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Blind Minimax Estimation

Zvika Ben-Haim* Yonina C. Eldar

Abstract

We consider the linear regression problem of estimating an unknown, deterministic parame-

ter vector based on measurements corrupted by colored Gaussian noise. We present and analyze

blind minimax estimators (BMEs), which consist of a minimax estimator whose parameter

set is itself estimated from measurements. This approach results in several extensions of the

James-Stein estimator; however, unlike the James-Stein result, some of these extensions are

non-shrinkage, making them applicable in a wider range of problem settings. We demonstrate

analytically that the BMEs strictly dominate the least-squares estimator, i.e., they achieve lower

mean-squared error for any value of the parameter vector. We also show through simulation

that the BMEs generally outperform other extensions of the James-Stein technique.
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I. INTRODUCTION

The problem of estimating a parameter vector from noisy measurements has countless appli-

cations in science and engineering. Such estimation problems are typically modelled either in a

Bayesian setting, in which a prior distribution on the parameter is assumed, or in a deterministic

setting, in which no prior exists [1]. This paper examines the deterministic estimation problem.

We further assume that the measurements y = Hx + w are linear combinations of the parameter

vector x, to which Gaussian noise w is added. Here the transformation matrix H and the noise

covariance E{ww∗} are assumed to be known. We seek an estimate x̂ which approximates x in

the sense of minimal mean-squared error (MSE).

This ubiquitous problem was first addressed by Gauss [2], who proposed the classical least-

squares (LS) estimator. Several lines of reasoning can be used to support the LS approach. Gauss’

argument showed that the LS estimator minimizes the squared error between the measurements

y and the transformed estimate ŷ = Hx̂. It is also well-known that the LS estimator is the

maximum likelihood estimator for Gaussian noise. However, neither of these criteria are directly

related to the MSE, or to any other measure of the distance between x and x̂. Another property

of the LS estimator is that it is the linear, unbiased estimator achieving minimal MSE. Yet by

removing the requirements of unbiasedness and linearity, estimators yielding lower MSE can

be constructed. While linearity and unbiasedness may be intuitively appealing properties, they

have no relation to the primary goal at hand, namely, achieving low estimation error.

Because the parameter vector x is deterministic, the MSE E
{

‖x − x̂‖2
}

is generally a function

of x. As a result, one estimator may be better than another for some values of x, and worse for

other values of x. For instance, the trivial estimator x̂ = 0 achieves optimal MSE when x = 0, but

it is a very poor estimator for other values of x. Nonetheless, it is possible to impose a partial

order among estimators [3], as follows. An estimator x̂1 is said to strictly dominate a different

estimator x̂2 if the MSE of x̂1 is lower than that of x̂2, for all values of x. If the MSE of x̂1 is never

higher than that of x̂2, and is strictly lower for at least one parameter value, then x̂1 is said to

dominate x̂2. An estimator is said to be admissible if it is not dominated by any other estimator.

Surprisingly, the LS estimator turns out to be inadmissible, i.e., some estimators always achieve

lower MSE [4]. Thus, it is of interest to characterize the class of admissible estimators, and to

find estimators which dominate the LS estimator.

The study of admissibility is sometimes restricted to the set of linear estimators, which have
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the form x̂ = Gy. A linear admissible estimator is one which is not dominated by any other

linear estimator. A simple rule characterizes the class of such estimators [5], and, given any

linear inadmissible estimator, it is possible to construct a linear admissible alternative which

dominates it [6]. However, the problem of admissibility is considerably more intricate when the

linearity restriction is removed; generally, admissible estimators are either trivial (e.g., x̂ = 0) or

exceedingly complex [7], [8]. As a result, much research has focused on finding simple nonlinear

techniques which dominate the LS estimator.

Early work on LS-dominating estimators considered the independent, identical-distribution

(i.i.d.) case, for which H = I and the noise is white. Among these, the James-Stein estimator

[3], [9] is the best-known example; another is the Alam-Thompson estimator [10], [11]. Various

extensions of the James-Stein estimator were later constructed for the general (non-i.i.d.) case

[12]–[15]. Of these, Bock’s estimator [13] is quoted most often [15], [16]. However, none of

these approaches has become a standard alternative to the LS estimator, and they are rarely

used in signal processing [15]. One reason for this is that the estimators are poorly justified

and seem counterintuitive, and as such they are sometimes regarded with skepticism (see

discussion following [17]). Another reason is that many of these approaches (including the

James-Stein estimator and Bock’s extension) result in shrinkage estimators, consisting of a gain

factor multiplying the LS estimate. While this can certainly be used to reduce MSE, such

estimators are inappropriate for some applications, in which a gain factor has no effect on

final estimation quality.

