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Abstract— We study a relative optimization framework for
quasi-maximum likelihood blind source separation and relative
Newton method as its particular instance. The structure of the
Hessian allows its fast approximate inversion. In the second
part we present Smoothing Method of Multipliers (SMOM) for
minimization of sum of pairwise maxima of smooth functions, in
particular sum of absolute value terms. Incorporating Lagrange
multiplier into a smooth approximation of max-type function,
we obtain an extended notion of non-quadratic augmented
Lagrangian. Our approach does not require artificial variables,
and preserves the sparse structure of Hessian. Convergence of
the method is further accelerated by the Frozen Hessian strategy.
We demonstrate efficiency of this approach on an example of
blind separation of sparse sources. The non-linearity in this case
is based on the absolute value function, which provides super-
efficient source separation.

Index Terms— blind source separation, maximum likelihood,
Newton method, augmented Lagrangian, method of multipliers,
sparse representations

I. INTRODUCTION

In this work we study quasi-maximum likelihood blind

source separation (quasi-ML BSS) [1], [2] in batch mode,

without orthogonality constraint. This criterion provides im-

proved separation quality [3], [4], and is particularly useful

in separation of sparse sources. We will present optimization

methods, which produce quasi-ML BSS efficiently.

A. Quasi-ML blind source separation (BSS)

Consider the BSS problem, where an N -channel sensor

signal x(t) arises from N unknown scalar source signals si(t),
i = 1, .., N , linearly mixed together by an unknown N × N
matrix A

x(t) = As(t). (1)

We wish to estimate the mixing matrix A and the N -

dimensional source signal s(t). In the discrete time case

t = 1, 2, . . . , T we use matrix notation X = AS, where X
and S are N × T matrices with the signals xi(t) and si(t) in

the corresponding rows. We also denote the unmixing matrix

W = A−1.
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When the sources are i.i.d, stationary and white, the nor-

malized minus-log-likelihood of the observed data X is (see

for example [4])

L(W ; X) = − log |detW | + 1

T

∑

i,t

h
(

Wix(t)
)

, (2)

where Wi is i-th row of W , h(·) = − log f(·), and

f(·) is the probability density function (pdf) of the sources.

Consistent estimator can be obtained by minimization of (2),

also when h(·) is not exactly equal to − log f(·). Such quasi-

ML estimation is practical when the source pdf is unknown,

or is not well-suited for optimization. For example, when the

sources are sparse or sparsely representable, the absolute value

function or its smooth approximation is a good choice for h(·)
[5], [6], [7], [8], [9], [10]. Here we will use a family of convex

smooth approximations to the absolute value

h1(c) = |c| − log(1 + |c|) (3)

hλ(c) = λh1(c/λ) (4)

with λ a proximity parameter: hλ(c) → |c| as λ → 0+. Widely

accepted natural gradient method does not work well when

the approximation of the absolute value becomes too sharp.

In this work we consider the relative Newton method, which

overcomes this obstacle.

The Newton equations considered in this work are similar in

part to those obtained by Pham and Garat [1], using different

considerations. However, the algorithm given in [1], is not used

in practice, because of a possibility of convergence to spurious

solutions. We overcome this difficulty using line search and

forcing positive definiteness of the Hessian.

Several other Newton-like BSS methods have been studied

in the literature. They are based on negentropy approximation

with orthogonality constraint [11], cumulant model [12], [13]

and joint diagonalization of correlation matrices [14], [15],

[16], [17].

The relative Newton method presented here is dedicated to

quasi-ML BSS in general (not only to the sparse source case).

B. Smoothing Method of Multipliers (SMOM) for Sum-Max

problems

In the second part we present a method for minimization of

a sum of pairwise maxima of smooth functions, in particular
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sum of absolute value terms, arising in quasi-ML BSS.

Methods of multipliers, involving nonquadratic augmented

Lagrangians [18], [19], [20], [21], [22], [23], [24], [25], [26],

[27] successfully compete with the interior-point methods in

non-linear and semidefinite programming. They are especially

efficient when a very high accuracy of solution is required.

This success is explained by the fact, that due to iterative

update of multipliers, the penalty parameter does not need to

become extremely small in the neighborhood of solution.

