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Abstract

We consider the problem of minimizing an indefinite quadratic function subject to two

quadratic inequality constraints. When the problem is defined over the complex plane we show

that strong duality holds and obtain necessary and sufficient optimality conditions. Using the

results in the complex case and a result on the connection between the image of the real and

complex spaces under a quadratic mapping, we are able to derive a condition that ensures strong

duality even in the case of real variables. Preliminary numerical simulations show that for ran-

dom instances of the extended trust region subproblem, the sufficient condition hardly never

fails.

1 Introduction

In this paper we consider quadratic minimization problems with two quadratic constraints both in

the real and in the complex domain:

(Q2PC) min
z∈Cn

{f3(z) : f1(z) ≥ 0, f2(z) ≥ 0}, (1)

(Q2PR) min
x∈Rn

{f3(x) : f1(x) ≥ 0, f2(x) ≥ 0}. (2)

In the real case each function fj : R
n → R is defined by fj(x) = xT Ajx + 2bT

j x + cj with

Aj = AT
j ∈ R

n×n, bj ∈ R
n and cj ∈ R. In the complex setting, fj : C

n → R is given by

fj(z) = z∗Ajz + 2ℜ(b∗jz) + cj , where Aj are Hermitian matrices, i.e., Aj = A∗
j , bj ∈ C

n and

cj ∈ R. The condition Aj = A∗
j can be written as ℜ(Aj)

T = ℜ(Aj) and ℑ(Aj)
T = −ℑ(Aj).

The problem (Q2PR) appears as a subproblem in some trust region algorithms for constrained
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optimization [6, 8, 18] where the original problem is to minimize a general nonlinear function subject

to equality constraints. The subproblem has the form

(TTRS) min
x∈Rn

{

xT Bx + 2gT x : ‖x‖ ≤ ∆, ‖AT x + c‖ ≤ ξ
}

, (3)

and is sometimes called the two trust region problem [1] or the extended trust region problem [25].

The objective function in (TTRS) is a quadratic model of the original objective in a neighborhood of

the current iterate, c ∈ R
m is a vector whose elements are the value of the constraints, AT ∈ R

m×n

is the Jacobian matrix of the constraints computed at the current iterate, and the constants δ and

ξ are determined by the trust region method. More on the extended trust region subproblem and

trust region algorithms can be found in [26, 27] and in the book [8].

If the original nonlinear constrained problem has complex variables, then instead of (Q2PR) one

should consider the complex variant (Q2PC). Optimization problems with complex variables appear

naturally in many engineering applications. For example, if the estimation problem is posed in the

Fourier domain, then typically the parameters to be estimated will be complex valued, unless the

original signal has strong symmetry properties [16, 19]. In the context of digital communications,

many signal constellations are modelled as complex valued. Another area where complex variables

naturally arise is narrowband array processing [7].

It is interesting to note that every complex quadratic problem of dimension n can be written as a

real quadratic problem of dimension 2n. This fact is made evident by considering the decomposition

z = x + iy, where x = ℜ(z) and y = ℑ(z). Then

fj(z) = (x + iy)∗Aj(x + iy) + 2ℜ(b∗j (x + iy)) + cj = wTQjw + 2dT
j w + cj ,

where

w =

(

x

y

)

∈ R
2n,Qj =

(

ℜ(Aj) −ℑ(Aj)

ℑ(Aj) ℜ(Aj)

)

, d =

(

ℜ(bj)

ℑ(bj)

)

.

However, the opposite claim is false: not every real quadratic problem of dimension 2n can be

formulated as an n-dimensional complex quadratic problem. Evidently, the family of complex

quadratic problems is a special case of real quadratic problems. Therefore, one may ask why

consider complex quadratic problems and not only real quadratic problems?. The answer to this

question is that, as we shall see, there are stronger results for complex quadratic problems than for

their real counterparts (c.f. Sections 2 and 3).

A simpler (nonconvex) quadratic problem than (TTRS) is the trust region subproblem, which

appears in trust region algorithms for unconstrained optimization, and has the following form:

(TR) min
x∈Rn

{xT Bx + 2gT x : ‖x‖2 ≤ δ}. (4)
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Problem (TR) has been studied extensively in the literature see, e.g., [5, 10, 14, 15, 21, 22] and

references therein. The dual problem to (TR) is given by the semidefinite problem (SDP)

max
α,λ

{

λ :

(

B + αI g

gT −αδ − λ

)

º 0, α ≥ 0

}

(5)

and it can also be formulated as a maximization problem of a single variable concave problem that

can be solved very efficiently (see e.g., [8] and references therein). Problem (TR) enjoys many useful

and attractive properties. It is known that (TR) admits no duality gap and that the semidefinite

relaxation of (TR) is tight. Moreover, the solution of (TR) can be extracted from the dual solution

ᾱ. A necessary and sufficient condition for x̄ to be an optimal solution of (TR) is that there exists

ᾱ ≥ 0 such that [14, 21]

(B + ᾱI)x̄ + g = 0, (6)

‖x̄‖2 ≤ δ, (7)

ᾱ(‖x̄‖2 − δ) = 0, (8)

B + ᾱI º 0. (9)

Unfortunately, in general these results cannot be extended to the (TTRS) problem, or to the

more general problem (Q2PR). Indeed, it is known that the semidefinite relaxation of (Q2PR) is

not necessarily tight [25, 26]. An exception is the case in which the functions f1, f2 and f3 are

all homogenous quadratic functions and there exists a positive definite linear combination of the

matrices Aj . In this case, Ye and Zhang [25] proved that the semidefinite relaxation of (Q2PR)

is tight. Another interesting result obtained in [25] is that if f1 is concave (thus the constraint is

convex) and f2 is linear then, although the semidefinite relaxation is not necessarily tight, there is

an efficient algorithm for solving (Q2PR). The latter result is based on the dual cone representation

approach of Sturm and Zhang [24].

In this paper we discuss both the complex and real case. The real case is analyzed using

results derived for the complex case. In Section 2, we show that under some mild conditions strong

duality holds for the complex valued problem (Q2PC) and that the semidefinite relaxation is tight.

Our result is based on the extended version of the S-lemma derived by Fradkov and Yakubovich

[11]. We also develop optimality conditions similar to those known for the TR problem (4). In

Section 3, we present a method for calculating the optimal solution of (Q2PC) from the dual optimal

solution based on the optimality conditions derived in Section 2 and a method for solving quadratic

feasibility problems. Thus, all the results known for (TR) can essentially be extended to (Q2PC).

Section 4 deals with the real case. After a brief discussion of the complex relaxation of (Q2PR),

we present a sufficient condition that ensures zero duality gap (and tightness of the semidefinite

relaxation) for (Q2PR). This condition is expressed via the dual optimal solution and therefore can
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be validated in polynomial-time. Our result is based on the connection between the image of the

real and complex spaces under a quadratic mapping. Preliminary numerical experiments show that

for random instances of the TTRS problem (3), this condition hardly never fails. The sufficient

condition will also enable us to identify a family of problems with tight semidefinite relaxation.

