
Energy Efficiency of

Collision Resolution Protocols

Aran Bergman and Moshe Sidi 1

Electrical Engineering Department
Technion—Israel Institute of Technology, Haifa 32000, Israel

Abstract

Energy consumption of the medium access control (MAC) algorithm is one of the
key performance metrics in today’s ubiquitous wireless networks of battery-operated
devices. We concentrate on random access MAC algorithms called Collision Reso-
lution Protocols (CRPs) that have the best stable properties and excellent delay
characteristics for a large population of “bursty” users. The main concern of the
analysis of CRPs has so far been the stability conditions, the throughput-delay
tradeoffs and how the algorithms can be optimized for these properties. The con-
tribution of our work is the introduction of a novel utility function that reflects the
tradeoff between the energy consumption induced by a CRP and its throughput,
thus representing the energy efficiency of the algorithm. We exemplify the use of
this utility function by analyzing several CRPs, including full and limited sensing
algorithms. In particular, we introduce a modification of the “0.487” algorithm that
improves its energy efficiency.

Key words: Wireless MAC, Energy Efficiency, Collision Resolution Protocols,
Performance Analysis.

1 Introduction

In many wireless networks the preferred medium access control (MAC) mech-
anism is a random access algorithm. It is known that for a large group of
“bursty” users, such algorithms display better delay characteristics than TDMA
schemes. Moreover, these random access algorithms are usually easier to im-
plement and deploy than an access algorithm that is based on scheduling. One
needs only to consider the current deployment of the 802.11 wireless local

1 Corresponding author; +972-4-8294650, moshe@ee.technion.ac.il

lesley
Text Box
CCIT Report #534
May 2005



area networks (WLANs). The standard [1–3] provides two methods of access-
ing the medium; one (namely, DCF) using the random access algorithm known
as carrier sense multiple access with collision avoidance (CSMA/CA), and the
other which is based on scheduled access and is termed PCF. To date, none
or very few implementations support the PCF function. Thus, random access
algorithms merit attention when energy efficiency is addressed.

Of all the random access algorithms suggested in the literature, the family
of algorithms that displays the best stable properties is the collision resolu-
tion protocols (CRPs). Many papers ( [5–9,12,13,15,16] to name a few) have
been devoted to suggesting new and improved collision resolution algorithms
and to devising methods of analyzing their performance. This analysis concen-
trated mainly on finding the conditions for the stability of the algorithms, the
maximum sustainable throughput, the expected packet delay and how each
could be optimized. Today, when hand-held, battery-operated devices are used
more and more, the energy requirements of an algorithm are just as impor-
tant. Users might be willing to sacrifice throughput or delay to make better
use of the battery energy they have available, and extend the operation time
of their devices.

In this paper, we propose a utility function that measures the energy efficiency
of an algorithm, given its parameters and the system’s requirements (e.g.,
required throughput). We aim to optimize this function and show how this
optimum can be calculated and obtained.

To the best of our knowledge, only [18] and [14] address the energy efficiency of
collision resolution protocols. In [18], a new method of splitting the allocation
interval, based on the residual energy of each node is suggested. The model
used is of finite population with finite initial energy at each node, and the sug-
gested algorithm is compared to the FCFS algorithm. In [14], a new protocol
that is based on known multiplicity (i.e., when a receiver knows how many
transmitters collide) through energy measurements and a rather elaborate in-
formation in the feedback is presented. The suggested algorithm is compared
with several other algorithms, among which are 802.11 and FCFS, that do
not assume the known multiplicity model. The comparison is based on the
expected values of the participation time, number of transmissions, collision
resolution interval and total power consumption, given that k packets collide
in the beginning of the collision resolution interval. We utilize the infinite
population model, and find the optimized energy efficiency of each algorithm
we describe. We employ the classical ternary feedback and compare different
algorithms according to the unconditional expected values of throughput and
energy consumption. This is highly important, as most algorithms can be op-
timized so that the vast majority of collisions contain no more than 2 packets.
Even if a given algorithm outperforms another for all k > 2, it can still be
inferior to the latter.

2



This paper is organized as follows. In Section 2.1 we describe the underlying
model we use. Section 2.2 presents the utility function we propose as a metric
to the energy efficiency of a MAC protocol, which incorporates the tradeoff
between the system’s throughput and its energy requirements. Section 3.1
describes two versions of the Window Access (WA) algorithm. In Section 3.2 we
describe the celebrated first-come-first-served (FCFS) algorithm and analyze
its energy efficiency. Section 3.3 is devoted to presenting numerical data and
to discussing these results. Chapter 4 describes and analyzes limited sensing
algorithms, namely the free access algorithm in Section 4.1 and the last-come-
first-served algorithm in Section 4.2. Numerical data of the limited sensing
algorithms is presented in Section 4.3. We conclude with Chapter 5, where we
also outline some future work on the subject of energy efficiency of CRPs.

2 Energy Efficiency

2.1 Model Description and Definitions

Our model and assumptions are basically those of standard multiple access
protocols [17]. We assume the channel is slotted ; that is, the time is divided
into identical intervals called slots that are the time units used. A user can
attempt to transmit a packet, whose length is one slot, only at the beginning
of slots. We define slot T as the interval [T, T + 1). At the end of slot T , the
users get information about the activity in the channel in that slot. We denote
this feedback by FT . Two kinds of feedbacks are considered:

Binary feedback, where the feedback can discern between 0 or 1 (FT =
NC), or more than one (FT = C) transmission attempts in a slot.

Ternary feedback, where the feedback can discern between 0 (FT = 0), 1
(FT = 1) or more than one (FT = C) transmission attempts in a slot.

This feedback might be available to the users by means of a central station
that detects all transmissions in the channel and informs the users at the end
of a slot. However, if the users can detect all transmissions in the channel,
such a central station is not necessary.

We assume that the channel is error-free, so the only reason for erroneous
delivery of packets is simultaneous transmission of two or more packets. This
event is called collision, and all packets participating in a collision must be re-
transmitted. New packets arrive to the system according to a Poisson process
with rate λ packets per slot, reflecting the behavior of an infinite population
of “bursty” users.

3



An algorithm which requires all users to continuously monitor the feedback
information is called Full Sensing Algorithm or Continuous Sensing Algorithm.
An algorithm which requires users to monitor the feedback information only
when they have a packet to transmit, is called Limited Sensing Algorithm.

Each user invests a certain amount of energy ,ex, in each transmission attempt.
We assume that this amount is constant for all users and all transmissions and
is equal to 1 energy unit (ex = 1). Since collisions might occur, a packet may
be transmitted several times before it is successfully delivered; let P be the
number of transmissions. If the system has a steady state, we define P as the
expected normalized energy required to successfully transmit a packet.

For the limited sensing algorithms analyzed in Section 4, we also consider the
energy required for monitoring the channel feedback in a single slot, denoted
em. We assume that this energy is also constant for all users and for all slots
and that em = ξex, where ξ ≥ 0, or, when normalizing by ex, em = ξ.

2.2 The Utility Function

Our goal is to optimize the performance of the MAC algorithm with respect to
the expected energy required to successfully transmit a packet – E. With this
objective in mind, we would like to evaluate different CRPs, and calibrate
their parameters so that we get minimal E. However, taking only E into
consideration could lead to unwanted results in other important performance
metrics. For instance, transmitting no packets yields E = 0 which is the best
possible, but then no packets will be transmitted successfully.

Consequently, we propose a utility function that takes the tradeoff between
the throughput and E into account,

U =
λ

E
µ (1)

which we aim to maximize, where λ is the throughput. The parameter µ
is determined according to how important the energy requirements are with
respect to the throughput. If the system designer wishes to sacrifice more
throughput to get lower E, she will set a higher value of µ. If, on the other
hand, one is more interested in the system throughput, one will set a lower µ.

Since for limited sensing algorithms a user is required to process the feedback
only when it has a packet to transmit, and stops listening when the packet
is finally transmitted successfully, the energy required to “tune in” on the
feedback is equal to ξD, where D is the delay of the packet, measured from
the time it arrived to the system until it was successfully transmitted. Thus,

4



we have E = P + ξD, and we can use the following utility function for the
limited sensing algorithms:

UL =
λ

[

P + ξD
]µ . (2)

This might seem unnecessary, since many view the transmission as far more
energy-consuming than the receiving process. However, in many situations the
energy requirements of amplifying, demodulating and decoding the received
signal are comparable with the energy required to transmit a packet. (See [19]
and references therein.)

For the full sensing algorithms, we take ξ = 0. Thus, for the full sensing
algorithms we use UF as the utility function, which is defined as

UF =
λ

P
µ . (3)

Note that we neglect the energy required to listen to the feedback in this
suggested utility function since in all full sensing algorithms users have to
listen to the feedback at every slot, so there is no real difference between the
required “listening” energy of any two full sensing algorithms. Furthermore,
since we are dealing with the infinite population model, E doesn’t take a finite
value for any other value of ξ.

Note that the utility function (1) is not limited to measuring the energy effi-
ciency of CRPs only. It can be used to evaluate any MAC protocol, if we take
E to be the energy required to deliver an information unit (which could be
bit, byte or packet, for instance), and if we normalize the energy units so that
E ≥ 1 (otherwise, the meaning of µ might change).

3 Full Sensing Algorithms

In this section we examine the energy efficiency of full sensing algorithms. We
use the utility function presented in (3) to evaluate the performance of different
algorithms, and we find the conditions for maximizing this function. We start
with an algorithm that is easy to analyze, to illustrate the calculations.

3.1 The Window Access (WA) Algorithm

The idea of controlling the access of new packets according to a window was
first suggested by Gallager in [7]. This algorithm, sometimes called the epoch

5



mechanism (as in [7, 17]), divides the time axis into consecutive windows, or
epochs, each of maximum length ∆ slots. The ith window is the time interval
[i∆, (i + 1)∆). Packets that arrive during the ith window are blocked until
all the packets from the (i − 1)th window have been resolved. In this section
we discuss the simple WA (SWA), suggested in [15], where packets delay the
start of the next collision resolution interval (CRI), if necessary, until a “full”
window can be chosen. This simplifies the analysis of the algorithm. The more
sophisticated version, where a shorter window may be chosen, is, actually, the
First-Come-First-Served algorithm, which is discussed in detail in Section 3.2.
The window length, ∆, is a system parameter and could be tuned to optimize
the performance of the system. We aim to maximize UF . Apart from stating
the first-time transmission rule, we must also define the conflict resolution
algorithm used. Here we use the modified tree algorithm, sometimes referred
to as level skipping, also suggested in [15]. This means that definite collisions,
i.e., collisions that follow an idle slot which immediately follows a collision,
are avoided. We do not discuss or analyze the standard tree algorithm, also
known as the Capetanakis-Tsybakov-Mikhailov (CTM) algorithm [5], since it
obviously wastes more energy (due to avoidable definite collisions).

