon et al.,
2002). The SVM algorithms were chosen for comparison because of their relationship to
the GMEB algorithm. Furthermore, all the aforementioned algorithms consist of solving
convex optimization problems and are among the best classification algorithms.

6.2 Experimental Methodology

The algorithms are compared by two criteria: the number of selected features and the
error rates. In feature scaling algorithms, i.e. when using continuous rather than binary
parameters, the weight assigned by a linear classifier to a feature j, determines whether it
should be ‘selected’ or ‘rejected’. This weight must fulfil at least one of the following two
requirements:

1. Absolute measure - |wj | ≥ ǫ.

2. Relative measure -
|wj |

maxj{|wj |} ≥ ǫ.

1. The case w = 0 is a degenerate case in which the classifier uniformly produces 1 or -1.

13
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In this paper ǫ = 0.01 was used. Note that the weights of the GMEB algorithm are w̃
instead of w.

The definition of the error rate is intrinsically entwined with the protocol for determining
the hyperparameter. Given an a-priori partitioning of the dataset into training and test
sets, the following protocol for determining the value of R+, R− and defining the error rate
is suggested:

1. Define a set R of values of the hyperparameters R+, R− for all datasets. The set
R consists of a predetermined number of values. For each algorithm the cardinality
|R| = 49 was used.

2. Calculate the N-fold CV error for each value of R+, R− from set R on the training
set. Five fold CV was used throughout all the datasets.

3. Use the classifier with the value of R+, R− which produced the lowest CV error to
classify the test set. This is the reported error rate.

If the dataset is not partitioned a-priori into a training and test set, it is randomly divided
into np contiguous training and ‘test’ sets. Each training set contains n

np−1
np

patterns and

the corresponding test set consists of n
np

patterns. Once the dataset is thus partitioned, the
above steps 1 − 3 can be implemented. The error rate and the number of selected features
are then defined as the average on the np problems. The value np = 10 was used for all
datasets, where an a-priori partitioning was not available.

Two types of real-world classification tasks were selected for the experiments. One required
major feature selection, while in the other, feature selection was of lesser importance. The
hyperparameter sets R used for the GMEB algorithm consisted of 7 × 7 linearly spaced
values between 1 and 10. These ranges were determined by trial and error. However for
almost all the datasets some feature selection was performed by the algorithm.

The linear and the l1 SVM algorithms require one hyperparameter C. For the SVM algo-
rithms the set R consisted of the values Λ

1−Λ where Λ = {0.02, 0.04, . . . , 0.98}, i.e. 49 linearly
spaced values between 0.02 and 0.98. On the other hand, the RFE algorithm requires two
hyperparameters. The first is the number of selected features and the second is the SVM
hyperparameter C. The number of selected features was assigned 7 linearly spaced values

from 1 to d and C was assigned Λ̂
1−Λ̂

where the set Λ̂ is 7 linearly spaced values between

0.02 and 0.98.

An exhaustive search for the optimal value of the hyperparameters would have produced
better results for all algorithms. This is especially true for the GMEB and RFE algorithms
which require the selection of two hyperparameters. However in such an approach a fair
comparison would have been much more complicated to quantify.

6.3 Data sets

The algorithms in Section 6.1 with the methodology of Section 6.2 were tested on two types
of synthetic datasets, and eight real-world problems. The first four real-world datasets are
known to require feature selection.
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6.3.1 Synthetic datasets

1. The synthetic dataset is described in (Weston et al., 2000). Six features out of 202
were relevant. The probability of y = 1 or −1 was equal. With a probability of 0.7,
the first six features were drawn from the Gaussian distribution described for case I
in table 1. Otherwise they were drawn as case II. The remaining features were noise
drawn as xi ∼ N (0, 20), for i = 7, . . . , 202.

Table 1: Gaussian distributions for first six features.
case i ∈ {1, 2, 3} i ∈ {4, 5, 6}

I xi|y ∼ N (yi, 1) xi|y ∼ N (0, 1)

II xi|y ∼ N (0, 1) xi|y ∼ N (y(i − 3), 1)

2. nsel features out of d were relevant for classification. The probability of y = 1 or
−1 was equal. Features xj , j = 1, . . . , nsel were drawn as x|y ∼ N (y1, Λ), with
the covariance matrix Λ = V DV T . The matrix D was diagonal with the values
1, 2, . . . , nsel and V a randomly generated unitary matrix. The remaining features
were normally distributed white noise N (0, 1).