In this paper, we provide a framework for generating a wide class of low-complexity,

LS-dominating estimators, which are constructed from a simple, intuitive principle, called

the blind minimax approach [18], [19]. This approach is used as a basis for selecting and

generating estimators tailored for given estimation problems. Many blind minimax estimators

(BMEs) reduce to Stein-type estimators in the i.i.d. case, and they continue to dominate the LS

estimator in the general, non-i.i.d. case as well. Thus, we show analytically that the proposed

estimators always achieve lower MSE than the LS estimator. Unlike Bock’s estimator, BMEs

may be constructed so that they are non-shrinkage, if this is required. Furthermore, extensive

simulations show that BMEs considerably outperform Bock’s estimator.

Blind minimax estimators are based on bounded parameter set minimax estimators [20],

[21]. These are estimators designed for a slightly different problem, in which the parameter

is known to lie within a given set. Such estimators have been studied extensively and a closed-
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form estimator is known for many types of parameter sets. In our case, however, no prior

information about the parameter set is assumed. Instead, the blind minimax approach makes

use of a two-stage estimation process. In the first stage, the parameter set is estimated from

the measurements. In the second stage, a minimax estimator for this parameter set is used to

estimate the parameter itself. The result may be viewed as a simple estimator, independent

of this two-stage construction process. Indeed, our LS-dominance proofs are independent of

the method by which the estimators are generated. In particular, the dominance results do not

depend on the parameter actually lying within the estimated parameter set. However, the blind

minimax technique provides a framework whereby many different estimators can be generated,

and provides insight into the mechanism by which these estimators outperform the LS estimator.

Blind minimax estimators differ in the method by which the parameter set is estimated. In

Section II, we study the case in which the estimated parameter set is a sphere; Section III derives

estimators based on an ellipsoidal parameter set. The different estimators are compared in a

numerical study in Section IV, and the paper concludes with a discussion in Section V.

Throughout this paper, vectors are denoted by lowercase boldface letters, while matrices are

denoted by uppercase boldface letters. The ith component of a vector v is denoted vi. The

(unique) positive semidefinite square root of a positive semidefinite matrix Q is denoted Q1/2.

The notation ũ ∼ Np(u, Q) indicates that ũ is a random vector of length p, distributed normally

with mean u and covariance Q.

II. THE SPHERICAL BLIND MINIMAX ESTIMATOR

Consider the problem of estimating an unknown deterministic parameter vector x ∈ Cm from

measurements y ∈ Cn given by

y = Hx + w, (1)

where H ∈ Cn×m is a known matrix and w is a Gaussian random vector with zero mean and

covariance Cw. For simplicity, we assume that H is full-rank and that Cw is positive definite.

Suppose first that x is known to lie within a compact parameter set S . In this case, a bounded

parameter set minimax estimator may be constructed [20], [21]. This is the linear estimator x̂M

minimizing the worst-case MSE among all possible values of x in S ,

x̂M = arg min
x̂=Gy

max
x∈S

E
{

‖x̂ − x‖2
}

. (2)
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For example, when the set S is a sphere centered at the origin, S = {x : ‖x‖2 ≤ L2}, the linear

minimax estimator is [21]

x̂M =
L2

L2 + ǫ0
x̂LS, (3)

where x̂LS is the LS estimator,

x̂LS = (H∗C−1
w H)−1H∗C−1

w y, (4)

ǫ0 is the MSE of x̂LS, given by

ǫ0 = E
{

‖x̂LS − x‖2
}

= Tr(Q−1), (5)

and

Q = H∗C−1
w H. (6)

It has recently been shown that any linear minimax estimator achieves lower MSE than that

of the LS estimator, for all values of x in S [18]. Thus, as long as some bounded parameter set

is known to contain x, minimax estimators outperform the LS estimator.

The blind minimax approach uses minimax estimators when no parameter set is known. This

is done in a two-stage process:

1) A parameter set S is estimated from the measurements;

2) A minimax estimator designed for S is used to estimate the parameter vector x.

Blind minimax estimators differ in the method by which the parameter set is estimated. In this

section, we use a spherical parameter set, and estimate the sphere radius from the measurements.

We assume for now that the sphere is centered on the origin. The resulting spherical BME (SBME)

will have the form (3), where L2 is estimated from the measurements.

As an estimate of L2, we seek a value as close as possible to ‖x‖2: a smaller value would

exclude the true vector x from the parameter set, while a larger value would yield an overly

conservative estimator. Since x is unknown, a natural alternative is to use x̂LS instead; for

instance, one may estimate L2 as ‖x̂LS‖
2. This results in the direct SBME

x̂DSBM =
‖x̂LS‖

2

‖x̂LS‖2 + ǫ0
x̂LS. (7)

In fact, ‖x̂LS‖
2 tends to be an overestimate of ‖x‖2, since E

{

‖x̂LS‖
2
}

= ‖x‖2 + ǫ0. To correct

for this effect, we may alternatively estimate L2 as ‖x̂LS‖
2 − ǫ0. Substituting this value into (3),

the balanced SBME is given by

x̂BSBM =

(

1 −
ǫ0

‖x̂LS‖2

)

x̂LS. (8)
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Both SBMEs reduce to well-known results in the i.i.d. case: the balanced version x̂BSBM reduces

to Stein’s approach [4], and the direct version x̂DSBM reduces to a variant of the Alam-Thompson

estimator [10], [11]. Under suitable conditions, the techniques proposed by Stein and by Alam

and Thompson are known to strictly dominate the LS estimator, meaning that they achieve

lower MSE for all values of x. However, the SBMEs are equally well-defined for the non-i.i.d.

case. Furthermore, as we shall see, both versions of the SBME strictly dominate the LS estimator

in the non-i.i.d. case.

