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Abstract

We study a class of nonsmooth unconstrained optimization problems,
which includes the problem of minimizing the sum of pairwise maxima of
smooth convex functions. Minimum l1-norm approximation is a particu-
lar case of this problem. Combining the ideas of Lagrange multipliers and
of smooth approximation of max-type function, we obtain an extended
notion of nonquadratic augmented Lagrangian. Our approach does not
require artificial variables, and preserves sparse structure of Hessian in
many practical cases. We present the corresponding method of multipli-
ers, and its convergence analysis for a dual counterpart, resulting in a
proximal point maximization algorithm. The practical efficiency of the
algorithm is supported by computational results for large-scale problems,
arising in structural optimization.

1 Introduction

We consider the non-smooth convex unconstrained optimization problem

min
x∈Rn

{

F (x) = f(x) +

m
∑

i=1

max
[

αihi(x), βihi(x)
]

}

(1)

where f(x) and hi(x), i = 1, . . . ,m are smooth convex functions, defined over
entire space R

n; αi < βi are certain constants. In order to guarantee con-
vexity, we assume, that for any particular index i, the values αi and βi are
non-negative, if hi(x) is nonlinear1. Problem in this setting arises for example
in Truss Topology Design [1, 5]. This is a generalization of least l1 norm ap-
proximation (regularization) problem, when the coefficients αi = −1, βi = 1,

1Without loss of generality, one could set αi = 0 for all i by changing f to f +
P

i
αihi

and βi to βi − αi. This simlification would not change significantly our derivation, nor the

computational burden of the method, however it can be useful in various cases.
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and the functions hi(x) are affine:

F (x) = f(x) +

m
∑

i=1

|hi(x)| = f(x) + ||h(x)||1 , (2)

where h(x) =: [h1(x), h2(x), .., hm(x)]T . This kind of problem arises in many
important areas of modern signal/image processing, in the context of sparse rep-
resentations, blind source separation, minimal total variation solutions, etc.(see
for example [8, 21, 22]).

Further, for simplicity of notation, we consider the case where αi ≡ α, βi ≡ β
are independent of i; the extension onto the general case is quite straightforward.

Extended augmented Lagrangian approach Methods of multipliers, in-
volving nonquadratic augmented Lagrangians [10, 6, 15, 3, 19, 20, 4, 7, 11] suc-
cessfully compete with the interior-point and other methods in non-linear and
semidefinite programming. They are especially efficient when a very high accu-
racy of solution is required. This success is explained by the fact, that due to
iterative update of multipliers, the penalty parameter does not need to become
extremely small in the neighborhood of solution.

Direct application of the augmented Lagrangian approach to the sum-max
problem requires the introduction of artificial variables, one per element of the
sum, which significantly increases the problem size and the computational bur-
den. Alternatively, one can use smooth approximation of the max-type function
[2, 9], which will keep the size of the problem unchanged, but will require the
smoothing parameter to become extremely small in order to obtain an accurate
solution.

In this article we propose an extended notion of augmented Lagrangian,
which combines the idea of multipliers with smooth approximation of the max-
type function. It allows us to keep the size of the sum-max problem unchanged,
and achieves a very accurate solution under a moderate value of the smooth-
ing parameter. We show, that the powerful tool for analysis of augmented
Lagrangian algorithms, based on their correspondence to the proximal point
methods in dual space [18, 13, 14, 4], can be extended to our case. The practical
efficiency of the algorithm is supported by computational results for large-scale
problems, arising in structural optimization.

2 Smoothing the max-function

Let us introduce a parameterized smooth approximation of the maximum func-
tion

r(t) = max(αt, βt) ,

shown in Figure 1. The smoothing function ϕ(t;µ, c), α < µ < β, c > 0 has
two parameters: µ and c. Parameter c defines accuracy of approximation of the
max-function r(·), the approximation becomes perfect as c → ∞. Parameter µ
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Figure 1: Max(αt, βt) – solid line; ϕ(t; µ, c) – dashed line; µt – dot-dashed line

determines the derivative of ϕ at t = 0; it will serve as a Lagrange multiplier.
The graph of the linear function µt is tangent to the plot of ϕ(·;µ, c) at the
origin.