6.3.2 Real-World datasets

The number of features, the number of patterns and the partitioning into train and test
sets of the real-world datasets are detailed in Table 2. The datasets were taken form the
UCI repository unless stated otherwise. Dataset (1) is termed Wisconsin Diagnostic Breast
Cancer ‘WDBC’, (2) ‘Multiple Features’ dataset, which was first introduced by (Perkins
et al., 2003), (3) the ‘Internet Advertisements’ dataset, was separated into a training and
test set randomly, (4) the ‘Colon’ dataset, taken from (Weston et al., 2000), (5) the ‘BUPA’
dataset, (6) the ‘Pima Indians Diabetes’ dataset, (7) the ‘Cleveland heart disease’ dataset,
and (8), the ‘Ionosphere’ dataset.

6.4 Experimental results

This subsection includes a comparison of the performance of the GMEB, RFE, l1 SVM and
linear SVM algorithms on the synthetic and real-world datasets.

6.4.1 Synthetic data set

Table 3 provides a comparison of the GMEB algorithm with the RFE and SVM algorithms
on synthetic datasets of type 1. The Bayes error is 0.4%. For further comparison see (Rako-
tomamonjy, 2003). Note that the number of features selected by the l1 SVM and GMEB
algorithms increases with the sample size. A possible explanation for this observation is that
with only a few training patterns a small training error can be achieved by many subsets
containing a small number of features, i.e. a sparse solution. The particular subset selected
is essentially random, leading to a large test error.

An illustration of the dependance of the GMEB algorithm on its hyperparmeters R+ and
R− is portrayed in Figure 1. The GMEB algorithm was tested on three synthetic datasets of
type 2 with 100 features, 200 training patterns and 2,10,20 informative features respectively.
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Table 2: The real-world datasets. The set of values of hyperparameter C for the linear
SVM and RFE algorithm for datasets 1,5,6 had to be set to Λ and Λ̂ respectively
to allow convergence.

Dataset No. Name Features Patterns

1 WDBC 30 569

2 Digits 649 200/1800

3 Internet Ads 1558 200/3080

4 Colon 2000 62

5 BUPA 6 345

6 Pima 8 768

7 Cleveland heart 13 297

8 Ionosphere 34 351

Table 3: Mean and standard deviation of the mean of test error percentage on synthetic
datasets 1 given n training patterns. The number of selected features is in brackets.

n SVM l1 SVM RFE GMEB

10 46.2 ± 1.9 (197.1±2.1) 49.6 ± 1.9 (77.7±83.8) 46.1 ± 8.6 (38.0±40.7) 33.8 ± 14.2 (3.7±2.1)

20 44.9 ± 2.1 (196.8±1.9) 38.5 ± 12.7 (10.7±6.1) 30.3 ± 16.4 (13.3±34.7) 13.9 ± 7.2 (4.8±2.7)

30 43.6 ± 1.7 (196.7±2.8) 27.4 ± 12.4 (14.5±8.7) 22.9 ± 12.3 (9.9±29.1) 7.1 ± 5.6 (5.1±2.3)

40 41.8 ± 1.9 (197.2±1.8) 19.2 ± 6.9 (16.2±11.1) 19.4 ± 8.5 (6.6±30.7) 5.0 ± 3.5 (5.5±2.1)

50 41.9 ± 1.8 (196.6±2.6) 16.0 ± 5.3 (18.4±11.3) 16.9 ± 5.6 (1.0±0.0) 3.1 ± 2.7 (5.1±1.8)

The hyperparameter sets R used for the GMEB algorithm consisted of 10×10 linearly spaced
values between 1 and 10.

The full potential of the GMEB algorithm is demonstrated on synthetic datasets of type
2. Ten datasets were generated with 1000 features, 100 training patterns, 1000 testing
patterns and nsel = 2. These datasets were far more challenging than synthetic datasets
of type 1 because the number of features from which a feature selection algorithm had
to find the relevant features was an order of magnitude larger. Moreover, the irrelevant
features of synthetic datasets type 1 were given large variance (standard deviation 20) and
the relevant features were independent, which is not indicative of real-world problems. In
synthetic datasets of type 2 the standard deviation of the irrelevant features was 1 and the
two relevant features were correlated.