We end this paper with some appendices including some useful mathematical results that are used

throughout the paper.

Notation: Instead of using an inf/sup notation, we use a min/max notation throughout the paper1.

Vectors are denoted by boldface lowercase letters, e.g., y, and matrices are denoted by boldface

uppercase letters e.g., A. For two matrices A and B, A ≻ B means that A−B is positive definite

and A º B means that A − B is positive semidefinite. S+
n = {A ∈ R

n×n : A º 0} is the set

all real valued n × n positive semidefinite matrices2 and H+
n = {A ∈ C

n×n : A º 0} is the set of

all complex valued n × n positive semidefinite matrices.3 The real and imaginary part of scalars,

vectors or matrices are denoted by ℜ(·) and ℑ(·). For an optimization problem

(P) : min /max{f(x) : x ∈ C},

we denote the value of the optimal objective function by val(P). We use some standard abbre-

viations such as SDP (semidefinite programming), SDR (semidefinite relaxation) and LMI (linear

matrix inequalities). We follow the MATLAB convention and use ”;” for adjoining scalars, vectors

or matrices in a column.

2 Strong Duality and Optimality Conditions for (Q2PC)

In this section we use an extended version of the S-lemma in order to prove a strong duality result

for problem (Q2PC) and to show that the semidefinite relaxation of (Q2PC) is tight. Necessary

and sufficient optimality conditions, similar to those known for the TR problem (4) (conditions (6)-

(9)), are also derived. All of the above mentioned results are true under extremely mild regularity

conditions.

2.1 Strong duality for (Q2PC)

In this section we use a result of [11], which extends the usual S-lemma to the complex case. Recall

that for the real case [4, 11], the nonhomogenous S-lemma states that if there exists x̄ ∈ R
n such

that x̄T A1x̄ + 2bT
1 x̄ + c1 > 0, then the following two conditions are equivalent:

1. xT A1x + 2bT
1 x + c1 ≥ 0 for every x ∈ R

n such that xT A2x + 2bT
2 x + c2 ≥ 0.

1The fact that we use this notation does not mean that we assume that the optimum is attained and/or finite.
2A real valued positive semidefinite matrix is also symmetric.
3A complex valued positive semidefinite is also Hermitian.
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2. There exists λ ≥ 0 such that

(

A1 b1

bT
1 c1

)

º λ

(

A2 b2

bT
2 c2

)

.

Extensions of the S-lemma in the real case are in general not true. For example, the natural

extension for the case of two quadratic inequalities that imply a third quadratic inequality is not

true in general (see the example in [4]). However, the following result of Fradkov and Yakubuvich

[11, Theorem 2.2] extends the S-lemma to the complex case. This result will be the key ingredient

in proving strong duality.

Theorem 2.1 (Extended S-Lemma [11]). Let

fj(z) = z∗Ajz + 2ℜ(b∗jz) + cj , z ∈ C
n, i = 1, 2, 3

where Aj are n × n Hermitian matrices, bj ∈ C
n and cj ∈ R. Suppose that there exists z̃ ∈ C

n

such that f1(z̃) > 0, f2(z̃) > 0. Then the following two claims are equivalent:

1. f3(z) ≥ 0 for every z ∈ C
n such that f1(z) ≥ 0 and f2(z) ≥ 0.

2. There exists α, β ≥ 0 such that

(

A3 b3

b∗3 c3

)

º α

(

A1 b1

b∗1 c1

)

+ β

(

A2 b2

b∗2 c2

)

.

The standard Lagrangian dual of (Q2PC) is given by

(DC) max
α≥0,β≥0,λ

{

λ

∣

∣

∣

∣

∣

(

A3 b3

b∗3 c3 − λ

)

≥ α

(

A1 b1

b∗1 c1

)

+ β

(

A2 b2

b∗2 c2

)}

. (10)

Problem (DC) is sometimes called Shor’s relaxation [20]. Theorem 2.2 below states that if problem

(Q2PC) is strictly feasible then val(Q2PC) = val(DC) even in the case where the value is equal to

−∞.

Theorem 2.2 (Strong duality for complex valued quadratic problems). Suppose that

problem (Q2PC) is strictly feasible, i.e., there exists z̃ ∈ C
n such that f1(z̃) > 0, f2(z̃) > 0. Then,

1. if val(Q2PC) is finite then the maximum of problem (DC) is attained and val(Q2PC) =

val(DC).

2. val(Q2PC) = −∞ if and only if (DC) is not feasible.

Proof: 1. Suppose first that val(Q2PC) is finite. Then clearly

val(Q2PC) = max
λ

{λ : val(Q2PC) ≥ λ}. (11)
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Now, the statement val(Q2PC) ≥ λ holds true if and only if the implication

f1(z) ≥ 0, f2(z) ≥ 0 ⇒ f3(z) ≥ λ

is valid. By Theorem 2.1 this is equivalent to

∃α, β ≥ 0

(

A3 b3

b∗3 c3 − λ

)

≥ α

(

A1 b1

b∗1 c1

)

+ β

(

A2 b2

b∗2 c2

)

(12)

Therefore, by replacing the constraint in the maximization problem (11) with the LMI (12), we

obtain that val(Q2PC) = val(DC). The maximum of (DC) is attained at (λ̄, ᾱ, β̄), where λ̄ is the

(finite) value val(Q2PC) and ᾱ, β̄ are the corresponding nonnegative constants that satisfy the LMI

(12) for λ = λ̄ = val(Q2PC).

2. We will prove that val(Q2PC) > −∞ if and only if problem (DC) is feasible. Indeed, val(Q2PC) >

−∞ if and only if there exists λ ∈ R such that val(Q2PC) ≥ λ, which is equivalent to the implication

f1(z) ≥ 0, f2(z) ≥ 0 ⇒ f3(z) ≥ λ.

By Theorem 2.1 the latter implication is the same as the LMI (12), which is the same as feasibility

of (DC). ¤

It is interesting to note that the dual problem to (DC) is the so-called semidefinite relaxation

of (Q2PC):

(SDRC) min
Z

{Tr(ZM3) : Tr(ZM1) ≥ 0, Tr(ZM2) ≥ 0, Zn+1,n+1 = 1,Z ∈ H+
n+1

}, (13)

where

M j =

(

Aj bj

b∗j cj

)

.

A result on the tightness of the semidefinite relaxation (SDRC) for problem (Q2PC) is given in the

following theorem.

Theorem 2.3 (Tightness of the semidefinite relaxation). Suppose that both problems (Q2PC)

and (DC) are strictly feasible and let (λ̄, ᾱ, β̄) be an optimal solution of (DC). Then problems

(Q2PC),(DC) and (SDRC) (problems (1),(10) and (13) respectively) attain their solutions and

val(Q2PC) = val(DC) = val(SDRC).