3.1.1 WA Algorithm Description

This is a full sensing ternary feedback algorithm and all users are always
aware of the window being handled in the current CRI. Algorithm 1 is based
on an implementation suggestion in [15] and is carried out by each user. The
parameters used in the algorithm are CRICounter, that identifies the end of a
CRI; WindowCounter, that identifies the current window; TransmitCounter,
that marks the node’s place in the stack; and Flag, that implements the level
skipping. The coin flip used in the algorithm is a Bernoulli random variable
with probability p of flipping 0.

3.1.2 Energy Efficiency for the WA Algorithm

The first step in calculating P is calculating the expected cumulative number
of transmissions in a CRI, given that it starts with k packets. Let Xk be the
expected value of X, given that the CRI starts with k packets. Let V denote
the number of transmissions in a CRI. We have V 0 = 0 and V 1 = 1. Given
that the CRI starts with k ≥ 2, and that i users are on the left branch of the
binary tree, according to the algorithm we get

V k,i =











k + V i + V k−i, 1 ≤ i ≤ k;

V k, i = 0.

6



Algorithm 1 The Regular Window Access Algorithm
Flag ← 0 ,CRICounter← 1, WindowCounter← 0, TransmitCounter← NULL
loop

Wait for feedback
if FT = C then

CRICounter← CRICounter + 1
Flag ← 1
if this user transmitted in slot T then

FlipResult← result of coin flip
if FlipResult = 0 then

TransmitCounter← 0
else {FlipResult = 1}

TransmitCounter← 1
else if TransmitCounter 6= NULL then

TransmitCounter← TransmitCounter + 1
else if FT = 1 then

CRICounter← CRICounter− 1
if this user transmitted in slot T then

TransmitCounter← NULL
if TransmitCounter 6= NULL then

TransmitCounter← TransmitCounter− 1
Flag ← 0

else if FT = 0 and Flag = 0 then

CRICounter← CRICounter− 1
if TransmitCounter 6= NULL then

TransmitCounter← TransmitCounter− 1
else {FT = 0 and Flag = 1}

if TransmitCounter = 1 then

FlipResult← result of coin flip
if FlipResult = 0 then

TransmitCounter← TransmitCounter− 1
if TransmitCounter = 0 then

Re-transmit in slot T + 1
if CRICounter = 0 then

CRICounter← 1
if T > ∆(WindowCounter + 1) then

WindowCounter←WindowCounter + 1
if this user has a packet that arrived in the WindowCounter th window
then

Transmit at slot T + 1
TransmitCounter← 0

else

TransmitCounter← NULL

7



Taking the expectation over i, we have

V k =
k(1−Qk

0) +
k−1
∑

i=1
(Qk

i +Qk
k−i)V i

1−Qk
0 −Qk

k

, ∀k ≥ 2,

where Qk
i =

(

k
i

)

pi(1 − p)k−i. Since each CRI starts with a window of ∆, we
can simply write

V =
∞
∑

n=0

V n Pr(k = n) =
∞
∑

n=0

V n
(λ∆)n

n!
e−λ∆. (4)

Since each CRI is independent, thanks to the method used to choose the
packets eligible for transmission at the beginning of each CRI, the expected
number of transmissions per packet is the ratio between the expected cumu-
lative number of transmissions in a CRI and the expected number of packets
that are successfully transmitted in a CRI. In the WA algorithm all packets
in the beginning of a CRI are eventually transmitted in the same CRI. Thus,
the expected number of packets involved in a CRI is λ∆ and therefore

P = V /(λ∆). (5)

We believe it can be shown that if we hold λ constant, P is a monotonically
increasing function of ∆ (see Figure 2), meaning that one would prefer to
set ∆ as small as possible in order to maximize UF . However, to sustain a
stable throughput of λ packets per slot, one cannot take any value of ∆. We
know [17] that the algorithm is stable so long as

L < ∆, (6)

where L is the length of a CRI. Thus, one should choose the smallest ∆ that
does not violate (6). This means that maximizing UF , when λ is held constant,
can be achieved by setting ∆ to such a value that causes the system to operate
near the algorithm’s capacity, i.e., close to its stability threshold. If we can
also control λ in some manner, we would like to know what would be the best
choice of λ and ∆. If we define the expected number of packets in a window
z , λ∆, we notice that P is a function of z only. The expected CRI length,
L, is also a function of z only. Noticing that (6) can be re-written as

λ <
z

L
=

z
∞
∑

n=0
Ln
zn

n!
e−z

, (7)

8



we can write

UF =
λ

P
µ <

z

L[P ]µ
=

zµ+1

∞
∑

n=0
Ln
zn

n!
e−z

[

∞
∑

n=0
V n

zn

n!
e−z

]µ , Gµ(z). (8)

3.1.3 Tree Pruning

As Gallager noticed in [7], if the arrival time of the packets is used to split them
into subsets, when a collision is followed by another collision of the packets
on the left branch, it is best if the right branch is incorporated into the next
CRI. This algorithm is termed tree pruning or clipped tree. The method used
to analyze the energy efficiency of this algorithm is similar to the method used
in Section 3.1.2. Using the same notations, we have that V 0 = 0 and V 1 = 1.
Given that the CRI starts with k ≥ 2, and that i users are on the left subset
of the allocation interval, according to the algorithm we get

V k,i =



























k + V i, 2 ≤ i ≤ k;

k + 1 + V k−1, i = 1;

V k, i = 0.

, ∀k ≥ 2 (9)

Taking the expectation over i, we have

V k =
k(1−Qk

0) +Qk
1(1 + V k−1) +

k−1
∑

i=2
Qk

i V i

1−Qk
0 −Qk

k

, ∀k ≥ 2, (10)

Since “clipping” the tree does not affect the independence between different
CRIs, and as each CRI starts with packets chosen from a window of exactly
∆ slots, we can still use (4) to calculate V . However, (5) no longer holds for
this algorithm, as some of the packets that collided in the first slot of a CRI
might be incorporated into the next CRI, rather than resolved in the current
CRI. To calculate P , we must find the expected number of packets that are
delivered in a CRI, denoted by N . For k = 0 and k = 1 we have N 0 = 0 and
N 1 = 1 and for k ≥ 2, similarly to (9), we have

Nk,i =



























N i, 2 ≤ i ≤ k;

1 +Nk−1, i = 1;

Nk, i = 0.

, ∀k ≥ 2,

9



Leading to

Nk =
Qk

1(1 + V k−1) +
k−1
∑

i=2
Qk

iN i

1−Qk
0 −Qk

k

, ∀k ≥ 2.

To find the unconditional value,N , we exploit the independence between CRIs,
and use

N =
∞
∑

n=0

Nn
(λ∆)ne−λ∆

n!
.

Now that we have the expected number of packets transmitted in a CRI, and
recalling that z , λ∆, we can calculate P using

P =
V

N
=

∞
∑

n=0
V n

zne−z

n!
∞
∑

n=0
Nn

zne−z

n!

.

Again, we believe P can be shown to be monotonically increasing with respect
to z (see Figure 2), so if we hold λ constant, we get that it is monotonically
increasing with ∆. Considering UF , we notice that when λ is held constant,
one would prefer to set ∆ as small as possible, meaning that the system would
operate near capacity. For this algorithm, stability is maintained as long as
λ < N/L [17], so we get

UF =
λ

P
µ <

N
µ+1

L · [V ]µ
=

[

∞
∑

n=0
Nn

zne−z

n!

]µ+1

∞
∑

n=0
Ln
zne−z

n!

[

∞
∑

n=0
V n

zne−z

n!

]µ , Gµ(z). (11)

3.2 The First-Come-First-Served (FCFS) Algorithm

The first-come-first-served algorithm was suggested by Gallager in [7]. This
algorithm splits the colliding packets into two subsets according to the packet
arrival time, rather than coin flips or node identity. The collision resolution
algorithm used here is the modified tree algorithm with tree pruning, or clipped
tree mechanism. This means that if a collision occurs when the left subset is
transmitted, the right subset is incorporated into the next CRI. The packets
chosen for transmission in each slot are the packets that arrived in a time
interval specified by the algorithm; this interval is called the allocation interval.
When a new CRI begins, the allocation interval chosen for this CRI is of
maximum length ∆, but can be shorter, if a “full” window cannot be chosen
at the current slot and therein lies the difference from the algorithm analyzed
in Section 3.1.3. The algorithm is also known as the 0.487 algorithm, for its
maximum achievable steady-state throughput, which is the highest known

10



L
T T'

d

ℓ

δ slot

S(T)

Fig. 1. Random variables used in the FCFS analysis

to date (apart for a minor improvement suggested by Mosely and Humblet
in [16]). The algorithm is called FCFS since the packets are delivered in the
order they were generated.

3.2.1 The FCFS Algorithm Description

At each slot boundary, the algorithm specifies the allocation interval by two
parameters, S(T ) and ℓ(T ), as [S(T ), S(T )+ℓ(T )). The parameter σ(T ) is the
status of the subset that should be transmitted in slot T . It can take either L
(left subset) or R (right subset). Algorithm 2 describes what each node does.

Algorithm 2 The FCFS Algorithm

σ(1) ← R, S(1) ← 0, ℓ(1) ← 1,
{T ← 1}
loop

if this node has a packet that ar-
rived in [S(T ), S(T ) + ℓ(T )) then

Transmit in slot T

Wait for feedback
if FT = C then

S(T + 1)← S(T )

ℓ(T + 1)← ℓ(T )
2

σ(T + 1)← L

if FT = 1 and σ(T ) = L then

S(T + 1)← S(T ) + ℓ(T )
ℓ(T + 1)← ℓ(T )
σ(T + 1)← R

if FT = 0 and σ(T ) = L then

S(T + 1)← S(T ) + ℓ(T )

ℓ(T + 1)← ℓ(T )
2

σ(T + 1)← L

if FT 6= C and σ(T ) = R then

S(T + 1)← S(T ) + ℓ(T )
ℓ(T + 1)← min(∆, T − S(T ))
σ(T + 1)← R

{T ← T + 1}

3.2.2 Energy Efficiency for the FCFS Algorithm

The method used to calculate P for the FCFS algorithm is similar to the
method used in [9] and in [8] for calculating the packet delay. This method
takes advantage of the regenerative nature of the transmission process in order
to calculate the expected number of transmissions per packet.