The function ϕ possesses the following properties:

(ϕ1) ϕ(t;µ, c) is convex in t;

(ϕ2) ϕ(0;µ, c) = 0;

(ϕ3) ϕ′
t(0;µ, c) = µ;

(ϕ4) limt→−∞ ϕ′
t(t;µ, c) = α;

(ϕ5) limt→+∞ ϕ′
t(t;µ, c) = β;

(ϕ6) limc→+∞ ϕ(t; µ, c) = r(t).

The particular form of function ϕ we introduce and prefer to use in our
computations consists of three smoothly connected branches:

ϕ(t, µ, c) =



























αt − p1 log
t

τ1
+ s1, t < τ1 ≤ 0

ct2

2
+ µt, τ1 ≤ t ≤ τ2

βt − p2 log
t

τ2
+ s2, t > τ2 ≥ 0 .

(3)

The coefficients p1, p2, s1, s2, τ1, τ2 are chosen to make the function ϕ continuous
and twice differentiable at the joint points τ1 and τ2:
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τ1 =
α − µ

2c
; τ2 =

β − µ

2c
;

p1 = cτ2
1 ; p2 = cτ2

2 ;

s1 =
c

2
τ2
1 + (µ − α)τ1;

s2 =
c

2
τ2
2 + (µ − β)τ2.

When τi = 0, we put pi log t
τi

= cτ2
i log t

τi
= 0. One can note, that when

α → 0 and β → ∞, ϕ(·) becomes a quadratic-logarithmic penalty for inequality
constraint in nonquadratic augmented Lagrangian [4]. On the other hand, when
α → −∞ and β → ∞, ϕ(·) becomes a quadratic penalty for equality constraint
in a standard quadratic augmented Lagrangian [16]. In this way our approach
generalizes known augmented Lagrangian techniques.

3 Extended Notion of Lagrangian, Augmented

Lagrangian and Duality

A standard way to introduce augmented Lagrangian for the sum-max problem
would be to reformulate it as a smooth constrained optimization problem using
artificial variables, which will increase the problem size significantly. Instead we
introduce extended notions of Lagrangian and augmented Lagrangian, which
keep the problem size unchanged, preserving at the same time many important
classical properties of these functions. We propose the following extended notion
of Lagrangian

L(x, u) = f(x) +

m
∑

i=1

uihi(x), α ≤ ui ≤ β. (4)

and corresponding extended notion of augmented Lagrangian

M(x, u, c) = f(x) +

m
∑

i=1

ϕ(hi(x), ui, c), α ≤ ui ≤ β. (5)

As we will show in this section, there exists a vector of multipliers u∗, such
that an unconstrained minimizer x∗ of the augmented Lagrangian provides an
optimal solution to Problem (1), i.e. we do not need to force the smoothing
parameter c towards zero in order to solve the problem. This property serves
as a basis for the method of multipliers presented in the next section.

Duality of the Sum-Max Problem

We will show that duality properties similar to those of the standard Lagrangian
and augmented Lagrangian take place in our extensions. Let us denote the
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following sets of indeces:

In(x) = {i : hi(x) < 0}; (6)

I0(x) = {i : hi(x) = 0}; (7)

Ip(x) = {i : hi(x) > 0}; (8)

Lemma 1 [ necessary and sufficient optimality conditions ]
A vector x∗ ∈ R

n is a solution of the problem (1) iff there exists a vector
u∗ ∈ R

m such that

∇f(x∗) +

m
∑

i=1

u∗
i∇hi(x

∗) = 0 , (9)

u∗
i = α, i ∈ In(x∗) , (10)

u∗
i = β, i ∈ Ip(x

∗) , (11)