The linear SVM algorithm achieved 30.1%± 1.7% test error by using 922.9± 11.6 features.
The l1 SVM algorithm achieved 10.8% ± 2.3% test error by using 6.6 ± 9.8 features. The
RFE algorithm achieved 17.8% ± 1.8% test error by using 1.0 ± 0 features. The GMEB
algorithm achieved 11.3% ± 2.3% test error by using 2.8 ± 1.3 features. The Bayes error is
9.6%. From the results on the synthetic datasets it is evident that the GMEB algorithm has
the potential to deal with difficult feature selection problems which contain a vast majority
of irrelevant features.
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Figure 1: The error percentage and the number of selected features for synthetic dataset
with 100 features, 200 training patterns and 2,10,20 informative features termed
as dataset I, II, III respectively. The optimal value is marked by a star.

6.4.2 Real World datasets

In this section the error rates and number of selected features of the GMEB and the SVM
algorithms on the datasets described in Section 6.3.2 are presented.
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Table 4: The performance of the algorithms on the real-world datasets (mean and standard
deviation of the mean).

No. Linear SVM l1 SVM RFE GMEB

1 5.3±0.8 (27.3±0.3) 4.9±1.1 (16.4±1.3) 6.5±0.9 (17.6±2.3) 4.2±0.9 (6.0±0.3)

2 0.3 (616) 3.5 (15) 5.3 (30) 0.2 (32)

3 5.3 (322) 4.7 (12) 5.5 (46) 5.5 (98)

4 13.6±5.9 (1941.8±1.9) 10.7±4.4 (23.3±1.5) 15.2±5.7 (500.7±89.6) 10.7±4.4 (59.1±25.0)

5 33.1±3.5 (6.0±0.0) 33.6±3.6 (5.9±0.1) 34.2±3.4 (5.9±0.1) 34.2±4.4 (5.4±0.5)

6 22.8±1.5 (5.8±0.2) 22.9±1.4 (5.8±0.2) 23.2±1.6 (6.7±0.3) 22.5±1.8 (4.8±0.2)

7 17.5±1.9 (11.6±0.2) 16.8±1.6 (10.7±0.3) 16.8±2.1 (8.8±0.6) 15.5±2.0 (9.1±0.3)

8 11.7±2.6 (32.8±0.2) 12.0±2.3 (27.9±1.6) 14.0±2.9 (18.8±2.4) 10.0±2.3 (12.1±1.7)

The number of features, the number of patterns and the partitioning into train and test
sets of the real-world datasets are detailed in Table 2. The datasets can be separated into
datasets which require considerable feature selection (1-4) and those which do not (5-8).

The GMEB algorithm attained the lowest error rates for the majority of both types of
datasets investigated while using a comparatively small number of features. A graphical
comparison to the RFE algorithm is available in Figure 2.
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Figure 2: A comparison of the error percentage and the fraction of selected features between
the GMEB and RFE algorithms for the eight real-world datasets.

6.5 Discussion

The GMEB algorithm performs comparatively well against the other algorithms, in regard
to both the test error and the number of selected features. A possible explanation is that the
other algorithms perform both classification and feature selection with the same variable w.
In contrast, the GMEB algorithm performs the feature selection and classification simulta-
neously, while using variables σ and w respectively. The use of two variables also allows the
GMEB algorithm to reduce the weight of a feature j with both wj and σj , while the l1 SVM
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uses only wj . Perhaps this property of GMEB could explain why it produces comparable
(and at times better) results than the competing algorithms both in classification problems
where feature selection is and is not required.

7. Summary and future work

This paper presented a feature selection algorithm motivated by minimizing a GE bound.
The global optimum of the objective function is found by solving a non-convex optimization
problem. The equivalent optimization problems technique reduces this task to a conic RCQ
problem. This enabled an extension of the GMEB algorithm to large scale classification
problems.

The GMEB classifier is a linear classifier. Linear classifiers are the most important type of
classifiers in a feature selection framework because feature selection is highly susceptible to
overfitting.

