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Abstract

When imaging in scattering media, the visibility degrades as objects become

more distant. Visibility can be significantly restored by computer vision methods

that account for physical processes occurring during image formation. Nevertheless,

such recovery is prone to noise amplification in pixels corresponding to distant ob-

jects, where the medium transmittance is low. In this work we analyze the nature of

this noise amplification. We then present an adaptive filtering approach that coun-

ters the above problems: while greatly improving visibility relative to raw images,

it inhibits noise amplification. Essentially, the recovery formulation is regularized,

where the regularization adapts to the spatially varying medium transmittance.

Thus, this regularization does not blur close-by objects. We demonstrate the ap-

proach in experiments where the scene radiance and distance map are recovered in

haze and underwater.

Keywords: Physics based vision, Color, Polarization, Vision in Bad Weather,

Inverse problems, Dehazing, Defogging.

1

lesley
                            CCIT Report #551
                                 August 2005



1 Introduction

Most current computer vision algorithms are designed for clear visibility conditions. How-

ever, images taken in turbid media such as fog, haze, and water suffer from poor-visibility.

In such media, the radiance from a scene point is significantly altered due to scattering: it

decays exponentially [26] with distance, and is compounded by stray light which increases

with distance.

Automatic recovery of visual information in poor-visibility conditions would be ben-

eficial to computer vision systems as well as human users. There is, thus, a growing

interest in the analysis of such images [4, 8, 19, 26, 30]. Several methods have been pro-

posed to restore good visibility. Some of them are based on acquiring multiple images of

the same scene under different weather conditions [26]. Others use special active illumi-

nation hardware [9, 13, 18, 20, 28, 36, 44, 46, 47]. In some media, instant inversion of the

image degradation can be performed based on analysis of two frames taken with different

states of polarizing filter. This approach has proved effective in atmospheric haze [40].

Similarly, it has been applied underwater [38]. Visibility recovery can also be based on a

single frame, if it is accompanied by a distance map of the scene.

Although significant progress has been achieved, prior studies into the subject have

hardly dealt with noise. The object radiance decays exponentially with the object dis-

tance. Thus, noise is amplified when attempting to invert the degradation caused by the

medium. Hence, noise in the restored images depends on distance. Far objects suffer

from noise much more than close objects, since their attenuated signal is more strongly

amplified in the inverse process. We wish to suppress the generated noise. Due to the

physical nature of the noise amplification, the noise suppression should be adaptive to

the distance map. This map may be based on light modulation [18, 20, 28, 44], auxiliary

sensors [30], stereo vision [29] or be set interactively by a user [27, 43]. It may also be
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estimated by analysis of frames taken through a polarizing filter [38, 40,41].

This paper proposes an adaptive digital filtering approach, which is applicable to such

scenarios. Our approach restores visibility while adaptively suppressing noise. We success-

fully applied this approach to images acquired in atmospheric haze and underwater. We

obtained significant improvement of visibility and color over raw data, while restraining

noise.

In the next sections, we first analyze the main causes for image degradation due to

scattering, and the causes for noise amplification by inversion of this degradation. Then,

we present an adaptive filtering approach that deals with these problems. We discuss

numerical and analytical aspects, and present experimental results.

2 Theoretical Background

In this section, we mainly refer to visibility problems caused by atmospheric scattering.

However, our analysis suits other scattering environments, particularly underwater. In

this section we describe the image formation model. Then, we describe a naive inversion

process of this model, in an attempt to recover clear visibility of the scene.

2.1 Visibility Degradation

Air is a scattering medium. Its scattering effect is greatly amplified by haze, consisting of

small aerosols [26], or by fog, which is made of water droplets. As a ray of light progresses

towards the viewer through this medium, part of its energy is scattered to other directions

and a portion of it may be absorbed. When imaging, we sense two components. The first

component originates from the radiance Lobject(x, y) of the scene object at distance z(x, y)

(see Fig. 1), where (x, y) are pixel coordinates. An attenuated and somewhat blurred
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Figure 1: [Dashed rays] Light coming from the illuminant (e.g., Sun) and scattered toward the

camera by atmospheric particles is the airlight A. The airlight increases with the distance z of

the object. [Solid ray] The light emanating from the object is attenuated along the line of sight

as z increases, leading to the signal S. Without scattering, the object radiance would have been

Lobject. The scene is imaged through a polarizing filter.

version of this radiance1 is called here the signal. Motivated by studies which show that

blur by scattering is not the dominating source of visibility degradation [14,39,40], we do

not address this blur. Thus, the signal is given by

S(x, y) = Lobjectt(z) , (1)

where

t(z) = exp

[
−

∫ z

0

β(z′) dz′
]