α ≤ u∗
i ≤ β, i ∈ I0(x

∗) . (12)

Proof. Subdifferential set of the convex function F (x) in (1) can be represented
as

∂F (x) = {∇f(x) +

m
∑

i=1

ui∇hi(x)} , (13)

where
ui = α, i ∈ In(x), (14)

ui = β, i ∈ Ip(x), (15)

α ≤ ui ≤ β, i ∈ I0(x), (16)

so (9) - (12) represent the sufficient and necessary optimality condition

0 ∈ ∂F (x∗) (17)

(see the subdifferential calculus developed in [16, 12]) ✷

Lemma 2 For any given x ∈ R
n and u ∈ R

m, α ≤ u ≤ β, the following
inequalities take place:

F (x) ≥ M(x, u, c) ≥ L(x, u) . (18)

Proof. Follows immediately from the inequality

max(αt, βt) ≥ ϕ(t, µ, c) ≥ µt , α ≤ µ ≤ β (19)

illustrated by Fig.1. ✷

Theorem 1 [ saddle point of the Lagrangian ]
A vector x∗ is a solution of the problem (1) iff there exists a vector u∗ ∈ R

m, α ≤
u∗ ≤ β, such that the pair (x∗, u∗) is a saddle point of the Lagrangian (4):

L(x∗, u) ≤ L(x∗, u∗) ≤ L(x, u∗) ∀x ∈ R
n, α ≤ u ≤ β (20)
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Proof. Suppose that x∗ is a solution of the problem (1). Then by Lemma 1,
conditions (9) – (12) hold. By (9)

∇xL(x∗, u∗) = 0, (21)

so by convexity of the Lagrangian with respect to x

x∗ ∈ arg min
x

L(x, u∗). (22)

It is easy to check, that by (10) – (12)

u∗
i hi(x) = max(αhi(x), βhi(x)),

hence L(x∗, u∗) = F (x∗). Taking into account inequality (18), we obtain

L(x∗, u∗) ≥ L(x∗, u) , α ≤ u ≤ β. (23)

So by (22) and (23) the pair (x∗, u∗) is a saddle point.

Conversely, suppose that (x∗, u∗) is a saddle point of the Lagrangian. By
definition (22) holds, hence (9) holds as well. By (20) and (4) we have

∑

i

u∗
i hi(x

∗) ≥
∑

i

uihi(x
∗), α ≤ ui ≤ β. (24)

This implies that (10) and (11) must be satisfied, otherwise we could violate
(24) putting corresponding ui to α or β. Hence, conditions (9) – (12) hold, and
by Lemma 1 the vector x∗ is an optimal solution for the problem (1). ✷

Now we introduce the dual function

G(u) = min
x

L(x, u). (25)

By Theorem 1 the strong duality holds:

F (x∗) = minF (x) = max
α≤u≤β

G(u) = G(u∗). (26)

Corollary 1 Optimal solution x∗ is a minimizer of the augmented Lagrangian
M(·, u∗, c)

Proof follows from Theorem 1 and Lemma 2. ✷

This corollary has an important meaning: using optimal multipliers, one can
obtain an exact solution of the original problem by minimization of the aug-
mented Lagrangian, without forcing the smoothing parameter to zero. This will
serve as a ground for the method of multipliers presented below.
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4 Smoothing Method of Multipliers

We introduce the method of multipliers, which performs the following steps at
iteration k:

1. Minimize augmented Lagrangian in x

xk+1 = arg min
x

M(x, uk, ck); (27)

2. Update the multipliers

uk+1
i = ϕ′(hi(xk+1), u

k
i , ck), (28)

where the derivative ϕ′ is taken with respect to the first argument

3. Update the smoothing parameter (optionally)

ck+1 = γck, γ > 1. (29)

In practical implementation we sometimes restrict relative change of multipliers
to some bounds in order to stabilize the method:

γ1 <
uk+1

i − α

uk
i − α

< γ2 (30)

γ1 <
β − uk+1

i

βi − uk
i

< γ2 (31)

α + δ < uk+1
i < β − δ. (32)

We also restrict the smoothing parameter by some maximal value cmax. In
numerical experiments presented in this work, our choice of parameters was
γ = γ1 = 1

γ2

= 2 , δ = 10−6 , cmax = 103 . In general, the algorithm is rather
insensitive to changes in the parameters in order of magnitude or more.