We believe that the GMEB algorithm is just the first of a series of algorithms which may
globally minimize increasingly tighter bounds on the generalization error.
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Appendix A. Proof of theorem 9

Before presenting our GE bound, we begin with a simple lemma.

Lemma 21 Let {i1, i2, . . . , is}, i ∈ N be an s-tuple of positive integers. Then, for any s
and ij ∈ N,

s
∑

j=1

(ij − 1) + 1 ≤
s

∏

j=1

ij .

Proof: We proceed by induction on s. For s = 1 the claim holds trivially. Assume it holds
for s, and proceed to s + 1. We have

s+1
∑

j=1

(ij − 1) + 1 =
s

∑

j=1

(ij − 1) + (is+1 − 1) + 1

≤
s

∏

j=1

ij + is+1 − 1

≤
s+1
∏

j=1

ij ,

where the last inequality follows from the observation that in+1−n− i = (n−1)(i−1) ≥ 0
for i ≥ 1, n ≥ 1. ¤

Consider the d-dimensional grid defined by the coordinates (i1, . . . , id), ij ∈ N, and introduce

a mapping ζ from (N)d to N by requiring

i ≤
d

∏

j=1

ij ; i = ζ(i1, . . . , id). (20)

This can be done, for example, by setting ζ(i1, . . . , id) to be the Manhattan distance of the
grid point (i1, . . . , id) from the origin, given by 1 +

∑d
j=1(ij − 1). Equally (Manhattan)

distant points are arbitrarily assigned an index i consistent with (20) so that a unique
mapping is achieved. Lemma 21 establishes (20) in this case.

Assume initially that 0 ≤ σj ≤ sj , j = 1, 2, . . . , d, and set

Fs = {f : f ∈ F , 0 ¹ σ ¹ s}
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where s = (s1, . . . , sd).

Since φ is Lipschitz with constant 1/γ, according to Theorem 8 in [MeiZha03]2, with prob-
ability at least 1 − δ/2, for every f ∈ Fs,

P(Y f(X) ≤ 0) ≤ Ênφ(Y f(X)) +
2

γ
Rn(F) + K

√

log(2/δ)

2n
,

where K = (Bs̄ + 1)r, s̄ = maxj sj , and where the Rademacher complexity is given by

Rn(Fs) =
1

n
EǫEDn sup

‖w‖≤B
sup
|b|≤r

sup
σ¹s

n
∑

i=1

ǫi

(〈

w, σ ∗ x(i)
〉

+ b
)

.

The empirical Rademacher complexity is bounded by

R̂n(Fs) =
1

n
Eǫ sup

‖w‖≤B
sup
|b|≤r

sup
σ¹s

n
∑

i=1

ǫi

(〈

w, σ ∗ x(i)
〉

+ b
)

=
1

n
Eǫ sup

‖w‖≤B
sup
|b|≤r

sup
σ¹s

[〈

w,
n

∑

i=1

ǫiσ ∗ x(i)

〉

+
n

∑

i=1

ǫib

]

≤ 1

n
Eǫ sup

‖w‖≤B
sup
σ¹s

〈

w,

n
∑

i=1

ǫiσ ∗ x(i)

〉

+
1

n
Eǫ sup

|b|≤r

n
∑

i=1

ǫib

≤ n+

n
Eǫ sup

‖w‖≤B
sup
σ¹s

〈

w,
1

n+

∑

i∈I+

ǫiσ ∗ x(i)

〉

+
n−
n

Eǫ sup
‖w‖≤B

sup
σ¹s

〈

w,
1

n−

∑

i∈I
−

ǫiσ ∗ x(i)

〉

+
1

n
Eǫ sup

|b|≤r

n
∑

i=1

ǫib .

Consider the first of the three terms which bound the Rademacher complexity. We proceed
to bound it in the following steps.

1

n+
Eǫ sup

‖w‖≤B
sup
σ¹s

〈

w,
∑

i∈I+

ǫiσ ∗ x(i)

〉

≤ 1

n+
Eǫ sup

‖w‖≤B
sup
σ¹s

‖w‖

∥

∥

∥

∥

∥

∥

∑

i∈I+

ǫiσ ∗ x(i)

∥

∥

∥

∥

∥

∥

=
B

n+
Eǫ sup

σ¹s





d
∑

j=1





∑

i∈I+

ǫiσjx
(i)
j





2



1/2

=
B

n+
Eǫ





d
∑

j=1

s2
j





∑

i∈I+

ǫix
(i)
j





2



1/2

(a)

≤ B

n+





d
∑

j=1

s2
jEǫ





∑

i∈I+

ǫix
(i)
j





2



1/2

=
B√
n+

√

√

√

√

d
∑

j=1

s2
jv

+
j .

