
1

Comparing Between Estimation Approaches:

Admissible and Dominating Linear Estimators

Yonina C. Eldar

Abstract

We treat the problem of evaluating the performance of linear estimators for estimating a deterministic parameter

vector x in a linear regression model, with the mean-squared error (MSE) as the performance measure. Since the

MSE depends on the unknown vector x, direct comparison between estimators is a difficult problem. Here we

consider a framework for examining the MSE of different linear estimation approaches based on the concepts of

admissible and dominating estimators. We develop a general procedure for determining whether or not a linear

estimator is MSE admissible, and for constructing an estimator strictly dominating a given inadmissible method, so

that its MSE is smaller for all x. In particular we show that both problems can be addressed in a unified manner

for arbitrary constraint sets on x by considering a certain convex optimization problem. We then demonstrate the

details of our method for the case in which x is constrained to an ellipsoidal set, and for unrestricted choices of x.

As a by product of our results, we derive a closed form solution for the minimax MSE estimator on an ellipsoid,

which is valid for arbitrary model parameters, as long as the signal-to-noise-ratio exceeds a certain threshold.

Key Words—Linear estimation, regression, admissible estimators, dominating estimators, mean-squared error (MSE)

estimation, minimax MSE estimation.

I. Introduction

An important estimation problem that has been treated extensively in the literature is the problem of esti-

mating a deterministic parameter vector x in the regression model y = Hx+w, where y are the observations,

H is a given model matrix, and w is a random noise vector with positive definite covariance matrix. In an

estimation context, the goal is to construct an estimator x̂ of x from the observations y that is close to x in

some sense. In this paper, we focus on linear estimation, in which the estimator x̂ is linear in the observations

y.

A popular measure of estimator performance is the mean-squared error (MSE), which is the average squared-

norm of the estimation error x̂ − x. Due to the fact that the parameter vector x is assumed to be fixed, the

averaging is only over the noise, and not over x, typically resulting in a parameter-dependent MSE. Since

the MSE generally depends on x, it cannot be minimized directly. Thus, alternative criteria for constructing

estimators must be sought.

Beginning with the celebrated least-squares estimator proposed by Gauss, a myriad of linear and nonlinear

estimators have been developed for the regression model with the common goal of leading to“good” MSE

performance. The first estimators considered for this problem where restricted to be linear and unbiased [1],

[2], [3]. In the past 30 years attempts have been made to develop linear estimators that may be biased but
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closer to the true parameter x in an MSE sense. These include the Tikhonov regularizer [4], [5], the shrunken

estimator [6], and the covariance shaping least-squares estimator [7]. Another recent approach is to assume

that x is constrained to a subset U , and then seek linear minimax estimators that minimize a worst-case

measure of MSE on U [8], [9], [10], [11], [12], [13], [14].

The difficulty encountered in this estimation problem is that the MSE performance of a linear estimator

depends generally on x, rendering comparison between the different estimators a difficult (and often impossi-

ble) task. This explains the multitude of approaches suggested for this problem. Since ranking the estimators

in terms of MSE is not obvious, an important practical question is how to decide which estimator to use.

Although in general this question is hard to answer, some estimators may be uniformly better than others in

terms of MSE. An estimator x̂ is said to dominate a given estimator x̂0 on a set U if its MSE is never larger

than that of x̂0 for all values of x in U , and is strictly smaller for some x in U [15]; x̂ strictly dominates x̂0 if

its MSE is smaller than that of x̂0 for all x in U . An estimator that is not dominated by any other estimator

is said to be admissible on U . Clearly, a desirable property of an estimator is that it is admissible: otherwise

it is dominated by some other linear estimator which will have better MSE performance for all choices of x.

Constructing an admissible estimator is a trivial task; for example, if U includes the zero vector, then x̂ = 0

is admissible since it is the only linear estimator with zero MSE for x = 0. A more interesting problem

is to determine whether a given linear estimator is admissible, or more generally, to characterize all linear

admissible estimators on a subset U . Such a description can lead to practical methods for selecting between

estimators. If our estimator of choice is inadmissible, then we are guaranteed theoretically that a better

estimator exists in an MSE sense. However, the theory does not provide a concrete method for finding such

an estimator. Therefore, given an inadmissible estimator, it is of interest to develop a general procedure for

constructing a dominating admissible estimator, i.e., an estimator that is uniformly better in terms of MSE.

The problem of characterizing all linear admissible estimators has received considerable attention in the

statistical literature. Admissible linear estimators for arbitrary values of x are discussed in [16], [17], [18], [19],

ellipsoidal constraints are treated in [20], [21], [22], and linear inequality constraints on x are considered in

[23]. However, these references do not address the important practical problem of constructing an admissible

estimator dominating a given inadmissible approach.

A specific class of dominating estimators that has been studied extensively in the literature are estimators

dominating the least-squares method when the noise is Gaussian. Following the seminal work of Stein [24],

many nonlinear approaches dominating the least-squares estimator have been developed, including the James-

Stein estimator [25], among others [26], [27], [28], [29]. In [14] it was shown that the linear minimax MSE

estimator that minimizes the worst-case MSE on a bounded set U dominates the least-squares estimator on

U .

In this paper we focus on linear estimation, and develop a general procedure for determining whether or

not an estimator is admissible on an arbitrary constraint set U . We also propose a method for constructing

admissible estimators that strictly dominate any given inadmissible strategy. Our approach unifies many of the

previous admissibility results and provides explicit methods for constructing admissible dominating estimators.

Thus, in applications, these results can be used to choose between the multitude of linear estimators available

in the literature, and can also suggest new methods of estimation when the conventional techniques are
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inadmissible.

To reduce the abstract concepts of admissible and dominating estimators to a concrete mathematical prob-

lem, we show that both issues of admissibility and domination can be addressed by considering a certain

convex optimization problem. The advantage of this formulation is that we can use duality theory to develop

explicit necessary and sufficient admissibility and domination conditions. To demonstrate the details of our

approach, we consider the case in which U consists of vectors x that satisfy the weighted norm constraint

x∗Tx ≤ U2 for some positive definite matrix T and scalar U . For this setting we present explicit necessary and

sufficient conditions on a linear estimator x̂ to be admissible which are easy to verify. Given an inadmissible

estimator, we also develop closed from expressions for linear dominating estimators in many special cases. In

the general case, we show that a dominating estimator can be found by solving a semidefinite programming

problem (SDP) [30], [31], which is a convex optimization problem that can be solved efficiently. As a by prod-

uct of our results, we provide a closed form solution for the minimax MSE estimator of [10] that minimizes

the worst-case MSE for signal-to-noise-ratios (SNRs) exceeding a certain threshold. Although this problem

has been treated previously by Pilz in [9], we show that the solution obtained in [9] is different that ours,

and is incorrect in general. We also investigate the admissibility of the Tikhonov and shrunken estimators on

ellipsoidal constraint sets. We then extend the admissibility and domination results to the case in which x is

not restricted.

The paper is organized as follows. In Section II we introduce our problem and discuss the main ideas

and results. In Section III we show that both problems of determining the admissibility of an estimator on

an arbitrary constraint set U as well as constructing estimators dominating inadmissible estimators on U
can be treated by considering a certain convex optimization problem. Dominating estimators and necessary

and sufficient admissibility conditions on an ellipsoidal constraint set are developed in Sections IV and V,

respectively. The minimax MSE estimator and a comparison with the estimator developed in [9] are also

treated in Section IV. Section VI presents some examples of inadmissible and dominating estimators. Finally,

the results are extended to unrestricted choices of x in Section VII.

II. Problem Formulation and Main Results

We denote vectors in C
m by boldface lowercase letters and matrices in C

n×m by boldface uppercase letters.

The identity matrix is denoted by I, (·)∗ and (·)† denote the Hermitian conjugate and the pseudoinverse of

the corresponding matrix respectively, and diag(δ1, . . . , δm) denotes an m×m diagonal matrix with diagonal

elements δi. The notation A ≻ 0 (A º 0) means that A is Hermitian and positive (nonnegative) definite, and

Y º Z means that Y−Z º 0. Given a Hermitian matrix A, we denote by (A)1/2 the Hermitian square-root,

and by λmax(A) and λmin(A) the largest and smallest eigenvalues, respectively. The range space and null

space of a matrix A are denoted respectively by R(A) and N (A).