Direct application of the augmented Lagrangian approach to

the sum-max problem requires introduction of artificial vari-

ables, one per element of the sum, that significantly increases

the problem size and the computational burden. Alternatively,

one can use a smooth approximation of the max-type function

[28], [29], which will keep the size of the problem unchanged,

but will require the smoothing parameter to become extremely

small in order to get accurate solution.

In this work we incorporate multiplier into a smooth ap-

proximation of the max-type function, obtaining an extended

notion of augmented Lagrangian. This allows us to keep the

size of the problem unchanged, and achieve a very accurate

solution under a moderate value of the smoothing parameter.

Convergence of the method is further accelerated by the

Frozen Hessian strategy.

We demonstrate the efficiency of this approach on an

example of blind separation of sparse sources with the absolute

value non-linearity. It preserves sparse structure of the Hessian,

and achieves 12 – 15 digits of source separation accuracy.

II. RELATIVE OPTIMIZATION ALGORITHM

We consider the following algorithm for minimization of

the quasi-ML function (2)

• Start with an initial estimate W1 of the separation matrix;

• For k = 1, 2, ..., until convergence

1) Compute the current source estimate Uk = WkX;

2) Starting with V =I , get Vk+1 by one or few steps

of a conventional optimization method, decreasing

sufficiently L(V ;Uk);
3) Update the estimated separation matrix

Wk+1 = Vk+1Wk;

• End

The relative (natural) gradient method [30], [31], [32] is a

particular instance of this approach, when a standard gradient

descent step is used in Item 2. The following remarkable

property of the relative gradient is also preserved in general:

given current source estimate U , the progress of the method

does not depend on the original mixing matrix. This means

that even nearly ill-conditioned mixing matrix influences the

convergence of the method not more than a starting point.

Convergence analysis of the Relative Optimization algorithm

is presented in Appendix A. In the following we will use a

Newton step in Item 2 of the method.

III. HESSIAN EVALUATION

The likelihood L(W ; X) is a function of a matrix argument

W . The corresponding gradient is also a matrix

G(W ) = ∇L(W ; X) = −W−T +
1

T
h′(WX)XT , (5)

where h′(WX) is a matrix with the elements h′
(

(WX)ij

)

.

The Hessian of L(W ; X) is a linear mapping H defined via

the differential of the gradient

dG = HdW. (6)

We can also express the Hessian in standard matrix form

converting W into a long vector w = vec(W ) using row

stacking. We will denote the reverse conversion W = mat(w).
Let

L̂(w, X) ≡ L(mat(w), X), (7)

so that the gradient

g(w) = ∇L̂(w; X) = vec(G(W )) (8)

Then

dg = Hdw, (9)

where H is an N2 × N2 Hessian matrix. We also have

dg = vec(dG) (10)

A. Hessian of − log det W

Using the expression

d(W−1) = −W−1(dW )W−1,

which follows from the equality

0 = d(WW−1) = (dW )W−1 + Wd(W−1),

we obtain the differential of the first term in (5)

dG = d(W−T ) = −AT (dWT )AT , (11)

where A = W−1. A particular element of the differential

dGij = −Ai(dWT )Aj = −TraceAjAi(dWT ), (12)

where Ai and Aj are i-th row and j-th column of A respec-

tively. Comparing this with (9) and (10), we conclude that the

k-th row of H , where k = (i − 1)N + j, contains the matrix

AjAi stacked column-wise

Hk = vecT (AjAi)
T . (13)

B. Hessian of 1

T

∑

m,t h
(

Wmx(t)
)

It is easy to see that the Hessian of the second term in

L̂(w, X) is a block-diagonal matrix with the following N×N
blocks

Bm =
1

T

∑

t

h′′(Wmx(t))x(t)xT (t), m = 1, .., N (14)
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IV. NEWTON METHOD

Newton method is an efficient tool of unconstrained opti-

mization. It often converges fast and provides quadratic rate of

convergence. However, its iteration may be costly, because of

the necessity to compute the Hessian matrix and solve the

corresponding system of equations. In the next section we

will see that this difficulty can be overcome using the relative

Newton method.