2. Slightly improved since we assume bounded functions in this work.

21



Peleg and Meir January 11, 2005

where Jensen’s inequality was used in (a). A similar bound can also be derived for the
second and third terms in the inequality. In particular

1

n
Eǫ sup

|b|≤r

n
∑

i=1

ǫib ≤
r√
n

.

From McDiarmid’s inequality3, it follows that the empirical Rademacher complexity is
concentrated around its mean. Specifically, with probability at least 1− δ/2

Rn(F) ≤ R̂n(F) + K

√

2 ln(4/δ)

n
.

We thus conclude that with probability at least 1 − δ, for every f ∈ Fs,

P(Y f(X) ≤ 0) ≤ Ênφ(Y f(X)) +
2B

γ





√
n+

n

√

√

√

√

d
∑

j=1

s2
jv

+
j +

√
n−
n

√

√

√

√

d
∑

j=1

s2
jv

−
j





+
2r

γ
√

n
+

(

2

γ
+ 1

)

K

√

2 ln(4/δ)

n
.

(21)

Next, we eliminate the dependence on s = (s1, . . . , sd). The basic idea is to construct a grid
over the d-dimensional space R

d
+, obtain a bound for each point of the grid, and then use

the union bound to obtain a result for the full (infinite) grid .

Let {pi}, i ∈ N, be a set of positive numbers such that
∑

i pi = 1, where for concreteness

we set pi = 1/i(i + 1), i ∈ N. For each 1 ≤ j ≤ d let aj
ij

= σ02
ij , ij ∈ N, where σ0 serves as

the size of the smallest grid spacing. For each (i1, . . . , id) and i = ζ(i1, . . . , id) (defined in
(20)), set ai = (a1

i1
, . . . , ad

id
), and denote by M(ai) the domain

M(ai) =
{

σ : σ1 ≤ a1
i1 , . . . , σd ≤ ad

id

}

.

From (21) and the union bound we have that with probability at least 1− δ for all f with
σ ∈ M(ai),

P (Y f(X) ≤ 0) ≤ Ênφ(Y f(X)) +
2B

γ





√
n+

n

√

√

√

√

d
∑

j=1

(

aj
ij

)2
v+
j +

√
n−
n

√

√

√

√

d
∑

j=1

(

aj
ij

)2
v−j





+
2r

γ
√

n
+

(

2

γ
+ 1

)

K

√

2 ln(4/piδ)

n
.

(22)

For each σ and j let ij(σ) be the smallest index for which aj
ij(σ) ≥ σj . By the defini-

tion of σ̃j , it follows that for each j, ij(σ) ≤ log2(σ̃j/σ0), and aj
ij(σ) ≤ σ̃j . Let i(σ) =

3. In future work one may employ tighter bounding techniques, such as the Entropy method, to improve
the results.
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ζ(i1(σ), . . . , id(σ)) ≤ ∏d
j=1 ij(σ). This implies that

log(1/pi(σ)) ≤ 2 log 2i(σ)

≤ 2 log



2
d

∏

j=1

log2(σ̃j/σ0)





≤ 2

d
∑

j=1

log
(

21/d log2(σ̃j/σ0)
)

.

Combining these results with (22) and using the fact that aj
ij
≤ σ̃j completes the proof. ¤

Appendix B. The Dual optimization problem

The functions
w̃2

j

σ̃j
are convex only when the constraints on σ̃ are satisfied. If we were

to formulate the dual problem by assigning the constraints σ̃ º 0 Lagrange multipliers

there would be no consideration to the domain of
w̃2

j

σ̃j
. Therefore problem (17), in which

the constraints σ̃ º 0 are made implicit (Boyd and Vandenberghe, 2004, pp.257–258) by
modifying the objective function to be infinite when these constraints are violated, was
proposed. The solutions of problems (17) and (16) are identical.