We consider the problem of estimating the deterministic parameter vector x in the linear regression model

y = Hx + w, (1)

where H is a known n × m matrix and w is a zero-mean random vector with covariance matrix Cw. We

assume for simplicity that H has full column rank and that Cw ≻ 0. The vector x is known to lie in a subset
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U ⊆ C
m, where U can be arbitrary; in particular, we may choose U = C

m.

Our goal is to design a linear estimator of the form x̂ = Gy that minimizes the MSE, which is given by

ǫ(G,x)
△
=E

{
‖x̂ − x‖2

}

= x∗(I − GH)∗(I − GH)x + Tr(GCwG∗). (2)

Evidently, the MSE depends in general on the unknown parameter vector x and therefore cannot be minimized

directly. An alternative strategy to designing linear estimators is to restrict the estimator to be unbiased, so

that GH = I, and then seek the estimator that minimizes the variance. This leads to the celebrated least-

squares estimator. However, this method does not necessarily result in a small MSE. A myriad of approaches

have been suggested to further reduce the MSE, for example, [5], [4], [6], [7], [12], [10], [11], [8], [9] and

references therein.

Two important concepts in comparing the MSE of different estimators are those of domination and admis-

sibility. An estimator x̂1 dominates an estimator x̂2 on U if

E
{
‖x̂1 − x‖2

}
≤ E

{
‖x̂2 − x‖2

}
, for all x ∈ U ;

E
{
‖x̂1 − x‖2

}
< E

{
‖x̂2 − x‖2

}
, for some x ∈ U .

(3)

The estimator x̂1 strictly dominates x̂2 on U if

E
{
‖x̂1 − x‖2

}
< E

{
‖x̂2 − x‖2

}
, for all x ∈ U . (4)

If x̂1 dominates x̂2 then clearly it is a better estimator in terms of MSE. An estimator x̂ is admissible if it is

not dominated by any other linear estimator. If an estimator is inadmissible, then there exists another linear

approach which leads to lower MSE on U . Thus, although we cannot directly compare the performance of

different strategies, we would like our estimator to at least be admissible.

The previous discussion raises three important questions which we would like to address:

1. Given a linear estimator x̂0 of x, can we verify whether or not it is admissible on U?

2. If x̂0 is inadmissible, then

(a) can we develop a systematic method to construct an admissible linear estimator that dominates x̂0 on

U?

(b) can we verify whether or not a given estimator dominates x̂0 on U?

In the next section we provide solutions to the questions above for arbitrary constraint sets U . We then

specialize the results in Sections IV–VII to two choices of U .

III. Admissible and Dominating Estimators on Arbitrary Parameter Sets

We begin with the problem of determining whether a given linear estimator x̂ dominates the linear estimator

x̂0. An explicit condition can be obtained by noting that (3) is equivalent to

supx∈U {ǫ(G,x) − ǫ(G0,x)} ≤ 0;

infx∈U {ǫ(G,x) − ǫ(G0,x)} < 0.
(5)
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For particular choices of U , (5) can be reduced to easily verifiable conditions. This is illustrated for ellipsoidal

parameter sets in Section IV.

Thus, given an estimator x̂0, we can determine whether it is dominated by another estimator x̂ by checking

if it satisfies (5). However, we still need a constructive method for finding a dominating estimator x̂. In

addition, it is desirable to construct x̂ not only to dominate x̂0 but to also be admissible. The following

theorem shows that both problems of admissibility and of constructing a strictly dominating estimator can

be addressed by examining the solution to a convex optimization problem.

Theorem 1: Let x denote the deterministic unknown parameters in the model y = Hx + w, where H is

a known n × m matrix with rank m, and w is a zero-mean random vector with covariance Cw ≻ 0. Let

x̂0 = G0y be a given linear estimate of x, let ǫ(G,x) = E{‖Gy − x‖2}, and let U ⊆ C
m. Define the matrix

Ĝ as

Ĝ = arg min
G

M(G,G0) (6)

where

M(G,G0) = sup
x∈U

{ǫ(G,x) − ǫ(G0,x)} , (7)

let V(G0) = minG M(G,G0), and define x̂ = Ĝy. Then

1. Ĝ is unique;

2. x̂0 is admissible on U if and only if Ĝ = G0, or equivalently, if and only if V(G0) = 0;

3. If V(G0) < 0 then x̂ strictly dominates x̂0 on U ;

4. x̂ is admissible on U .

Before proving the theorem we note that the minimum in (6) is well defined since the objective is continuous

and coercive [32].

Proof: We prove each of the statements 1-4:

1. Since ǫ(G,x) − ǫ(G0,x) is strictly convex in G (because Tr(GCwG∗) is strictly convex) M(G,G0) is

also strictly convex and the minimum of M(G,G0) is unique.

2. Since M(G0,G0) = 0 and Ĝ is unique, V(G0) = 0 implies that Ĝ = G0. The converse is trivially true.

Now, if x̂0 is admissible, then for every G there exists an x ∈ U such that ǫ(G,x) ≥ ǫ(G0,x). Thus,

M(G,G0) ≥ 0 for all G, and V(G0) ≥ 0. Since M(G0,G0) = 0, we also have that V(G0) ≤ 0, from which

we conclude that V(G0) = 0. Conversely, if V(G0) = 0, then since Ĝ is unique, for any G 6= G0, we have

that M(G,G0) > 0, and G0 is admissible.

3. If V(G0) < 0, then ǫ(Ĝ,x) < ǫ(G0,x) for all x ∈ U , and Ĝ strictly dominates G0.

4. From part 2 it suffices to show that V(Ĝ) = 0. Since Ĝ is the unique minimum, for any G 6= Ĝ,

sup
x∈U

{ǫ(G,x) − ǫ(G0,x)} > sup
x∈U

{
ǫ(Ĝ,x) − ǫ(G0,x)

}
. (8)

If V(Ĝ) < 0, then there exists a G such that

ǫ(G,x) < ǫ(Ĝ,x), ∀x ∈ U , (9)
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from which we conclude that

ǫ(G,x) − ǫ(G0,x) < ǫ(Ĝ,x) − ǫ(G0,x), ∀x ∈ U . (10)

But then

sup
x∈U

{ǫ(G,x) − ǫ(G0,x)} ≤ sup
x∈U

{
ǫ(Ĝ,x) − ǫ(G0,x)

}
, (11)

which contradicts (8). Thus V(G0) = 0.

Theorem 1 provides a general recipe for determining admissibility of a linear estimator and for constructing

admissible and strictly dominating estimators, by solving a convex optimization problem1. Therefore, we can

now use the many known techniques for dealing with convex problems in order to develop admissibility and

domination conditions, as we show in the ensuing sections. For general choices of U , iterative procedures that

are designed for saddle point problems can be used to solve (6), such as subgradient algorithms [33] or the

prox method [34].

An interesting result of part 3 of the theorem is that if x̂0 is inadmissible then there exists an estimator

that strictly dominates it. We also note that the only properties of the error measure ǫ(G,x) that are used in

the proof of the theorem are that the function is continuous, coercive and strictly convex. Thus, Theorem 1

is valid for any error measure with these characteristics.

An immediate consequence of Theorem 1 is that the minimax MSE estimator [10] x̂MX = GMXy which is

designed to minimize the worst-case MSE over x ∈ U , strictly dominates any inadmissible unbiased linear

estimator x̂UB = GUBy. Specifically, by definition GMX is the solution to

GMX = arg min
G

sup
x∈U

ǫ(G,x). (12)

For an unbiased linear estimator the MSE, which we denote by ǫ(GUB), does not depend on x. Therefore,

GMX = arg min
G

sup
x∈U

{ǫ(G,x) − ǫ(GUB)} . (13)

Combining (13) with part 4 of the theorem it follows that if GUB is inadmissible, then x̂MX is admissible and

strictly dominates x̂UB.

IV. Dominating Estimators on an Ellipsoid

We now consider the optimization problem (6) for ellipsoidal uncertainty sets of the form

U =
{
x ∈ C

m
∣∣x∗Tx ≤ U2

}
, (14)

with U > 0 and T ≻ 0. Specifically, we develop necessary and sufficient optimality conditions on Ĝ by

using Lagrange duality theory, as well as explicit closed from solutions for many special cases. Using these

conditions, we derive a closed form expression for the minimax MSE estimator of (12) for high SNR values.