5 Proximal Point Algorithm as a Dual Interpre-

tation of the Method

We show here that the algorithm (27 – 29) generates the same sequence of
multipliers {uk} as an appropriate (non-quadratic) proximal point algorithm
applied to the maximization of the dual objective function G over the box

max
α≤u≤β

G(u) , (33)

and state the convergence of the algorithm (see Appendix A for the proofs.)
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Proposition 1 After the update of multipliers (28) the vector xk+1 becomes a
minimizer of the Lagrangian, which gives the value of the dual function

L(xk+1, uk+1) = min
x

L(x, uk+1) = G(uk+1) . (34)

Proposition 2 If x̄ is a minimizer of the Lagrangian

L(x̄, ū) = min
x

L(x, ū) = G(ū) , (35)

then
h(x̄) ∈ ∂G(ū) , (36)

where ∂G(ū) denotes a subdifferential set of the concave function G, and
h(x) =: (h1(x), h2(x), .., hm(x))T

Lemma 3 [ correspondence between method of multipliers and prox algorithm ]
The algorithm (27),(28),(29) generates the same sequence of multipliers {uk}
as a proximal point algorithm given by the following recurrent relation

uk+1 = arg max
u

{G(u) − Dk(u, uk)}, (37)

where the proximal term Dk is given by

Dk(u, uk) =

m
∑

i=1

ϕ∗(ui, u
k
i , ck) , (38)

and ϕ∗ is the conjugate function of ϕ with respect to the first argument, given
by Legendre transformation (see e.g. [16] )

ϕ∗(λ, µ, c) = sup
t
{λt − ϕ(t, µ, c)}. (39)

For example, the conjugate of the quadratic-logarithmic function (3) can be
easily obtained by integrating the inverse of its derivative (see Figure 2)

ϕ∗(λ, µ, c) =



























−p1 log
λ − α

l1 − α
+

1

2c
(l1 − µ)2, α < λ < l1

1

2c
(λ − µ)2, l1 ≤ λ ≤ l2

−p2 log
λ − β

l2 − β
+

1

2c
(l2 − µ)2, l2 < λ < β

(40)

where
l1 = cτ1 + µ; l2 = cτ2 + µ;

To simplify the notation we will omit the third argument in ϕ and denote

ψ(λ, µ) ≡ ϕ∗(λ, µ) (41)
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Figure 2: Smoothing function ϕ (solid line) and its conjugate ψ (bold solid line). Cor-
responding derivatives (dashed and dot-dashed lines) are mutually inverse functions,
hence their plots are symmetric with respect to the 45o line.

Let α < µ < β. The conjugate function ψ has the following properties:

(ψ1.) ψ′
1 increases monotonically

[since ϕ′

1 increases monotonically and ψ′

1 = (ϕ′

1)
−1]

(ψ2.) ψ(·, µ) is convex [by ψ1]

(ψ3.) ψ′
1(µ, µ) = 0 [since ϕ′

1(0, µ) = µ]

(ψ4.) ψ(λ, µ) = ∞ for λ < α or λ > β (barrier property)
limλցα ψ′

1(λ, µ) = −∞, limλրβ ψ′
1(λ, µ) = ∞

[since limt→−∞ ϕ′(t, µ) = α; limt→∞ ϕ′(t, µ) = β]

(ψ5.) ψ(λ, λ) = 0
[ψ(λ, λ) = ϕ∗(λ, λ) =: sup(tλ − ϕ(t, λ)) = −ϕ(0, λ) = 0 since ϕ′(0, λ) = λ]

(ψ6.) ψ(λ, µ) ≥ 0 [by ψ5, ψ3 and ψ2].