(2)

is the medium transmittance. Here β is the extinction coefficient due to scattering and

absorption. When the extinction coefficient is distance invariant, i.e., β(z) = β, then

t(z) = exp(−βz) . (3)

The other component originates from the ambient illumination. Part of the ambient

light is scattered into the line of sight by the particles in the medium (see Fig. 1). In

1The scene radiance is measured by the detector plane of the camera. The detected image irradiance

is proportional to the scene radiance. Since the proportionality depends on the optical system parameters

and not on the medium, we treat the image irradiance and the scene radiance as equivalent.
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the context of atmospheric imaging, this component is termed airlight [24, 41] or path

radiance [10]. A similar phenomenon exists underwater, where it is referred to as veiling

light [7,22,31,35,37,46,48], path radiance [14,24], spacelight [7,11,22,23,48], or backscat-

ter [13, 24]. Assuming that the illumination over the line of sight is uniform [41], the

airlight is

A(x, y) = A∞ {1 − t[z(x, y)]} , (4)

where A∞ is the airlight radiance corresponding to an object at an infinite distance.

The overall measurement is the incoherent sum of the airlight and the signal

I = S + A . (5)

It has been shown [10] that except for rather close objects, I is typically dominated by

airlight. Thus, typically most of the light we measure is not attributed to the signal S,

whose origin is Lobject. This observation is partly due to the fact that most terrestrial

objects have a low albedo [10], decreasing the signal.

In order to restore Lobject we need to remove the additive airlight from the acquired

observation. Then we need to compensate for the attenuation of the signal, that is caused

by the scattering medium. As will be detail in Sec. 2.2, restoration may be formulated

as a simple inversion of the image formation process (Eqs. 2-5). However, inverting the

exponential attenuation (3) drastically amplifies even a negligible acquisition noise in

pixels corresponding to distant objects. This problem is not specific to the atmosphere,

but exists in all turbid media. As discussed in [39], the same noise amplification occurs

in recovery of underwater scenes.

2.2 The Basic Inversion Method

In this section we briefly describe a simple method for visibility recovery. While being

effective, this method is noise-sensitive. Suppose for the moment that we have an estimate
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of the medium transmittance t(x, y) and airlight A(x, y) at each pixel. Based on Eqs. (1)

and (5), recovery of the object radiance by a simple inversion process is

L̂object(x, y) =
I(x, y) − A(x, y)

t(x, y)
. (6)

Note that I = I(x, y), A = A(x, y) and t = t(x, y). Hence, the inversion process (6)

is formulated as being applied to each pixel independently. Therefore, the recovery is

spatially adaptive, and implicitly adaptive to the distance z(x, y).

There are two major ways to obtain t(x, y) and A(x, y), depending on whether we have

prior knowledge of the distance map z(x, y). We shall later comment on the possibility

of having such knowledge. Meanwhile, suppose, as indeed we do for most of this paper,

that we do not have such a prior map. To bypass this lack of knowledge we exploit the

relationship between airlight and transmittance (4). Note that if we have an estimate of

the airlight A, then by inverting Eq. (3), the estimated transmittance is

t(x, y) =

[
1 −

A(x, y)

A∞

]
. (7)

The airlight saturation value A∞ is a global parameter which does not vary significantly

across narrow fields of view. This parameter is estimated based on the image data (see [40,

41]), by measuring an image pixel that corresponds to an object at infinity (e.g., the sky

close to the horizon).

In haze and water, we can estimate A(x, y) by analyzing two frames acquired through

a polarizer [38, 40, 41]. The frames correspond to two orientations of the polarizing2

filter. The best results are achieved at orientations that lead to extrema (minimum and

maximum) of the image irradiance. Denote these images by Imax(x, y) and Imin(x, y).

The frame Imin(x, y) has the least amount of airlight, hence providing the best contrast a

2Analysis of a sequences of polarization filtered images has proved useful in various other computer

vision problems [2, 3, 6, 25, 50].
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raw image can deliver. Hence, we refer to it as the frame corresponding to the best state

of the polarizer. Using both Imax(x, y) and Imin(x, y), the airlight is estimated by

A =
Imax − Imin

p
, (8)

where p ∈ [0, 1] is the airlight degree of polarization. The parameter p is global. As

described above for A∞, it is estimated based on the raw frame values Imax and Imin

(see [40, 41]), at an image pixel that corresponds to an object at infinity

p ≡
Amax

∞
− Amin

∞

Amax
∞

+ Amin
∞

. (9)

Since Eq. (8) yields A, we can derive t using Eq. (7). We can then perform the in-

version (6). This method assumes that the signal polarization is insignificant, and thus

polarization is associated with the airlight. We note that I used in Eqs. (5,6) is given by

I = Imax + Imin , (10)

thus

A∞ = Amax
∞

+ Amin
∞

. (11)

If we had knowledge of the distance map of the scene by auxiliary sensors or by user

interaction, recovery can be based on a single frame. Based on Eq. (3), z(x, y) is trans-

formed to t(x, y), which then leads to the estimate of A(x, y) by Eq. (4). This process

would require knowledge of the global parameters β and A∞, which do not vary much

across the field of view. The latter can be extracted from the raw frame, as described

above.