Proof: Since (Q2PC) is strictly feasible, by Theorem 2.2 the maximum of problem (DC) is attained

and val(Q2PC) = val(DC). Assume to the contrary that the minimum of problem (Q2PC) is not
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attained. Then there exists a sequence {zn} such that ‖zn‖ → ∞, f1(z
n) ≥ 0, f2(z

n) ≥ 0 and

f3(z
n) → val(Q2PC). (14)

Since problem (DC) is strictly feasible

∃α̃ ≥ 0, β̃ ≥ 0 such that A3 ≻ α̃A1 + β̃A2. (15)

Now,

f3(z
n) ≥ f3(z

n) − α̃f1(z
n) − β̃f2(z

n), (16)

where the latter inequality is true since f1(z
n), f2(z

n), α̃ and β̃ are all nonnegative. Consider the

function q(z) ≡ f3(z)− α̃f1(z)− β̃f2(z). Then by (15), q(z) is a coercive function and thus, since

‖zn‖ → ∞ it follows that limn→∞ q(zn) = ∞, which is a contradiction to (14). All that is left to

prove is that the minimum of the SDR problem (13) is attained and that val(DC)=val(SDRC). By

Lemma B.1 (see Appendix B), the strict feasibility of (Q2PC) implies that the SDR problem (13) is

also strictly feasible. Therefore, since (DC) and (SDRC) are strictly feasible conic problems which

are dual to each other, we have by the conic duality theorem (see e.g., [4]) that both problems

(DC) and (SDRC) attain their solutions and val(SDRC)=val(DC). ¤

Strict feasibility of the dual problem (DC) is equivalent to saying that there exist α̃ ≥ 0, β̃ ≥ 0

such that A3 ≻ α̃A1+β̃A2. This condition is automatically satisfied if at least one of the constraints

is strongly convex or if the objective function is strongly convex (see also [25, Proposition 2.1]), an

assumption that is true in many practical scenarios, for example in the TTRS problem (3).

2.2 Optimality conditions

So far we have shown that under strict feasibility, problem (Q2PC) admits no gap with its dual

problem (DC) and with the semidefinite relaxation (SDRC). In this section we derive necessary

and sufficient optimality conditions. Theorem 2.4 below will be very useful in Section 3, where a

method for extracting the optimal solution of (Q2PC) from the optimal solution of the dual problem

(DC) will be described.

Theorem 2.4. Suppose that both problems (Q2PC) and (DC) are strictly feasible, and let (ᾱ, β̄, λ̄)

be an optimal solution of (DC). Then z̄ is an optimal solution of (Q2PC) if and only if

(A3 − ᾱA1 − β̄A2)z̄ + b3 − ᾱb1 − β̄b2 = 0, (17)

f1(z̄), f2(z̄) ≥ 0, (18)

ᾱf1(z̄) = β̄f2(z̄) = 0. (19)
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Proof: From the strong duality result (Theorem 2.2) and from saddle point optimality conditions

(see e.g., [2, Theorem 6.2.5]) it follows that z̄ is an optimal solution of (Q2PC) if and only if the

following conditions are satisfied

z̄ ∈ argminL(z, ᾱ, β̄), (20)

f1(z̄) ≥ 0, f2(z̄) ≥ 0,

ᾱf1(z̄) = β̄f2(z̄) = 0,

where L is the Lagrangian function, i.e.,

L(z, α, β) = f3(z) − αf1(z) − βf2(z).

Note that (20) implies in particular that minz L(z, ᾱ, β̄) > −∞ and thus by Lemma C.2, condition

(20) is equivalent to condition (17).¤

We now present necessary and sufficient optimality conditions for (Q2PC), which are a natural

generalization of the optimality conditions (6) − (9) for the trust region subproblem. We only

assume strict feasibility of (Q2PC) and (DC). Notice that for the complex version of the two trust

region problem (TTRS), strict feasibility of (DC) is always satisfied since the norm constraint is

strongly convex.

Theorem 2.5. Suppose that both problems (Q2PC) and (DC) are strictly feasible. Then z̄ is an

optimal solution of (Q2PC) if and only if there exists α, β ≥ 0 such that

(i) (A3 − αA1 − βA2)z̄ + b3 − αb1 − βb2 = 0.

(ii) f1(z̄), f2(z̄) ≥ 0.

(iii) αf1(z̄) = βf2(z̄) = 0.

(iv) A3 − αA1 − βA2 º 0.

Proof: The necessary part is trivial since z̄, ᾱ and β̄ of Theorem 2.4 satisfy conditions (i)-(iv). Sup-

pose now that conditions (i)-(iv) are satisfied. Then by condition (ii), z̄ is feasible and therefore

f3(z̄) ≥ val(Q2PC). To prove the reverse inequality (f3(z̄) ≤ val(Q2PC)), consider the uncon-

strained minimization problem:

min
z∈Cn

{f3(z) − ᾱf1(z) − β̄f2(z)}. (21)

Moreover,

val((21)) ≤ min
z∈Cn

{f3(z) − ᾱf1(z) − β̄f2(z) : f1(z) ≥ 0, f2(z) ≥ 0}
≤ min

z∈Cn
{f3(z) : f1(z) ≥ 0, f2(z) ≥ 0} = val(Q2PC) (22)

8



By Lemma C.3, conditions (i) and (iv) imply that z̄ is an optimal solution of (21) so that

f3(z̄) − ᾱf1(z̄) − β̄f2(z̄) = val((21)) ≤ val(Q2PC). (23)

where the latter inequality follows from (22). By condition (iii) we have that f3(z̄) = f3(z̄) −
ᾱf1(z̄) − β̄f2(z̄). Combining this with (23) we conclude that f3(z̄) ≤ val(Q2PC). ¤

The results obtained in Section 2 are very similar to known results on quadratic optimization

with a single quadratic constraint, which are summarized, for convenience, in Appendix A. Specifi-

cally, Theorems 2.2, 2.3, 2.4 and 2.5 are extensions of Theorems A.1, A.2, A.3 and A.4 respectively

in the complex case. Note that the assumptions under which our theorems hold are equivalent to

the conditions under which the corresponding theorems in the case of a single quadratic constraint

hold. The essential difference is that our derivations are true only over the complex plane, while

the results in Appendix A are true also when restricting attention to real variables.

3 Finding an Explicit Solution of (Q2PC)

In this section we use the optimality conditions of Theorem 2.4 in order to describe a method for

extracting the solution of problem (Q2PC) from the solution of the dual problem (DC). In Section

3.1 we show, given the optimal solution of (DC), how to reduce (Q2PC) into a quadratic feasibility

problem. In Section 3.2 we develop a method for solving the quadratic feasibility problem and in

Section 3.3 we give some numerical examples.

3.1 Reduction to a quadratic feasibility problem

Suppose that both (Q2PC) and (DC) are strictly feasible. From Theorem 2.4, z̄ is an optimal

solution if it satisfies (17), (18) and (19). If A3 − ᾱA1 − β̄A2 ≻ 0, then the (unique) solution to

the primal problem (Q2PC) is given by

z̄ = −(A3 − ᾱA1 − β̄A2)
−1(b3 − ᾱb1 − β̄b2).