1Note that the problem is convex in G for arbitrary constraint sets U since the supremum of a convex function over any set U

is convex.
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This corrects a previous erroneous result of Pilz [9]. (A detailed discussion of the Pilz estimator is provided in

Appendix C.) We also consider efficient numerical solutions for arbitrary choices of G0 and T. In Section V

we use these results to develop an easily verifiable set of necessary and sufficient conditions on an estimator

x̂ to be admissible on U .

We begin with the problem of determining whether a given linear estimator x̂ dominates the linear estimator

x̂0 on the set U defined by (14). Thus, we consider the conditions (5) on U .

From (2) we have that

ǫ(G,x) − ǫ(G0,x) =

= x∗Zx + Tr(GCwG∗) − Tr(G0CwG∗
0), (15)

where we defined

Z = (I − GH)∗(I − GH) − (I − G0H)∗(I − G0H). (16)

By introducing the change of variable u = T1/2x we have that2

max
x∗Tx≤U2

x∗Zx = max
u∗u≤U2

u∗T−1/2ZT−1/2u

= U2 max
(
λmax(ZT−1), 0

)
, (17)

where we used the fact that the eigenvalues of AB are equal to the eigenvalues of BA for any A and B.

Similarly,

min
x∗Tx≤U2

x∗Zx = U2 min
(
λmin(ZT−1), 0

)
. (18)

Using (17) and (18), the conditions (5) become

U2 max
(
λmax(ZT−1), 0

)
≤ Tr (Cw (G∗

0G0 − G∗G)) ;

U2 min
(
λmin(ZT−1), 0

)
< Tr (Cw (G∗

0G0 − G∗G)) .
(19)

We note that alternative conditions are derived in [21].

A. Necessary and Sufficient Optimality Conditions

The next problem we address is how to construct an admissible estimator x̂ strictly dominating a given

inadmissible estimator x̂0. From Theorem 1 it follows that x̂ can be constructed as the solution to the problem

min
G

max
x∈U

{ǫ(G,x) − ǫ(G0,x)} . (20)

Substituting (2) into (20), and noting that Tr(G0CwG∗
0) is independent of x and G, our problem becomes

min
G

max
x∈U

{x∗ ((I − GH)∗(I − GH) − A)x

+Tr(GCwG∗) − Tr(G0CwG∗
0)}, (21)

2Here we have replaced sup by max since the set U is compact.
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where we defined

A = (I − G0H)∗(I − G0H). (22)

Lemma 1 below asserts that the unique optimal G has the form G = B(H∗C−1
w H)−1H∗C−1

w for an m×m

matrix B, which reduces the dimensionality of the problem when m < n.

Lemma 1: Let the m × n matrix G be the solution to the problem (21), where Cw ≻ 0, H is an n × m

matrix with rank m, and U = {x ∈ C
m

∣∣x∗Tx ≤ U2 }. Then

G = B(H∗C−1
w H)−1H∗C−1

w , (23)

where B is the m × m matrix that is the solution to

min
B

{
Tr

(
B(H∗C−1

w H)−1B∗
)

+ max
x∈U

x∗ ((I − B)∗(I − B) − A)x

}
. (24)

Proof: see Appendix A.

Using Lemma 1 our problem reduces to finding the matrix B that is the solution to (24). From (17),

max
x∈U

x∗ ((I − B)∗(I − B) − A)x = U2 max (λmax, 0) , (25)

where

λmax
△
=λmax(T

−1/2 ((I − B)∗(I − B) − A)T−1/2). (26)

We can express max (λmax, 0) as the solution to

min
λ≥0

λ (27)

subject to

T−1/2 ((I − B)∗(I − B) − A)T−1/2 ¹ λI. (28)

The problem (24) can then be reformulated as

min
B,λ≥0

{
Tr

(
B(H∗C−1

w H)−1B∗
)

+ U2λ
}

(29)

subject to (28).

Since the objective in (29) and the constraint (28) are convex in B and λ, and the problem is strictly

feasible, the Karush-Kuhn-Tucker (KKT) conditions [32] assert that B is optimal if and only if there exists a

matrix Π º 0 and a scalar µ ≥ 0 such that the following conditions hold:

1. dL/dB = 0 and dL/dλ = 0 where the Lagrangian L is defined by

L = Tr
(
B(H∗C−1

w H)−1B∗
)

+
(
U2 − µ − Tr(Π)

)
λ

+Tr
(
T−1/2ΠT−1/2 ((I − B)∗(I − B) − A)

)
.
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2. Feasibility: (I − B)∗(I − B) − A ¹ λT, λ ≥ 0;

3. Complementary slackness:

Tr
(
T−1/2ΠT−1/2 ((I − B)∗(I − B) − A)

)
= λTr(Π);

µλ = 0.

In Appendix B we show that these conditions are equivalent to the conditions in the following theorem:

Theorem 2: Consider the problem of Theorem 1. Let x̂0 = G0y be a given linear estimate of x, let

A = (I − G0H)∗(I − G0H), Q = H∗C−1
w H and U = {x ∈ C

m|x∗Tx ≤ U2}. Then,

Ĝ = min
G

max
x∈U

{ǫ(G,x) − ǫ(G0,x)}

has the form Ĝ = BQ−1H∗C−1
w where B satisfies the conditions below for some λ ≥ 0:

1. QB = B∗Q;

2. 0 ¹ QB ≺ Q;

3. (I − B)∗(I − B) ¹ λT + A;

4. (I − B)∗(I − B)B = (λT + A)B;

5. Tr(B (I − B)−1
Q−1T) ≤ U2;

6. λ(Tr(B (I − B)−1
Q−1T) − U2) = 0.

Using the optimality conditions of Theorem 2 we can easily show that Ĝ = 0, or equivalently, B = 0, if and

only if A º I. Indeed, if B = 0, then conditions 1,2,4 and 5 are trivially satisfied. To satisfy 6 we must have

that λ = 0, in which case condition 3 becomes A º I.

B. Closed Form Admissible and Dominating Estimators

We now introduce two classes of problems for which the optimality conditions of Theorem 2 can be solved

explicitly. In Section IV-B.1 we treat the case of jointly diagonalizable matrices, and in Section IV-B.2, the

high SNR scenario with A ¹ I.

B.1 Jointly Diagonalizable Matrices

Suppose that T,Q = H∗C−1
w H and G0H have the same eigenvector matrix. Thus, if Q has an eigende-

composition Q = VΣV∗, where V is a unitary matrix and Σ = diag(σ1, . . . , σm) with σi > 0, then

T = VΛV∗; (30)

G0H = V∆V∗, (31)

where Λ = diag(λ1, . . . , λm) with λi > 0 and ∆ = diag(δ1, . . . , δm). A closed form expression for the optimal

matrix G in this case is given in the following theorem.

Theorem 3: Consider the problem of Theorem 2. Let Q = VΣV∗ where Σ = diag(σ1, . . . , σm) with σi > 0,

and suppose that T = VΛV∗ and G0H = V∆V∗ where Λ = diag(λ1, . . . , λm) with λi > 0 and ∆ =
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diag(δ1, . . . , δm). Then

Ĝ = VDV∗(H∗C−1
w H)−1H∗C−1

w

where D = diag(d1, . . . , dm) with

di =

{
1 −√

ηi, ηi < 1;

0, ηi ≥ 1.
(32)

Here

ηi = λλi + |1 − δi|2, (33)

where λ is determined as follows. Define

G(λ) =
∑

i:ηi<1

λi

σi

(
1√
ηi

− 1

)
− U2. (34)

Then, λ = 0 if G(0) ≤ 0. Otherwise, λ is the unique value in the range (0, α) for which G(λ) = 0, where

α = max
i

1 − |1 − δi|2
λi

. (35)

Proof: To prove the theorem we need to show that B = VDV∗ with di given by (32) satisfies the

conditions of Theorem 2. Using the fact that Q = VΣV∗, T = VΛV∗, G0H = V∆V∗ and Σ ≻ 0, these

conditions become:

1. di = d∗i ;

2. 0 ≤ di < 1;

3. (1 − di)
2 ≤ λλi + |1 − δi|2;

4. di(1 − di)
2 = di

(
λλi + |1 − δi|2

)
;

5.
∑m

i=1
λidi

σi(1−di)
≤ U2;

6. λ
(∑m

i=1
λidi

σi(1−di)
− U2

)
= 0.