An example of an experimental implementation [40] of the method (6)-(11) is shown

in Fig. 2. The recovered scene is much clearer than the raw data,3 however, it is very

3For clarity of display, the luminance channel of the images shown in this paper have undergone the

same standard contrast stretching, while their hue and saturation were untouched. This operation was

done only towards the display. The algorithms described in the paper were run on raw, unstretched data.
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min
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Figure 2: [Top] An image of a hazy scene, corresponding to the best state of mounted polarizer.

[Bottom] Dehazed image, using the basic algorithms of [40]. While contrast is significantly

improved, noise is amplified in pixels corresponding to long distances.

noisy in pixels corresponding to distant objects. This is not surprising. As we already

mentioned in Sec. 2.1, the transmittance t decreases exponentially with the distance z

(see Eq. 3). Thus, the inversion (6) of this effect drastically amplifies noise.

8



3 Spatially Varying Noise

Noise and other disturbances are generated during the acquisition and the inversion pro-

cesses. Before we propose an algorithm that suppresses noise, we first analyze the nature

of noise amplification. This section focuses on noise in recovery that is based on polar-

ization. Nevertheless, it gives a general indication that in images recovered from frames

acquired in scattering media, the noise strongly depends on the spatially varying medium

transmittance.

The noise variance is given by

σ2
Lobject

=

(
∂L̂object

∂Imax

)2

· σ2
Imax +

(
∂L̂object

∂Imin

)2

· σ2
Imin , (12)

where σImax and σImin denote noise variances in each of the raw images. From Eqs. (4), (8)

and (6), it follows that

∂L̂object

∂Imax
=

1

t2

[(
1 −

1

p

)
t +

Lobjectt

pA∞

]
, (13)

∂L̂object

∂Imin
=

1

t2

[(
1 +

1

p

)
t −

L̂objectt

pA∞

]
. (14)

In the following we study different noise models.

3.1 Irradiance-Independent Noise

In this section we analyze noise that is independent of the image irradiance. Examples

include quantization noise, read noise and dark current noise. Suppose that the overall

noise can be expressed as an equivalent quantization noise. The quantization accuracy of

the acquired images is 2−b, where b is the number of effective bits the camera outputs per

pixel. Therefore,

σImax = σImin = 2−b . (15)
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By substituting Eqs. (13,14,15) in Eq. (12), the total noise variance is

σ2
Lobject

=
21−2b

t2

[
1 +

1

p2

(
1 −

Lobject

A∞

)2
]

. (16)

According to Eq. (16), the noise in the recovered image is partially dependent on the

object radiance. More importantly, it is amplified as t decreases, i.e., at longer distances.

Note that 1/t2 ∈ [1,∞). Thus, 1/t2 may amplify noise by up to an infinite factor. On the

other hand, the range of Lobject is practically finite, bounding its effect on (16). Hence, t

has the crucial effect on noise amplification.

3.2 Shot Noise

In this section we analyze shot noise, which by nature depends on the acquired images.

The variance of this noise is proportional to the image intensity

σ2
Imax = κImax , (17)

σ2
Imin = κImin . (18)

Here κ is a proportionality coefficient. It is inversely related to the number of detector

generated electrons required for changing the camera readout by a single gray-level.

Using Eqs. (1,4,5,8,10,11),

Imax = Lobjectt/2 + Amax
∞

(1 − t) , (19)

Imin = Lobjectt/2 + Amin
∞

(1 − t) . (20)

Making further use of Eqs. (9,11),

Imax = Lobjectt/2 + A∞(1 + p)(1 − t)/2 , (21)

Imin = Lobjectt/2 + A∞(1 − p)(1 − t)/2 . (22)
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Eqs. (21,22) determine the noise variances in Eqs. (17,18). When substituting these into

Eq. (12), we obtain that the noise variance of the recovered image is simply

σ2
Lobject

= κ
Lobject

t
. (23)

Clearly, the noise σLobject
strongly depends on t. Considering this result and the one derived

in Sec. 3.1, we propose in this paper a noise suppression process by regularization, that

is explicitly dependent on t.