First, let us consider the standard Newton approach, in

which the direction is given by solution of the linear equation

Hy = −∇L̂(w;X) (15)

where H = ∇2L̂(w;X) is the Hessian of (7). In order to

guarantee descent direction in the case of nonconvex objective

function, we use modified Cholesky factorization1 [33], which

automatically finds a diagonal matrix R such that the matrix

H+R is positive definite, providing a solution to the modified

system

(H + R)y = −∇L̂(w;X) (16)

After the direction y is found, the new iterate w+ is given by

w+ = w + αy (17)

where the step size α is determined by exact line search

α = arg min
α

L̂(w + αy; X) (18)

or by a backtracking line search [33]:

α := 1
While L̂(w + αy; X) > L̂(w; X) + βα∇L̂(w;X)T d

α := γα
end

where 0 < α < 1 and 0 < γ < 1. The use of line search

guarantees monotone decrease of the objective function at

every Newton iteration. In our computations the line search

constants were β = γ = 0.3. It may also be reasonable to

give β a small value, like 0.01.

Computational complexity. The Hessian is a N2×N2 matrix;

its computation requires N4 operations in (13) and N3T
operations in (14). Solution of the Newton system (16) using

modified Cholesky decomposition, requires N6/6 operations

for decomposition and N4 operations for back/forward sub-

stitution. All together, we need

2N4 + N3T + N6/6

operations for one Newton step. Comparing this to the cost of

the gradient evaluation (5), which is equal to N2T , we con-

clude that the Newton step costs about N gradient steps when

the number of sources is small (say, up to 20). Otherwise, the

third term become dominating, and the complexity grows as

N6.

1We use the MATLAB code of modified Cholesky factorization by Brian
Borchers, available at http://www.nmt.edu/˜borchers/ldlt.html

V. RELATIVE NEWTON METHOD

In order to make the Newton algorithm invariant to the

value of mixing matrix, we use the relative Newton method,

which is a particular instance of the Relative Optimization

algorithm. This approach simplifies the Hessian computation

and the solution of the Newton system.

A. Basic relative Newton step

The optimization in Item 2 of the Relative Optimization

algorithm is produced by a single Newton-like iteration with

exact or backtracking line search. The Hessian of L(I; U)
has a special structure, which permits fast solution of the

Newton system. First, the Hessian of − log detW given by

(13), becomes very simple and sparse, when W = A = I:

each row of H
Hk = vecT (eie

T
j ), (19)

contains only one non-zero element, which is equal to 1. Here

ej is an N-element standard basis vector, containing 1 at j-th

position. The remaining part of the Hessian is block-diagonal.

There are various techniques for solving sparse symmetric

systems. For example, one can use sparse modified Cholesky

factorization for direct solution, or alternatively, conjugate

gradient-type methods, possibly preconditioned by incomplete

Cholesky factor, for iterative solution. In both cases, the

Cholesky factor is often not as sparse as the original matrix,

but it becomes sparser, when appropriate matrix permutation

is applied before factorization (see for example MATLAB

functions CHOLINC and SYMAMD.)

B. Fast relative Newton step

Further simplification of the Hessian is obtained by consid-

ering its structure at the solution point Uk = S. The elements

of the m-th block of the second term of ∇2L(I;S) given by

(14), are equal to

Bm
ij =

1

T

∑

t

h′′(sm(t))si(t)sj(t), i, j = 1, .., N.

When the sources are independent and zero mean, we have

the following zero expectation

E{h′′(sm(t))si(t)sj(t)} = 0, m, i 6= j,

hence the off-diagonal elements Bm
ij converge to zero as

sample size grows. Therefore we use a diagonal approximation

of this part of the Hessian

Bm
ii =

1

T

∑

t

h′′(um(t))u2
i (t), i = 1, .., N ; m = 1, .., N,

(20)

where um(t) are current estimates of the sources. In order

to solve the simplified Newton system, let us return to the

matrix-space form (6) of the Hessian operator. Let us pack

the diagonal of the Hessian given by (20) into N ×N matrix

D, row-by-row. Taking into account that A = I in (11), we

will obtain the following expression for the differential of the

gradient

dG = HdW = dWT + D ⊙ dW, (21)
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where “⊙” denotes element-wise multiplication of matrices.