Since ηi ≥ 0, di is real and the first condition is satisfied. By definition of di, we also have that di ≥ 0. To

show that di < 1 we need to show that ηi > 0. Since λ ≥ 0, ηi ≥ 0. Furthermore, ηi = 0 if and only if δi = 0

and λ = 0. But, if ηi = 0, then G(0) → ∞ so that λ cannot be equal to 0. Therefore, ηi > 0 and di < 1.

To satisfy conditions 3 and 4 we must have that

(1 − di)
2 = λλi + |1 − δi|2, i : di 6= 0, (36)

and

1 ≤ λλi + |1 − δi|2, i : di = 0. (37)

Since ηi = λλi + |1 − δi|2, both conditions are satisfied. Finally, the last two conditions are satisfied by our

definition of G(λ). It remains to show that if G(0) > 0, then there is a unique value of 0 < λ < α such that

G(λ) = 0.

Since ηi is monotonically increasing in λ > 0, and each term in the sum in the definition of G(λ) is positive,

G(λ) is monotonically decreasing in λ as long as there exists at least on i for which ηi < 1, or equivalently,

as long as λ < α. In addition, G(λ) is continuous. Now, we are assuming that G(0) > 0. Furthermore,
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G(λ) = −U2 for λ ≥ α. Therefore, there is a unique 0 < λ < α such that G(λ) = 0.

B.2 High SNR

We now treat the case in which the matrices are not necessarily commuting, however A ¹ I and the SNR

exceeds a threshold. In this setting, we can also obtain a closed form solution, as incorporated in the following

theorem.

Theorem 4: Consider the problem of Theorem 2. Let

B = I −
(
Q−1(λT + A)Q−1

)1/2
Q, (38)

where λ is chosen as follows. If A−1 is defined, and

Tr
(
Q−1

(
QA−1Q

)1/2
Q−1T

)
≤ Tr

(
Q−1T

)
+ U2

then λ = 0. Otherwise, λ > 0 is the unique solution to

Tr
(
Q−1

(
Q(λT + A)−1Q

)1/2
Q−1T

)

= Tr
(
Q−1T

)
+ U2. (39)

We then have that if

λmax

(
Q

(
Q−1(λT + A)Q−1

)1/2
)
≤ 1 (40)

then Ĝ = B(H∗C−1
w H)−1H∗C−1

w with B given by (38).

Before proving the theorem we show that the solution is indeed valid for large enough SNR values when

A ¹ I. Let Cw = σ2C for some given matrix C, such that U2/Tr(C) = 1. The SNR is then defined as

U2/Tr(Cw) = 1/σ2. Denoting Q0 = H∗C−1H, (40) becomes

λmax(Z) ≤ 1, (41)

where

Z = Q
1/2
0

(
Q−1

0 (λT + A)Q−1
0

)1/2
Q

1/2
0 , (42)

and λ is chosen to satisfy

Tr
(
Q−1

0

(
Q0(λT + A)−1Q0

)1/2
Q−1

0 T
)

= Tr
(
Q−1

0 T
)

+
1

σ2
U2. (43)

We now show that for high enough SNR, λmax(Z) ≤ 1. To this end we note that λmax(Z) is continuous and

monotonically increasing in λ. For high values of λ, λmax(Z) will be larger than one. For λ = 0, we have that

λmax(Z) ≤ 1. Indeed, since A ¹ I,

Q−1
0 AQ−1

0 ¹ Q−2
0 . (44)
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Using the fact that if W ¹ X then W1/2 ¹ X1/2 [35, Theroem 1.1], we conclude that Z ¹ I. Therefore,

there exists a value λ0 such that for λ ≤ λ0, we have λmax(Z) ≤ 1. Now, from (43) it follows that as the SNR

increases, λ decreases. Thus, for high enough SNR values (40) will be satisfied for any choice of T, Q0 and

A ¹ I.

We also note that B of (38) is invariant to scaling of the matrix T and the constant U2, i.e., if T and U2

are multiplied by a constant c, then B remains the same. This follows from the fact that from (39), λT is

invariant to this scaling.

We now prove Theorem 4.

Proof: To prove the theorem we need to show that B of (38) satisfies the optimality conditions of

Theorem 2.

Since Q, T and A are Hermitian, the first condition is satisfied. From the definition of λ we have that

λT + A ≻ 0 so that BQ ≺ I. The assumption (40) implies that

Q1/2
(
Q−1(λT + A)Q−1

)1/2
Q1/2 ¹ I, (45)

so that QB º 0. Now,

(I − B)∗(I − B) = λT + A (46)

and conditions 3 and 4 are also satisfied. Conditions 5 and 6 follow from the fact that

B(I − B)−1 = Q−1
(
Q(λT + A)−1Q

)1/2 − I, (47)

so that

Tr
(
B(I − B)−1Q−1T

)
= −Tr

(
Q−1T

)

+Tr
(
Q−1

(
Q(λT + A)−1Q

)1/2
Q−1T

)
. (48)

It remains to show that there exists a λ > 0 satisfying (39). This follows from the fact that the left hand side

of (39) is monotonically decreasing in λ, is equal to 0 for λ → ∞ and is larger than the right hand side when

λ → 0.

A simplified special case of Theorem 4 arises when A = βT for some β ≥ 0:

Corollary 5: Consider the problem of Theorem 2 with A = βT for some 0 < β ≤ 1/λmax(T). Let

B = I − α
(
Q−1TQ−1

)1/2
Q, (49)

where α is chosen as follows. If β > 0 and

√
β ≥ Tr

(
(Q−1TQ−1)1/2

)

U2 + Tr(Q−1T)

then α =
√

β. Otherwise,

α =
Tr

(
(Q−1TQ−1)1/2

)

U2 + Tr(Q−1T)
.
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We then have that if

λmin

(
Q−1(QT−1Q)1/2

)
≥ α

then Ĝ = B(H∗C−1
w H)−1H∗C−1

w with B given by (49).

B.3 Minimax MSE Estimator

Corollary 5 can be used to develop a closed form solution for the minimax MSE estimator of (12) for high

SNR. Specifically, from (13) it follows that the minimax MSE estimator can be obtained as the solution to

minG maxx∈U {ǫ(G,x) − ǫ(GUB)}, where GUBH = I. In this case, A = 0 = βT with β = 0. From Corollary 5

we then have that if

λmin

(
Q−1(QT−1Q)1/2

)
≥ α (50)

where

α =
Tr

(
(Q−1TQ−1)1/2

)

U2 + Tr(Q−1T)
, (51)

then the optimal minimax MSE matrix G is

G = (I − α
(
Q−1TQ−1

)1/2
Q)Q−1H∗C−1

w . (52)

Since A ¹ I, our general discussion implies that the solution (52) will be valid at high SNR for any Q0 and

T.

In [10] a closed form expression for the minimax MSE estimator was derived for the case of commuting

matrices. The minimax MSE estimator for general matrices was developed under a certain condition by Pilz

in [9], and coincides with the solution of [10] when the matrices commute. However, the solution of [9] is

incorrect in general (the error occurs in the proof of Theorem 4), and leads to a larger worst-case MSE then

our estimator (52). To demonstrate this, in Fig. 1 we plot the worst-case MSE as a function of the SNR

defined by −10 log σ2 where Cw = σ2I resulting from the minimax MSE estimator of (52) and that proposed

in [9], for m = 3, U2 = 1, T = diag(1, 0.8, 0.3) and

H∗H =




1 0.6 0.4

0.6 1 0.6

0.4 0.6 1


 . (53)

Clearly, the two estimators are different. Furthermore, our estimator leads to a smaller worst-case MSE,

proving that the estimator of [9] cannot be minimax. A detailed discussion of the Pilz estimator and its

relation with the minimax MSE estimator of (52) is provided in Appendix C.