Suppose that at the beginning of slot T all packets that arrived before time
S(T ), where S(T ) < T , have been successfully transmitted, and there is no
information regarding the packets in the interval [S(T ), T ) (see Figure 1).
The time interval d = T −S(T ) is called the “lag”. A new CRI begins at time
T and lasts L slots. This CRI begins with packets chosen from the interval

11



[S(T ), S(T ) + ℓ), where ℓ = min(d,∆). According to the FCFS algorithm,
not all packets in the allocation interval are necessarily resolved in a CRI.
However, all packets resolved in a CRI are packets that arrived in some time
interval [S(T ), S(T )+ δ), which we refer to as the resolved interval. Moreover,
at the end of the CRI, we have no a-priori knowledge about the packets that
arrived in the interval [S(T ′), T ′), where S(T ′) = S(T ) + δ. Thus, at time T ′,
we have a similar situation to what we had at time T , but with a new lag
d′ = T ′ − S(T ′), and with a new allocation interval. Unlike the simple WA
(with or without the tree pruning mechanism), the lag at the beginning of a
CRI can be smaller than ∆, so ℓ does not necessarily equal ∆ when a CRI
begins. This is the source of the difficulty in analyzing this algorithm, as each
CRI is no longer independent of the former CRI.

Let us label the packets according to the order of their arrival and denote
the number of transmissions required to successfully deliver the ith packet by
Pi. We would like to calculate the steady-state expected value of Pi, when it
exists. According to the method in [9], we can calculate P via

P = lim
n→∞

1

n

n
∑

i=1

Pi = P∞ =
Y

C
, (12)

where Y and C denote the expected cumulative number of transmissions and
the expected number of packets successfully transmitted in a regeneration
cycle, respectively. The regeneration points are CRI boundaries when d = 1.
At these points, the random processes restart, including the process for P .
The expected number of packets delivered in a regeneration cycle is

C = λH (13)

where H is the expected length of the regeneration cycle. Upper and lower
bounds on H were already found in [8, 9], and are described in Appendix A.
To find Y , we develop a system of equations and find upper and lower bounds
on its solution, as in [8, 9]. The derivation is described in Appendix A.

From (12), (13) and the results of Appendix A, we have the following bounds
on the expected number of transmissions until successful delivery of a packet:

Y l

λHu
= P

l ≤ P ≤ P
u

=
Y u

λH l

3.3 Numerical Results and Discussion

First, we plot P versus the expected number of packets per window, z, for the
two versions of the WA algorithm. The difference between the two versions

12



0 1 2 3 4 5
1

2

3

4

5

6

7

8

9

 z = λ ∆

E
x
p

e
c
te

d
 n

u
m

b
e

r 
o

f 
tr

a
n

s
m

is
s
io

n
s
 p

e
r 

p
a

c
k
e

t p=0.3

p=0.4

p=0.5

p=0.3, clipped

p=0.4, clipped

p=0.5, clipped

Fig. 2. The expected number of transmissions per packet for the WA algorithms.

of the WA algorithm can be explained by noticing that the most energy in a
CRI is wasted in its first slot. The tree pruning increases the probability that
a given slot will be the first slot of a CRI (for a given z), and since these slots
waste most of the energy, P is higher when using the tree pruning mechanism.
The value of P is similar for the two versions for small values of z since for
k ≤ 2, the algorithms behave exactly the same. For small values of z, the
majority of the CRIs start with k ≤ 2 (for z = 1, Pr(k ≤ 2) ≈ 0.92).

We might be tempted to choose the simple WA algorithm over the WA with
the pruning mechanism in view of Figure 2, but we must consider the stability
requirement. If we hold λ constant and control ∆, we know that to increase
UF we need to choose ∆ as small as possible. To sustain a given throughput
λ, we can choose a smaller ∆ when using the tree pruning compared with the
WA algorithm without tree pruning. This means that z for the tree pruning
version can be smaller, but it does not automatically mean that P will be
smaller. Consider an example where λ = 0.2 and suppose we could choose
∆ = 20 (z = 4) for the regular WA algorithm and ∆ = 15 (z = 3) for the
tree pruning version. In this example, we get that P is still higher for the
tree pruning version. Luckily, we know that all values of λ, for which the two
algorithms are stable, can be achieved using z < 1.3. In this region, P for the
two versions of the WA algorithm is roughly the same, so the algorithm that
can choose a smaller ∆ (z) will be more energy efficient. This is also illustrated
in Figure 3, where we can see that for most values of ∆, the efficiency of the
regular WA algorithm is better, but the pruning version can achieve higher
values of UF since for the same value of λ, it can choose lower ∆.

Note that if we have to set ∆ without knowing λ, and if we cannot control ∆
after setting it, the algorithm we would choose is the simple WA algorithm,
as its efficiency in this scenario will always be higher (for all λ for which the
system is stable with the set ∆ for both versions of the algorithm).

We would like to find the maximum value of UF for a given µ for the WA

13



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

 U
F

∆

λ  = 0.2, clipped

λ  = 0.2

λ  = 0.25, clipped

λ  = 0.25

λ  = 0.3, clipped

λ  = 0.3

λ  = 0.35, clipped

λ  = 0.35

λ  = 0.4, clipped

λ  = 0.4

λ  = 0.42, clipped

λ  = 0.42

Fig. 3. The utility function with µ = 1 and p = 0.5 for the WA algorithms. The
curves are presented only for ∆ for which the algorithm is stable. The maximum
value for each curve is marked with a symbol.

algorithms, and what should be the values of λ, ∆ and p to achieve this
maximum. Using (8) (and similarly (11)), we can find the maximum UF for a
given µ by searching for the maximum of Gµ(z) (denoted by G∗

µ(z)) and the
maximizer, z∗µ. Having found z∗µ, we have only λ∗µ∆

∗
µ. However, we know that

the maximum value of UF is obtained when the system is operating near its
capacity, so λ∗µ is easily extracted by substituting z∗µ in (7) (for the simple WA
algorithm, for instance). Using standard optimization algorithms and taking
the first 50 terms in the infinite series in (8) and (11), we have found the
maximum and maximizers of UF for the WA algorithms, for several values of
µ. Table 1 contains these values, while Figure 4(a) and 4(b) present Gµ(z) for
some values of p and µ.

Table 1
Maximum Values and Maximizers of Gµ(z) for the simple WA Algorithm (a) and
the WA algorithm with tree pruning (b).

(a)

µ G∗

µ(z) p∗µ z∗µ λ∗

µ ∆∗

µ

0.5 0.326 0.363 0.855 0.449 1.903

1 0.243 0.315 0.651 0.412 1.580

1.5 0.191 0.275 0.522 0.371 1.408

2 0.156 0.241 0.432 0.331 1.304

3 0.113 0.189 0.316 0.265 1.191

(b)

G∗

µ(z) p∗µ z∗µ λ∗

µ ∆∗

µ

0.332 0.393 0.867 0.464 1.867

0.246 0.332 0.659 0.422 1.562

0.192 0.284 0.526 0.376 1.398

0.157 0.246 0.434 0.334 1.298

0.113 0.191 0.316 0.266 1.189

We note that the maximum achievable value of UF for the WA algorithm with
the tree pruning mechanism is slightly higher than the maximum UF for the
WA algorithm without tree pruning, for the same µ. We also note that as µ
increases, z∗µ decreases. This agrees with the way we view the tradeoff between
the throughput and the energy invested in delivering a packet. When we are
more interested in the throughput, i.e., when µ is smaller, we set z closer to
the optimal z used to achieve the highest sustainable throughput. When, on

14



0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

 z = λ ∆

 G
µ
(z

)

p=0.3, µ=1

p=0.4, µ=1

p=0.5, µ=1

p=0.3, µ=2

p=0.4, µ=2

p=0.5, µ=2

(a)

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

 z = λ ∆

 G
µ
(z

)

p=0.3, µ=1

p=0.4, µ=1

p=0.5, µ=1

p=0.3, µ=2

p=0.4, µ=2

p=0.5, µ=2

(b)

Fig. 4. The function Gµ(z) with µ = 1 and µ = 2 for the WA algorithm (a) and for
the WA algorithm with the tree pruning mechanism (b).

0 0.1 0.2 0.3 0.4 0.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

λ

E
x
p
e
c
te

d
 N

u
m

b
e
r 

o
f 
T

ra
n
s
m

is
s
io

n
s
 p

e
r 

P
a
c
k
e
t

E(P)
l

E(P)
u

Simulation Results

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

λ

 U
F

 U
F

u

 U
F

l

 U
F

sim

(b)

Fig. 5. Comparison between simulation results and analytical bounds for P (a) and
UF (b) (∆ = 2.6, µ = 1). 95% confidence intervals are presented for the simulation
samples.

the other hand, we are more interested in the energy consumption, we should
set lower values for z, thus sacrificing the throughput to get lower energy
consumption.

To verify that our analysis of the FCFS algorithm is correct, we compare
the bounds on P from Section 3.2 to simulation results. This comparison is
presented in Figure 5. The results are averaged over 30 independent simulation
runs of 7 · 105 slots. The calculated values use 15 terms from the infinite series
of the relevant conditional expectations (see [9] and [8]). Including more terms
did not change the results by a noticeable amount.