The Lagrange multipliers µ ∈ R
n, µ+, µ−, µ1 ∈ R, µ2 ∈ R

n are defined as the multipliers of
the respective constraints.

The Lagrangian is

L(w̃, σ̃, b, ξ;µ, µ+, µ−, µ1, µ2) =























1T ξ + µT
(

1 − ξ − Y
(

XT w̃ + b1
))

+µ+

(

(v+)T σ̃ − R+

)

+ µ−
(

(v−)T σ̃ − R−
)

+µ1

(

∑d
j=1

w̃2
j

σ̃j
− 1

)

− µT
2 ξ if σ̃ º 0

∞ otherwise.

The dual function is

η(µ, µ+, µ−, µ1, µ2) = min
w̃,σ̃º0,b,ξ

L(w̃, σ̃, b, ξ, µ, µ+, µ−, µ1, µ2)

= min
w̃,σ̃º0

µ1

n
∑

j=1

w̃2
j

σ̃j
− µT Y XT w̃ + (µ+v+ + µ−v−)T σ̃ + min

b

(

−bµT y
)

+ min
ξ̃

(1 − µ − µ2)
T ξ + 1T µ − µ1 − R+µ+ − R−µ−

= min
w̃,σ̃º0

d
∑

j=1

hj(w̃j , σ̃j) +







1T µ − µ1 − R+µ+ − R−µ− if µT y = 0,
µ + µ2 = 1

−∞ otherwise
,

where hj(w̃j , σ̃j) = µ1
w̃2

j

σ̃j
−

(

∑n
i=1 µiy

(i)x
(i)
j

)

w̃j + (µ+v+
j + µ−v−j )σ̃j .

The constant (in this context) µ1 is nonnegative because it is a Lagrange multiplier of an
inequality constraint. We separate minimizing hj(w̃j , σ̃j) into two cases:
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1. µ1 = 0. The functions hj(w̃j , σ̃j) are linear. Consequently their minimal value is −∞
unless µ = 0 and then their value is 0.

2. µ1 > 0. The gradient of hj(w̃j , σ̃j) is

∇hj =





2µ1
w̃j

σ̃j
−

(

∑n
i=1 µ(i)y(i)x

(i)
j

)

−µ1

(

w̃j

σ̃j

)2
+ µ+v+

j + µ−v−j



 .

We minimize hj(w̃j , σ̃j ≥ 0) first over variable w̃j by solving ∇w̃j
hj = 0. The result is

w̃⋆
j =

∑n
i=1 µ(i)y(i)x

(i)
j

2µ1
σ̃j .

Thus

hj(w̃
⋆
j , σ̃j ≥ 0) =






µ+v+

j + µ−v−j −

(

∑n
i=1 µ(i)y(i)x

(i)
j

)2

4µ1






σ̃j .

Lemma 22 The conditions for the minima of the functions hj(w̃j , σ̃j), j = 1, . . . , d
to be bounded below are

(

n
∑

i=1

µ(i)y(i)x
(i)
j

)2

− 4µ1(µ+v+
j + µ−v−j ) ≤ 0, j = 1, . . . , d

respectively. If these conditions are met, the minimum value is 0.

Proof.

If µ+v+
j + µ−v−j −

(

∑n
i=1 µ(i)y(i)x

(i)
j

)2

4µ1
> 0 then σ̃⋆ = 0 ⇒ h(w̃⋆

j , σ̃
⋆
j ) = 0.

If µ+v+
j + µ−v−j −

(

∑n
i=1 µ(i)y(i)x

(i)
j

)2

4µ1
= 0 then h(w̃⋆

j , σ̃
⋆
j ) = 0.

If µ+v+
j + µ−v−j −

(

∑n
i=1 µ(i)y(i)x

(i)
j

)2

4µ1
< 0 then σ̃⋆ → ∞ ⇒ h(w̃⋆

j , σ̃
⋆
j ) → −∞.

Consequently hj(w̃j , σ̃j), j = 1, . . . , d are bounded below if

µ+v+
j + µ−v−j −

(

∑n
i=1 µ(i)y(i)x

(i)
j

)2

4µ1
≥ 0, j = 1, . . . , d.