Denote
Box(α, β) = {u ∈ R

m : α ≤ u ≤ β} . (42)

Due to (ψ1 − ψ6), the proximal term (38) is a convex function with respect to
the first argument and the following properties are satisfied:

(D1.) D(u, v) ≥ 0 , u, v ∈ Box(α, β)

(D2.) D(u, u) = 0 , u ∈ interior(Box(α, β))

(D3.) D(u, v) = ∞ if v ∈ interior(Box(α, β)), u /∈ Box(α, β)
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Theorem 2 [ monotonicity and convergence of the proximal point algorithm ]
Let the proximal term (38) of the the algorithm (37) be based on the conjugate
of the quadratic-logarithmic function (3). Then

(a) the sequence {uk} generated by the prox-algorithm (37) belongs to the
Box(α, β) and the sequence of the function values G(uk) is nondecreas-
ing;

(b) the set of accumulation points of the method (34) is nonempty and belongs
to the solution set of the dual problem (33).

6 Computational Example

In this section we demonstrate effectiveness of our method as applied to the
optimal truss topology design.

6.1 Truss Topology Design problem formulation

The problem is to find the stiffest truss which carries a given load and which
consists of bars of a given total volume. The bars of the truss are a subset of
the bars connecting all of a set of a priori chosen nodal points. The volume ti of
each bar is within prescribed upper and lower bounds Ui and Li. The original
formulation of the problem is the following (see [1] and [5] for details):

min
x,t

fT x (43)

subject to

A(t)x = f (44)
m

∑

i=1

ti = v (45)

0 ≤ Li ≤ ti ≤ Ui , i = 1, . . . , m (46)

where
N – number of nodes in the truss
t = (ti) – m-dimensional vector of the bars’ volumes (“design variables”)
m – maximum number of bars (m = 1

2N(N − 1))
x = (xj) – n-dimensional vector of the displacements of the nodes

(“analysis variables”)
n – number of analysis variables n = 2N (2D-trusses) or

n = 3N (3D-trusses)
f – n-dimensional vector of the loads on the nodes
v – given total volume of the truss
L = (Li) – m-dimensional vector of lower bounds on the bars’ volumes
U = (Ui) – m-dimensional vector of upper bounds on the bars’ volumes
A(t) – symmetric positive semidefinite n × n matrix, the stiffness matrix.
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The matrix A(t) is given in terms of matrices Ai, which are symmetric
positive semidefinite n×n matrices. Ai (i = 1, 2, . . . , m) determine the geometry
of the connection of node i to the other nodes. Typical case:

A(t) =

m
∑

i=1

tiAi ,

where Ai are matrices of rank 1.
It was proved in [1] that this problem is equivalent to the following one:

min
x∈IRn

, λ∈IR

{

λv − fT x +

m
∑

i=1

max

{(

1

2
xT Aix − λ

)

Ui,

(

1

2
xT Aix − λ

)

Li

}

}

.

(47)
Note that (47) is a sum-max problem, and thus can be solved by our algorithm
discussed above.

6.2 Results

The major computational load of the algorithm is connected to the assembling
of the Hessian matrices and solution of the Newton systems at the internal
unconstrained optimization phase. Typically it takes the order of n3 operations
for each Newton step, while the overall number of steps grows moderately with
the dimension of the problem (see Table 1.) The number of external iterations
(multiplier updates) varies from 7 to 13 in all the experiments. We also produced
comparison with the ordinary smoothing method by freezing the multipliers at
a constant level. This increased typical solution time by about 50%, which
demonstrates the usefulness of the multiplier approach.