Next, suppose that A3 − ᾱA1 − β̄A2 is positive semidefinite but not positive definite. In this case

(17) can be written as z = Bw + a, where the columns of B form a basis for the null space of

A3− ᾱA1− β̄A2 and a = −(A3− ᾱA1− β̄A2)
†(b3− ᾱb1− β̄b2) is a solution of (17). It follows that

z̄ = Bw̄ + a is an optimal solution to (Q2PC) if and only if conditions (18) and (19) of Theorem

2.4 are satisfied, i.e.,

g1(w̄) ≥ 0, g2(w̄) ≥ 0, ᾱg1(w̄) = 0, β̄g2(w̄) = 0, (gj(w) ≡ fj(Bw + a)). (24)
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We are left with the problem of finding a vector which is a solution of a system of two quadratic

equalities or inequalities as described in Table 1. This problem will be called the Quadratic Feasi-

bility Problem.

No. Case Feasibility Problem
I ᾱ = 0, β̄ = 0 g1(w) ≥ 0 and g2(w) ≥ 0
II ᾱ > 0, β̄ = 0 g1(w) = 0 and g2(w) ≥ 0
III ᾱ = 0, β̄ > 0 g1(w) ≥ 0 and g2(w) = 0
IV ᾱ > 0, β̄ > 0 g1(w) = 0 and g2(w) = 0

Table 1: Cases of the quadratic feasibility problem.

Remark: Since (λ̄, ᾱ, β̄) is an optimal solution of the dual problem (DC), we must have A3 −
ᾱA1 − β̄A2 º 0. Thus, the first case is possible only when A3 º 0.

We summarize the above discussion in the following theorem:

Theorem 3.1. Suppose that both problems (Q2PC) and (DC) are strictly feasible and let (ᾱ, β̄, λ̄)

be an optimal solution of problem (DC). Then

1. if A3 − ᾱA1 − β̄A2 ≻ 0, then the (unique) optimal solution of (Q2PC) is given by

z̄ = −(A3 − ᾱA1 − β̄A2)
−1(b3 − ᾱb1 − β̄b2).

2. if A3 − ᾱA1 − β̄A2 º 0 but not positive definite then the solutions of (Q2PC) are given by

z = Bw+a, where B ∈ C
n×d is a matrix whose columns form a basis for N (A3−ᾱA1−β̄A2),

a is a solution of system (17), and w ∈ C
d (d is the dimension of N (A3 − ᾱA1 − β̄A2)) is

any solution of the quadratic feasibility problem (24).

3.2 Solving the quadratic feasibility problem

We now develop a method for solving all possible instances of the quadratic feasibility problem

described in Table 1, under the condition that f1 is a strongly concave quadratic function, i.e.,

A1 ≺ 0 (and thus the corresponding constraint is strongly convex)4. The strong concavity of

g1(w) = f1(Bw+a) follows immediately. All of these feasibility problems have at least one solution,

a fact that follows from their construction. By applying an appropriate linear transformation on

g1, we can assume without loss of generality that g1(w) = γ − ‖w‖2 (γ ≥ 0).

4Note that this assumption readily implies that problem (DC) is strictly feasible.
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Our approach for solving the quadratic feasibility problem will be to use the solutions of opti-

mization problems of one of the following types:

minz∈Cn{z∗Qz + 2ℜ(f∗z) : ‖z‖2 ≤ γ}, (25)

minz∈Cn{z∗Qz + 2ℜ(f∗z) : ‖z‖2 = γ}, (26)

where Q = Q∗ ∈ C
n and f ∈ C

n. Problem (25) is just the trust region subproblem. The fact that

this is a complex valued problem does not change matters since it can be converted to a real valued

trust region subproblem (4) (see the Introduction). Problem (26) can be solved similarly to (25);

a complete description of the solution of (26) can be found in [12, p. 825].

We split our analysis according to the different cases:

Case I: In this case we need to solve the quadratic feasibility problem

g2(w) ≥ 0, ‖w‖2 ≤ γ. (27)

Since the system (27) has at least one solution, it follows that the value of the optimization problem

max{g2(w) : ‖w‖2 ≤ γ} (28)

is nonnegative and therefore any optimal solution of (28) is a solution to (27).

Case II. Similarly to case I, we solve the optimization problem

max{g2(w) : ‖w‖2 = γ}. (29)

Any optimal solution of (29) will be a solution to the feasibility problem

g2(w) ≥ 0, ‖w‖2 = γ.

Case III. In this case, the feasibility problem takes on the following form:

g2(w) = 0, ‖w‖2 ≤ γ. (30)

To find a solution to (30), we first solve the following optimization problems:

min{g2(w) : ‖w‖2 ≤ γ}, (31)

max{g2(w) : ‖w‖2 ≤ γ}. (32)

Let w0 be a solution to (31) and w1 a solution to (32). Then ‖w0‖2 ≤ γ, ‖w1‖2 ≤ γ. Since the
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system (30) has at least one solution, it follows that

g2(w
0) ≤ 0 ≤ g2(w

1). (33)

To find w̄ that solves (30), consider the function ϕ(η) = g2(w
0 + η(w1 − w0)). By (33) we have

ϕ(0) ≤ 0 ≤ ϕ(1).

Since ϕ is a continuous function we conclude that there exists η̄ ∈ [0, 1] such that

ϕ(η̄) = 0. (34)

Eq. (34) is a scalar quadratic equation. Let η̄ ∈ [0, 1] be a solution of (34). Finally, w̄ = w0 +

η̄(w1−w0) is a solution to (30) since (34) can be written as g2(w̄) = 0 and the inequality ‖w̄‖2 ≤ γ

holds true since w̄ is a convex combination of w0 and w1.

Case IV. The feasibility problem in this case is the following:

g2(w) = 0, ‖w‖2 = γ. (35)

To find a solution to (35), we first solve the following optimization problems:

min{g2(w) : ‖w‖2 = γ}, (36)

max{g2(w) : ‖w‖2 = γ}. (37)

Let w0 and w1 be optimal solutions to (36) and (37) respectively. Then ‖w0‖2 = ‖w1‖2 = γ. Since

system (35) must have at least one solution, we conclude that g2(w
0) ≤ 0 ≤ g2(w

1). The case in

which w0 and w1 are linearly dependent can be analyzed in the same way as Case III. If w0 and

w1 are linearly independent we can define

u(η) = w0 + η(w1 − w0), w(η) =
√

γ
u(η)

‖u(η)‖ , η ∈ [0, 1].

By the definition of w(η), we have that ‖w(η)‖2 = γ for every η ∈ [0, 1] and that g2(w(0)) ≤ 0 ≤
g2(w(1)). All that is left is to find a root to the scalar equation

g2(w(η)) = 0, η ∈ [0, 1],

which can be written as

γ
u(η)∗A2u(η)

‖u(η)‖2
+

2
√

γ

‖u(η)‖ℜ(b∗2u(η)) + c2 = 0, η ∈ [0, 1]. (38)

12



It is elementary to see that all the solutions of (38) also satisfy the following quartic scalar equation.