Up to this point, we have arbitrarily chosen the parameter set to be centered on the origin.

The result was a weighted average between the LS estimate and the origin. The weight given

to the LS estimate may be viewed as a restraint, which lessens the effect of measurement noise.

As we shall see, the proposed BMEs outperform the LS estimator, illustrating the fact that the

LS estimator is an overestimate. However, the choice of a parameter set centered on the origin

is completely arbitrary; BMEs may be constructed around any constant center point x0. This

would result in a weighted average between the LS estimator and x0, which may be useful if

the parameter vector is expected to lie near a particular point. For example, the “off-center”

balanced SBME is given by

x̂ =

(

1 −
ǫ0

‖x̂LS‖2

)

x̂LS +

(

ǫ0

‖x̂LS‖2

)

x0. (9)

All dominance results continue to hold for the off-center estimators as well. In the sequel, we

assume x0 = 0 merely for the sake of notational simplicity.

The following theorem demonstrates that the SBMEs are guaranteed to outperform the LS

estimator in terms of MSE.

Theorem 1: Suppose ǫ0/ǫmax > 4, where ǫ0 is given by (5), ǫmax is the largest eigenvalue

of Q−1, and Q is given by (6). Then, both the direct SBME and the balanced SBME strictly

dominate the LS estimator.

The value ǫ0/ǫmax is known as the effective dimension, and may be roughly described as the

number of independent measurements in the system. In the i.i.d. case, for example, the effective

dimension simply equals the length of the measurement vector.

Note that both SBMEs can be written as

x̂SBM =

(

1 −
ǫ0

b + x̂∗LSx̂LS

)

x̂LS, (10)

where b = ǫ0 for the direct SBME and b = 0 for the balanced SBME. Thus, rather than proving

Theorem 1, we prove the following, more general proposition.
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Proposition 1: Suppose ǫ0/ǫmax > 4, where ǫ0 is given by (5), ǫmax is the largest eigenvalue of

Q−1, and Q is given by (6). Then, the estimator (10) dominates the LS estimator, for any b ≥ 0.

The proof of Proposition 1 makes use of the following result, known as Stein’s lemma [3,

Theorem 1.5.15].

Lemma 1 (Stein): Let v̂ ∼ Np(v, I), and let g(v̂) be a differentiable function such that

E
{∣

∣

∣

∂g(v̂)
∂v̂i

∣

∣

∣

}

< ∞ for all i. Then,

E

{

∂g(v̂)

∂v̂i

}

= −E{g(v̂)(vi − v̂i)} . (11)

Proof of Proposition 1. We will prove that x̂SBM strictly dominates x̂LS for any b ≥ 0. First, note

that the MSE of x̂SBM is given by

R(x̂SBM) = E
{

‖x − x̂SBM‖2
}

= ǫ0 + E

{

ǫ2
0x̂∗LSx̂LS

(b + x̂∗LSx̂LS)2

}

+ 2E

{

ǫ0

b + x̂∗LSx̂LS
x̂∗LS(x − x̂LS)

}

. (12)

Let VΛV∗ be the eigenvalue decomposition of Q, such that V is unitary and Λ =

diag(λ1, . . . λm). Define v̂ = V∗Q1/2x̂LS and v = V∗Q1/2x. Note the following relations between

v̂ and x̂LS:

v̂∗
Λ

−1v̂ = x̂∗LSx̂LS,

v̂∗
Λ

−1v = x̂∗LSx, (13)

v̂∗
Λ

−2v̂ = x̂∗LSQ−1x̂LS.

Using these properties, we now evaluate the third term in (12), obtaining

E

{

ǫ0

b + x̂∗LSx̂LS
x̂∗LS(x − x̂LS)

}

= E

{

ǫ0

b + v̂∗Λ
−1v̂

v̂∗
Λ

−1(v − v̂)

}

= E

{

ǫ0

b + v̂∗Λ
−1v̂

p

∑
i=1

λ
−1
i v̂i(vi − v̂i)

}

= ǫ0

p

∑
i=1

λ
−1
i E

{

v̂i(vi − v̂i)

b + v̂∗Λ
−1v̂

}

. (14)

Let

gi(v̂) ,
v̂i

b + v̂∗Λ
−1v̂

, (15)

and note that v̂ is distributed normally with mean v and covariance I. We can thus apply
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Lemma 1 to obtain

E

{

ǫ0

b + x̂∗LSx̂LS
x̂∗LS(x − x̂LS)