Next we compare the FCFS algorithm with the WA algorithms. Since for any
given ∆, the capacity of the FCFS algorithm coincides with the capacity of
the WA algorithm with tree pruning and p = 0.5, we compare only these two.
Considering the results presented in Figure 6, we see that, indeed, when ∆ is

15



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

  U
F

 ∆

λ  = 0.2, WA

λ  = 0.2, FCFS

λ  = 0.25, WA

λ  = 0.25, FCFS

λ  = 0.3, WA

λ  = 0.3, FCFS

λ  = 0.35, WA

λ  = 0.35, FCFS

λ  = 0.4, WA

λ  = 0.4, FCFS

Fig. 6. The utility function with µ = 1 and p = 0.5 for the WA algorithm with tree
pruning and the FCFS algorithm. The curves are presented only for ∆ for which the
algorithm is stable. The maximum value for each curve is marked with a symbol.

set so that the algorithm operates near capacity, i.e., we set ∆ to the smallest
value that still permits stable behavior of the algorithm with the given λ, the
efficiency of the two algorithms is identical (minor differences in the graph
are due to simulation sampling errors and due to the step used in setting ∆),
as is expected. When we set higher values for ∆, we see that the efficiency
of the FCFS algorithm exceeds that of the WA algorithm. The reason lies in
the fact that the FCFS does not “wait” so that a full window can be chosen.
It can begin a CRI with an allocation window that is smaller than ∆. This
happens when d < ∆, and when it does, the expected number of packets
that participate in such CRIs is smaller than λ∆, the expected number of
packets participating in a CRI of the WA algorithm. In effect, the expected
initial allocation interval in the FCFS algorithm is smaller, and we know that
a smaller allocation interval means less collisions, when λ is held constant.

Consider the curve that corresponds to λ = 0.2. The ideal window size for this
value of λ is close to 1. But even if we set a higher value for ∆, most of the CRIs
in the FCFS algorithm will start with packets chosen from 1 slot. Recall that
as long as the system is stable, there is a positive probability that the lag will
return to d = 1. At this point, the allocation interval at each CRI beginning
has length of 1 slot. With high probability, this interval contains less than 2
packets, which means that the lag remains 1, and the process repeats itself in
the next CRI. From this description we can see that even when ∆ is set to a
value much higher than what would be the optimal value, the effective initial
allocation interval is close to the optimal ∆. Figure 7 illustrates the same
phenomena when we hold ∆ constant and change the value of λ. Actually,
we can deduce from Figure 7(b) and Figure 6, that if we set ∆ ≈ 1.3, we get
the best performance in the FCFS algorithm for any value of λ with respect
to the energy efficiency. This does not mean, however, that for a given λ, we
should set ∆ = 1.3. If we can change ∆ according to a known λ, we would set
∆ to the smallest value for which the system is stable. This value is smaller

16



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1

1.5

2

2.5

3

3.5

 λ

 E
x
p

e
c
te

d
 N

u
m

b
e

r 
o

f 
T

ra
n

s
m

is
s
io

n
s
 p

e
r 

P
a

c
k
e

t

∆ = 2, FCFS

∆ = 2, WA

∆ = 3, FCFS

∆ = 3, WA

∆ = 4, FCFS

∆ = 4, WA

∆ = 5, FCFS

∆ = 5, WA

∆ = 6, FCFS

∆ = 6, WA

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

 λ

  
 U

F

∆ = 2, FCFS

∆ = 2, WA

∆ = 3, FCFS

∆ = 3, WA

∆ = 4, FCFS

∆ = 4, WA

∆ = 5, FCFS

∆ = 5, WA

∆ = 6, FCFS

∆ = 6, WA

(b)

Fig. 7. Comparison between the WA algorithm with tree pruning and the FCFS
algorithm with respect to P (a) and with respect to UF when µ = 1 (b). Only
values of λ for which the system is stable are shown.

than 1.3 for λ < 0.487.

Considering the analysis of the FCFS presented above, we can suggest a differ-
ent version of the FCFS with identical maximum stable throughput, but with
better energy efficiency performance. Whenever a CRI begins while d < ∆,
the FCFS algorithm chooses ℓ = d (see Algorithm 2). We suggest changing the
ℓ(T+1)← min(∆, T−S(T )) line in the FCFS algorithm to

if T − S(T ) ≥ ∆ then

ℓ(T + 1)← ∆
else

ℓ(T + 1)← min(ζ, T − S(T ))

where ζ is a parameter of the algorithm, and 1 ≤ ζ ≤ ∆. This change preserves
the stability properties of the FCFS algorithm, while shortening the expected
allocation interval for large ∆, thus we get lower P and higher values of UF for
the same values of ∆ and λ. The results for ζ = 1.4 are presented in Figure 8.
Choosing the optimum value for ζ has not been thoroughly investigated yet.

4 Limited Sensing Algorithms

In this section we examine the energy efficiency of limited sensing algorithms,
where a user has to listen to the feedback only when it has a packet to transmit.
The utility function used to evaluate the energy-efficiency of limited sensing
algorithms is presented in (2).

17



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

  
 U

F

 ∆

λ  = 0.2, FCFS

λ  = 0.2, FCFS(ζ=1.4)

λ  = 0.25, FCFS

λ  = 0.25, FCFS(ζ=1.4)

λ  = 0.3, FCFS

λ  = 0.3, FCFS(ζ=1.4)

λ  = 0.35, FCFS

λ  = 0.35, FCFS(ζ=1.4)

λ  = 0.4, FCFS

λ  = 0.4, FCFS(ζ=1.4)

Fig. 8. Comparison of the utility function for the regular FCFS and the suggested
improvement with ζ = 1.4. Only values of ∆ for which the system is stable are
presented. The maximum value of each curve is marked with a symbol.

4.1 The Free Access (FA) Algorithm

The Free Access algorithm was suggested and analyzed in [6] and [11]. The
algorithm used to resolve collisions is the standard tree algorithm. However,
in this algorithm, a user transmits a packet as soon as it is generated (at
the next beginning of a slot, that is), as opposed to the obvious method, as
described in [15], where a user waits until an ongoing CRI is terminated. The
main advantage of taking this course of action is that a user does not have
to monitor the feedback before it has a packet to transmit. The standard tree
algorithm carried out by each user can be visualized as maintaining each user’s
level in a stack. A user transmits whenever it is at the first level (level 0), and
updates its place in the stack according to the feedback it hears (including
feedbacks of slots in which the user did not transmit).

4.1.1 The FA Algorithm Description

For the simple version of the algorithm, only binary feedback is necessary.
Ternary feedback should be used if we want to improve the algorithm by
avoiding definite collisions, as was described in Section 3.1. Algorithm 3 is
carried out by each node in the system.

4.1.2 Analyzing Energy Efficiency for the FA Algorithm

Here, again, we exploit the regenerative nature of the algorithm. We notice
that the regeneration points in this case are the CRI boundaries, as the lag
of this algorithm is always 1. We therefore calculate the cumulative number
of transmissions in a CRI and divide it by the expected number of packets
transmitted in a CRI. Note that in this algorithm, new packets join an ongoing

18



Algorithm 3 The Free Access Algorithm
loop

TransmitCounter← 0
Wait for a packet to arrive
Transmit the packet at the next slot boundary and wait for feedback
while FT 6= NC or TransmitCounter > 0 do

if FT = C and TransmitCounter = 0 then

Flip a binary coin with probability p for flipping 1
if flipped 1 then

TransmitCounter← 0
else

TransmitCounter← TransmitCounter + 1
else if FT = C then

TransmitCounter← TransmitCounter + 1
else {FT = NC}

TransmitCounter← TransmitCounter− 1
if TransmitCounter = 0 then

Transmit on slot T + 1
Wait for feedback

CRI. The analysis is based on the analysis presented in [11] and [6].

Define Vk as the cumulative number of transmissions in a CRI that starts with
k packets transmitting on the first slot of the CRI. Following the algorithm’s
description, we have

Vk,i =



























0, k = 0;

1, k = 1;

k + Vi+XL
+ Vk−i+XR

, k ≥ 2.

(14)

where i is the number of packets (out of k) that flipped 1 after the collision,
XL is the number of packets that joined during the first slot of the CRI (the
collision slot), and XR is the number of packets that joined during the last
slot of the “mini-CRI” that started with i+XL packets. Equation (14) is the
basis for calculating V and therefore P . We must bear in mind that (14) is not
a recursive formula, as XR and XL may take any non-negative integer value.
A detailed derivation of a formula for P is described in [4] and produces

P = 1− Ka

λ
S(e−zz;λ), (15)

where q = 1− p,

Ka =
1
p
− 1

q
1
p
e−λ/p − 1

q
e−λ/q

, Ka(p =
1

2
) =

e2λ

1− 2λ
,

19



and the operator S is defined in [6,11], where a method for calculating S(f(·); u)
to a desired level of accuracy by using the Taylor expansion of f(·) and by
exploiting the linearity of the S operator is also presented.

To evaluate the utility function we also need to calculate D, the expected
delay for a packet. Again, this was already solved in [6]. However, D as it is
calculated in [6] is measured from the first transmission attempt. Since we are
interested in the delay from the arrival time of the packet, and owing to the
fact that all packets are transmitted for the first time in the first slot after
the time they were generated, we can add 1

2
to the delay calculated in [6], to

obtain the required result.

4.2 The Last-Come-First-Served (LCFS) Algorithm

Limited sensing algorithms with a capacity that can be made arbitrarily close
to the 0.487 throughput algorithm were independently suggested in [8, 10]
and [13]. The algorithm uses a parameter R, which determines how many
consecutive idle slots are allowed during a CRI. This limits the number of
consecutive times the “modified tree” mechanism (which prevents definite
collisions) may be used, so it obviously limits the algorithm’s performance.
However, this is essential to prevent system deadlock. Without this limita-
tion, a newly arrived packet will not be able to determine whether a CRI is
in progress or not. When the number of consecutive idle slots during a CRI is
limited to R, if a new packet observes R + 1 idle slots, it can determine that
no CRI is in progress. As observed in [8,10,13], the capacity of the algorithm
is 0.4493 for R = 1 and tends to Gallager’s 0.487 algorithm as R increases.
However, as R increases, so does the expected packet delay for low traffic,
since, most likely, a packet waits R + 1 slots before it can be transmitted for
the first time, and when it does, it most likely succeeds. Therefore, we have
a tradeoff between the expected packet delay (for low traffic) and the algo-
rithm’s capacity. We also note that for R = 1, a binary-feedback version of
the algorithm may be obtained, since the algorithm behaves exactly the same
after FT = 0 and FT = 1.

4.2.1 The LCFS Algorithm Description

The algorithm executed by each user in the network is described in [8]. We
give a different description of the same algorithm, which we feel is more readily
implementable. Table 2 and Figure 9 describe the parameters used in Algo-
rithm 5. At every instance, the packets awaiting transmission are divided into
two classes. Class 1 contains packets that cannot ascertain whether a CRI is in
progress or not and packets that know a CRI is in progress, but do not know

20



Packet

Arrival

Current

Time

T

T
1

Examined

Intervals

Allocation

Interval for ∆=2

Fig. 9. Random variables used in the analysis and description of the LCFS algorithm

Table 2
The Last-Come-First-Served algorithm parameters.