3.3 Noise of Other Variables

It worth studying the noise of other variables involved in the estimation process, i.e., S,

A and t. In the following, we show that these variables do not possess noise amplification

that is spatially varying. For example, when estimating the airlight, the variance of the

resulting noise is

σ2
A =

(
∂A

∂Imax

)2

· σ2
Imax +

(
∂A

∂Imin

)2

· σ2
Imin . (24)

Using Eq. (8),

σ2
A =

σ2
Imax + σ2

Imin

p2
. (25)

Hence, the noise in the estimated airlight is similar to that of the raw frames, up to a

global scale. It is not amplified in a spatially varying way. A similar analysis leads to

the same conclusion regarding S and t. For this reason, if we want to filter noise in

these variables, we do not need a special technique. We can use standard denoising, e.g.,

space invariant blur. Only when it comes to estimating Lobject, we encounter the need for

adaptation.

4 Restoration with Adaptive Regularization

As was stated in previous sections, noise is amplified during recovery of pixels corre-

sponding to distant objects. In Sec. 2.2, we showed a simple restoration algorithm. The
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Figure 3: Standard noise filtering by a Gaussian kernel as applied to the dehazed image shown

Fig. 2.

recovered image is much clearer, but noisy nevertheless. Applying standard smoothing

may reduce noise at pixels corresponding to distant objects. The drawback of such an ap-

proach is degradation of resolution of nearby objects, since blur is induces by this digital

processing. This blur is unjustified since only little noise exists in pixels corresponding

to close by objects, as shown in Sec. 3. An example of noise suppression by a Gaussian

smoothing filter may be seen in Fig. 3. Compare this image to Fig. 2. Indeed, we see

degradation in resolution where it is not desired, i.e., at close objects. It becomes obvious

that the desired noise suppression algorithm should adapt to the medium transmittance

at each pixel.

We now gradually describe the proposed filtering approach. The proposed algorithm

seeks the best fit to the inverse problem, while regularizing the estimate L̂object:

L̂object = arg min
Lobject

ϕ (Lobject) , (26)

where ϕ is a cost function composed of a fitting term and a regularization term

ϕ (Lobject) = (Fitting + Regularization) . (27)
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Let us first discuss the fitting term, which penalizes for deviation from the model described

in Sec. 2. In principle, we could opt for a fitting term of the form

Fitting (Lobject, S, A, t) = ‖S − tLobject‖
2+

+ µS‖I − (S + A)‖2 + µt‖t − A/A∞‖2 + µA‖A − (Imax − Imin)/p‖2 , (28)

where µS, µt and µA are constants. Apparently, Eq. (28) encapsulates all the model

components: the signal attenuation relative to the sought Lobject, the modelling of the

measured intensity as a sum of the signal and airlight, the relation between the transmit-

tance and the airlight, and finally, the polarization-based expression for airlight. However,

such a formulation is inconvenient. It involves a large number of variables (Lobject, S, A, t)

to be simultaneously optimized at each pixel. Moreover, it is unclear how the different

parameters µS, µt and µA should be set.

Note, however, that the estimates of S, A and t do not exhibit spatially varying noise

amplification (See Sec. 3.3). Hence, each of them can undergo standard space invariant

filtering. We thus estimate A offline, and subsequently t. Based on Eq. (5), we then

estimate the signal as

S(x, y) = I(x, y) − A(x, y) . (29)

We do not regularize S, hence we maintain the details of the signal. Once we have

an estimate of these variables, we remain with data fitting that explicitly involves the

transmittance and the unknown Lobject. Hence, the fitting term we use is

Fitting = ‖S − T Lobject‖
2 , (30)

where T ia a transmittance operator, which corresponds to the values of t across the

image.

As for the regularization term, consider first the standard form

Regularization = λ‖DLobject‖
2 , (31)
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where D is the Laplacian operator and λ is the weight of the regularization term. This

term penalizes the cost function for unsmooth results. However, we wish to avoid any

regularization in pixels corresponding to close pixels, for which T → 1. To aggressively

impose adaptivity, we use a local weight in the regularization formulation that depends

explicitly on t. Consider a regularization term of the form

Regularization = λ ‖WDLobject‖
2 . (32)

Here W is a weighting operator. It depends explicitly on the transmittance t at each

pixel, hence implicitly adaptive to the object distance z. In the next sections we detail

implementations of this approach in both monochrome and color images.

5 Adaptive Regularization in Monochrome Images

To perform the minimization, we may first convert all the images to column-stack vectors.