}

= −ǫ0 ∑
i

λ
−1
i E

{

1

b + v̂∗Λ
−1v̂

− 2
λ
−1
i v̂2

i

(b + v̂∗Λ
−1v̂)2

}

= −ǫ0E

{

Tr(Λ
−1)

b + v̂∗Λ
−1v̂

}

+ 2ǫ0E

{

v̂∗
Λ

−2v̂

(b + v̂∗Λ
−1v̂)2

}

= −ǫ0E

{

Tr(Q−1)

b + x̂∗LSx̂LS

}

+ 2ǫ0E

{

x̂∗LSQ−1x̂LS

(b + x̂∗LSx̂LS)2

}

. (16)

Substituting this result back into (12), we have

R(x̂SBM) = ǫ0 + E

{

ǫ0

b + x̂∗LSx̂LS

(

ǫ0
x̂∗LSx̂LS

b + x̂∗LSx̂LS
− 2ǫ0 + 4

x̂∗LSQ−1x̂LS

b + x̂∗LSx̂LS

)}

. (17)

Since b ≥ 0,

R(x̂SBM) ≤ ǫ0 + E

{

ǫ0

b + x̂∗LSx̂LS

(

ǫ0x̂∗LSx̂LS

x̂∗LSx̂LS
− 2ǫ0 + 4

x̂∗LSQ−1x̂LS

x̂∗LSx̂LS

)}

≤ ǫ0 + E

{

ǫ0

b + x̂∗LSx̂LS
(−ǫ0 + 4ǫmax)

}

. (18)

If ǫ0 > 4ǫmax, then the expectation is taken over a strictly negative range, and hence R(x̂SBM)

is always lower than ǫ0, so that x̂SBM strictly dominates x̂LS.

As we have shown, in terms of MSE, both direct and balanced SBMEs outperform the LS

estimator, providing us with a first example of the power of blind minimax estimation.

Both SBMEs are shrinkage estimators, i.e., they consist of the LS estimator multiplied by a

gain factor smaller than one. The SBMEs thus illustrate the fact that the LS estimator tends to be

an overestimate, and shrinkage can improve its performance. However, in some applications,

such as image reconstruction, a gain factor has no effect on the end result. In the next section, we

use the blind minimax approach to develop a non-shrinkage estimator, which also dominates

the LS estimator.

III. THE ELLIPSOIDAL BLIND MINIMAX ESTIMATOR

Occasionally, one must use the MSE in place of a more accurate error measure, which may be

overly complex or even subjective. For example, in communication systems, one is interested in

minimizing the bit error rate (BER). However, BER minimization techniques are generally too

computationally expensive to be practical. In many situations, one chooses instead to minimize

the MSE between the transmitted and reconstructed symbols [22]. This is done in the hope that

low MSE provides low BER. However, MSE and BER are not always directly related. In the
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previous section, it was shown that SBMEs achieve lower MSE than the LS estimator. Yet in a

binary communication system, only the signs of the estimated elements are used to evaluate

the received bits. Since the SBMEs are shrinkage estimators, they yield the same sign as the LS

estimator. Thus, in a binary communication system, the BER obtained by SBMEs is identical to

the BER of the LS estimator.

Shrinkage estimators are therefore not applicable to all estimation problems. In this section,

we develop two non-shrinkage estimators by considering ellipsoidal, rather than spherical,

parameter sets as the basis for the blind minimax estimation technique. In some situations,

these estimators also outperform the SBMEs in terms of MSE.

Not all elements of the least-squares estimate x̂LS are equally trustworthy. Rather, x̂LS is

a Gaussian random vector with mean x and covariance Q−1 =
(

H∗C−1
w H

)−1
. Thus, some

elements in x̂LS have lower variance than others. In this sense, the scalar shrinkage factor

of the SBME (10) and other extended Stein estimators [13] seems inadequate. Indeed, several

researchers have proposed shrinking each measurement separately according to its variance [12],

[14]. Ironically, however, there has been disagreement as to whether high-variance components

should be shrunk more [12] or less [14], and little justification has been given to either choice.

The blind minimax approach provides a natural framework for resolving these disputes. To

see this, note that x̂LS = x + u, where u ∼ Nm(0, Q−1). The SBME was constructed by using

‖x̂LS‖
2 as an estimate for ‖x‖2. However, since the noise u is colored, it is sensible to first whiten

the noise by writing

Q1/2x̂LS = Q1/2x + ũ, (19)

where ũ ∼ Nm(0, I). One may then estimate ‖Q1/2x‖2 using ‖Q1/2x̂LS‖
2, obtaining the ellipsoidal

BME (EBME). Such an estimate can be readily incorporated into the blind minimax framework

by using an ellipsoidal parameter set, S = {x : x∗Qx ≤ L2}, rather than the spherical parameter

set of the SBME. The ellipsoidal parameter set is elongated in directions of low noise, resulting

in lower shrinkage for those directions. In the i.i.d. case, Q = I, and the estimator reduces to

the SBME.

As with the construction of the SBME, one may estimate L2 in two ways. The direct EBME

is obtained by substituting L2 = x̂∗LSQx̂LS. The balanced EBME is obtained by observing that

E
{

x̂∗LSQx̂LS

}

= x∗Qx + m, and hence substituting x̂∗LSQx̂LS − m for L2.