Parameter Meaning

R Maximum number of consecutive idle slots during a CRI.

σ Status of the subset that should be transmitted in the next
slot. Can take either L for Left subset or R for Right.

T Time elapsed from the arrival of a packet, to the current time.

T1 Time interval between the arrival time of the packet and the
ending point of the allocation interval chosen at the beginning
of the current CRI.

Tx Collective amount of time already examined in the interval
beginning with the time the packet arrived and ending at the
current time.

LA Number of slots containing packets from class 1, from the ar-
rival time of the packet until the current time.

when this CRI started. Class 2 contains all the packets which already know
that a CRI is in progress and also know when it started. Algorithm 5 uses
the statement “a CRI just ended” in one of the conditions. This is established
according to Algorithm 4. This algorithm should be executed only when the
user is active (i.e., when it has a packet to transmit), and uses the same value
of LA as in Algorithm 5. The parameters which are subject to optimization
are ∆, the maximum allocation interval, and R.

4.2.2 Energy Efficiency for the LCFS Algorithm

We analyze the performance of the algorithm forR = 1, and present simulation
results for other values of R. The method used is identical to the one used in
Section 3.2.2. Unlike the FCFS algorithm, in the LCFS algorithm gaps can be
formed in the examined intervals, thus our definition of the “lag” must change.

21



Algorithm 4 Identifying the End of a CRI
loop

Wait for feedback
EndOfCRI← FALSE
if FT 6= C and FT−1 == 1 then

EndOfCRI← TRUE
if FT 6= C and last EndOfCRI was TRUE then

EndOfCRI← TRUE
if FT == 1 and LA == R then

EndOfCRI← TRUE

Algorithm 5 The LCFS Algorithm

loop

LA ← 0, Class← 1, σ ← L, Tx ← 0
Wait for a packet to arrive (suppose
it arrives at time Ta ∈ [T ′, T ′ + 1))
Wait for feedback of slot T ′

T ← T ′ + 1− Ta

repeat

if FT ′ == 0 then

if FT ′−1 == 0 then

LA ← LA + 1
else

LA ← 1
else {FT ′ 6= 0}

if FT ′ == C then

LA ← 0
else

LA ← 1
if Class == 2 then

if FT ′ == C then

ℓ← ℓ
2

σ ← R

else if σ == R then

if FT ′ == 1 then

Tx ← Tx + ℓ

σ ← L

else {FT ′ == 0}
Tx ← Tx + ℓ

if LA < R then

ℓ← ℓ
2

σ ← R

else {σ == L}
Tx ← Tx + ℓ

T1 ← T −min(LA, R)
ℓ← ∆
σ ← L

if Class == 1 and a CRI just
ended or LA > R then

Class← 2
ℓ← ∆
T1 ← T −min(LA, R)

if Class == 2 and T1 − Tx ≤ ℓ

then

Transmit the packet on the
next slot

Wait for feedback
T ← T + 1

until Packet is transmitted success-
fully

We denote the “virtual lag” by d, and define it as the sum of all unexamined
intervals from T = 0 as viewed by an external observer. An examined interval,
for that matter, is an interval in which all packets have been resolved.

Using the same notations as in Section 3.2.2, we have that when R = 1, all
equations used to calculate P for the LCFS algorithm are identical to the
equations used for the FCFS algorithm (i.e., the bound for H and Y are
calculated using the same formulas), but the conditional expectations V d, Ld

and δd should be calculated according to the equations in [4, Appendix B] .

22



To calculate D, using the same method, we use

D = lim
n→∞

1

n

n
∑

i=1

Di = D∞ =
W

C
,

where Di is the delay experienced by the ith packet when the packets are
ordered according to the time of arrival, and W is the expected cumulative
delay experienced by all the packets in a regeneration cycle. We already have
an expression forH , so we can compute C using (13). The derivation of bounds
on W for R = 1, and thus the bounds on D, is presented in Appendix B.

After computing all the required quantities, we can bound UL for R = 1, using

λ
[

P
u

+ ξD
u
]µ = U l

L ≤ UL ≤ Uu
L =

λ
[

P
l
+ ξD

l
]µ

for λ that satisfies (A.13).

4.3 Numerical Results and Discussion

To verify our analysis of P for the FA algorithm and to evaluate the accuracy
of using a finite number of terms from the Taylor expansions in λ, we compared
the numerical data obtained using the analysis presented in Section 4.1.2 and
the results of a simulation of the FA algorithm. We have found that the analysis
and the simulation results coincide for all values of p and λ when we use 10
terms of the Taylor expansion in λ, and when comparing to the average of 30
simulation runs of 5 · 105 slots.

Table 3 presents some values of P for various values of p, as computed using
the analysis in Section 4.1.2. We note that P is symmetrical around p = 0.5
for any given λ, and gets its minimum value when p = 0.5. This is expected,
as Ka in (15) is symmetrical around p = 0.5 (exchanging p and q does not
change the value of Ka), and this is also true for the S operator, when f(·) in
S(f(·); u) is independent of p (and q). Using MATLAB, we have programmed
the algorithms used to evaluate the values of S for any p and λ, according to
the procedures and expressions described in Section 4.1.2 and in [6, 11], and
in this manner obtained the following expression for the expected number of
times a packet is transmitted before it is successfully delivered.

P (λ) = 1 +
1

2pq
λ+

4pq + 3

12p2q2
λ2 +O(λ3) (16)

From (16), we can easily see that (at least for small values of λ) the expression
for P is minimized for p∗ = 0.5, for any given value of λ. This is no longer true

23



Table 3
Computed values of P for the FA algorithm, for various values of λ and p. The
computations use 15 terms of the Taylor expansion in λ.

λ p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.55 p = 0.6 p = 0.7

.01 1.0325 1.0246 1.0214 1.0205 1.0208 1.0214 1.0246

.03 1.1055 1.0785 1.0680 1.0651 1.0658 1.0680 1.0785

.05 1.1911 1.1397 1.1203 1.1150 1.1162 1.1203 1.1397

.07 1.2920 1.2096 1.1791 1.1708 1.1728 1.1791 1.2096

.09 1.4119 1.2896 1.2455 1.2336 1.2365 1.2455 1.2896

.11 1.5554 1.3817 1.3208 1.3046 1.3085 1.3208 1.3817

.13 1.7287 1.4883 1.4066 1.3850 1.3902 1.4066 1.4883

.15 1.9405 1.6127 1.5049 1.4768 1.4835 1.5049 1.6127

.17 2.2027 1.7588 1.6181 1.5819 1.5905 1.6181 1.7588

.19 2.5328 1.9319 1.7494 1.7031 1.7141 1.7494 1.9319

.21 2.9568 2.1391 1.9029 1.8438 1.8579 1.9029 2.1391

.23 3.5160 2.3904 2.0839 2.0086 2.0264 2.0839 2.3904

.25 4.2790 2.6994 2.2996 2.2033 2.2261 2.2996 2.6994

.27 5.3695 3.0865 2.5597 2.4360 2.4651 2.5597 3.0865

.29 7.0360 3.5823 2.8782 2.7176 2.7553 2.8782 3.5823

.31 9.8595 4.2356 3.2750 3.0640 3.1133 3.2750 4.2356

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

p=0.5, ξ=1p=0.6, ξ=1

p=0.55, ξ=1

p=0.5, ξ=2

p=0.6, ξ=2

p=0.55, ξ=2

λ

 U
L

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

p=0.5, ξ=1
p=0.6, ξ=1

p=0.55, ξ=1

p=0.5, ξ=2

p=0.6, ξ=2

p=0.55, ξ=2

λ

 U
L

(b)

Fig. 10. The utility function, UL, where µ = 1 (a) and µ = 2 (b), for various values
of p and ξ. P and D were computed using 10 terms of the Taylor expansion in λ.

for the delay, as described in [6]. For small values of λ, Fayolle et al. found
that D is minimized at p∗ = 2 −

√
2 ≈ 0.586 (while for larger values of λ,

p∗ tends to 0.5). This suggests that UL is not maximized for p = 0.5, as the
utility function now includes the expected packet delay.

In Figure 10 we present the computed utility function. We can see that chang-
ing ξ does not change the value of λ for which the maximum UL is achieved
by a noticeable amount. On the other hand, changing µ has a more significant
effect on the preferred value of λ.

To find the maximum value of UL for the FA algorithm and the maximizers λ∗

and p∗ for given ξ and µ, we used standard numerical optimizing techniques,
and produced Table 4. As we can see, the optimum value of p is between 0.5
and 0.586, i.e., between the value of p that minimizes P and the maximal
value that minimizes D. For ξ = 0, we see that p∗ = 0.5 for all values of µ,

24



Table 4
Maximum value of UL for the FA algorithm and the maximizers (λ∗, p∗). The com-
putation uses 10 terms of the Taylor expansion in λ.