The vector s denotes the signal, while l denotes the object radiance. We can then define

the operators in terms of matrices. The cost function is thus

ϕ (l) = ‖s− Tl‖2 + λ ‖WDl‖2 , (33)

where the attenuation operator is expressed by means of a diagonal matrix T, whose

diagonal elements express t at each corresponding pixel. The 2D Laplacian operator D

is also expressed as a matrix operation over a vector, as described in [21]. The weighting

matrix W is diagonal as well. We use a simple weighting matrix, whose elements are

defined as

wii = (1 − tii)
2 , (34)

where tii are the diagonal elements of T. Note that tii ∈ [0, 1]. The proposed weighting

emphasizes the regularization of pixels corresponding to distant objects (where tii → 0),

and turns off the regularization at close objects (where tii → 1).
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Eqs. (33) is minimized by standard linear optimization tools. Examples of restoration

with this weighted regularization are shown in Fig. 4. It is important to note that the

weighted regularization creates no blur at all in regions corresponding to close objects.

There, the result is indistinguishable from that of simple inversion. On the other hand,

the weighted regularization yields results that are less noisy than naive inversion at image

regions corresponding to long distances. This noise reduction is traded for image blur in

those regions. This trade off is controlled by the parameter λ. As we will see in Secs. 6

and 7, this blur is much less severe when the regularization approach is applied to color

images.

6 Adaptive Regularization in Color Images

In this section we extend noise supression to color images. As we explain, it is better not

to repeat the monochrome algorithm (Sec. 5) on each color channel separately. Rather,

we make a modification to make it more plausible to human color perception.

6.1 RGB Formulation

A color image consists of three channels, representing the energy of red, green and blue

wavelength bands, per pixel. At first sight it may appear that we need to apply the algo-

rithm used in monochrome on each color channel separately. Such an approach combines

a fitting term for each of the color channels and a corresponding regularization term.

Define the column stack representation of object radiance in the red, green and blue color

channels as lR, lG and lB, respectively. Let us encapsulate these vectors in a single column

stack:

p =



lR
lG
lB


 . (35)
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λ = 0

λ = 0.1

λ = 1

Figure 4: Monochrome restoration. As the weight λ of the regularization term increases, high

frequency noise in the background is suppressed, while blurring the recovered image. These

effects adapt to the object distance (transmittance).
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The solution is now found as

p̂ = arg min
p

ϕ (p) , (36)

where ϕ is the cost function, composed of fitting and regularization terms. We use

Fitting = ‖sR −TR̂lR‖
2 + ‖sG −TGl̂G‖

2 + ‖sB − TB̂lB‖
2 , (37)

where sR, sG and sB are the signals at each color channel. The matrices TR, TG and TB

express the transmittance operator in each color channel.

Suppose the regularization is of the form

Regularization = λR‖WDl̂R‖
2 + λG‖WDl̂G‖

2 + λB‖WDl̂B‖
2 , (38)

where λR, λG and λB are the weights of the components in this term. This term regularizes

each color channel independently. Experiments show that using the formulation (37)

and (38) sometimes results in color distortion, when the recovered image is visualized.

We hypothesize that this may happen because human color perception does not comply

with spatial processing of separate wavelength bands, rather than a combinations of color

channels. Moreover, such a formulation does not take advantage of perceptual properties

of spatial resolution to reduce the apparent blur. In the next section we describe how we

account for these issues.

6.2 Perceptually Motivated Formulation

As detailed in Sec. 6.1, perceptual considerations may not favor separate spatial processing

of color channels. We thus transfer the images to a better representation. Note that human

vision is less sensitive to blur of chromatic information than to luminance blur. We can

exploit this to suppress noise while making the consequent blur less apparent. We achieve

this by switching from the RGB color space to the NTSC YIQ color space,4 when treating

the regularization term.

4The NTSC YUV color space may be used as well.
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The RGB to NTSC conversion is given by


lY
lI
lQ


 =



αY βY γY
αI βI γI
αQ βQ γQ






lR
lG
lB


 , (39)

where lY, lI and lQ are the values of each of the components in the YIQ space. Details

of the elements of the matrix used in Eq. (39) are given in [12]. This representation

expresses the luminance in the Y component, separately from the chromatic components

I and Q. We preferred to use this linear transformation, rather than nonlinear color spaces

as Hue-Saturation-Value. The reason is that a linear transformation fits naturally into

the linear optimization we perform, as we detail in Sec. 6.3.

It is important to note that we apply this transformation only in the regularization

term. We do not apply it to the fitting term. The reason is that fitting is derived from

the original inverse problem (6), which is wavelength dependent through all its parameters:

the image irradiance I, the airlight A and the transmittance t. The relationship between

these variables is physical, rather than perceptual, and is wavelength dependent. Had we

used the YIQ color space in the fitting term, we would have lost the physical relevance

of the wavelength dependance. Hence, the fitting term is maintained in the RGB color

space.