For an arbitrary matrix Y ,

HY = Y T + D ⊙ Y. (22)

In order to solve the Newton system

Y T + D ⊙ Y = G, (23)

we need to solve N(N − 1)/2 systems of size 2 × 2 with

respect to Yij and Yji

DijYij + Yji = Gij , i = 1, ..N ; j = 1, .., i − 1

DjiYji + Yij = Gji. (24)

The diagonal elements Yii can be found directly from the set

of single equations

DiiYii + Yii = Gii. (25)

In order to guarantee a descent direction and avoid saddle

points, we modify the Newton system (24), changing the

sign of the negative eigenvalues [33]. Namely, we compute

analytically the eigenvectors and the eigenvalues of 2 × 2
matrices

(

Dij 1
1 Dji

)

,

invert the sign of the negative eigenvalues, and force small

eigenvalues to be above some threshold (say, 10−8 of the

maximal one in the pair). Than we solve the modified system,

using the eigenvectors already obtained and the modified

eigenvalues.

Computational complexity. Computing the diagonal of the

Hessian by (20) requires N2T operations, which is equal to

the cost of the gradient computation. Solution cost of the set

of 2x2 linear equations (24) is about 15N2 operations, which

is negligible compared to the gradient cost.

VI. SEQUENTIAL OPTIMIZATION

When the sources are sparse, the quality of separation

greatly improves with reduction of smoothing parameter λ in

the absolute value approximation (4). On the other hand, the

optimization of the likelihood function becomes more difficult

for small λ. Therefore, we use sequential optimization with

gradual reduction of λ. Denote

L(W ; X, λ) = − log |det W | + 1

T

∑

i,t

hλ

(

Wix(t)
)

, (26)

where hλ(·) is given by (3–4).

Sequential optimization algorithm

1) Start with λ1 and W1;

2) For k = 1, 2, .., K,

a) Compute current source estimate Uk = WkX;

b) Find Vk+1 = arg minV L(V, Uk, λk), using V = I
as a starting point;

c) Update the separation matrix Wk+1 = Vk+1Wk;

d) Update the smoothing parameter λk+1 = µλk;

3) End

In our computations we choose the parameters λ1 = 1
and µ = 0.01. Note that step (b) includes the whole loop

of unconstrained optimization, which can be performed, for

example, by the relative Newton method.

VII. SMOOTHING METHOD OF MULTIPLIERS (SMOM)

Even gradual reduction of the smoothing parameter may

require significant number of Newton steps after each update

of λ. More efficient way to achieve an accurate solution of a

problem involving a sum of absolute value functions is to use

SMOM method presented in this section. This method is an

extension of augmented Lagrangian technique [19], [20], [25]

used in constrained optimization. It allows to obtain accurate

solution without forcing the smoothing parameter λ to go

to zero. In this work we combine the SMOM with relative

optimization.

Consider non-smooth optimization problem

min
w

{

F (w) = f0(w)+

m
∑

i=1

max
[

αifi(w), βifi(w)
]

}

, (27)

where fi(w), i = 0, . . . , m are smooth functions, αi < βi are

certain constants. In particular, when αi = −1 and βi = 1, we

get sum of absolute value terms, like in the quasi-ML BSS:

F (w) = f0(w) +

m
∑

i=1

|fi(w)|. (28)

This kind of problem arises in many other areas of signal and

image processing, in the context of sparse representations, total

variation regularization, etc. (see for example [5]).

A. Smoothing the max-function

Consider a maximum function shown in Figure 1,

r(t) = max(αt, βt) .

We introduce its smooth approximation ϕ(t; µ, λ), α < µ <
β, λ > 0, with two parameters: µ and λ. The parameter

λ defines the accuracy of the approximation of the max-

function r(·), becoming perfect as λ → 0. The parameter

µ determines the derivative of ϕ at t = 0; it will serve as

a Lagrange multiplier. The graph of the linear function µt is

tangent to the plot of ϕ(·; µ, λ) at the origin. The function ϕ
possesses the following properties:

• ϕ(t; µ, λ) is convex in t;
• ϕ(0;µ, λ) = 0;

• ϕ′
t(0;µ, λ) = µ;

• limt→−∞ ϕ′
t(t; µ, λ) = α;

• limt→+∞ ϕ′
t(t; µ, λ) = β;

• limλ→0 ϕ(t; µ, λ) = r(t).