This condition is equivalent to the condition

(

n
∑

i=1

µ(i)y(i)x
(i)
j

)2

− 4µ1(µ+v+
j + µ−v−j ) ≤ 0, j = 1, . . . , d

because µ1 > 0. ¤
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In summary, the dual function is

η(µ, µ1, µ2, µ3) =



















1T µ − µ1 − R+µ+ − R−µ− if µT y = 0, µ + µ2 = 1, µ1 > 0
(

∑n
i=1 µ(i)y(i)x

(i)
j

)2
− 4µ1(µ+v+

j + µ−v−j ) ≤ 0,∀j

0 if µ = 0, µ1 = 0, µ2 = C, µ3 = 1
−∞ otherwise.

Note that when µ1 = 0 the value of the dual function is equal to 1T µ. Additionally the

conditions
(

∑n
i=1 µ(i)y(i)x

(i)
j

)2
− 4µ1(µ+v+

j + µ−v−j ) ≤ 0, j = 1, . . . , d are satisfied.

The dual optimization problem is

maximize 1T µ − µ1 − R+µ+ − R−µ−

subject to
(

∑n
i=1 µ(i)y(i)x

(i)
j

)2
− 4µ1(µ+v+

j + µ−v−j ) ≤ 0, j = 1, . . . , d

µT y = 0
µ + µ2 = 1
µ, µ1, µ+, µ−, µ2 º 0,

(23)

where µ, µ1, µ+, µ−, µ2 are the optimization variables. The variable µ2 appears only in the
constraints µ + µ2 = 1 and µ2 º 0. Therefore we can combine these constraints into the
constraint µ ¹ 1. Thus problem

maximize 1T µ − µ1 − R+µ+ − R−µ−

subject to
(

∑n
i=1 µ(i)y(i)x

(i)
j

)2
− 4µ1(µ+v+

j + µ−v−j ) ≤ 0, j = 1, . . . , d

µT y = 0
0 ¹ µ ¹ 1
µ1, µ+, µ− ≥ 0,

(24)

is equivalent to problem (23).

Appendix C. The dual of the dual optimization problem

The primal variables w̃, b, ξ of problem (15) can be determined from the Lagrange multipliers
of the dual problem (16). In order deliniete this point, the dual problem associated with
problem (16) is formulated. It is termed as the dual dual problem associated with problem
(15). From a comparison between the dual dual problem and the primal problem the
relations between the Lagrange multipliers of the dual problem (16) and the primal variables
of problem (15) are uncovered.

Consider the dual problem (17). Denote the Lagrange multipliers of the d equality con-
straints, the quadratic over linear inequality constraints, the single equality constraint the
lower bound box constraint on µ, the upper bound box constraint on µ and the nonnega-
tivity constraints as w̌, σ̌ ∈ R

d, b̌ ∈ R, λ, ξ̌ ∈ R
n, λ+, λ− ∈ R respectively.

The Lagrangian, subject to µ1 ≥ 0, is
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L(µ, µ+, µ−, s; w̌, σ̌, b̌, λ, ξ̌, λ+, λ−)

= −1T µ + µ1 + R+µ+ + R+µ− + w̌T (XY µ − s) +

d
∑

j=1

σ̌j

[

s2
j

4µ1
− (µ+v+

j + µ−v−j )

]

+b
(

µT y
)

− λT µ − ξT (µ − 1) − λ1µ1 − λ+µ+ − λ−µ−

= h(s, µ1) +
(

Y XT w̌ + by − 1 + ξ − λ
)T

µ

+



R+ −
d

∑

j=1

σ̌jv
+
j − λ+



µ+ +



R− −
d

∑

j=1

σ̌jv
−
j − λ−



µ− + 1T ξ,

where h(s, µ1) =
∑d

j=1 σ̌j
s2
j

4µ1
− wT s + (1 − λ1)µ1 and otherwise is equal to infinity.

The dual function is

η(w̌, σ̌, b̌, λ, ξ̌, λ+, λ−) = min
µ1≥0

h(s, µ1) +



















1T ξ̌ if Y
(

XT w̌ + b̌1
)

− 1 + ξ̌ − λ = 0

R+ − ∑d
j=1 σ̌jv

+
j − λ+ = 0

R− − ∑d
j=1 σ̌jv

−
j − λ− = 0

−∞ otherwise.