A closed form for minimax estimators of an ellipsoidal parameter set was developed in [21].
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By substituting the value of L2 into this closed form, we obtain the following expression for

the EBMEs.

Proposition 2 (Closed-Form EBME): Let VΛV∗ be the eigenvalue decomposition of Q, so that

V is unitary, Λ = diag(λ1, . . . λm), and λ1 ≥ · · · ≥ λm. The direct and balanced EBMEs are then

given by

x̂EBM = V diag(0k, 1m−k)V∗
(

I − αQ1/2
)

x̂LS, (20)

where

α =
∑

m
i=k+1 λ

−1/2
i

x̂∗LSQx̂LS + b − k
. (21)

Here, k is the smallest integer 0 ≤ k ≤ m − 1 such that α < λ
−1/2
k+1 , and b is a constant which

equals 0 for the balanced EBME and m for the direct EBME.

Proof: Follows from Proposition 1 of [21].

While the closed form of the EBMEs appears somewhat more intimidating than that of the

SBMEs, the computational complexities of all estimators are comparable. The major difference

is the calculation of the value k, for which m divisions are required. Like the SBMEs, the EBMEs

also dominate the LS estimator under suitable conditions, as shown in the following theorem.

Theorem 2: Suppose Tr(Q−1/2) > 4ǫ1/2
max, where ǫ1/2

max is the largest eigenvalue of Q−1/2. Then,

both the balanced and the direct EBME strictly dominate x̂LS.

The proof of Theorem 2 is based on an analogy between the diagonal matrix diag(0k, 1m−k) in

(20) and Baranchik’s positive-part modification [3], [23] of the James-Stein estimator. Baranchik

proposed using a shrinkage factor of 0 whenever the James-Stein estimator uses negative shrink-

age, and showed that the resulting positive-part estimator dominates the James-Stein estimator.

Although the EBME is not a shrinkage estimator, it resembles Baranchik’s modification. To see

this, consider the estimator x̂0 obtained by removing the term diag(0k, 1m−k) from (20),

x̂0 = (I − αQ1/2)x̂LS

= V diag
(

1 − αλ
1/2
1 , · · · 1 − αλ

1/2
m

)

V∗x̂LS. (22)

Since α ≥ λ
−1/2
i for all i ≤ k, this would introduce negative componentwise shrinkage for the

first k eigenvectors of V. The following proposition, which is a generalization of Baranchik’s

result, shows that the MSE can be reduced by eliminating this negative shrinkage.

Proposition 3: Let x̂ be any estimator of the form x̂ = VDV∗x̂LS, where D is a diagonal matrix,

whose diagonal elements di are functions of the random variable x̂∗LSQx̂LS. Suppose at least one
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of the elements di is negative with nonzero probability. Then, x̂ is dominated by the (generalized)

positive-part estimator

x̂+ = VD+V∗x̂LS, (23)

where D+ is a diagonal matrix with diagonal elements di+ = max(0, di).

Proof: We will show that MSE(x̂)− MSE(x̂+) is nonnegative for all x, and positive for any

value of x whose elements are all nonzero.

MSE(x̂) − MSE(x̂+) = E
{

‖x̂ − x‖2
}

− E
{

‖x̂+ − x‖2
}

= E
{

‖x̂‖2 − ‖x̂+‖
2
}

− 2E{x̂∗x − x̂∗+x}

= E
{

x̂∗LSV(D2 − D2
+)V∗x̂LS

}

− 2E{x̂∗LSV(D − D+)V∗x} . (24)

Since d2
i − d2

i+ ≥ 0 for all i, the first term in (24) is nonnegative. Hence, to prove the proposition,

it suffices to show that E
{

x̂∗LSV(D − D+)V∗x
}

is nonpositive for all x, and negative for values

x with nonzero elements.

To this end, define z = V∗x and ẑ = V∗x̂LS. We note that ẑ ∼ Nm(z, Λ
−1), so that the elements

of ẑ are statistically independent. To calculate E
{

x̂∗LSV(D − D+)V∗x
}

, we condition on x̂∗LSQx̂LS,

obtaining

E{x̂∗LSV(D − D+)V∗x} = E{E{ẑ∗(D − D+)z|ẑ∗Λẑ}} = E

{

m

∑
i=1

(di − di+)E{ẑizi|ẑ
∗
Λẑ}

}

, (25)

where we used the fact that x̂∗LSQx̂LS = ẑ∗Λẑ, and that di and di+ are deterministic when

conditioned on x̂∗LSQx̂LS.