C. SDP Formulation

We have seen in the previous section that in some special cases, Theorem 2 can be used to develop explicit

solutions to (21). We now treat the general case, and show that the optimal G can be found numerically

by solving an SDP [30], [31], which is the problem of minimizing a linear objective subject to linear matrix

inequality constraints, i.e., constraints of the form Z(x) º 0, where the matrix Z depends linearly on x.
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Fig. 1. Worst-case MSE in estimating x as a function of SNR using the minimax estimator of (52) and that proposed
in [9].

The advantage of this formulation is that it readily lends itself to efficient computational methods which are

guaranteed to converge to the global optimum.

The problem (21) was shown in Section IV to be equivalent to minimizing (29) subject to (28), which can

be written as

min
τ,B,λ≥0

τ (54)

subject to

Tr
(
B(H∗C−1

w H)−1B∗
)

+ U2λ ≤ τ

T−1/2(I − B)∗(I − B)T−1/2 ¹ λI + T−1/2AT−1/2. (55)

Let b = vec((H∗C−1
w H)−1/2B∗), where m = vec(M) denotes the vector obtained by stacking the columns of

M. With this notation the constraints (55) become

b∗b + U2λ ≤ τ

T−1/2(I − B)∗(I − B)T−1/2 ¹ λI + T−1/2AT−1/2. (56)

Next we exploit the following lemma [36, p. 28]:

Lemma 2 (Schur’s complement) Let

M =

[
X Y∗

Y Z

]

be a Hermitian matrix. Then M º 0 if and only if Z º 0, X−Y∗Z†Y º 0 and Y∗(I−ZZ†) = 0. Equivalently,

M º 0 if and only if X º 0, Z − YX†Y∗ º 0 and Y(I − XX†) = 0.
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From Lemma 2 it follows that the constraints (56) are equivalent to the linear matrix inequalities

[
τ − U2λ b∗

b I

]
º 0

[
λI + T−1/2AT−1/2 T−1/2(I − B)∗

(I − B)T−1/2 I

]
º 0. (57)

The problem of (21) can thus be formulated as the SDP minτ,B,λ≥0 τ subject to (57). Denoting the optimal

τ and B by τ̂ and B̂ we have that V(G0) = τ̂ − Tr(G0CwG∗
0), and Ĝ = B̂(H∗C−1

w H)−1H∗C−1
w .

V. Admissible Estimators on an Ellipsoid

We now use Theorem 2 to develop necessary and sufficient conditions on x̂0 to be admissible on U of (14).

Theorem 6: Let x̂0 = G0y be a given linear estimate of x in the model (1), let B = G0H and let Q =

H∗C−1
w H. Then x̂0 is admissible on U = {x ∈ C

m|x∗Tx ≤ U2} if and only if G0 = BQ−1H∗C−1
w for a matrix

B satisfying:

1. QB = B∗Q;

2. 0 ¹ QB ≺ Q;

3. Tr
(
B(I − B)−1Q−1T

)
≤ U2.

The admissibility conditions of the theorem can be shown to be equivalent to those derived in [20], [22].

However, our method of proof is different. Since our proof is direct and straightforward, we include it here

for completeness.

Proof: To prove the theorem it is sufficient to show that G0 is the optimal solution to (20), or equivalently,

that B = G0H satisfies the conditions of Theorem 2 with A = (I − B)∗(I − B) for some λ ≥ 0 if and only if

it satisfies conditions 1-3.

Since conditions 1-3 are a subset of the conditions of Theorem 2, it follows immediately that any B satisfying

Theorem 2 also satisfies conditions 1-3. On the other hand, if B satisfies conditions 1-3, then it also satisfies

the conditions of Theorem 2 with λ = 0, completing the proof.

Given an admissible estimator x̂0, we can construct a whole class of admissible estimators by simply scaling

x̂0, as incorporated in the following proposition.

Proposition 1: If x̂0 is admissible on U of (14), then αx̂0 is admissible for any 0 ≤ α < 1.

Proof: From Theorem 6, x̂0 = B0Q
−1H∗C−1

w y for some B0, so that x̂ = BQ−1H∗C−1
w y where B = αB0.

Since QB0 = B∗
0Q, we have immediately that QB = B∗Q. Similarly, since 0 ≤ α < 1, the fact that

0 ¹ QB0 ≺ Q implies that 0 ¹ QB ≺ Q. It remains to show that if B0 satisfies condition 3, then so does

αB0. Now,

αB0(I − αB0)
−1Q−1 = (Q − αQB0)

−1 − Q−1. (58)

Since 0 ≤ α < 1, and Q − αQB0 is Hermitian,

Q − αQB0 º Q − QB0 ≻ 0, (59)
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so that

(Q − αQB0)
−1 ¹ (Q − QB0)

−1. (60)

Therefore,

αB0(I − αB0)
−1Q−1 ¹ (Q − QB0)

−1 − Q−1

= B0(I − B0)
−1Q−1. (61)

We now rely on the following lemma (see, e.g., [37]):

Lemma 3: Let T,W and M be Hermitian nonnegative definite matrices with W ¹ T. Then Tr(MW) ≤
Tr(MT).

Using Lemma 3 together with (61) we have that

Tr
(
αB0(I − αB0)

−1Q−1T
)
≤

Tr
(
B0(I − B0)

−1Q−1T
)
≤ U2, (62)

completing the proof.

Another general class of admissible estimators is given in the following proposition.

Proposition 2: Consider the problem of Theorem 6. Let Q = VΣV∗, where V is a unitary matrix and

Σ = diag(σ1, . . . , σm) with σi > 0. Then x̂ = BQ−1H∗C−1
w is admissible for any B = V∆V∗ where

∆ = diag(δ1, . . . , δm) and the values δi satisfy

0 ≤ δi < 1, 1 ≤ i ≤ m;
∑m

i=1
ziδi

(1−δi)σi

≤ U2,

where zi is the ith diagonal element of V∗TV.

Proof: To prove the proposition we need to show that B = V∆V∗ satisfies the conditions of Theorem 6.

The first two conditions are trivially satisfied. The last condition follows from the fact that

Tr
(
B(I − B)−1Q−1T

)
= Tr

(
∆(I − ∆)−1Σ−1V∗TV

)

=

m∑

i=1

ziδi

(1 − δi)σi
. (63)

VI. Examples

We now consider some examples of admissible and strictly dominating estimators on the ellipsoidal con-

straint set of (14).
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A. Tikhonov Estimation

A popular estimator in applications is the Tikhonov estimator [5], [4], which has the form

x̂TIK = (HC−1
w H + M)−1H∗C−1

w y, (64)

for some M ≻ 0. This estimator can be obtained as the solution to the regularized least-squares problem

min
x̂

{
(y − Hx̂)∗C−1

w (y − Hx̂) + x̂∗Mx̂
}

. (65)

Using Theorem 6 we can develop conditions on M such that x̂TIK is admissible:

Proposition 3: The Tikhonov estimator is admissible on U = {x ∈ C
m|x∗Tx ≤ U2} if and only if

Tr(TM−1) ≤ U2.

Proof: To prove the proposition we need to show that the conditions of Theorem 6 are satisfied if and

only if Tr(TM−1) ≤ U2.

Denoting Q = H∗C−1
w H, we can express x̂TIK as x̂TIK = BQ−1H∗C−1

w , with B = (Q + M)−1Q. We have

immediately that QB = B∗Q for any choice of M. Next, from the fact that Q + M ≻ 0,

QB = Q(Q + M)−1Q ≻ 0. (66)

Finally, since (Q+M)−1 ≺ Q−1 we have that QB ≺ Q. Therefore, x̂TIK is admissible if and only if it satisfies

the trace condition (condition 3).

Now,

I − B = I − (Q + M)−1Q = (Q + M)−1M. (67)

Therefore,

B(I − B)−1 = (I + Q−1M)−1(M−1Q + I) = M−1Q, (68)

where the last equality can be verified by multiplying both sides of the equation by I + Q−1M. Using (68),

Tr
(
B(I − B)−1Q−1T

)
= Tr

(
M−1T

)
, (69)

completing the proof.