The particular form of the function ϕ we introduce and

prefer to use in our computations consists of three smoothly

connected branches:

ϕ(t, µ, λ) =











αt − p1 log t
τ1

+ s1, t < τ1 ≤ 0
t2

2λ
+ µt, τ1 ≤ t ≤ τ2

βt − p2 log t
τ2

+ s2, t > τ2 ≥ 0 .

(29)
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0

0

 max(αt, βt)

 φ(t;µ,c)

µt 

Fig. 1. Max(αt, βt) – solid line; smoothing function ϕ(t; µ, λ) –
dashed line; linear support µt – dot-dashed line

The coefficients p1, p2, s1, s2, τ1, τ2 are chosen to make the

function ϕ continuous and twice differentiable at the joint

points τ1 and τ2:

τ1 =
λ(α − µ)

2
; τ2 =

λ(β − µ)

2
;

p1 = τ2
1 /λ; p2 = τ2

2 /λ;

s1 =
τ2
1

2λ
+ (µ − α)τ1;

s2 =
τ2
2

2λ
+ (µ − β)τ2.

When τi = 0, we put pi log t
τi

= λτ2
i log t

τi

= 0. One

can note, that when α → 0 and β → ∞, ϕ(·) becomes

a quadratic-logarithmic penalty for inequality constraint in

nonquadratic augmented Lagrangian [25]. On the other hand,

when α → −∞ and β → ∞, ϕ(·) becomes a quadratic penalty

for equality constraint in a standard quadratic augmented

Lagrangian [34]. In this way our approach generalizes known

augmented Lagrangian techniques.

B. Generalized Lagrangian and Augmented Lagrangian

A standard way to introduce augmented Lagrangian for the

sum-max problem would be to reformulate it as a smooth

constrained optimization problem using artificial variables,

which will increase the problem size significantly. Instead

we introduce extended notions of Lagrangian and augmented

Lagrangian, which keep the problem size unchanged, preserv-

ing at the same time many important classical properties of

these functions. We propose the following extended notion of

Lagrangian

L(w, u) = f0(w) +

m
∑

i=1

uifi(w), α ≤ ui ≤ β, (30)

and corresponding extended notion of augmented Lagrangian

M(w, u, λ) = f0(w) +

m
∑

i=1

ϕ(fi(w), ui, λ), α ≤ ui ≤ β.

(31)

As we show in [35], the Lagrangian saddle point theorem

and duality theory can be extended to our case. As an impor-

tant consequence of this, there exists a vector of multipliers

u∗, such that an unconstrained minimizer w∗ of the augmented

Lagrangian provides an optimal solution to Problem (27), i.e.

we do not need to force the smoothing parameter λ toward

zero in order to solve the problem. This property serves as a

basis for the method of multipliers presented below.

C. Smoothing Method of Multipliers (SMOM)

We introduce the method of multipliers, which performs the

following steps at each outer iteration:

1. Minimize augmented Lagrangian in w, starting from the

point wk given by the previous iteration

wk+1 = arg min
w

M(w, uk, λk); (32)

2. Update the multipliers using the derivative of ϕ with

respect to the first argument

uk+1

i = ϕ′(fi(w
k+1), uk

i , ck), i = 1, ..., m; (33)

3. Update the smoothing parameter (optionally)

λk+1 = γλk, 0 < γ < 1. (34)

The multiplier update rule (33) is motivated by the fact

that in this way wk+1 becomes a minimizer of the La-

grangian: ∇wL(wk+1, uk+1) = 0. Therefore the optimal

solution (w∗, u∗) is a fixed point of the algorithm. Similar

considerations are used in standard augmented Lagrangian

algorithm (see for example [25]).