(

γu(η)∗A2u(η) + c2‖u(η)‖2
)2

= 4γ‖u(η)‖2(ℜ(b∗2u(η)))2. (39)

The solution of the quadratic feasibility problem is given by w(η), where η is one of the solutions

(39). Notice that (39) has at most four solutions, which have explicit algebraic expressions.

3.3 Numerical examples

In this section we demonstrate the previous results through some numerical examples. All the SDP

problems in this section were solved using SeDuMi [23].

3.3.1 Example 1

Consider the quadratic optimization problem

min{z∗A3z + 2ℜ(b∗3z) + c3 : ‖z‖2 ≤ 4, ‖z − e‖2 ≤ 4},

where

n = 4,e =













1

1

1

1













, A3 =













6 1 + i 1 + i 4 + 2i

1 − i 2 1 + 2i 1 − 3i

1 − i 1 − 2i 6 3 − 3i

4 − 2i 1 + 3i 3 + 3i 0













, b3 =













3 + i

2 + 2i

1

i













, c3 = 4.

The minimum eigenvalue of A3 is equal to -4.278 and therefore the objective function is not convex.

Since obviously all the conditions of Theorem 2.3 are satisfied, the strong duality result holds and

we can solve this problem via the dual problem (DC) by using Theorem 2.4. The solution to (DC)

is given by

λ̄ = −10.5424, ᾱ = 0.7399, β̄ = 5.804.

Note that λ̄ = −10.5424 is the optimal value and the fact that both ᾱ and β̄ are positive implies

that both constraints are active. In this example we have A3 − ᾱA1 − β̄A2 ≻ 0 and thus by

Theorem 3.1 the optimal solution is given by

z̄ = −(A3 − ᾱA1 − β̄A2)
−1(b3 − ᾱb1 − β̄b2) =













−0.3660 − 0.1046i

0.8336 + 0.1578i

0.2740 + 0.6465i

1.2583 − 1.0290i













.

The next example was especially “tailored” so that A3− ᾱA1− β̄A2 is not positive definite but
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rather just positive semidefinite.

3.3.2 Example 2

Consider problem (Q2PC) with

n = 3, A3 =







3 1 −3i

1 6 3 − 2i

3i 3 + 2i 1






, b3 =







−4.9184 + 4.3374i

−7.9923 + 2.8916i

−5.5549 − 3.3531i






, c3 = 0, A1 = −I3, b1 = 0, c1 = 3

A2 =







4 6 + i 4 − 3i

6 − i 4 3

4 + 3i 3 6






, b2 =







2 + i

1 + i

2






, c2 = −39.

This is obviously not a convex optimization problem since A3 is not positive semidefinite and

A2 is not negative semidefinite. Since all the conditions of Theorem 2.3 are satisfied, strong duality

holds and we can use Theorem 3.1 in order to extract the solution of (Q2PC) from the optimal

solution of (DC). The solution of the dual problem (DC) is given by

λ̄ = −21.5416, ᾱ = 2.1374, β̄ = 0.

The eigenvalues of the matrix A3 − ᾱA1 − β̄A2 are 0,5.5819 and 10.8303. Thus, A3 − ᾱA1 − β̄A2

is not invertible and in order to find an optimal solution we will transform the problem into

a quadratic feasibility problem. The null space of A3 − ᾱA1 − β̄A2 is spanned by the vector

u = (0.0604 + 0.4512i;−0.3103 + 0.1465i; 0.8216) and a solution to the system (17) is given by

a = (0.6305−0.4769i; 0.6226−0.2963i; 0.5303+0.3523i). Thus, the set of solutions to (17) is given

by {z = a + wu : w ∈ C}. Since in this example ᾱ > 0 and β̄ = 0, we need to solve the quadratic

feasibility problem

f1(a + wu) = 0,

f2(a + wu) ≥ 0,

which is the same as

0 = −x2 − y2 − 0.0439x + 0.0463y + 1.4943,

0 ≤ 2.2634x2 + 2.2634y2 + 11.4971x − 9.7040y − 16.1033,

where x = ℜ(w) and y = ℑ(w). The solution to the later feasibility problem is the optimal solution

14



of the minimization problem

max
x,y

2.2634x2 + 2.2634y2 + 11.4971x − 9.7040y − 16.1033

s.t. x2 + y2 + 0.0439x − 0.0463y − 1.4943 = 0

whose solution is given by (x, y) = (0.9127,−0.7640). Hence w = 0.9127 − 0.764i and the solution

to the primal problem (Q2PC) is given by z = a+wu = (1.0304−0.1112i; 0.4513+0.0745i; 1.2802−
0.2754i).

4 The Real Case

In this section we consider the real valued problem (Q2PR) in which the data and variables are

assumed to be real valued. The dual problem to (Q2PR) is given by

(DR) max
α≥0,β≥0,λ

{

λ

∣

∣

∣

∣

∣

(

A3 b3

bT
3 c3 − λ

)

≥ α

(

A1 b1

bT
1 c1

)

+ β

(

A2 b2

bT
2 c2

)}

. (40)

Note that this is exactly the same as problem (DC) (problem (10)), where here we use fact that

the data is real and therefore b∗j = bT
j . The semidefinite relaxation in this case is given by

(SDRR) min
X

{Tr(XM3) : Tr(XM1) ≥ 0, Tr(XM2) ≥ 0, Xn+1,n+1 = 1, X ∈ S+
n+1

}. (41)

In contrast to the complex case, strong duality results are, generally speaking, not true for

(Q2PR). It is not known weather (Q2PR) is a tractable problem or not and in that respect, if

there is an efficient algorithm for finding its solution. In this section we use the results obtained

for (Q2PC) in order to establish several results on the real valued problem (Q2PR). In Section 4.1

we show that if the constraints of (Q2PR) are convex then the complex valued problem (Q2PC),

considered as a relaxation of (Q2PR), can produce an approximate solution. A result on the

tightness of the approximation is given. In Section 4.2 we derive a result on the image of the real

and complex space under a quadratic mapping. This result will enable us to bridge between the

real and complex case. Using the latter result, a sufficient condition for zero duality gap is proved

in Section 4.3. The sufficient condition is expressed via the optimal dual variables and thus can

be verified in polynomial time. Preliminary numerical results show that for the TTRS problem (3)

this condition hardly never fails. Using the condition, we identify a family of problems with zero

duality gap.

15



4.1 The complex relaxation

As already mentioned, val(Q2PR) is not necessarily equal to val(DR). However, the complex coun-

terpart (Q2PC) does satisfy val(Q2PC) = val(DR) and we can always find a complex valued solution

to (Q2PC) that attains the bound val(DR). Therefore, we can consider (Q2PC) as a tractable relax-

ation (the complex relaxation) of the real valued problem (Q2PR). The following example, whose

data is taken from Yuan [26, p.59], illustrates this fact:

Example: Consider the following real valued quadratic optimization problem

min
x1,x2∈R

{−2x2
1 + 2x2

2 + 4x1 : x2
1 + x2

2 − 4 ≤ 0, x2
1 + x2

2 − 4x1 + 3 ≤ 0}, (42)

which is a special case of (Q2PR) with:

A1 = A2 = −I, A3 =

(

−2 0

0 2

)

, b1 = 0, b2 = (2; 0), b3 = (2; 0), c1 = 4, c2 = −3, c3 = 0.