Suppose now that M does not satisfy the constraint Tr
(
M−1T

)
≤ U2, so that x̂TIK is inadmissible. To

obtain an admissible estimator, one approach is to modify x̂TIK by multiplying M by a scalar α satisfying

α ≥ Tr(TM−1)/U2, resulting in the admissible Tikhonov estimator

x̂ADM

TIK
=

(
H∗C−1

w H + αM
)−1

H∗C−1
w y. (70)

Note, however, that we are not guaranteed that the estimator (70) dominates the original Tikhonov estimator

x̂TIK. Indeed, in Figs. 2 and 3 we plot the MSE of x̂TIK and x̂ADM

TIK
for U2 = .5 and U2 = 2 respectively, as a

function of the SNR defined by −10 log σ2, where Cw = σ2I. The parameters are chosen as m = 3, T = I,
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M = (0.6m/U2)I,

H∗H =




1 0.6 0.4

0.6 1 0.6

0.4 0.6 1


 , (71)

and x = U2[1 1 1]/
√

3. It is evident from the figures that x̂ADM

TIK
does not dominate x̂TIK.

An estimator that is admissible and strictly dominates x̂TIK can be obtained from Theorem 1 as x̂ = Ĝy

where

Ĝ = arg min
G

max
x∈U

{ǫ(G,x) − ǫ(G0,x)} (72)

with G0 = (Q+M)−1QH∗C−1
w . We refer to this estimator as the minimax admissible estimator. In the case

in which T = I and M = βI for some β > 0, we have that B = G0H, T and Q have the same eigenvector

matrix. We can then use Theorem 3 to obtain a closed form solution for the minimax admissible estimator.

It can be seen from the theorem that the resulting estimator is no longer a Tikhonov estimator in general.

The MSE resulting from the minimax admissible estimator is plotted as a function of the SNR in Figs. 2

and 3. As can be seen from the figures, this estimator dominates the original Tikhonov estimator for all SNR.
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Fig. 2. MSE in estimating x as a function of SNR using the Tikhonov, admissible Tikhonov and minimax admissible
estimators, for U2 = 0.5.

B. Shrunken Estimator

Another popular estimator is the shrunken estimator [6], which is a shrinkage of the least-squares estimator,

and is given by

x̂SH = αx̂LS = α(H∗C−1
w H)−1H∗C−1

w y (73)

for some 0 ≤ α < 1. For this estimator, B = αI, and therefore it follows from Theorem 6 that x̂SH is admissible

if and only if 0 ≤ α ≤ U2/(U2 + Tr(Q−1T)).

We now use Theorem 3 to find a strictly dominating and admissible estimator in the case in which T = I

and α > U2/(U2 + Tr(Q−1)). Since δi = α, ηi = η is independent of i and is given by η = λ + (1−α)2. Thus,
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Fig. 3. MSE in estimating x as a function of SNR using the Tikhonov, the admissible Tikhonov and the minimax
admissible estimators, for U2 = 2.

λ is chosen such that (
1√
η
− 1

) m∑

i=1

1

σi
= U2, (74)

which results in
√

η =
Tr(Q−1)

U2 + Tr(Q−1)
. (75)

We conclude that the minimax admissible estimator is always a shrunken estimator with shrinkage

β = 1 −√
η =

U2

U2 + Tr(Q−1)
. (76)

The resulting shrunken estimator is equivalent to the minimax MSE estimator derived in [10] for the case

T = I.

VII. Admissible and Dominating Estimators on The Entire Space

We now treat the case in which U = C
m, so that x is not restricted. The main difference between this setting

and the ellipsoidal constraint case is that, as we will see below, when x is not restricted the optimization

problem we end up with is not strictly feasible. Therefore, some manipulations are necessary in order to

develop a solution.

A. Dominating Estimators

Given an inadmissible estimator x̂0, we can use Theorem 1 to construct an admissible estimator x̂ strictly

dominating x̂0 on C
m by solving the problem

min
G

{
Tr(GCwG∗) + sup

x

x∗Zx

}
(77)
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where Z is defined in (16). Now,

sup
x

x∗Zx =

{
0, Z ¹ 0;

∞, otherwise.
(78)

Therefore, (77) is equivalent to

min
G

Tr(GCwG∗) (79)

subject to

(I − GH)∗(I − GH) ¹ (I − G0H)∗(I − G0H)
△
=A. (80)

Using arguments similar to Lemma 1 we can show that the optimal solution has the form Ĝ = BQ−1H∗C−1
w ,

where Q = H∗CwH and B is the solution to

min
B

Tr(BQ−1B∗) (81)

subject to

(I − B)∗(I − B) ¹ A. (82)

The constraint (82) is not strictly feasible if A is rank deficient, so that we cannot apply the KKT conditions.

To obtain a strictly feasible problem we note that using Lemma 2, (82) is equivalent to

(I − B)A†(I − B)∗ ¹ I;

(I − B)(I − AA†) = 0. (83)

Denoting by PN (A) the orthogonal projection onto the null space N (A) of A, the constraints (83) can be

written as

A†/2(I − B)∗(I − B)A†/2 ¹ I;

(I − B)PN (A) = 0, (84)

where we used the notation A†/2 = (A†)1/2. From (84) it follows that I − B = XPR for some matrix X,

where PR
△
=PR(A) = I − PN (A) is the orthogonal projection onto the range space R(A) of A. Substituting

B = I − XPR (85)

into (81) and (84), our problem becomes

min
X

Tr
(
(XPR − I)Q−1(XPR − I)∗

)
(86)

subject to

A†/2X∗XA†/2 ¹ I, (87)

which is a strictly feasible convex optimization problem. Therefore, we can now use the KKT conditions to

find optimality conditions, resulting in the following theorem.
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Theorem 7: Consider the problem of Theorem 1. Let x̂0 = G0y be a given linear estimate of x, let

A = (I − G0H)∗(I − G0H) and Q = H∗C−1
w H. Denote the orthogonal projection onto R(A) by PR and let

M = (Q(I − B))† − PRQ−1PR. Then,

Ĝ = min
G

sup
x

{ǫ(G,x) − ǫ(G0,x)}

has the form Ĝ = BQ−1H∗C−1
w where B satisfies

1. QB = B∗Q;

2. 0 ¹ QB ¹ Q;

3. (I − B)PR = I − B;

4. (I − B)∗(I − B) ¹ A;

5. (I − B)∗(I − B)M = AM.

Proof: see Appendix D.

In Theorems 8 and 9 below we use the conditions of Theorem 7 to derive explicit closed form solutions for

the same special cases treated in Section IV-B. For arbitrary choices of A and Q an SDP formulation similar

to that presented in Section IV-C can be used.

Theorem 8: Consider the problem of Theorem 7. Let Q = VΣV∗ where Σ = diag(σ1, . . . , σm) with σi > 0,

and suppose that G0H = V∆V∗ where ∆ = diag(δ1, . . . , δm). Then

Ĝ = VDV∗(H∗C−1
w H)−1H∗C−1

w

where D = diag(d1, . . . , dm) with

di =

{
1 − |1 − δi|, |1 − δi| < 1;

0, |1 − δi| ≥ 1.
(88)

Note that this theorem is analogous to Theorem 3 where here we replace λ by 0.

Proof: To prove Theorem 8 we need to show that B = VDV∗ with di given by (88) satisfies the

optimality conditions of Theorem 7. Using the fact that Q = VΣV∗, G0H = V∆V∗ and Σ ≻ 0 we have that

PR = VZV∗ where Z = diag(z1, . . . , zm) with

zi =

{
1, δi 6= 1;

0, δi = 1,
(89)

and M = VΣ−1((I − D)† − Z)V∗. The conditions then become:

1. di = d∗i ;

2. 0 ≤ di ≤ 1;

3. di = 1 for all i such that δi = 1;

4. (1 − di)
2 ≤ |1 − δi|2;

5. (1 − di)
2 = |1 − δi|2 for all {i : di 6= 0, δi 6= 1},

which are clearly satisfied.

Next we consider non-commuting matrices with bounded eigenvalues:
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Theorem 9: Consider the problem of Theorem 7, and let

B = I −
(
Q−1AQ−1

)1/2
Q. (90)

We then have that if

λmax

(
Q

(
Q−1AQ−1

)1/2
)
≤ 1 (91)

then Ĝ = B(H∗C−1
w H)−1H∗C−1

w with B given by (90).