We now define

ri(ẑ) ,

√

ẑ∗Λẑ − ∑j 6=i λj ẑ
2
j

λi
, (26)

and note that ẑi = sgn(ẑi)ri(ẑ). For each i, we further condition on all values {ẑj}j 6=i, to obtain

E
{

ẑizi|ẑ
∗
Λẑ, {ẑj}j 6=i

}

= ziri(ẑ)E
{

sgn(ẑi)|ẑ
∗
Λẑ, {ẑj}j 6=i

}

. (27)

Since ẑi is independent of {ẑj}j 6=i, it follows that sgn(ẑi) is jointly independent of {ẑj}j 6=i and

ẑ∗Λẑ. Thus

E
{

sgn(ẑi)|ẑ
∗
Λẑ, {ẑj}j 6=i

}

= E{sgn(ẑi)} . (28)
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Combining this result with (25) and (27), we obtain

E{x̂∗LSV(D − D+)V∗x} = E

{

m

∑
i=1

(di − di+)ri(ẑ)|zi| sgn(zi)E{sgn(ẑi)}

}

. (29)

When zi = 0, the ith term in the sum above equals 0. In all other cases, we use the fact that ẑi

is Gaussian with mean zi to obtain

Pr{sgn(ẑi) = sgn(zi)} > Pr{sgn(ẑi) 6= sgn(zi)} . (30)

Thus, |zi| sgn(zi)E{sgn(ẑi)} is positive if zi 6= 0, and equals zero if zi = 0. It follows that all

terms in (29) are nonnegative, except for the term (di − di+), which is nonpositive. As a result,

(29) (and hence (24)) is nonpositive for all x, so that the MSE of x̂+ is never higher than that

of x̂.

We must also show that for some x, (29) is strictly negative. To this end we choose x for which

all elements are nonzero; as a result, all terms in (29) are strictly positive, except for (di − di+).

This last term is negative when di < 0 and zero otherwise. Since di is negative with nonzero

probability for at least one value of i, we conclude that for the chosen value of x, (29) is strictly

negative, completing the proof of Proposition 3.

This generalization of the concept of a positive part estimator is now used to prove Theorem 2.

Proof of Theorem 2. We show that x̂0 of (22) strictly dominates the LS estimator. The result then

follows from Proposition 3, since x̂EBM is the positive part of x̂0.

Denoting s = ∑
m
i=k+1 λ

−1/2
i , the MSE of x̂0 is given by

MSE = E







∥

∥

∥

∥

∥

x − x̂LS +
sQ1/2x̂LS

x̂∗LSQx̂LS + b − k

∥

∥

∥

∥

∥

2






= ǫ0 + E

{

s2x̂∗LSQx̂LS

(x̂∗LSQx̂LS + b − k)2

}

+ 2E

{

s(x − x̂LS)
∗Q1/2x̂LS

x̂∗LSQx̂LS + b − k

}

. (31)

We now define v̂ = V∗Q1/2x̂LS and v = V∗Q1/2x. Using this notation, the third term in (31)
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may be written as

A3 , E

{

s(x − x̂LS)
∗Q1/2x̂LS

x̂∗LSQx̂LS + b − k

}

= E

{

s(v − v̂)∗Λ
−1/2v̂

v̂∗v̂ + b − k

}

=
m

∑
i=1

λ
−1/2
i E

{

s(vi − v̂i)v̂i

v̂∗v̂ + b − k

}

, (32)

where we have used the fact that v̂ ∼ Nm(v, I). Let

gi(v̂) =
sv̂i

v̂∗v̂ + b − k
, (33)

noting that k is implicitly dependent on v̂, and that s is implicitly dependent on k. Thus, gi(v̂)

is discontinuous for some values of v̂, namely, those values for which α = λ
−1/2
i . However,

these values of v̂ occur with probability zero; for all other values, k (and hence s) are constant

for sufficiently small changes in v̂. Thus,

∂gi(v̂)

∂v̂i
= s

v̂∗v̂ + b − k − 2v̂2
i

(v̂∗v̂ + b − k)2
with probability 1, (34)

and E
{∣

∣

∣

∂gi(v̂)
∂v̂j

∣

∣

∣

}

< ∞ for all j. Using Lemma 1, we have

E

{

s(vi − v̂i)v̂i

v̂∗v̂ + b − k

}

= −E

{

s
v̂∗v̂ + b − k − 2v̂2

i

(v̂∗v̂ + b − k)2

}

. (35)

Combining (35) with (32), we obtain

A3 = −
m

∑
i=1

λ
−1/2
i E

{

s
v̂∗v̂ + b − k − 2v̂2

i

(v̂∗v̂ + b − k)2

}

= E

{

−
s Tr(Q−1/2)

v̂∗v̂ + b − k
+ 2s

v̂∗
Λ

−1/2v̂

(v̂∗v̂ + b − k)2

}

= E

{

−
s Tr(Q−1/2)

x̂∗LSQx̂LS + b − k
+ 2s

x̂∗LSQ1/2x̂LS

(x̂∗LSQx̂LS + b − k)2

}

. (36)

We note that k is chosen in Proposition 2 in a manner which ensures that x̂∗LSQx̂LS + b − k ≥ 0.