ξ,µ 0.5 1 1.5 2 2.5 3

0 0.1771 0.1145 0.0857 0.0688 0.0576 0.0496

(0.313,0.5) (0.2273,0.5) (0.1804,0.5) (0.1505,0.5) (0.1295,0.5) (0.1138,0.5)

0.5 0.1136 0.0584 0.0339 0.0209 0.0134 0.0088

(0.2458,0.505) (0.1896,0.5111) (0.1558,0.515) (0.1329,0.5178) (0.1162,0.5199) (0.1034,0.5215)

1 0.0918 0.0397 0.0193 0.01 0.0054 0.003

(0.237,0.507) (0.1821,0.515) (0.1499,0.5204) (0.1283,0.5242) (0.1125,0.5271) (0.1004, 0.5294)

1.5 0.0792 0.0301 0.0129 0.0059 0.0028 0.0013

(0.2331,0.508) (0.1787,0.5171) (0.1472,0.5232) (0.1261,0.5275) (0.1107,0.5309) (0.0989,0.5335)

2 0.0707 0.0242 0.0094 0.0038 0.0016 0.00071

(0.2309,0.5086) (0.1767,0.5183) (0.1456,0.5248) (0.1248,0.5296) (0.1097,0.5332) (0.098,0.536)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

12

14

16

18

D
p=0.5

D
p=0.6

P
p=0.5

P
p=0.6

 λ

 E
x
p

e
c
te

d
 D

e
la

y
 p

e
r 

P
a

c
k
e

t 
[s

lo
ts

] 
 a

n
d

E
x
p

e
c
te

d
 N

u
m

b
e

r 
o

f 
T

ra
n

s
m

is
s
io

n
s
 p

e
r 

P
a

c
k
e

t

Fig. 11. Comparison between D and P for the FA algorithm, where 15 terms of the
Taylor expansion in λ were used to compute P and 12 terms were used to computer
D.

which is what we expected, since for this case we do not consider the expected
packet delay, and we know that P is minimized for p = 0.5. For this case, and
for all other values of ξ, we see that increasing µ decreases the value of λ∗,
as would have been expected—if we care more about P , we would prefer to
sacrifice the throughput to get a higher value of UL. This, in turn, affects the
value of p∗, since a lower value of λ∗ means that p∗ should be closer to the
value that minimizes D for small λ. We also see that changing µ has much
more impact on the values of p∗ and λ∗ than changing ξ. Moreover, for a given
value of µ, the values of p∗ and λ∗ do not change by much when we change
ξ, while ξ > 0. To understand why this is so, we should consider Figure 11,
where we can see that for any given λ we have D > P , and that the difference
between them increases as λ increases. For this reason, when ξ > 0, the main
factor that determines the value of the denominator of UL is D, so the values
of (λ∗, p∗) are determined mainly due to its magnitude.

We now turn to investigate the performance of the LCFS algorithm. We first
compare the bounds found through the analysis presented in Section 4.2.2
with the results of a simulation of the LCFS algorithm with R = 1. This
comparison is presented in Figure 12 for ∆ = 2.58, when using 20 terms of

25



0 0.1 0.2 0.3 0.4 0.5
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

λ

E
x
p
e
c
te

d
 n

u
m

b
e
r 

o
f 
tr

a
n
s
m

is
s
io

n
s
 p

e
r 

p
a
c
k
e
t Lower Bound

Upper Bound

Simulation

(a)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

λ

E
x
p
e
c
te

d
 P

a
c
k
e
t 
D

e
la

y
 [
s
lo

ts
]

Lower Bound

Upper Bound

Simulation

(b)

Fig. 12. Comparison between the computed bounds and simulation results of P

and D for the LCFS algorithm with R = 1 and ∆ = 2.58. The simulation results
are averaged over 30 simulation runs of 106 slots and the computed bounds use 20
terms of the infinite series for the conditional expectations in [4, Appendix B]. 95%
confidence intervals are presented for the simulation samples.

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

λ

  U
L

Lower Bound

Upper Bound

Simulation

Fig. 13. Comparison between UL as computed using the simulation data and the
analytical bounds as computed using the data presented in Figure 12, where µ = 1
and ξ = 1.

the infinite series from [4, Appendix B].

Figure 13 presents UL for ∆ = 2.58 and R = 1 using P and D, as presented
in Figure 12, and compares the bound on the utility function as computed
analytically, with its value as calculated using the simulation results. We can
clearly see that the simulation results fall well within the bounds, and that the
bounds are at least tight enough to give a good estimation of the maximizer,
λ∗. With this notion in mind, we try to use the analytical bounds to establish
an estimation of the optimal values of ∆ and λ for the LCFS algorithm with
R = 1. Table 5 presents the analytical estimation of the maximizers, the esti-
mated maximum value of UL, together with UL as calculated using simulation
results with the estimated maximizers. These estimations were established
using approximated values of D and P , where these approximation are the

26



Table 5
Maximum value of UL and the maximizers (λ∗,∆∗) for the LCFS algorithm with
R = 1 using approximations and the maximum values obtained through simulation
using (λ∗,∆∗).

ξ,µ 0.5 1 1.5 2 2.5 3

0.1381 0.0612 0.0301 0.0157 0.0086 0.0048

0.5 (0.3383,2.2401) (0.2752,2.1852) (0.2282,2.1772) (0.1919,2.1750) (0.1638,2.1642) (0.1419,2.1630)

0.1413 0.0649 0.0332 0.0182 0.01053 0.00624

0.1078 0.0386 0.0154 0.0066 0.0029 0.0013

1 (0.3286,2.3522) (0.2630,2.2331) (0.2176,2.2233) (0.1840,2.2203) (0.1585,2.2184) (0.1387,2.2150)

0.1106 0.0418 0.0177 0.0080 0.00377 0.00185

0.0915 0.0283 0.0098 0.0036 0.0014 5.3613e-004

1.5 (0.3243,2.3615) (0.2583,2.3450) (0.2136,2.3420) (0.1811,2.3408) (0.1564,2.2301) (0.1375,2.2287)

0.0946 0.0309 0.0113 0.0045 0.00184 0.00078

0.0809 0.0223 0.0069 0.0023 7.6741e-004 2.6850e-004

2 (0.3220,2.3858) (0.2556,2.3535) (0.2114,2.3517) (0.1795,2.3452) (0.1556,2.3439) (0.1370,2.3417)

0.0836 0.0245 0.0081 0.0028 0.00105 0.0004

average between the corresponding upper and lower bounds. We note that
the maximum values of UL as calculated using this approximation are close
to the values obtained through simulations. We believe this indicates that our
approximated maximizers are close to the real maximizers. Again, we see the
effect of µ on the tradeoff between the throughput requirement and the energy
efficiency. As we increase µ, the optimum value of λ decreases (for any value
of ξ). The value of λ∗ is hardly affected by changes in ξ (at least for ξ ≥ 0.5).
An interesting outcome of the optimization is the value of ∆∗. We see that for
a large set of values of ξ and µ, the optimum value of ∆ stays within a rather
small range of [2.16, 2.4]. Also, ∆∗ increases with ξ and decreases with µ (as
it did in the full sensing algorithms).

Before we compare the FA algorithm with the LCFS algorithm with respect
to the utility function, we would like to investigate how P and D compare
between the two algorithms, as they are the dominant factors in UL. There
are 3 parameters that we must consider when evaluating the performance of
the LCFS algorithm; namely, R, ∆ and λ. Figures 14 to 17 show the effect
of each parameter on P and D. In Figure 14 we can see that for most values
of R, P is, more or less, linearly dependent on λ, and that using different
values of R did not change the curves by much. We also note that for small
values of ∆, the LCFS algorithm outperforms the FA algorithms in terms of
the expected number of transmissions per packet. For larger values of ∆ (as
in Figure 14(b)), we see that for most values of λ, and for any value of R, we
would prefer to use the FA algorithm. This is also evident in Figure 16, where
we can notice that bigger ∆ increases the expected number of transmissions
per packet, regardless of the R used or the throughput of the system. Another
phenomena that manifests itself in Figure 14 is the different behavior of the
LCFS with R = 1 as compared to other values of R. This is due to the fact
that the LCFS algorithm with R = 1 is actually an algorithm that does not
take advantage of the ternary feedback. As previously noted by Humblet [13]
and Georgiadis et al. [8], for R = 1 we can develop an algorithm that uses

27



only binary feedback, which behaves exactly the same. In this respect, it is
closer to the FA algorithm as described in Section 4.1, as both of them use
only binary feedback. In Figure 15 we can see how the expected packet delay
is influenced by λ and R. For small values of λ, where collisions are rare,
increasing R increases the expected packet delay, as each new packet spends
R +1 slots before it can determine that, indeed, there is no CRI in progress.
In this range of λ, we notice that for all R and ∆, the FA outperforms the
LCFS algorithm. For λ that approaches the capacity of the algorithm (namely
0.487), we see that taking a bigger value of R might produce better delay
characteristics. We should also bear in mind that for a stable behavior of
the algorithm for large values of λ, we cannot choose the FA algorithm, as its
maximum stable throughput is ≈ 0.36. Figure 17 displays the effect of changes
in ∆ on the expected packet delay. While the conclusion from Figure 16 is to
use the smallest possible ∆, we can clearly see from Figure 17 that there is
an optimum value for ∆, if we want to minimize the expected packet delay.
However, this optimum value is only slightly affected by changes of λ and R,
and stays in the 2.5 to 2.8 range for most values of R and λ. This, and the
fact that for any λ, P increases with ∆, ensures that the optimum value of ∆
will not be greater than 2.8. On the other hand, the severe effect a decrease
in ∆ has on the expected packet delay is a guarantee that the optimum value
of ∆ will not be very small, so the optimum for all R and λ is centered in a
rather small region.

If we compare the maximum values of UL between the LCFS algorithm with
R = 1, as they appear in Table 5 and the FA algorithm (from Table 4), we
see that for µ ≤ 1, we get that the maximum value of UL is higher when the
LCFS algorithm is used, while for µ > 1, U∗

L is higher for the FA algorithm.
We also note that the optimum for the FA algorithm is achieved for lower
values of λ. To sum it all up, when the energy invested in delivering a packet
is more costly, one would prefer to use the FA algorithm, thus sacrificing the
throughput; if the energy is still important, but not as much, the LCFS should
be used. Looking at other values of R, we can see in Figure 18 that for µ = 1
and ξ = 1, and for small values of λ, FA displays better energy efficiency
than LCFS. If λ is known and set, and we must set the other parameters
according to its value, we should first consider which algorithm is stable with
the given λ. If both FA and LCFS are stable, we can use Figure 18 to find
out which algorithm to use, and how to set R, if LCFS performs better. We
also deduce from Figure 18 and Figures 20 and 21 that, most likely, the best
choice for LCFS is either R = 1 or R = 2. Other values of R should probably
be chosen only if the throughput demand cannot be met with these values of
R. Figures 20 and 21 display the advantage of the LCFS for small values of µ
and the superiority of the FA for large values of µ, which extends our previous
conclusion from the case with R = 1 to other values of R.