While we maintain the fitting term as in (37), we use the following regularization term:

Regularization = λY‖WDlY‖
2 + λC‖WDlI‖

2 + λC‖WDlQ‖
2 , (40)

where λY is the weight of the luminance regularization and λC is the weight of the chromi-

nance regularization. We use λC > λY : selecting a relatively large λC suppresses noise

in image components for which human vision tolerates blur, while keeping a small λY

minimizes blur in the component that is perceptually dominant.

In Eq. (40) we used the same weighting matrix W as defined in Eq. (34). To determine

the weights, we used the transmittance of a single color channel. In haze, we used the
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transmittance of the green color channel to determine the regularization weights, while

in water we used the blue channel. We opted for these channels since they typically

contain the highest light energies in the respective media, hence presumably yielding

better distance maps for use in the weighting.

6.3 Gradient and Hessian

To minimize the cost function (36), we apply standard optimization tools. Such opti-

mization benefits from knowledge of the gradient and the Hessian of ϕ. In this section

we derive these functions. Define a vector that encapsulates vectors sR, sG and sB in a

single column stack,

sRGB =



sR

sG

sB


 , (41)

and a matrix

TRGB =



TR . . . 0
... TG

...
0 . . . TB


 . (42)

The cost function defined by Eqs. (37) and (40) is

ϕ(p) = ‖sRGB − TRGBp‖2 + λY‖WDΦYp‖
2 + λC‖WDΦIp‖

2 + λC‖WDΦQp‖
2 , (43)

where the matrices ΦY, ΦI and ΦQ are defined as

ΦY =
[

αYI βYI γYI
]

, (44)

ΦI =
[

αII βII γII
]

, (45)

ΦY =
[

αQI βQI γQI
]

, (46)

while I is the identity matrix. The α, β and γ coefficients used in Eqs. (44-46) are the

ones used in Eq. (39), as defined in [12].

The gradient and Hessian of the fitting term are given by

gFitting = 2TT
RGB [TRGBp− sRGB] (47)
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and

HFitting = 2TT
RGBTRGB , (48)

respectively, where T denotes transposition. The gradient and Hessian of the regulariza-

tion term are given by

gRegularization = 2λYΦ
T
YDWTWDΦYp +

+ 2λCΦ
T
I DWTWDΦIp + 2λCΦ

T
QDWTWDΦQp (49)

and

HRegularization = 2λYΦ
T
YDWTWDΦY +

+ 2λCΦ
T
IDWTWDΦI + 2λCΦ

T
QDWT WDΦQ , (50)

respectively. Hence, the gradient of the cost function is

gϕ(p) = gFitting + gRegularization (51)

while the Hessian is

Hϕ(p) = HFitting + HRegularization . (52)

It is clear that the hybrid use of RGB in the fitting term and YIQ in the regularization

term poses no mathematical complication in the optimization. The cost function, its

gradient and its Hessian are derived in close form . This simplicity stems from the linear

relation (39) between these color spaces.

7 Experimental Results

This section shows result of our method in several experiments. Despite variations of

instruments and media, all the experiments use the same cost-function parameters. The

luminance and chromatic regularization weights are λY = 1/20 and λC = 1/2, respectively.
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Figure 5: The image corresponding to Figs. 2 and 3 recovered with adaptive filtering.

7.1 In Haze

An example of restoration with our weighted regularization is shown in Fig. 5. Compare

this color image to the naive inversion result and the raw image in Fig. 2. While visibility

has improved significantly relative to the raw image, weighted regularization yields results

that are less noisy than those of naive inversion. Note that close objects are not blurred

at all.

An additional set of experimental results is shown in Fig. 6. As in the previous example,

two images were taken through a polarizing filter. Here the images were acquired using

a Nikon D-100 digital camera, where the mode of data extraction maintained a linear

radiometric response. The transmittance map t recovered by this method is depicted in

Fig. 7. It is equivalent to the distance map of the scene. To better observe the adaptive

attenuation of noise, a strip of the scene is magnified in Fig. 8.
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adaptively filtered

raw frame I
min

Figure 6: An additional experiment of dehazing by adaptive filtering. [Top] The raw image at

the best state of the polarizer. [Bottom] Result of the algorithm.
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Figure 7: The recovered transmittance in the experiment corresponding to Fig. 6. It is equiva-

lent to the distance map.

7.2 Underwater

We ran our method on an underwater scene, which had been imaged via a polarizer [39]

by a Nikon D-100 in a housing. The raw frames were taken in natural illumination, and

are shown in Fig. 9. They were acquired in the sea, 26 meters under the water surface.