In the case of the standard method of multipliers, which should use a slack
variable for each max term, the total number of the variables would increase
up to 30 times in our examples, i.e. computational burden would be about 303

times higher!

7 Conclusions

In this article we have developed a Lagrangian duality scheme for sum-max prob-
lems, and obtained a new kind of augmented Lagrangian, which uses smooth
approximation of max-type functions, and does not require artificial variables.

We have demonstrated the correspondence of the suggested method of mul-
tipliers to a proximal point algorithm in dual space, which provides foundation
for the convergence proof. Numerical experiments with large scale problems
show practical efficiency of the method.
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# of # of Upper Lower # of # of
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Appendix A.

Proof of Proposition 1 By optimality condition for (27)

0 = f ′(xk+1) +

m
∑

i=1

ϕ′[gi(x
k+1), uk

i , ck]h′
i(x

k+1) . (48)

Taking into account the updating formula (28), we obtain

0 = f ′(xk+1) +

m
∑

i=1

uk+1
i h′

i(x
k+1) , (49)

which is exactly the optimality condition for the Lagrangian L(xk+1, uk+1) with
respect to the first argument. ✷
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Proof of Proposition 2 We will show that the vector h can be used as a
gradient in Gradient Inequality for the concave function G(u)

G(u) = min
x

{f(x) +
∑

uihi(x)} ≤ f(x̄) +
∑

uihi(x̄)

= f(x̄) +
∑

ūihi(x̄) +
∑

(ui − ūi)hi(x̄)

= G(ū) + (u − ū)T h(x̄)

✷

Proof of Lemma 3 By the property of conjugate function

(ϕ∗)′ = (ϕ′)−1 (50)

and updating formula (28), we obtain

(ϕ∗)′(uk+1
i , uk

i , ck) = hi(x
k+1). (51)

So the gradient of the proximal term with respect to the first argument will be

∇1Dk(uk+1, uk) = h(xk+1); (52)

Taking into account (34) and (36), we obtain

∇1Dk(uk+1, uk) ∈ ∂G(uk+1) , (53)

which is precisely the necessary and sufficient condition for uk+1 to attain the
maximum in (37). ✷

Proof of Theorem 2

(a) The sequence {uk} generated by the method (34) belongs to the Box(α, β)
(42) by barrier property (D3). Now:

G(uk+1) − D(uk+1, uk) ≥ G(uk) − D(uk, uk)

= G(uk) , by (D2) .

Hence
G(uk+1) − G(uk) ≥ D(uk+1, uk) ≥ 0 by (D1) . (54)

(b) Box(α, β) is a compact set, hence the sequence {uk} has accumulation
points. Arguing by contradiction, suppose that there is a non-optimal
accumulation point ū. Denote an “active” set of indeces

Ia(ū) = {i : α < ūi < β}. (55)

Consider a feasible neighborhood of the point ū, which is separated from
the solution set U∗ and from the boundaries of the feasible box in those
coordinates, which are not at the boundary for ū:

Nγ(ū) = Bγ(ū)
⋂

Box(α, β) , (56)
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where Bγ(ū) is a ball centered in ū with radius

γ =
1

2
min

{

dist(ū, U∗), min
i∈Ia(ūi)

{ūi − α, β − ūi}, β − α
}

. (57)

For any point from Nγ(ū) the necessary optimality conditions are not
satisfied, i.e. there exists a small positive number ǫ such that for any
subgradient

g ∈
⋃

u∈Nγ(ū)

∂G(u) , (58)

at least for one value of the index i one of the following take place:

gi < −ǫ , ūi > α (59)

gi > ǫ , ūi < β (60)

Let uk ∈ Nγ(ū) be a point generated by the prox-algorithm. By (53)

∇1Dk(uk, uk−1) ∈ ∂G(uk) , (61)

hence taking into account (59), (60), (61) and (38), we conclude that there
exists such an index i that either