Figure 19 is important since it depicts the behavior of UL when ∆ is changed

28



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1

1.5

2

2.5

3

3.5

λ

E
x
p
e
c
te

d
 N

u
m

b
e
r 

o
f 
T

ra
n
s
m

is
s
io

n
s
 p

e
r 

P
a
c
k
e
t

FA

R=1

R=2

R=3

R=4

R=5

R=6

R=7

R=8

(a)

0 0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

3

3.5

4

λ

E
x
p
e
c
te

d
 N

u
m

b
e
r 

o
f 
T

ra
n
s
m

is
s
io

n
s
 p

e
r 

P
a
c
k
e
t

FA

R=1

R=2

R=3

R=4

R=5

R=6

R=7

R=8

(b)

Fig. 14. Expected number of transmissions per packet for the LCFS algorithm,
where ∆ = 1.5 (a) and ∆ = 6 (b). All LCFS results are averaged over 30 simulation
runs of 5 · 105 slots. The solid curve is of P for the FA algorithm with p = 0.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

λ

E
x
p
e
c
te

d
 D

e
la

y
 p

e
r 

P
a
c
k
e
t

FA

R=1

R=2

R=3

R=4

R=5

R=6

R=7

R=8

(a)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

λ

E
x
p
e
c
te

d
 D

e
la

y
 p

e
r 

P
a
c
k
e
t

FA

R=1

R=2

R=3

R=4

R=5

R=6

R=7

R=8

(b)

Fig. 15. Expected delay per packet for the LCFS algorithm, where ∆ = 1.5 (a) and
∆ = 6 (b). All LCFS results are averaged over 30 simulation runs of 5 · 105 slots.
The solid curve is of D for the FA algorithm with p = 0.5.

around its optimal value. We can see that if we set a slightly higher ∆ than
the optimum, the energy efficiency is only slightly degraded, while we gain
near-optimality for a broader range of λ and R. (the same can be noticed, to
some extent, in Figure 17.)

We note that for the LCFS algorithm, we can look at the energy-efficiency as
it is defined in previous papers, i.e., P +ξD, and try to minimize this quantity
(without regard to the throughput of the system whatsoever). Notice that
this is equivalent to maximizing UL with µ → ∞, so our utility function,
with the proper choice of parameter values, covers previous notions of energy-
efficiency. It is interesting to observe that for the LCFS algorithm, when we
take µ→∞, the optimum value for ∆ does not tend to zero, as it does in all
other window-access-based algorithms discussed in this work.

29



1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

4.5

∆

E
x
p
e
c
te

d
 N

o
. 
o
f 
T

ra
n
s
m

is
s
io

n
s
 p

e
r 

P
a
c
k
e
t 
(P

)

λ=0.2

λ=0.3

λ=0.35

λ=0.4

(a)

1 2 3 4 5 6
1.5

2

2.5

3

3.5

4

4.5

∆

E
x
p
e
c
te

d
 N

o
. 
o
f 
T

ra
n
s
m

is
s
io

n
s
 p

e
r 

P
a
c
k
e
t 
(P

)

λ=0.2

λ=0.3

λ=0.35

λ=0.4

(b)

Fig. 16. Expected number of transmissions per packet for the LCFS algorithm,
where R = 1 (a) and R = 8 (b). All LCFS results are averaged over 30 simulation
runs of 5 · 105 slots.

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

∆

E
x
p

e
c
te

d
 P

a
c
k
e

t 
D

e
la

y
 (

D
)

λ=0.2

λ=0.3

λ=0.35

λ=0.4

(a)

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

∆

E
x
p

e
c
te

d
 P

a
c
k
e

t 
D

e
la

y
 (

D
)

λ=0.2

λ=0.3

λ=0.35

λ=0.4

(b)

Fig. 17. Expected delay per packet for the LCFS algorithm, where R = 1 (a) and
R = 8 (b). All LCFS results are averaged over 30 simulation runs of 5 · 105 slots.
The minimum values are marked with a symbol.

5 Conclusions and Future Work

In this work, we address the energy efficiency of CRPs with infinite population,
and propose a utility function to measure this efficiency that also incorporates
the throughput requirements of the system. We analyzed three known full
sensing CRPs, and found the maximum efficiency for each (as measured by
the utility function) and the parameters used to achieve this maximum. We
also found that the most efficient full sensing algorithm one could choose, out
of the algorithms we examined, is the FCFS algorithm, also known as the
0.487 throughput algorithm. We concluded the discussion of full sensing algo-
rithms with an outline of a modification to this algorithm that might improve
the energy efficiency for some scenarios. In the second part of the paper, we
consider the energy efficiency of limited sensing algorithms, where a node has

30



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

λ

  U
L

FA

R=1

R=2

R=5

R=8

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

λ

  U
L

FA

R=1

R=2

R=5

R=8

(b)

Fig. 18. UL with ξ = 1 and µ = 1 for the LCFS algorithm, where ∆ = 1.5 (a) and
∆ = 6 (b). All LCFS results are averaged over 30 simulation runs of 5 · 105 slots.
The solid curve is of UL for the FA algorithm with p = 0.5.

1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

∆

U
ti
lit

y
 F

u
n
c
ti
o
n
 (

  U
L
)

λ=0.2

λ=0.3

λ=0.35

λ=0.4

(a)

1 2 3 4 5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

∆

U
ti
lit

y
 F

u
n
c
ti
o
n
 (

  U
L
)
λ=0.2

λ=0.3

λ=0.35

λ=0.4

(b)

Fig. 19. UL with ξ = 1 and µ = 1 for the LCFS algorithm, where R = 1 (a) and
R = 8 (b). All LCFS results are averaged over 30 simulation runs of 5 · 105 slots.
The maximum values are marked with a symbol.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

0.08

0.1

0.12

λ

U
ti
lit

y
 F

u
n

c
ti
o

n

FA

R=1

R=2

R=5

R=8

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

λ

U
ti
lit

y
 F

u
n

c
ti
o

n

FA

R=1

R=2

R=5

R=8

(b)

Fig. 20. UL with ξ = 1 and µ = 0.5 for the LCFS algorithm, where ∆ = 1.5 (a) and
∆ = 6 (b). All LCFS results are averaged over 30 simulation runs of 5 · 105 slots.

31



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

λ

U
ti
lit

y
 F

u
n
c
ti
o
n

FA

R=1

R=2

R=5

R=8

(a)

0 0.1 0.2 0.3 0.4 0.5
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

λ

U
ti
lit

y
 F

u
n
c
ti
o
n

FA

R=1

R=2

R=5

R=8

(b)

Fig. 21. UL with ξ = 1 and µ = 2 for the LCFS algorithm, where ∆ = 1.5 (a) and
∆ = 6 (b). All LCFS results are averaged over 30 simulation runs of 5 · 105 slots.

to listen to the feedback only when it has a packet to transmit. For these
algorithms, we can compute the energy needed to “tune in” on the feedback
signals, and combine this quantity with the transmission energy, to obtain the
total energy needed to deliver a packet successfully and incorporate it into the
utility function. We analyzed two such algorithms—the free access algorithm
and the last-come-first-served algorithm, and found that if all parameters can
be manipulated, the preferred algorithm depends on the importance placed on
the energy compared to the system throughput. If the energy consumption is
more important, the FA algorithm displays better properties, while the LCFS
algorithm gets higher markings for scenarios in which the high steady-state
throughput is more appreciated. If the required throughput is set, one can use
our analysis to determine what is the best limited sensing algorithm to use,
and how its parameters should be tuned. We further facilitate the choice of
parameters and the optimum algorithm by observing that for most scenarios,
only R = 1 and R = 2 should be considered for the LCFS algorithm.

For further study we note the suggested improvement to the FCFS algorithm
that hasn’t been thoroughly investigated. Also, the finite population model
could present options for optimizations and algorithms that could possibly
achieve better energy efficiency, since we have more information in this model
(e.g., the number of contending packets is known to be bounded).

References

[1] ISO/IEC 8802-11; ANSI/IEEE Std 802.11, 1999 edn, 1999.

[2] IEEE Std 802.11a-1999, 1999.

[3] IEEE Std 802.11b-1999, 2000.

32



[4] A. Bergman. Energy efficiency of collision resolution protocols. Master’s thesis,
Technion—Israel Institute of Technology, May 2005.

[5] J. I. Capetanakis. Tree algorithms for packet broadcast channels. IEEE
Transactions on Information Theory, 25(5):505–515, Sept. 1979.

[6] G. Fayolle, P. Flajolet, M. Hofri, and P. Jacquet. Analysis of a stack algorithm
for random multiple-access communication. IEEE Transactions on Information
Theory, 31(2):244–254, Mar. 1985.

[7] R. G. Gallager. Conflict resolution in random access broadcast networks. In
Proceedings AFOSR Workshop in Comm. Theory and Applications, pages 74–
76, Provincetown, MA, Sept. 1978.

[8] L. Georgiadis. Limited Sensing Random Access Algorithms and Unified Methods
for their Analysis. PhD thesis, The University of Connecticut, 1986.

[9] L. Georgiadis, L. F. Merakos, and P. Papantoni-Kazakos. A method for the
delay analysis of random multiple-access algorithms whose delay process is
regenerative. IEEE Journal on Selected Areas In Communications, 5(6):1051–
1062, July 1987.

[10] L. Georgiadis and P. Papantoni-Kazakos. A 0.487 throughput limited sensing
algorithm. IEEE Transactions on Information Theory, 33(2):233–237, Mar.
1987.

[11] M. Hofri. Analysis of Algorithms: Computational Methods and Mathematical
Tools. Oxford University Press, Oxford, New York, 1995.

[12] J. C. Huang and T. Berger. Delay analysis of 0.487 contention resolution
algorithms. IEEE Transactions on Communications, 34(9):916–926, Sept. 1986.

[13] P. A. Humblet. On the throughput of channel access algorithms with limited
sensing. IEEE Transactions on Communications, 34(4):345–347, Apr. 1986.

[14] S. Khanna, S. Sarkar, and I. Shin. An energy management based collision
resolution protocol. In Proceedings of International Teletraffic Congress
(ITC18), Berlin, Germany, pages 951–960, Sept. 2003.

[15] J. Massey. Collision-resolution algorithms and random-access communications.
In G. Longo, editor, Multi-User Communication Systems, CISM Courses and
Lectures No. 265, pages 73–137. Springer-Verlag, 1981.

[16] J. Mosely and P. A. Humblet. A class of efficient contention
resolution algorithms for multiple access channels. IEEE Transactions on
Communications, 33(2):145–151, Feb. 1985.

[17] R. Rom and M. Sidi. Multiple Access Protocols - Performance and analysis,
chapter 5, pages 107–148. Springer-Verlag, 1990.

[18] Y. E. Sagduyu and A. Ephremides. Energy-efficient collision resolution in
wireless ad-hoc networks. In INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Societies, volume 1,
pages 492–502, Apr. 2003.

33



[19] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for
wireless sensor networks. In INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies, volume 3,
pages 1567–1576, June 2002.