They are very blue, due to the strong attenuation of the red illumination component in

these depths. The frames are displayed contrast stretched (as all images in this paper),

and hence look very similar to one another. To partly compensate for the color imbalance,

we attempted to normalize the image color by the color of a nearby sand-patch [39]. The

left part of Fig. 10 shows the result of this operation, based on the raw image at the best

state of the polarizer. This result still suffers from poor visibility.

We then applied our algorithm. Fig. 11 shows the transmittance map t (equivalent to

the distance map) recovered by the method. We used it in the transmittance-adaptive

optimization. We applied white balancing to the result of the optimization. The recovered

image is shown on the right part of Fig. 10. The visibility has improved significantly,

particularly for distant objects.
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simple inversion adaptive filteringraw frame I
min

Figure 8: Zooming in on a region of the scene from Fig. 6. Dehazing by simple inversion achieves

great visibility and color improvement, yet with high frequency noise in the background. Dehaz-

ing by adaptive filtering attenuates this noise, while sparing consequent blur from foreground

objects.

24



raw frame I
min raw frame I

max

Figure 9: Raw color images (contrast stretched for display) of an underwater scene taken in the

sea.

raw frame I
min , white balanced adaptive filtering

Figure 10: Processing of the images shown in Fig. 9. [Left] Simple white balancing of the raw

frame does not reveal distant details. [Right] The result of applying adaptive filtering to remove

path radiance, attenuation and noise, prior to white balancing. Details of distant objects are

much better seen. The marked rectangular areas on the right are magnified in Fig. 12.
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Figure 11: The recovered transmittance in the experiment corresponding to Fig. 9. It is equiv-

alent to the distance map.

It is interesting to compare the results of adaptive regularization to those of simple

inversion. Fig. 12 shows these results in two rectangular areas cropped from Fig. 10.

A close look at this figure reveals that regularization increased a little the contrast and

clarity. In the example on the right part of Fig. 12, features are more salient in the

adaptively filtered (denoised) version, shown on the bottom, than their state in the noisy

image shown on top. The same applies to the example on the left part of Fig. 12. Hence

in this experiment, regularization does not appear to have caused loss of perceived quality

due to blur, but the contrary. In the following we propose a possible explanation to this

effect.

The explanation may stem from the depth of field of the raw frames. Underwater,

depth of field is typically much narrower than in open air, for two reasons. First, the

relevant distances in water are very close: meters, even centimeters, while in hazy air the

distances relevant to this method are four orders of magnitude larger. Hence, in the open
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simple inversion

adaptive filteringadaptive filtering

simple inversion

Figure 12: Magnification of the rectangular areas marked in Fig. 10. For each area, compare

the result of standard inversion to that of adaptive filtering. To observe the color effects,

please view the paper on the computer monitor.

air most of the distant scene corresponds to a “focus at infinity” state, while in water

much of the scene in defocused (except for a narrow range). Second, the underwater

darkness imposes use of the full lens aperture (narrowing the depth of field), while in

the open air the aperture can often be narrow. Hence, in Fig. 9, the distant areas are

defocus blurred, when the focus is set on closer objects. Thus, the energy of the signal

corresponding to distant objects is limited to low spatial frequencies. For this reason, the

recovered image L̂object is not degraded there by the digital smoothing that stems from

regularization. While the signal is unaffected, regularization suppresses the high intensity,

high frequency noise there. Hence the net result is some improvement of image clarity.
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8 Discussion

We showed in this paper an adaptive filtering approach which is simple, yet effective.

It significantly enhances color and contrast of scenes taken in scattering media, while

countering noise amplification in a spatially varying adaptive way. The method capitalizes

on human perception characteristics to achieve the goal with reduced consequent digital

blur. Moreover, it appears that this digital blur does not degrade the recovered image in

very turbid media, while still blurring out the noise. The reason is that high turbidity

imposes low lighting (requiring high lens aperture) and short imaging distances, thus

involving defocusing effects in the raw frames. The proposed approach exploits standard

tools for efficient optimization.

We demonstrated the approach in haze and underwater, under natural illumination.

Nevertheless, we believe that it applies to other media (such as tissue) and imaging

systems, such as those based on active illumination [9,13,18,20,28,36,44,46,47]. In active

illumination, the radiation is attenuated by the medium for approximately twice the object

distance, beyond the 1/z2 falloff of the illumination incident on the object, caused by free

space propagation. Hence, the signal there is also strongly distance dependent. Recovery

in these circumstances may thus benefit from such distance-adaptive regularization to

restrain noise amplification in the recovery.