The solution to the dual problem is given by ᾱ = 1, β̄ = 1 and λ̄ = −1. It is easy to see that the

optimal solution to (Q2PR) is given by x1 = 2, x2 = 0 and its corresponding optimal solution is

0. The duality gap is thus 1. By the strong duality result of Theorem 2.2, We can find a complex

valued solution with value equal to the value of the dual problem −1 to the complex counterpart:

min
z1,z2∈C

{−2|z1|2 + 2|z2|2 + 4ℜ(z1) : |z1|2 + |z2|2 − 4 ≤ 0, |z1|2 + |z2|2 − 4ℜ(z1) + 3 ≤ 0}. (43)

Using the techniques described in Section 3 we obtain that the solution of problem (43) is z1 =

7/4 +
√

15/16i, z2 = 0 with function value -1. ¤

The following Theorem states that if the constraints of (Q2PC) are convex (as in the two

trust region problem), then we can extract an approximate real solution from the optimal complex

solution z̄ by just taking x̄ = ℜ(z̄). In the following theorem we show that the approximate real

solution is a feasible solution of (Q2PR) and we bound the distance of its function value from the

optimal function value in terms of the imaginary part of the complex valued solution z̄.

Theorem 4.1. Suppose that both (Q2PR) and (DR) are strictly feasible. Let A1, A2 ∈ R
n×n be

negative definite matrices, A3 = AT
3 ∈ R

n×n, bj ∈ R
n and cj ∈ R. Let z̄ be an optimal complex

valued solution of (Q2PC) and let x̄ = ℜ(z̄). Then x̄ is a feasible solution of (Q2PR) and

f3(x̄) − val(Q2PR) ≤ ℑ(z̄)T A3ℑ(z̄).
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Proof: To show that x̄ is a feasible solution of (Q2PR) note that for z ∈ C
n, j = 1, 2 one has

0 ≤ fj(z) = z∗Ajz + 2ℜ(b∗jz) + cj

= ℜ(z)T Ajℜ(z) + ℑ(z)T Ajℑ(z) + 2bT
j ℜ(z) + cj

Aj≺0
≤ ℜ(z)T Ajℜ(z) + 2bT

j ℜ(z) + cj = fj(ℜ(z)).

Thus, since z̄ is feasible, so is ℜ(z̄). Finally,

f3(ℜ(z̄)) − val(Q2PR) ≤ f3(ℜ(z̄)) − val(Q2PC) = f3(ℜ(z̄)) − f3(z̄) = ℑ(z̄)T A3ℑ(z̄).

¤

In our example the approximate solution is (7/4, 0) and its function value is equal to 0.875.

4.2 The Image of the Complex and Real Space under a Quadratic Mapping

We now prove a result (Theorem 4.3) on the image of the spaces C
n and R

n under a quadratic

mapping, which is composed from two nonhomogeneous quadratic functions. This result will be

one of the key ingredients in proving the sufficient condition in Section 4.3. Results on the image of

quadratic mappings play an important role in nonconvex quadratic optimization (see e.g., [13, 17]

and references therein). One important result, which is very relevant to our analysis, is due to

Polyak [17, Theorem 2.2]:

Theorem 4.2 ([17]). Let A1, A2 ∈ R
n×n, (n ≥ 2) be symmetric matrices for which the following

condition is satisfied:

∃α, β ∈ R such that αA1 + βA2 ≻ 0. (44)

Let b1, b2 ∈ R
n and c1, c2 ∈ R and define fj(x) = xT Ajx + 2ℜ(bT

j x) + cj. Then the set

W = {(f1(x), f2(x)) : x ∈ R
n}

is closed and convex.

The main result in this section is Theorem 4.3 below that states that the image of C
n and R

n

under the quadratic mapping defined in Theorem 4.2 are the same. Later on, in Section 4.3, this

theorem will enable us to make the connection between the complex and real cases.

Theorem 4.3. Let A1, A2 ∈ R
n×n, (n ≥ 2) be symmetric matrices for which the following condition

is satisfied:

∃α, β ∈ R such that αA1 + βA2 ≻ 0. (45)
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Let b1, b2 ∈ R
n and c1, c2 ∈ R and define fj(z) = z∗Ajz + 2ℜ(b∗jz) + cj. Then the sets

F = {(f1(z), f2(z)) : z ∈ C
n}, W = {(f1(x), f2(x)) : x ∈ R

n}

are equal.

The proof of Theorem 4.3 relies on the following Lemma:

Lemma 4.1. Let A be a real n × n symmetric matrix, b ∈ R
n and c ∈ R. Consider the following

real and complex minimization problems:

min
x∈Rn

{xT Ax + 2bT x + c : ‖x‖2 = β}, (46)

min
z∈Cn

{z∗Az + 2ℜ(b∗z) + c : ‖z‖2 = β}. (47)

Then val((46)) = val((47)).

Proof: The values of problems (46) and (47) are equal to

max
µ

{µ : xT Ax + 2bT x + c ≥ µ for every x ∈ R
n such that ‖x‖2 = β} (48)

and

max
µ

{µ : z∗Az + 2ℜ(b∗z) + c ≥ µ for every z ∈ C
n such that ‖z‖2 = β} (49)

respectively. By Theorem B.3, the value of both problems is equal to the value of the optimization

problem

maxµ,λ µ

s.t.

(

A b

bT c − µ

)

º λ

(

I 0

0 −β

)

.

Thus, val((46))=val((47)). ¤

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3: First notice that by Theorem 4.2 we have that both W and F are

convex. Obviously W ⊆ F . To prove the opposite, we first assume without loss of generality that

f1(x) = ‖x‖2. The latter assumption is possible since condition (45) is satisfied. Suppose that

(a, b) ∈ F , i.e., a = ‖z‖2, b = f2(z) for some z ∈ C
n. Let

bmin = min{f2(z) : ‖z‖2 = a} and bmax = max{f2(z) : ‖z‖2 = a}.

By Theorem 4.1, there must be two real vectors x0, x1 ∈ R
n such that ‖x0‖2 = ‖x1‖2 = a and

f2(x
0) = bmin ≤ b ≤ bmax = f2(x

1). Therefore, (a, bmin), (a, bmax) ∈ W . Since W is convex we

conclude that (a, b), being a convex combination of (a, bmin) and (a, bmax), also belongs to W . ¤
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4.3 A sufficient condition for zero duality gap of (Q2PR)

We now use the results on the complex valued problem (Q2PC) in order to find a sufficient condition

for zero duality gap and tightness of the semidefinite relaxation of the real valued problem (Q2PR).

4.3.1 The Condition

We first develop a sufficient condition for zero duality gap in problem (Q2PR). Our derivation is

based on the fact that if an optimal solution of the complex valued problem (Q2PC) is real valued

then the real valued problem (Q2PR) admits no gap with its dual problem (DR).