Hence

A3 ≤ E

{

s

x̂∗LSQx̂LS + b − k

(

−Tr(Q−1/2) + 2
x̂∗LSQ1/2x̂LS

x̂∗LSQx̂LS

)}

≤ E

{

s

x̂∗LSQx̂LS + b − k

(

−Tr(Q−1/2) + 2ǫ
1/2
max

)

}

, (37)
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where ǫ1/2
max is the largest eigenvalue of Q−1/2. Substituting this result back into (31), and using

the fact that s ≤ Tr(Q−1/2), yields

MSE ≤ ǫ0 + E

{

s
(

−Tr(Q−1/2) + 4ǫ1/2
max

)

x̂∗LSQx̂LS + b − k

}

. (38)

If Tr(Q−1/2) > 4ǫ1/2
max, then the expectation above is negative, so that x̂0 (and hence x̂EBM) strictly

dominate the LS estimator.

As we have seen, both the EBME and the SBME achieve lower MSE than the least-squares

estimator. These results pose several further questions: Do BMEs significantly improve the MSE?

How do BMEs compare with other extended Stein estimators? Is there a substantial difference

between the performance of the spherical and ellipsoidal estimators? These questions will be

answered in the numerical study in the next section.

IV. NUMERICAL RESULTS

Estimator performance generally depends on a number of operating conditions, including

the effective dimension, the signal-to-noise ratio (SNR), the eigenvalues λ1, . . . λm of Q, and the

value of the unknown parameter vector x. Several computer simulations were implemented to

test the effect of these conditions on performance. The simulations were also used to compare the

BMEs with Bock’s estimator [13], which is the most commonly-used extended Stein estimator

[15], [16]. Like Stein’s results, Bock’s approach consists of a shrinkage estimator, given by

x̂Bock =

(

1 −
ǫ0/ǫmax − 2

x̂∗LSQx̂LS

)

x̂LS. (39)

The theorems of Sections II and III ensure that the BMEs achieve lower MSE than the

LS estimator, but do not guarantee that this improvement is substantial. To measure this

performance gain, we first chose a typical scenario, in which the number of parameters m

and the number of measurements n were both 15. The system matrix H was chosen as

diag(1, 1, 1, .5, .3, .2, .2, .2, .2, .1, .1, .1, .1, .05, .05), and the parameter vector was chosen randomly

as a zero-mean, unit-variance i.i.d. Gaussian vector. The noise was i.i.d. with variance σ2 chosen

to achieve the desired SNR. Estimates of the MSE were calculated for a range of SNR values by

generating 3000 random realizations of noise and parameter vectors per SNR value. The results

are plotted in Fig. 1.

It is evident from this figure that substantial improvement in MSE can be achieved by using

BMEs in place of the LS estimator: in some cases the MSE of the LS estimator is more than
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Fig. 1. MSE vs. SNR for a typical operating condition: effective dimension 5.1, m = n = 15.

five times the MSE of the BMEs. The performance gain is particularly noticeable at low and

moderate SNR. At infinite SNR, the LS estimator is known to be optimal [1], and all other

estimators converge to the value of the LS estimate; as a result, performance gain is smaller at

high SNR.

Different settings call for the use of different estimators, as no single estimator is optimal

under all operating conditions. To demonstrate this, estimator MSE was measured for various

SNRs and effective dimensions. The parameter vector for this simulation was randomly chosen

from an i.i.d. normal distribution. The number of measurements and the number of parameters

were both equal to 10. The system matrix H was equal to I, and the noise covariance matrix

Cw was diagonal, with diagonal elements c1 = 1, c2 = 0.5, and c3 = · · · = c10 = t, where t was

chosen to obtain the desired effective dimension. The simulation was repeated for 20 different

effective dimensions in the range 1.5 to 10, and for 20 different SNR values in the range –15 dB

to 15 dB. For each operating condition, the MSE of each estimator was calculated. Fig. 2 displays

the estimator achieving lowest MSE (among the estimators tested); when two or more estimators

achieve MSE within 5% of the lowest value, this is indicated by their combined pattern. The

LS estimator is outperformed by all estimators in this simulation, so it is not displayed in the

figure.
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Fig. 2. Estimators achieving lowest MSE, among the five estimators tested (m = n = 10)

Fig. 2 demonstrates that the BMEs significantly outperform Bock’s estimator under a very

wide range of operating conditions. It is notable that the BMEs continue to outperform Bock’s

estimator and the LS estimator at effective dimensions of 2–4; the dominance results of Sections

II and III only apply to effective dimensions above 4.

Fig. 2 also indicates that, for most operating conditions, the balanced EBME is the optimal

estimator among those tested; its improvement is significant particularly at moderate and low

SNR. However, at low effective dimensions, the SBMEs significantly outperform the EBMEs.

This is indicative of a more subtle limitation of the EBMEs, namely, their sensitivity to the

condition number1 of Q; this limitation also appears in Bock’s estimator. The EBME makes

use of an ellipsoid of the form {x : x∗Qx ≤ L2}, which becomes eccentric when the condition

number of Q is large. As a result, a slight increase in the measurements along a narrow axis

of the ellipse greatly increases the radius in the wide axes. This causes the corresponding

parameters to be estimated with negligible shrinkage, thus reducing the improvement over

1The condition number of a matrix is defined as the ratio between its largest and smallest eigenvalues.
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Fig. 3. Estimator MSE vs. condition number; m = n = 10, SNR 0 dB

the LS estimator. Bock’s estimator suffers from the same effect, since its shrinkage factor is also

a function of x̂∗LSQx̂LS. Only the SBMEs, whose parameter set estimates are based on the value

x̂∗LSx̂LS, continue to perform well for high condition numbers.