The approach may be helpful in domains that are unrelated to scattering media. Spa-

tially varying transmittance is not limited only to such media, but also to the imaging

system itself. Most imaging systems have spatial non-uniformity due to vignetting and

foreshortening [1,15,16,21,42,49,51]. This non-uniformity of optical transmittance tends

to darken the periphery of frames. Compensating for this effect by digital post-processing

increases image noise. Moreover, this noise amplification may disrupt image registra-

tion [42]. In such cases, the algorithm developed here can be directly employed by using
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the spatially varying transmittance of the camera rather than the medium transmittance.

We would like to note that an important extension of this work is to use other weighting

operators than the one we used. In particular, avoidance of edge smoothing can be

attempted. A possible way to achieve it is to use a weighting operator

W̃ =
1√

1 + ξ|∇Lobject|2
W , (53)

where ∇Lobject is the gradient of the dehazed scene and ξ > 0 is a control parameter.

Here W is adaptive to the transmittance (distance), as defined in this paper, while the

other term in W̃ ensures that regularization is weakened across edges, where ∇Lobject is

large. Edge preserving filtering has indeed been implemented with established numerical

schemes, known as anisotropic diffusion [33] or Beltrami flow [17]. Other implementations

use bilateral filtering [5, 45], automatic image partition [32] or line fields [34]. Thus, it

would be interesting to merge these techniques with our distance-adaptive weighting.
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not blue: a visual pigment loss in marine mammals. European J. of Neuroscience,

13:1520–1529, 2001.

[32] J. Polzehl and V. G. Spokoiny. Adaptive weights smooting with applications to image

restoration. J. of Royal Stat. Soc., Ser. B, 62:335-354, 2000.

[33] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion.

In IEEE Trans. Pattern Analysis and Machine Intelligence, 12:629–639, 1990.

[34] A. N. Rajagopalan, S. Chaudhuri and U. Mudenagudi. Depth estimation and image

restoration using defocused stereo pairs. IEEE Trans. Pattern Pattern Analysis and

Machine Intelligence, 26:1521-1525, 2004.

[35] G. G. Rosenthal and M. J. Ryan. Visual and acoustic communication in non-human

animals: A comparison. Journal of Biosciences, 25:285–290, 2000.

[36] M. P. Rowe, E. N. Pugh Jr., J. S. Tyo and N. Engheta, Polarization-difference

imaging: a biologically inspired technique for observation through scattering media.

Optics Lett., 20:608–610, 1995.

[37] N. Shashar, R. Hagan, J. G. Boal and R.T. Hanlon. Cuttlefish use polarization

sensitivity in predation on silvery fish. Vision Research, 40:71–75, 2000.

33



[38] Y. Y. Schechner and N. Karpel. Clear underwater vision. Proc. IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, volume 1, pages

I–536–543, 2004.

[39] Y.Y. Schechner and N. Karpel. Recovering scenes by polarization analysis. Proc.

MTS/IEEE Oceans , volume 3, pages 1255–1261, 2004.

[40] Y. Y. Schechner, S. G. Narasimhan and S. K. Nayar. Polarization-based vision

through haze. Applied Optics, 42:511–525, 2003.

[41] Y. Y. Schechner, S. G. Narasimhan and S. K. Nayar. Instant dehazing of images

using polarization. Proc. IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, volume 1, pages I–325–332, 2001.

[42] Y. Y. Schechner and S. K. Nayar Generalized Mosaicing: High Dynamic Range in a

Wide Field of View. International Journal of Computer Vision, 53:245–267 , 2003.

[43] J. Sun, J. Jia, C. K. Tang H. Y. Shum Poisson matting. ACM Transactions on

Graphics, 23:315–321, 2004.

[44] B. A. Swartz. Laser range gate underwater imaging advances. Proc. MTS/IEEE

OCEANS, pp. 722–727, 1994.

[45] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. Proc.

IEEE Int. Conf. Computer Vision, pp. 839-846, 1998.

[46] J. S. Tyo, M. P. Rowe, E. N. Pugh Jr. and N. Engheta. Target detection in optically

scattering media by polarization-difference imaging. App. Opt., 35:1855–1870, 1996.

[47] J. G. Walker, P. C. Y. Chang and K. I. Hopcraft. Visibility depth improvement in

active polarization imaging in scattering media. App. Opt., 39:4933–4941, 2000.

34



[48] R. Wehner. Polarization vision - a uniform sensory capacity? J. Experimental

Biology, 204:2589–2596, 2001.

[49] R. G. Wilson and S. A. Shafer. What is the center of the image? J. Opt. Soc.

America A, 11:2946-2955, 1994.

[50] L. B. Wolff. Polarization-based material classification from specular reflection. IEEE

Trans. Pattern Analysis and Machine Intell., 12:1059-1071, 1999.

[51] W. Yu. Practical anti-vignetting methods for digital cameras. IEEE Trans. on Cons.

Elect., 50:975-983, 2004.

35