In practical implementation we restrict the relative change

of the multipliers to some bounds in order to stabilize the

method:

γ1 <
uk+1

i − α

uk
i − α

< γ2 (35)

γ1 <
β − uk+1

i

βi − uk
i

< γ2 (36)

α + δ < uk+1

i < β − δ. (37)

We also restrict the smoothing parameter to remain above

some minimal value λmin. We usually put γ = 0.5, γ1 =
1

γ2

= 2 , δ = 10−6 , λmin = 10−3 . In general, the algorithm

is rather insensitive to changes in the parameters in order of

magnitude or more. Convergence analysis of the method in

convex case is presented in [35]. In practice, it works well

also with non-convex problems, as we will see on example of

quasi-ML BSS. In the later case we use the relative Newton

method at the inner optimization stage (32).

D. Frozen Hessian Strategy

A useful fact is that changes in the Hessian of the augmented

Lagrangian become very small at late outer iterations. This

happens because changes in primal variables and multipliers

become small toward convergence to solution, while the

smoothing parameter λ remains constant. Therefore we can
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reuse the inverse Hessian (or its Cholesky factor) from the

previous iterations [26], unless the number of steps in the

current unconstrained optimization exceeds a predefined limit

(say, 3 – 10 steps). Often 5–7 last outer iterations require only

one Newton step each, without recomputing Hessian at all (see

the experimental section).

VIII. COMPUTATIONAL EXPERIMENTS

Two data sets were used. The first group of sources was

artificial sparse data with Bernoulli-Gaussian distribution

f(s) = pδ(s) + (1 − p)
1√

2πσ2
exp(−s2/2σ2),

generated by the MATLAB function SPRANDN. We used the

parameters p = 0.5 and σ = 1. The second group of sources

were four natural images from [36]. The mixing matrix was

generated randomly with uniform i.i.d. entries.

A. Relative Newton method

In all experiments we used a backtracking line search with

the constants β = γ = 0.3. Figure 2 shows the typical

progress of different methods applied to the artificial data with

5 mixtures of 10k samples. The fast relative Newton method

converges in about the same number of iterations as the relative

Newton with exact Hessian, but significantly outperforms it

in time. Natural gradient in batch mode requires much more

iterations, and has a difficulty to converge when the smoothing

parameter λ in (4) becomes too small.

In the second experiment, we demonstrate the advantage

of the batch-mode quasi-ML separation, when dealing with

sparse sources. We compared the the fast relative Newton

method with stochastic natural gradient [30], [31], [32], Fast

ICA [11] and JADE [37]. All three codes were obtained

from public web sites [38], [39], [40]. Stochastic natural

gradient and Fast ICA used tanh nonlinearity. Figure 3 shows

separation of artificial stochastic sparse data: 5 sources of

500 samples, 30 simulation trials. The quality of separation

is measured by interference-to-signal ratio (ISR) in amplitude

units. As we see, fast relative Newton significantly outper-

forms other methods, providing practically ideal separation

with the smoothing parameter λ = 10−6 (sequential update of

the smoothing parameter was used here). Timing is of about

the same order for all the methods, except of JADE, which is

known to be much faster with relatively small matrices.

B. SMOM combined with the Relative Newton method

In the third experiment we have used the first stochastic

sparse data set: 5 mixtures, 10k samples. Figure 5 demon-

strates advantage of the SMOM combined with the frozen

Hessian strategy. As we see, the last six outer iterations does

not require new Hessian evaluations. At the same time the

sequential smoothing method without Lagrange multipliers,

requires 3 to 8 Hessian evaluations per outer iterations toward

end. As a consequence the method of multipliers converges

much faster.

In the fourth experiment, we separated four natural images

[36], presented in Figure 6. Sparseness of images can be

Smoothing parameter λ = 1
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Fig. 2. Separation of artificial sparse data with 5 mixtures by 10k samples.
Relative Newton with exact Hessian – dashed line, fast relative Newton –
continuous line, natural gradient in batch mode – squares.

achieved via various wavelet-type transforms [8], [9], [10],

but even simple differentiation can be used for this purpose,

since natural images often have sparse edges. Here we used

the stack of horizontal and vertical derivatives of the mixture

images as an input to separation algorithms. Figure 7 shows

the separation quality achieved by stochastic natural gradient,

Fast ICA, JADE, the fast relative Newton method with λ =
10−2 and the the SMOM. Like in the previous experiments,

SMOM provides practically ideal separation with ISR of about

10−12. It outperforms the other methods by several orders of

magnitude.