Note that if any σj = 0, then the minimum of the function is minus infinity. Given σ̃ ≻ 0 it
is clear that µ1 = 0 can’t be a minimizer since the value of h(s, 0) is infinity. The gradient
of h(s, µ1) according to the variable s is ∇sh(s, µ1) = 1

2µ1
Σ̌s − w̌. Thus s⋆ = 2µ1Σ

−1w̌.

Substituting the minimizer s⋆ into h(s, µ1) we get h(s⋆, µ1) =
(

1 − λ1 − w̌Σ̌w̌
)

µ1. The
minimum of h(s⋆, µ1) is zero if 1 − λ1 − w̌Σ̌w̌ ≥ 0 and minus infinity otherwise.

Therefore the dual problem associated with problem (17) is

minimize 1T ξ̌

subject to Y
(

XT w̌ + b̌1
)

− 1 + ξ̌ − λ = 0

R+ − ∑d
j=1 σ̌jv

+
j − λ+ = 0

R− − ∑d
j=1 σ̌jv

−
j − λ− = 0

1 − λ1 − w̌Σ̌w̌ ≥ 0

σ̌, ξ̌, λ, λ1, λ+, λ− º 0

(25)

with the variables w̌, σ̌, b̌, ξ̌, λ, λ1, λ+, λ−. Problem (25) is equivalent to

minimize 1T ξ̌

subject to Y
(

XT w̌ + b̌1
)

º 1 − ξ̌

w̌Σ̌w̌ ≤ 1

R+ ≥ ∑d
j=1 σ̌jv

+
j

R− ≥ ∑d
j=1 σ̌jv

−
j

σ̌, ξ̌ º 0.

(26)

A comparison between the dual dual problem (26) and the primal problem (11) reveals
that the problems are identical by the relations w̃ = w̌, σ̃ = σ̌, b = b̌. Therefore the primal
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solution is the lagrange multipliers of the appropriate constraints of the solution of the dual
problem (17). ¤

Appendix D. Convexification of problems with convex constraints and a

convex over a linear objective function

Lemma 23 Consider a problem of the form

minimize f0(x)/(cT x + d)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

(27)

where f0(x), f1(x), . . . , fm(x) are convex functions, and the domain of the objective function
is defined as {x|cT x + d > 0}.
Optimization problem (27) is a quasiconvex optimization problem which can be transformed
into the following equivalent convex optimization problem

minimize g0(y, t)
subject to gi(y, t) ≤ 0, i = 1, . . . , m

cT y + dt = 1,
(28)

where gi is the perspective of fi. The variables are y ∈ R
n and t ∈ R. The domain of the

objective function and inequality constraint functions restricts t > 0 due to the definition of
the domain of a perspective of a function.

Proof: To show equivalence, we first note that if x is feasible in (27),i.e. fi (x) ≤ 0, i =
1, . . . , m then the pair (y, t) = (tx, t) is feasible in (28)

gi(y, t) = gi(tx, t) = tfi

(

tx

t

)

= tfi (x) ≤ 0,

with the same objective value

g0(y, t) = g0(tx, t) =
tf0

(

tx
t

)

1
=

tf0 (x)

t(cT x + d)
=

f0(x)

cT x + d
.

Note that the demand cT x + d > 0 on the domain of x is satisfied because cT y + dt =
t(cT x + d) = 1. It follows that the optimal value of (27) is greater than or equal to the
optimal value of (28).

Conversely, if (y, t) is feasible in (28), i.e. gi(y, t) ≤ 0, i = 1, . . . , m, then x = y
t is feasible

in (27)

fi(x) = fi

(y

t

)

=
gi(y, t)

t
≤ 0

with the same objective value

f0(x)

cT x + d
=

f0(
y
t )

cT
(y

t

)

+ d
=

tf0(
y
t )

cT y + dt
=

g0(y, t)

1
= g0(y, t).
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Therefore the optimal value of (28) is greater than or equal to the optimal value of (27).
Putting both parts together, we can conclude that the optimal values are the same.

Problem (28) is convex because the equality constraint is affine, fi(x), i = 0, 1, . . . , m, are
convex functions, and the perspective of a convex function is also a convex function. ¤
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