Proof: To prove the theorem we need to show that B given by (90) satisfies the optimality conditions

of Theorem 7.

Since Q and A are Hermitian, the first condition is satisfied. Furthermore, using the fact that A º 0 we

have that QB ¹ I. The assumption (91) implies that

Q1/2
(
Q−1AQ−1

)1/2
Q1/2 ¹ I, (92)

so that QB º 0. Now,

(I − B)∗(I − B) = A (93)

and conditions 4 and 5 are also satisfied. To prove condition 3 we need to show that (I−B)z =
(
Q−1AQ−1

)1/2
Qz =

0 for any z ∈ N (A); this is equivalent to Q−1AQ−1Qz = 0 which is clearly satisfied, completing the proof.

B. Admissible Estimators

We now use Theorem 7 to develop necessary and sufficient conditions on x̂0 to be admissible for all x.

Theorem 10: Let x̂0 = G0y be a given linear estimate of x in the model (1), let B = G0H and let

Q = H∗C−1
w H. Then x̂0 is admissible on C

m if and only if G0 = BQ−1H∗C−1
w for a matrix B satisfying

1. QB = B∗Q;

2. 0 ¹ QB ¹ Q.

Proof: The theorem follows by noting that B = G0H satisfies the conditions of Theorem 7 where

A = (I − B)∗(I − B) if and only if it satisfies conditions 1-2.

A general class of admissible estimators is given in the following proposition.

Proposition 4: Consider the problem of Theorem 10. Let Q = VΣV∗, where V is a unitary matrix and

Σ = diag(σ1, . . . , σm) with σi > 0. Then x̂ = BQ−1H∗C−1
w is admissible for any B = V∆V∗ where

∆ = diag(δ1, . . . , δm) and the values δi satisfy 0 ≤ δi ≤ 1.

Proof: The proof follows by showing that the resulting estimator satisfies the conditions of Theorem 10.

VIII. Conclusion

We addressed the important issue of comparing the MSE performance of linear estimators by considering

a unified approach for developing admissible estimators strictly dominating a given linear estimator, and for

characterizing the admissibility of linear estimators. The results can be applied to arbitrary constraint sets on
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the parameter vector to be estimated, and general error measures. As we showed, the admissibility of a linear

estimator as well as the construction of a linear estimator strictly dominating an inadmissible strategy can

both be treated by considering a certain convex optimization problem. The machinery of convex optimization

can then be utilized to analyze the MSE performance for specific uncertainty sets.

Our results can be used in practice to help select an appropriate estimator from the multitude of methods

proposed in the literature. We also suggest methods for designing new estimators with lower MSE in the case

in which the conventional approaches are inadmissible.

An interesting extension of this work is to apply our general procedure to other parameter sets that appear

in applications. For example, in an image processing context the elements xi of x, which represent pixel

values, are always nonnegative so that U = {x ∈ C
m|xi ≥ 0}.

Appendix

I. Proof of Lemma 1

To prove the lemma we note that the objective in (21) depends on G only through GH and Tr(GCwG∗).

For any choice of G,

Tr(GCwG∗) = Tr(GC1/2
w PC1/2

w G∗)

+Tr(GC1/2
w (I − P)C1/2

w G∗)

≥ Tr(GC1/2
w PC1/2

w G∗), (94)

where

P = C−1/2
w H(H∗C−1

w H)−1H∗C−1/2
w (95)

is the orthogonal projection onto R(C
−1/2
w H). In addition, GH = GC

1/2
w PC

−1/2
w H since PC

−1/2
w H =

C
−1/2
w H. Now, suppose that G is an optimal solution to (21), and let G′ = GC

1/2
w PC

−1/2
w . Then G′H = GH

and Tr(G′CwG′∗) = Tr(GC
1/2
w PC

1/2
w G) ≤ Tr(GCwG∗). Since from Theorem 1 the solution is unique we

must have that G = G′, or G = GC
1/2
w PC

−1/2
w . Using (95),

G = GH(H∗C−1
w H)−1H∗C−1

w

= B(H∗C−1
w H)−1H∗C−1

w , (96)

for some m × m matrix B. The proof of the lemma then follows from substituting G of (96) into (21).

II. KKT Conditions

In this appendix, we show that the KKT conditions can be reduced to the conditions of Theorem 2. To

this end, we express the Lagrange multiplier Π as a function of B, and then translate the conditions on Π to

conditions on B.

Differentiating L with respect to λ and equating to 0,

Tr(Π) = U2 − µ. (97)
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Since µ ≥ 0, (97) implies that Tr(Π) ≤ U2.

Differentiating L with respect to B and equating to 0,

B = T−1/2ΠT−1/2
(
Q−1 + T−1/2ΠT−1/2

)−1
, (98)

where Q = H∗C−1
w H. Note, that since Q ≻ 0 and T−1/2ΠT−1/2 º 0, the inverse in (98) is always defined.

With B given by (98),

I − B =
(
I + Π̃Q

)−1
, (99)

where we denoted Π̃ = T−1/2ΠT−1/2 and used the matrix inversion lemma [37]. To show that the inverse

exists, suppose to the contrary that there exists a z 6= 0 such that

(I + Π̃Q)z = 0. (100)

Then, multiplying both sides of (100) by z∗Q,

z∗QΠ̃Qz = −z∗Qz. (101)

Since Π̃ º 0 and QΠ̃Q º 0, (101) implies that z∗QΠ̃Qz = z∗Qz = 0, which is impossible since Q ≻ 0.

Taking the inverse on both sides of (99) and using the matrix inversion lemma,

Π̃ =
(
(I − B)−1 − I

)
Q−1 = B (I − B)−1

Q−1. (102)

Since Π is Hermitian and nonnegative definite, so is Π̃. Thus any B such that Π̃ of (102) is Hermitian and

nonnegative definite can be expressed in the form of (98).

The requirement Π̃ = Π̃∗ is equivalent to

(I − B)−1
Q−1 = Q−1 (I − B∗)−1 , (103)

which, taking the inverse of both sides, becomes QB = B∗Q. The condition Π̃ º 0 reduces to

(I − B)−1
Q−1 º Q−1. (104)

Since Q−1 ≻ 0, (104) implies that (I − B)−1
Q−1 ≻ 0, which is equivalent to Q−QB ≻ 0. Taking the inverse

on both sides of (104) we also have that Q º Q − QB, which together imply that 0 ¹ QB ≺ Q. Thus, B

and λ satisfy the first KKT condition if B∗Q = QB, 0 ¹ QB ≺ Q, and

Tr(Π) = Tr
(
B (I − B)−1

Q−1T
)
≤ U2. (105)

We now consider the complementary slackness condition. To this end let

Z = λI − T−1/2 ((I − B)∗(I − B) − A)T−1/2. (106)
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From feasibility we have that Z º 0, and from complementary slackness Tr(ZΠ) = 0. Since Π º 0, this

implies that ZΠ = 0, or

λTΠ̃ = ((I − B)∗(I − B) − A) Π̃. (107)

Substituting (102) into (107), the condition becomes

(λT + A)B = (I − B)∗(I − B)B. (108)

Finally, since from (97) we have that µ = U2−Tr(Π), the second complementary slackness condition becomes

λ(U2 − Tr(Π)) = 0, completing the proof.

III. Discussion of the Results of [9]

In this appendix we discuss the minimax MSE solution of [9]. In particular, we show that this solution

coincides with the minimax MSE estimator of (52) only in the case in which the matrices T and Q are jointly

diagonalizable.