IX. CONCLUSIONS

We have presented the relative optimization framework for

quasi-ML BSS, and studied the relative Newton method as its

particular instance. Gradient-type computational cost of the

Newton iteration makes it especially attractive.

We also presented SMOM method for minimization of sum

of pairwise maxima of smooth functions (in particular sum

of absolute value terms, like used in quasi-ML separation

of sparse sources.) Incorporating Lagrange multiplier into a

smooth approximation of max-type function, we obtained an

extended notion of non-quadratic augmented Lagrangian. This
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Fig. 6. Separation of images with preprocessing by differentiation. Top –
sources, middle – mixtures, bottom – separated.
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approach does not require artificial variables, and preserves

sparse structure of Hessian.

We apply the Frozen Hessian strategy, using the fact that

changes in the Hessian of the augmented Lagrangian become

very small at late outer iterations of SMOM. In our experi-

ments 5–7 last outer iterations require only one Newton step

each, without recomputing Hessian at all.

Experiments with sparsely representable artificial data and

natural images show that quasi-ML separation is practically

perfect when the nonlinearity approaches the absolute value

function.

Currently we are conducting more experiments with non-

sparse source distributions and various kinds of non-linearities.

Preliminary results confirm fast convergence of the relative

Newton method.

APPENDIX A

CONVERGENCE ANALYSIS OF RELATIVE OPTIMIZATION

ALGORITHM

Definition 1: We say that a function f sufficiently decreases

at iteration k, if for any ǫ > 0 there exists δ > 0 such that

from ‖xk − x∗‖ > ǫ it follows that f(xk) − f(xk+1) > δ.

Here x∗ is a local minimum closest to xk.

Suppose the following properties of the function h(·) in (2)

(h1) h(·) is bounded below;

(h2) h(·) grows faster than log(| · |) toward ±∞

lim
α→±∞

h(α)/ log(|α|) = ∞ (38)

Proposition 1: The sequence L(Wk;X) generated by Rel-

ative Optimization algorithm is monotone decreasing at each

step by the value

L(Wk; X)−L(Wk+1;X) = L(I; Uk)−L(Vk; Uk) > 0 (39)

Proof: Optimization step 2 reduces the function value

L(Vk; Uk) < L(I; Uk).

Taking into account that by (2)

L(Wk; X) = − log |detWk| + L(I; Uk) (40)

L(Wk+1;X) = − log |detWk| + L(Vk;Uk) (41)

we get (39). ¤

Proposition 2: The likelihood function (2) is bounded from

below and has bounded level sets.

Proof: is based on the properties (h1 – h2). We need to

show that the function L(W ; X) in (2) has an infinite growth

along any radial direction

lim
α→∞

L(αW0) = ∞

for any invertible W0. This is an obvious consequence of (38).

¤

Lemma 1: The sequence Wk generated by the Relative

Optimization algorithm, has limit point[s]; any limit point

belongs to a local minimum of the likelihood function (2)

Proof: The sequence of the function values L(Wk; X)
generated by the Relative Optimization algorithm is monotone

decreasing (by Proposition 1), so all iterates Wk belong to the

level set {W : L(W ;X) < L(W0;X)}, which is bounded

according to Proposition 2. Therefore the sequence of the

iterates Wk has limit point[s].

The second part of the proof is continued by contradiction.

Let W̄ be a limit point, which is not equal to the closest local

minimum W ∗, i.e for any point Wk from a small neighborhood

of W̄ , Wk ∈ N (W̄ ),

‖I − W ∗W−1

k ‖ > ǫ > 0 (42)

Let V ∗

k be a local minimizer of L(·; Uk), so that W ∗ = V ∗

k Wk.

It follows from (42) that

‖I − V ∗

k ‖ > ǫ (43)

therefore step 2 of the Relative Optimization algorithm pro-

vides significant decrease of the objective function (see Defi-

nition 1)

L(I;Uk) − L(Vk; Uk) > δ (44)

Since W̄ is a concentration point, there are infinite number of

iterates Wk ∈ N (W̄ ) satisfying (42 – 44). Taking into account

(39), we conclude that the function L(Wk; X) will decrease

infinitely, which contradicts its below boundedness, stated by

Proposition 2. ¤
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