Theorem 4.4. Suppose that both problems (Q2PR) and (DR) are strictly feasible and that the

following condition is satisfied:

∃α̂, β̂ ∈ R such that α̂A1 + β̂A2 ≻ 0. (50)

Let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem (DR). If

dim
(

N (A3 − ᾱA1 − β̄A2)
)

6= 1 (51)

then val(Q2PR) = val(DR) = val(SDRR) and there exists a real valued solution to the complex

valued problem (Q2PC).

Proof: First, the fact that val(DR) = val(SDRR) follows from the fact that both (SDRR) and

(DR) are strictly feasible. Now, suppose that the dimension of N (A3 − ᾱA1 − β̄A2) is 0. Then by

(17), a solution to (Q2PC) is given by the real valued vector

x̄ = −(A3 − ᾱA1 − β̄A2)
−1(b3 − ᾱb1 − β̄b2).

Since (Q2PC) has a real valued solution it follows that

val(Q2PR) = val(Q2PC) = val(DR),

where the last equality follows from Theorem 2.2.

Next, suppose that the dimension of N (A3 − ᾱA1 − β̄A2) is greater or equal to 2. By Theorem

3.1, any optimal solution z̄ of (Q2PC) is given by z̄ = Bw̄ + a, where w̄ ∈ C
d is a solution of the

system

g1(w) ≥ 0, g2(w) ≥ 0, ᾱg1(w) = 0, β̄g2(w) = 0, (gj(w) ≡ fj(Bw + a)). (52)

Here d = dim(N (A3 − ᾱA1 − β̄A2)) ≥ 2. Now, obviously (g1(w̄), g2(w̄)) ∈ S1 where

S1 = {(g1(w), g2(w)) : w ∈ C
d}.
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The matrix B has full column rank since its columns are linearly independent. Hence, (50) implies

that

α̂BT A1B + β̂BT A2B ≻ 0. (53)

The LMI (53) together with the fact that d ≥ 2 implies that the conditions of Theorem 4.3 are

satisfied and thus S1 = S2, where

S2 = {(g1(x), g2(x)) : x ∈ R
d}.

Therefore, there exists x̄ ∈ R
d that satisfies gj(w̄) = gj(x̄) and as a result, (52) has a real valued

solution. To conclude, z̄ = Bx̄ + a ∈ R
n is a real valued vector which is an optimal solution to

(Q2PC). ¤

4.3.2 Numerical Experiments

To demonstrate the fact that for the TTRS problem (3), the sufficient condition of Theorem 4.4

hardly never fails for random problems, we considered different values of m and n (the number of

constraints and the number of variables in the original nonlinear problem) and randomly generated

1000 instances of B, g, A and c. We chose ∆ = 0.1 and

ξ = ‖AT (−αAc) + c‖,

where

α = min

{

∆

‖Ac
,

cT (AT A)c

cT (AT A)2c

}

,

as was suggested in the trust region algorithm of Celis, Dennis and Tapia [6]. The results are given

in Table 2.

n m distribution Nsuf mean sd

10 1 Normal 997 5.50 2.34
10 1 Uniform 1000 1.61 0.62
10 10 Normal 1000 5.04 2.31
10 10 Uniform 1000 1.60 0.61
100 1 Normal 1000 13.15 2.65
100 1 Uniform 1000 3.75 0.64
100 100 Normal 1000 12.54 2.31
100 100 Uniform 1000 3.71 0.65

Table 2: Results for TTRS.

In the table, distribution is the distribution from which the coefficients of B, g, A and c are
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generated. There are two possibilities: uniform distribution (U [0, 1]) or standard normal distri-

bution (N(0, 1)). Nsuf is the number of problems satisfying the sufficient condition (51) out of

1000. mean and sd are the mean and standard deviation of the minimal eigenvalue of the matrix

A3 − ᾱA1 − β̄A2. It is interesting to note that almost all the instances satisfied condition (51)

except for only 3 instances in the case n = 10,m = 1 with data generated from the normal dis-

tribution. Of course, these experiments reflect the situation in random problems and the results

might be different (for better or for worse) if the data will be generated differently.

4.3.3 A family of problems with zero duality gap

Consider the problem of minimizing an indefinite quadratic function subject to a norm constraint

and a linear inequality constraint:

min
x∈Rn

{xTQx + 2bT x : ‖x‖2 ≤ δ,aT x ≤ ξ}. (54)

This problem was considered in [24, 25], where it was shown that the semidefinite relaxation is not

always tight, although a polynomial-time algorithm for solving this problem was presented. We

will find a condition on the data (Q, a, b) that will be sufficient for zero duality gap.

Theorem 4.5. Suppose that problem (54) is strictly feasible and that n ≥ 2. If the dimension of

N (Q − λmin(Q)I) is at least 2, then strong duality holds for problem (54).

Proof: Let (λ̄, ᾱ, β̄) be an optimal solution of the dual problem to (54). From the feasibility of

the dual problem it follows that Q− ᾱI º 0. Now, either ᾱ > λmin(Q) and in that case Q− ᾱI is

nonsingular and thus the dimension of N (Q− ᾱI) is 0 or ᾱ = λmin(Q) and in this case N (Q− ᾱI)

is of dimension at least 2 by the assumptions. The result follows now from Theorem 4.4. ¤

A Quadratic Optimization With a Single Quadratic Constraint

For the sake of completeness we state here some known results [5, 10, 22] on the problem of

minimizing an indefinite quadratic function subject to a single quadratic inequality constraint.

The results can also be derived by using the techniques of Section 2. In our presentation we

consider the optimization problem over the complex domain; note, however, that the results are

also true for the real counterpart.

Consider the problem

min
z∈Cn

{f2(z) : f1(z) ≥ 0}, (55)

where fj(z) = z∗Ajz +2ℜ(b∗jz)+ cj , Aj = A∗
j ∈ C

n×n, bj ∈ C
n, cj ∈ R, j = 1, 2. The dual problem
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to (55) is given by

max
α≥0,λ

{

λ :

(

A2 b2

b∗2 c2 − λ

)

º α

(

A1 b1

b∗1 c1

)}

(56)

and the SDR of (55) is

min
Z

{Tr(M2Z) : Tr(M1Z) ≥ 0, Zn+1,n+1 = 1,Z ∈ H+
n+1

}, (57)

where M j =

(

Aj bj

b∗j cj

)

.

Theorem A.1. Suppose that problem (55) is strictly feasible, i.e., there exists z̃ ∈ C
n such that

f1(z̃) > 0. Then,

1. if val((55)) is finite then the maximum of problem (56)) is attained and val(55) = val(56).

2. val(55) = −∞ if and only if (56) is not feasible.

Theorem A.2. Suppose that both problems (55) and (56) are strictly feasible and let (λ̄, ᾱ, β̄) be

an optimal solution of (56). Then problems (55),(56) and (57) attain their solutions and

val(55) = val(56) = val(57).