A FCFS Energy Efficiency Calculations

Here we develop a system of equations to find Y and upper and lower bounds
on its solution. We use the following notations for the analysis:

L length of the CRI,

δ length of the resolved interval,

ℓ length of the allocation interval,

d the lag of the algorithm,

V the cumulative number of transmissions in a CRI.

We first define the random variable yd as the cumulative number of transmis-
sions when we count starting from the beginning of a CRI with lag d, until we
reach a CRI with d = 1. From the operation of the algorithm, we have

yd =











V, L = 1;

V + yd−δ+L, L > 1.
, ∀1 ≤ d ≤ ∆ (A.1)

yd =V + yd−δ+L, ∀d > ∆. (A.2)

where d ∈ F , F being the set of all possible values d can take, which was
found to be a denumerable dense subset of the interval [1,∞) in [12]. We
denote Yd = yd. Taking the expectation in (A.1), and denoting V x as the
expected number of transmissions in a CRI, given that at the beginning of the
CRI ℓ = x, we get

Yd =



















V d +
∑

r,s
s 6=1

Pr(r, s | d)Yd−r+s, 1 ≤ d ≤ ∆;

V ∆ +
∑

r,s
Pr(r, s | ∆)Yd−r+s, d > ∆,

(A.3)

where Pr(r, s | x) is the joint conditional probability distribution of δ and L,
at δ = r and L = s, given that ℓ = x. We note that, by definition, Y = Y1,
so if we had the solution for (A.3), we could easily find Y . Using the method
suggested in [9], we develop lower and upper bounds for the solution of (A.3)
by looking for sequences {L0

d, d ∈ F} and {U0
d , d ∈ F} that will satisfy the

34



following inequalities:

U0
d ≥ bd +

∑

j∈F

pdjU0
j ≥ 0, ∀d ∈ F (A.4)

L0
d ≤ U0

d , ∀d ∈ F (A.5)

L0
d ≤ bd +

∑

j∈F

pdjU0
j , ∀d ∈ F (A.6)

where

bd =











V d, 1 ≤ d ≤ ∆;

V ∆, d > ∆.
pdj =















∑

s 6=1
Pr(d+ s− j, s | d), 1 ≤ d ≤ ∆;

∑

s
Pr(d+ s− j, s | ∆), d > ∆.

(A.7)

Once we find these sequences, [9] assures us that a finite solution to (A.3) exists
and that {U0

d , d ∈ F} is an upper bound to this solution, while {L0
d, d ∈ F}

is its lower bound. Moreover, if we generate the sequences

U1
d = bd +

∑

j∈F

pdjU0
j , ∀d ∈ F (A.8)

L1
d = bd +

∑

j∈F

pdjL0
j , ∀d ∈ F (A.9)

then {U1
d , d ∈ F} and {L1

d, d ∈ F}, are tighter bounds on the solution to
(A.3).

Let U0
d = cy1d+ cy2, d ∈ F , where cy1 and cy2 are real constants, and define

U1
d = bd +

∑

j∈F

pdjU0
j , ∀d ∈ F . (A.10)

Substituting (A.7) into (A.10), and noting that

Pr(r, 1 | x) =











(1 + λd)e−λd, if r = x;

0, otherwise,
(A.11)

yields

U1
d = U0

d +











V d + cy1(Ld − δd − (1 + λd)e−λd)− cy2(1 + λd)e−λd), 1 ≤ d ≤ ∆;

V ∆ − cy1(δ∆ − L∆), d > ∆.

(A.12)
The conditional expectancies in (A.12) can be computed according to the
formulas in [8, 9] and in (10). It is known [7] that the algorithm is stable if

δ∆ > L∆. (A.13)

35



We note that when (A.13) holds, and cy1, c
y
2 are chosen as

cy1 =
V ∆

δ∆ − L∆

(A.14)

cy2 = max

{

−cy1, sup
1≤d≤∆

(ρ(d))

}

(A.15)

where

ρ(d) =
V d + cy1(Ld − δd − (1 + λd)e−λd)

(1 + λd)e−λd
(A.16)

we get that inequality (A.4) is satisfied and U1
d ≤ U0

d , ∀d ∈ F . Similarly, it
can be shown that if we define L0

d = cy3d + cy4, d ∈ F , inequalities (A.5) and
(A.6) can be satisfied if we choose

cy3 = cy1, cy4 = inf
1≤d≤∆

(ρ(d)) (A.17)

where cy1 and ρ(d) are as given in (A.14) and in (A.16). Collecting it all, we
have that

L1
d ≤ Yd ≤ U1

d , ∀d ∈ F , (A.18)

or more specifically, Y l ≤ Y ≤ Y u, where we define Y u , U1
1 and Y l , L1

1,
and where

Y u = V 1 + cy1[1 + L1 − δ1 − (1 + λ)e−λ] + cy2[1− (1 + λ)e−λ] (A.19)

Y l = Y u − (cy2 − cy4)[1− (1 + λ)e−λ]. (A.20)

Using the same method, it was found in [8, 9] that H l ≤ H ≤ Hu, where

Hu =L1 + ch1 [1 + L1 − δ1 − (1 + λ)e−λ] + ch2 [1− (1 + λ)e−λ]; (A.21)

H l =Hu − (ch2 − ch4)[1− (1 + λ)e−λ]; (A.22)

ch1 = ch3 =
L∆

δ∆ − L∆

;

ch2 =max

{

−ch1 , sup
1≤d≤∆

(ρ′(d))

}

;

ch4 = inf
1≤d≤∆

(ρ′(d));

ρ′(d)=
Ld + cy1(Ld − δd − (1 + λd)e−λd)

(1 + λd)e−λd
.

36



B LCFS Energy Efficiency Calculations

To find W , we follow [8] and define the random variable wd as the cumulative
delay of all packets when we count starting from the beginning of a CRI with
virtual lag d, until we reach a CRI with d = 1. From the operation of the
algorithm, we have

wd =











ψ + ω +N, L = 1;

ψ + ω +N + δN0 + wd−δ+L, L > 1.
, ∀1 ≤ d ≤ ∆ (B.1)

wd =ψ + ω +N + δNd + wd−δ+L, ∀d > ∆, (B.2)

where the notations used in the last two equations are explained in Table B.1.
Denoting Wd = wd and taking the expectation in (B.1) and (B.2) yields

Table B.1
Notations used in the analysis of the LCFS algorithm.

Notation Meaning

δ Length of the resolved interval,

N Number of packets transmitted in a CRI (i.e, the number of
packets in δ),

N0 Number of packets that where included in the beginning of the
CRI, but were not resolved (i.e., the number of packets in ℓ−δ),

Nd Number of packets that are unresolved and are not included in
the current CRI,

L Length of a CRI,

ω Cumulative delay of all N packets from the beginning of the CRI
to the time a packet is transmitted,

ψ Cumulative delay of all N packets from their arrival until the
beginning of the next CRI.

Wd =



















ψd + ωd +Nd + δN0
d +

∑

r,s
s 6=1

Pr(r, s | d)Wd−r+s, 1 ≤ d ≤ ∆;

ψ∆ + ω∆ +N∆ + δN0
∆ + δNd

∆ +
∑

r,s
Pr(r, s | ∆)Wd−r+s, d > ∆.

(B.3)

37



Substituting Ndδ∆ = λ(d−∆)δ∆ in (B.3) gives

Wd =



































ψd + ωd +Nd + δN0
d +

∑

r,s
s 6=1

Pr(r, s | d)Wd−r+s, 1 ≤ d ≤ ∆;

ψ∆ + ω∆ +N∆ + δN0
∆

+λ(d−∆)δ∆ +
∑

r,s
Pr(r, s | ∆)Wd−r+s, d > ∆.

(B.4)

Let U0
d = cw1 d

2 + cw2 d + cw3 , d ∈ F , where cw1 , cw2 and cw3 are real constants.
Following a similar procedure to the one taken in Section 3.2.2, and after some
algebra, we get for d > ∆,

U1
d =U0

d + ψ∆ + ω∆ +N∆ − λ∆δ∆ + δN0
∆

+ d
[

2cw1 (L∆ − δ∆) + λδ∆

]

+ cw1 (L− δ)2
∆ + cw2 (L− δ)∆,

and for 1 ≤ d ≤ ∆,

U1
d =U0

d + ψd + ωd +Nd + δN0
d

+ cw1
[

2d(Ld − δd) + (L− δ)2
d − (1 + λd)e−λd

]

+ cw2
[

(L− δ)d − (1 + λd)e−λd
]

− cw3 (1 + λd)e−λd.

For this algorithm, stability is also maintained if (A.13) is satisfied. When the
algorithm is stable, if we choose

cw1 =
λδ∆

2
(

δ∆ − L∆

) (B.5)

cw2 =
ψ∆ + ω∆ +N∆ − λ∆δ∆ + δN0

∆ + cw1 (L− δ)2
∆

δ∆ − L∆

(B.6)

cw3 = sup
1≤d≤∆

(ρ(d))

where

ρ(d) =
1

(1 + λd)e−λd

{

ψd + ωd +Nd + δN0
d + cw1

[

(L− δ)2
d−

2d(δ − L)d − (1 + λd)e−λd
]

+ cw2

[

(L− δ)d − (1 + λd)e−λd
]}

, (B.7)

we get that (A.4) holds and U1
d ≤ U0

d , ∀d ∈ F . Similarly, it can be shown that
if we define L0

d = cw4 d
2 + cw5 d+ cw6 , d ∈ F , inequalities (A.5) and (A.6) can be

satisfied if we choose

cw4 = cw1 , cw5 = cw2 , cw6 = inf
1≤d≤∆

(ρ(d)) (B.8)

38



where cw1 , cw2 and ρ(d) are as given in (B.5), (B.6) and in (B.7). Thus we can
write

W l

λHu
= D

l ≤ D ≤ D
u

=
W u

λH l
(B.9)

where H l and Hu are given in (A.21) and (A.22), and with

W u =ψ1 + ω1 +N 1 + δN0
1 + cw1

[

1 + (L− δ)2
+2

(

L1 − δ1

)

− (1 + λ)e−λ
]

+cw2
[

1 + (L− δ)1 − (1 + λ)e−λ
]

+ cw3
[

1− (1 + λ)e−λ
]

W l =W u − (cw3 − cw6 )
[

1− (1 + λ)e−λ
]

.

39