ψ′
1(u

k
i , uk−1

i ) > ǫ , α ≤ uk
i ≤ β − γ (62)

or
ψ′

1(u
k
i , uk−1

i ) < −ǫ , α + γ ≤ uk
i ≤ β (63)

It is shown in Proposition 3 in Appendix B, that conditions (62) and (63)
entail

ψ(uk
i , uk−1

i ) > δ > 0 , (64)

where δ is a constant depending on ǫ, γ, and c. Recall that ū is an
accumulation point, so by (54) and (64) there exists an infinite set of
indeces {kj} such that

G(ukj ) − G(ukj−1) > δ > 0 .

Thus, the infinite sequence G(ukj ) increases each step by at least a positive
constant, as shown above. Hence, it cannot be bounded, contrary to
assumption G∗ < ∞. ✷

Appendix B

Proposition 3 Let ψ(·, ·) be the conjugate of the quadratic-logarithmic func-
tion (3) and one of the following relations takes place

ψ′
1(λ̄, µ) > ǫ , α ≤ µ < λ̄ ≤ β − γ (65)
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or
ψ′

1(λ̄, µ) < −ǫ , α + γ ≤ λ̄ < µ ≤ β (66)

Then
ψ(λ̄, µ) > δ > 0 , (67)

where δ is a constant depending on ǫ, γ, and c.

Proof Consider the condition (65) (proof under condition (66) is similar).
Suppose that we know (see Proposition 4) that

ψ′′(λ, µ) < M = const(γ), µ ≤ λ ≤ λ̄ . (68)

Then taking into account that minλ ψ(λ, µ) = ψ(µ, µ) = 0 (by properties (ψ5)
and (ψ6)), we conclude that ψ(λ, µ) majorates the quadratic function q(λ) with
the following properties

q′(λ̄) = ψ′(λ̄, µ); q′′(λ) = M ; min q(λ) = q(µ) = 0 .

This gives us a lower bound

ψ(λ̄, µ) ≥ q(λ̄) =

(

q′(λ̄)
)2

2M
>

ǫ

2M
.

This proof is similar to that of Lemma 2 in [4], so the reader is refereed there
for more details. ✷

Proposition 4 Under condition (65) of Proposition 3, the following upper bound
on second derivative takes place

ψ′′(λ, µ) ≤
1

min{c, γ2/p2}
(69)

Proof Consider the first and the second derivatives of the function (3) with
respect to t

ϕ′(t, µ, c) =







α − p1/t, t < τ1 ≤ 0
ct + µ, τ1 ≤ t ≤ τ2

β − p2/t, t > τ2 ≥ 0 ,
(70)

ϕ′′(t, µ, c) =







p1/t2, t < τ1 ≤ 0
c, τ1 ≤ t ≤ τ2

p2/t2, t > τ2 ≥ 0 .

(71)

As we already mentioned, if follows directly from the definition of the conjugate
function, that the derivative of ϕ(·, ·) with respect to the first argument is an
inverse function of the derivative of ψ(·, ·), i.e. if for some t, λ = ϕ′(t, µ) then
t = ψ′(λ, µ).

Now let µ < λ ≤ β − γ and ϕ′(t, µ) = λ. Then taking into account (70), we
get

β − p2/t ≤ β − γ
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which gives us

t ≤
p2

γ
. (72)

On other hand, from ϕ′(t, µ) = λ > µ, convexity of ϕ(·, µ) and the fact that
ϕ′(0, µ) = µ, we conclude that t > 0, i.e. only the second and the third branches
of ϕ′′(t, µ) in (71) are relevant to our case. Therefore substituting (72) into (71),
we obtain

ϕ′′(t, µ, c) ≥ min{c, γ2/p2} .

Taking into account that by property of mutually inverse functions ϕ′ and ψ′

ψ′′(λ, µ) =
1

ϕ′′(t, µ)

we complete the proof. ✷
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