In [9, Theorem 4], Pilz considers the minimax MSE estimator that minimizes the worst-case weighted MSE

E {(Gy − x)∗U(Gy − x)} for some weighting matrix U. The maximum is over all x satisfying (x−x0)
∗T(x−

x0) ≤ 1 where x0 is an arbitrary fixed vector. Let Q = H∗C−1
w H have an eigendecomposition Q = SCS∗

where S is unitary and C = diag(c1, . . . , cm). Then, in the case U = I and x0 = 0, which is the case considered

in this paper, the proposed estimator is given by

x̂P = BPQ
−1H∗C−1

w y, (109)

where

BP =
(
I + Q−1M−1

)−1
. (110)

Here

M = Q−1SDS∗Q−1, (111)

and D is a diagonal matrix with diagonal elements

di =
1 +

∑m
j=1 cjzj√

zi
∑m

j=1
√

zj
− ci, 1 ≤ i ≤ m, (112)

where zi is the ith diagonal element of the matrix

Z = S∗Q−1TQ−1S. (113)

Substituting (111) into (110),

BP =
(
I + SD−1CS∗

)−1
= I −

(
I + SDC−1S∗

)−1
, (114)

where we used the facts that Q = SCS∗ and for any invertible matrix A, (I + A)−1 = I− (I + A−1)−1. The
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solution x̂P is claimed to be valid as long as

max
1≤i≤m

ci
√

zi ≤
1 +

∑m
j=1 cjzj∑m

j=1
√

zj
. (115)

We now show that the estimator x̂P is similar in structure to the minimax MSE estimator of (52), however,

the two coincide only in the case in which T and Q are jointly diagonalizable, i.e., only when S∗TS is a

diagonal matrix.

Denoting by P the diagonal matrix with diagonal elements zi, the matrix D can be written as

D =
1

β
P−1/2 − C, (116)

where

β =
Tr

(
P1/2

)

1 + Tr(CP)
=

Tr
(
(SPS∗)1/2

)

1 + Tr(QSPS∗)
. (117)

Here we used the fact that (SXS∗)1/2 = SX1/2S∗ for any X º 0. Substituting D of (116) into (114),

BP = I − βSP1/2CS∗ = I − βSP1/2S∗Q. (118)

Comparing (118) with (52) we see that the two expressions are similar. They coincide if and only if

SP1/2S∗ =
α

β

(
Q−1TQ−1

)1/2
, (119)

or, equivalently,

P =
α2

β2
S∗Q−1TQ−1S =

α2

β2
Z, (120)

where Z and α are defined in (113) and (51), respectively. By definition, P is the diagonal matrix with

diagonal elements zi. Therefore, (120) is satisfied if and only if Z is diagonal, and α = β. Now, we can write

Z as Z = C−1S∗TSC−1. Since C is diagonal, it follows that Z is diagonal only if S∗TS is diagonal. In this

case, P = Z and β of (117) reduces to

β =
Tr

(
(Q−1TQ−1)1/2

)

1 + Tr(Q−1T)
= α. (121)

Furthermore, if Z is diagonal, then the condition (115) can be written as

CZ1/2 ¹ 1 + Tr(CZ)

Tr
(
Z1/2

) I =
1

α
I. (122)

Since CZ1/2 = S∗Q(Q−1TQ−1)1/2S, (122) becomes

λmax

(
S∗Q(Q−1TQ−1)1/2S

)

= λmax

(
Q(Q−1TQ−1)1/2

)
≤ 1

α
, (123)
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or, equivalently,

α ≤ 1

λmax

(
Q(Q−1TQ−1)1/2

) = λmin

(
Q−1(QT−1Q)1/2

)
, (124)

which is the same as (50).

We conclude that the solution in [9] coincides with the minimax MSE estimator of (52) only if Q and

T are jointly diagonalizable. Otherwise, our estimator of (52) leads to smaller worst-case performance, as

demonstrated in the example in Fig. 1. Note, that the case of jointly diagonalizable matrices has been treated

in [10], in which it was shown that a closed form solution exists for all choices of Q and T, not only for

matrices satisfying (120).

We now discuss the source of the error in the proof of [9, Theroem 4]. The problem considered is that of

minimizing Tr(S∗XS + C)−1 subject to Tr(Q−1TQ−1X) = 1, where X º 0. The author claims that

Tr(S∗XS + C)−1 ≥ Tr(L + C)−1 (125)

where L is a diagonal matrix with diagonal elements equal to the diagonal elements of S∗XS, with equality

if and only if S∗XS is diagonal. The author then concludes that the optimal choice of X is such that S∗XS

is diagonal. This conclusion is indeed correct if the problem is not constrained. However, since the problem

is constrained, we cannot draw such a conclusion, since this condition may result in a stricter constraint on

the diagonal values resulting in a higher objective.

IV. Proof of Theorem 7

From the KKT conditions applied to the problem of (86) and (87) it follows that X is optimal if and only

if there exists a matrix Π º 0 such that:

1. dL/dX = 0 where the Lagrangian L is defined as

L = Tr
(
(XPR − I)Q−1(XPR − I)∗

)

+Tr
(
Π

(
A†/2X∗XA†/2 − I

))
.

2. Feasibility: A†/2X∗XA†/2 ¹ I;

3. Complementary slackness: Tr(ΠA†/2X∗XA†/2) = Tr(Π).

Differentiating L with respect to X and equating to 0,

X
(
PRQ−1PR + A†/2ΠA†/2

)
= Q−1PR. (126)

We next exploit the following lemma.

Lemma 4: Let W,Z º 0. Then R(W + Z) = R(W) ∪R(Z).

Proof: To prove the lemma it suffices to show that

N (W + Z) = N (W) ∩N (Z). (127)
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Indeed, since R(D) = N (D)⊥ for any Hermitian matrix D, if (127) is satisfied then R(W + Z) = (N (W) ∩
N (Z))⊥ = N (W)⊥ ∪N (Z)⊥ = R(W) ∪R(Z).

Now, clearly (W + Z)x = 0 for any x ∈ N (W) ∩N (Z). Let x be such that (W + Z)x = 0. Then,

x∗Wx = −x∗Zx. (128)

Since x∗Wx ≥ 0 and −x∗Zx ≤ 0, we conclude that (128) can hold true only if Wx = 0 and Zx = 0 so that

x ∈ N (W) ∩N (Z).

Since R(PRQ−1PR) = R(A), and R(A†/2ΠA†/2) ⊆ R(A), from Lemma 4 it follows that R(PRQ−1PR +

A†/2ΠA†/2) = R(A). From (126) we then have that

QXPR =
(
PRQ−1PR + A†/2ΠA†/2

)†
, (129)

or equivalently,

(QXPR)† = PRQ−1PR + A†/2ΠA†/2, (130)

and

R(QXPR) = R(A). (131)

Thus X satisfies the first KKT condition if and only if there exists a Π º 0 such that (129) or (130) are

satisfied.

The requirement Π = Π∗ is equivalent to QXPR = PRX∗Q, or in terms of the matrix B,

QB = B∗Q. (132)

The constraint Π º 0 reduces to

(QXPR)† − PRQ−1PR º 0, (133)

which using Lemma 2 is equivalent to

QXPR º 0; (134)

Q º PRQXPR; (135)

R(PRQXPR) = R(A). (136)

The condition (136) follows from (131). Substituting (85) into (134), the condition becomes QB ¹ Q, and

(135) reduces to

PRQ(I − B)PR ¹ Q. (137)

Now, from (84) we have that (I − B)PR = I − B. In addition, from (132),

PRQ(I − B) = (Q(I − B)PR)∗ = (Q(I − B))∗ = Q(I − B). (138)
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Thus, PRQ(I − B)PR = Q(I − B) and (137) is equivalent to QB º 0. We conclude that the first KKT

condition is satisfied if and only if QB = B∗Q, 0 ¹ QB ¹ Q and (I − B)PR = I − B.

Using the fact that XA†/2 = XPRA†/2 and (I−B)PR = I−B the second KKT condition is equivalent to

(I − B)∗(I − B) ¹ A. The third condition can be written as

Tr(Π̃(I − B)∗(I − B)) = Tr(Π), (139)

where Π̃ = A†/2ΠA†/2. Writing Π as Π = ΠPR + Π(I − PR) = ΠA†/2AA†/2 + Π(I − PR), (139) becomes

Tr
(
Π̃ ((I − B)∗(I − B) − A)

)
= Tr(Π(I − PR)). (140)

Since Π̃ º 0 and A − (I − B)∗(I − B) º 0, the left-hand side of (140) is non-positive, while the right-hand

side is non-negative since Π º 0 and I − PR º 0. Therefore, (140) is satisfied if and only if

(I − B)∗(I − B)Π̃ = AΠ̃. (141)

Using the fact that from (130),

Π̃ = (Q(I − B))† − PRQ−1PR, (142)

completes the proof of the theorem.
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