This effect is demonstrated in Fig. 3. Here, the settings are identical to those of Fig. 2,

except that the SNR is constant and equals 0 dB, and the noise covariance matrix contains

nine eigenvalues equal to 1, and an additional small eigenvalue whose value is modified to

control the condition number. Thus, the condition number is changed with little influence

on the effective dimension. As expected, the performance of the EBMEs and Bock’s estimator

deteriorates when high condition numbers are used, while the SBMEs are hardly affected by

the change. Fortunately, both the effective dimension and the condition number depend only

on the system matrix H and the noise covariance Cw, so that an informed choice may be made

for any given estimation problem.

V. DISCUSSION

The blind minimax approach is a general technique for using minimax estimators in situations

for which no parameter set is known. We considered an application of this concept to the

Gaussian linear regression model. Four novel estimators were proposed: estimators based on

the spherical and ellipsoidal parameter sets, and which make use of the direct and balanced
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estimation techniques. In Sections II and III, all of these estimators were shown to dominate the

LS estimator. Thus, in any application which makes use of a LS estimator, the MSE performance

can be improved by using a BME instead.

It can readily be shown that the dominance condition of the SBMEs (Theorem 1) is weaker than

the dominance condition of the EBMEs (Theorem 2), i.e., the conditions for SBME dominance

hold whenever the conditions for EBME dominance hold. The dominance condition of Bock’s

estimator [13] is still weaker2. This would seem to indicate that Bock’s estimator is superior to

the proposed estimators. Yet the results of Section IV demonstrate that the opposite is true: the

BMEs almost always outperform Bock’s estimator — even in cases where their performance

is not guaranteed by the dominance theorems. Thus, while dominance theorems are useful

in providing sufficient conditions for improving on the LS estimator, they are ill-suited for

comparing LS-dominating estimators. This conclusion is significant since many researchers

have justified estimator choices by maximizing the range of conditions for which dominance

is guaranteed. It seems that other analytical tools are required for comparing LS-dominating

estimators. For example, it may be possible to prove that BMEs dominate Bock’s estimator, for

some problem settings.

The choice between the different BMEs is application-dependent. As explained in Section IV,

the balanced EBME outperforms all other estimators at low SNR, while the direct SBME is

sometimes better at moderate SNR, particularly for low effective dimensions. Also, the EBMEs

(as well as Bock’s estimator) perform poorly when the condition number of Q is large, while

the SBMEs remain effective for any condition number. These results may be used to select an

estimator depending on the problem setting, in particular since the effective dimension and

condition number may be calculated in advance.

A more fundamental difference is that the SBMEs are shrinkage estimators, while the EBMEs

are not. Thus, in applications where the only goal is minimization of the MSE, the direct SBME

may be preferred for its robustness and simplicity. For example, the SBME is an excellent

estimator of system parameters, such as autoregression (AR) coefficients. However, in certain

applications, MSE minimization is only a nominal goal which approximates some other error

2A simple change to the SBME (adding −2 to the numerator) changes its dominance condition to that of Bock’s

estimator, without significantly affecting its performance. However, we have been unable to derive this modification

using the blind minimax approach, and thus prefer the simpler form of the SBME used in the paper.



19

criterion. In some of these cases, a shrinkage estimator has no impact on the actual objective.

For example, if the vector x is an image which is to be reconstructed, its subjective quality is

not affected by multiplying the entire estimate by a scalar. Likewise, in a binary receiver, the

sign of x must be determined, but the sign does not change when the estimate is shrunk. In

such applications, SBMEs (and Bock’s estimator) have no effect on the final result, whereas the

balanced EBME can be used to improve performance.

In this paper, we have explored the idea of blind minimax estimation, whereby one uses linear

minimax estimators whose parameter set is itself estimated from measurements. This simple

concept was examined in the setting of a linear system of measurements with colored Gaussian

noise, where we have shown that the BMEs dominate the LS estimator. Hence, in any such

problem, the proposed estimators can be used in place of the LS estimator, with a guaranteed

performance gain. Apart from being useful in and of themselves, the proposed estimators

support the underlying concept of blind minimax estimation. This concept can be applied to

many other estimation problems, such as estimation with uncertain system matrices, estimation

with non-Gaussian noise, and sequential estimation. Use of the blind minimax approach in such

problems remains a topic for further study.

Stein’s discovery of LS-dominating estimators, half a century ago, shocked the statistics

community, and LS-dominating estimators are still rarely used in practice. It is our hope that the

blind minimax concept will provide additional support for such estimators, both by supplying

an intuitive understanding of Stein’s phenomenon, and by providing a wide class of powerful

new estimators.
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