Theorem A.3. Suppose that both problems (55) and (56) are strictly feasible, and let (λ̄, ᾱ) be an

optimal solution of (56). Then z̄ is an optimal solution of (55) if and only if

(A2 − ᾱA1)z̄ + b2 − ᾱb1 = 0,

f1(z̄) ≥ 0,

ᾱf1(z̄) = 0.

Theorem A.4. Suppose that both problems (55) and (56) are strictly feasible. Then z̄ is an optimal

solution of (55) if and only if there exists α ≥ 0 such that

(i) (A2 − αA1)z̄ + b2 − αb1 = 0.

(ii) f1(z̄) ≥ 0.

(iii) αf1(z̄) = 0.

(iv) A2 − αA1 º 0.
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B Technical Results

B.1 Strict feasibility of the semidefinite relaxation

Lemma B.1 below states that if the primal problem (Q2PC) is strictly feasible then its semidefinite

relaxation must also be strictly feasible.

Lemma B.1. Suppose that (Q2PC) is strictly feasible. Then the SDR problem (13) is strictly

feasible as well.

Proof: Since (Q2PC) is strictly feasible, there exists v ∈ C
n such that f1(v) > 0 and f2(v) > 0.

Therefore, Tr(M1V ) > 0 and Tr(M2V ) > 0, where V = ṽṽ∗, ṽ = (v; 1). Let w1, w2, . . . ,wn ∈
C

n+1 be n vectors with (n + 1)th component equal to 0 such that the set {w1,w2, . . . ,wn, ṽ} is

linearly independent. Consider the matrix

W = V +

n
∑

i=1

αjwjw
∗
j ,

where αj are positive numbers. Wn+1,n+1 = 1 since the last component of w1, w2, . . . ,wn is equal

to zero. Moreover, for small enough αj we have Tr(M1W ) > 0 and Tr(M2W ) > 0. From its

definition, W is positive semidefinite. To prove that W is positive definite all that remains to show

is that a∗Wa = 0 if and only if a = 0. Suppose indeed that a∗Wa = 0 for a ∈ C
n+1. Then,

0 = a∗Wa = |a∗ṽ|2 +
n

∑

i=1

αj |a∗wj |2

and thus a∗ṽ = 0 and a∗wj = 0 for all i. Thus, a∗X = 0 where X is the (n + 1)× (n + 1) matrix

whose columns are the vectors w1,w2, . . . ,wn, ṽ. Since w1, w2, . . . ,wn, ṽ are linearly independent

we conclude that X is nonsingular and thus a = 0. ¤

B.2 Finsler’s theorem and its variants

In this section several variants of Finsler’s Theorem are proven. These results are used in Section 4.2.

The “classical” Finsler’s Theorem is concerned with homogenous quadratic functions.

Theorem B.1 (Finsler’s Theorem [9]). Let A,B ∈ R
n×n be symmetric matrices. Then

xT Bx ≥ 0 for every x ∈ R
n such that xT Ax = 0

if and only if there exists α ∈ R such that B − αA º 0.

Theorem B.2 below is a simple extension of Finsler’s Theorem to the complex case.
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Theorem B.2 (Finsler’s Theorem, complex version). Let A, B ∈ R
n×n be symmetric matri-

ces. Then the following two statements are equivalent:

(i) z∗Bz ≥ 0 for every z ∈ C
n such that z∗Az = 0.

(ii) There exists α ∈ R such that B − αA º 0.

Proof: Writing z = x + iy, where x = ℜ(z) and y = ℑ(z), the first statement can be written as

xT Bx + yT By ≥ 0 for every x, y ∈ R
n such that xT Ax + yT Ay = 0,

which, by the real version of Finsler’s Theorem (Theorem B.1), holds true if and only if there exists

α ∈ R such that
(

B 0

0 B

)

− α

(

A 0

0 A

)

º 0.

The latter LMI is the same as B − αA º 0. ¤

While Finsler’s theorem deals with homogenous quadratic forms, the extended version considers

nonhomogeneous quadratic functions.

Theorem B.3 (Extended Finsler’s Theorem). Let F be one of the fields R or C and let

A1, A2 ∈ R
n×n be symmetric matrices such that

A2 º ηA1 for some η ∈ R. (58)

Let fj : F
n → R, fj(x) = x∗Ajx + 2ℜ(bT

j x) + cj, where bj ∈ R
n and cj is a real scalar5. Then the

following two statements are equivalent

(i) f2(x) ≥ 0 for every x ∈ F
n such that f1(x) = 0.

(ii) There exists λ ∈ R such that

(

A2 b2

bT
2 c2

)

º λ

(

A1 b1

bT
1 c1

)

.

Proof: (ii) ⇒ (i) is a trivial implication. Now, suppose that (i) is satisfied. Making the change of

variables x = (1/t)y, where y ∈ F
n and t 6= 0, (2) becomes

f2 ((1/t)y) ≥ 0 for every y ∈ R
n, t 6= 0 such that f1 ((1/t)y) = 0,

which is equivalent to

g2 (y, t) ≥ 0 for every y ∈ R
n, t 6= 0 such that g1 (y, t) = 0, (59)

5In the case F = R, fj can be written as fj(x) = xT Ajx + 2bT
j x + cj .
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where gj(y, t) = yT Ajy +2bT
j yt+ cjt

2. Notice that if t would not be restricted to be nonzero, then

by Theorems B.1 and B.2), statement (ii) is true (g1 and g2 are homogenous quadratic functions).

Thus, all is left to prove is that (59) is true for t = 0. However, when t = 0, (59) reduces to

yT A2y ≥ 0 for every y ∈ F
n such that yT A1y = 0,

which, by Theorems B.1 and B.2, is equivalent to condition (58). ¤

Theorem B.3 is true under condition (58). This condition holds true, for instance, if A2 is

positive definite or if A1 is definite (i.e., positive or negative definite). The case in which A1 is

definite was already proven for the real case in [24, Corollary 6].

C Known Results

Lemma C.1 below was proven in [4] for the real case. The proof for the complex is case is essentially

the same and is thus omitted.

Lemma C.1 ([4], p. 163). Let A ∈ C
n×n be an Hermitian matrix and let b ∈ C

n and c ∈ R.

Then,

∀z ∈ C
n, z∗Az + 2ℜ(b∗z) + c ≥ 0 (60)

if and only if
(

A b

b∗ c

)

º 0. (61)

Lemma C.2. Let f : C
n → R be the quadratic function f(z) = z∗Az + 2ℜ(b∗z) + c, where

A = A∗ ∈ C
n×n, b ∈ C

n and c ∈ R. Suppose that minz∈Cn f(z) > −∞. Then the set of optimal

solutions is given by {z : Az + b = 0}.
Lemma C.3 ([3]). Let f : C

n → R be the quadratic function f(z) = z∗Az + 2ℜ(b∗z) + c, where

A = A∗ ∈ C
n×n, b ∈ C

n and c ∈ R. Then, minz∈Cn f(z) > −∞ if and only if the following two

conditions hold:

(i) b ∈ R(A).

(ii) A º 0.

and in that case the set of optimal solutions is given by {z : Az + b = 0}.
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