
Support Vector Machine via Sequential Subspace Optimization

Support Vector Machine
via

Sequential Subspace Optimization

Guy Narkiss guyn@siglab.technion.ac.il

Michael Zibulevsky mzib@ee.technion.ac.il

Department of Electrical Engineering

Technion - Israel Institute of Technology

Haifa 32000, Israel

Abstract

We present an optimization engine for large scale pattern recognition using Support Vector
Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained
optimization problem to an unconstrained form, and solving it using newly developed
Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-
scale smooth unconstrained optimization. At each iteration the method minimizes the
objective function over a subspace spanned by the current gradient and by directions of
few previous steps and gradients. Following an approach of A. Nemirovski, we also include
into the search subspace the direction from the starting point to the current point, and
a weighted sum of all previous gradients: this provides the worst case optimality of the
method. The subspace optimization can be performed extremely fast in the cases when
the objective function is a combination of expensive linear mappings with computationally
cheap non-linear functions, like in the unconstrained SVM problem. Presented numerical
results demonstrate high efficiency of the method.

Keywords: Large-scale optimization, pattern recognition, Support Vector Machine, con-
jugate gradients, subspace optimization

1. Introduction

The problem of large-scale binary data classification arises in many applications, like recog-
nition of text, hand-written characters, images, medical diagnostics, etc. Quite often, the
number of features or examples is very large, say 104−107 and more, and there is a need for
algorithms, for which storage requirement and computational cost per iteration grow not
more than linearly in those parameters. One way to treat such problems with SVM (Vapnik,
1998) is to convert a constrained SVM problem into an unconstrained one and solve it with
an optimization method having non-expensive iteration cost and storage. An appropriate
optimization algorithm of this type is the conjugate gradient (CG) method (Hestenes and
Stiefel, 1952; Gill et al., 1981; Shewchuk, 1994). It is known that CG worst case convergence
rate for quadratic problems is O(k−2) (in terms of objective function calculations), where
k is the iteration count. This rate of convergence is independent of the problem size and is
optimal, i.e. it coincides with the complexity of convex smooth unconstrained optimization
(see e.g. Nemirovski (1994)). However the standard extensions of CG to nonlinear functions
by Fletcher-Reeves and Polak-Ribière (see e.g. Shewchuk (1994)) are no longer worst-case
optimal.

1

lesley
Text Box
CCIT Report #557                                                      September 2005



Narkiss and Zibulevsky

Nemirovski (1982) suggested a method for smooth unconstrained convex optimization
with the optimal worst case convergence rate O(k−2). The method consists of sequential
minimization of the objective function over subspaces spanned by the following three vectors:

• d1
k = xk − x0, where xk – current iterate; x0 – starting point;

• d2
k =

∑k−1
i=0 wig(xi) – weighted sum of previous gradients with specified weights wi;

• g(xk) – current gradient.

Note that this method is optimal with respect to the number of subspace minimizations,
however the overall number of function/gradient evaluations is suboptimal by a factor of
log k. Nemirovski also suggested methods with 2-d and even 1-d subspace optimization
instead of 3-d one (Nemirovski and Yudin, 1983). Further progress in this direction was
achieved by Nesterov (Nesterov, 1983, 2003; Nemirovski, 1994), who proposed a worst-case
optimal algorithm with no line search, which achieves the optimal complexity in terms of
function/gradient evaluations. In practical situations, however (in contrast to the worst
case), the mentioned methods often behave even poorer than conventional algorithms like
non-linear CG or Truncated Newton (TN) (see e.g. Gill et al. (1981) for a description of
TN).

Our crucial observation is that for many important problems subspace optimization can
be performed extremely fast. This happens, for example, when the objective function is a
combination of expensive linear mappings with computationally cheap non-linear functions:
such a situation is typical in many applications, including SVM-based pattern recognition.
Motivated by this observation we tend to increase the dimensionality of the search subspaces
and use quite accurate subspace optimization (contrary to the trends of Nemirovski and
Nesterov).

SESOP algorithm can be performed in several modes. Using just 2-d subspace optimiza-
tions in directions of the current gradient g(xk) and of the previous step pk = xk−xk−1, we
get a method, which coincides with CG, when the problem becomes quadratic. This prop-
erty is favorable in the proximity of the solution, where the problem has a good quadratic
approximation. Globally (in our experience) this method behaves better and is more stable
then Polak-Ribière CG. Including two additional Nemirovski directions: d1

k = xk − x0 and

d2
k =

∑k−1
i=0 wig(xi) with appropriate weights wi, we guarantee the worst-case optimality of

the method. Including more previous steps and gradients into the optimization subspace
helps to further reduce the number of iterations, while moderately increasing the iteration
cost.

The paper is organized as follows. In Section 2 we describe the SVM-based pattern
recognition and its representation as an unconstrained optimization problem. In Section 3
we introduce the sequential subspace optimization algorithm and discuss its properties. In
Section 4 we present a way to conduct an efficient minimization of functions in subspace.
Section 5 is devoted to computational experiments. Finally, conclusions are summarized in
Section 6.

2



Support Vector Machine via Sequential Subspace Optimization

2. SVM-based Pattern Recognition

Linear SVM Consider a binary classification problem with m training examples, {xi, yi}
m
i=1

where the feature vectors xi ∈ Rn and the labels yi ∈ {−1, +1}. Our goal is to choose a
separating hyperplane from the family of affine functions f = wTx + b. The classifier is
sign(f(x)). The parameters to be learnt from the data are w and b. This methodology is
called linear SVM (SVM whose feature space is the same as the input space of the problem).
For linearly separable data, we need to solve the following quadratic program

min
w,b

‖w‖2
2 s.t. yi(w

Txi + b) ≥ 1 ∀i, (1)

which is equivalent to finding the widest strip which separates the sets and does not include
any element inside (maximal geometric margin). The width of the strip is

γ =
2

‖wopt‖2
. (2)

For linearly non-separable problems, a soft margin approach is needed (Cortes and Vapnik,
1995). We define the slack margin vector ξ = [ξ1, . . . , ξm]T to represent violations of the
original constraints,

ξi ≡ max[0, 1 − yif(xi)]. (3)

The corresponding constrained problem is

min
w,b

‖w‖2
2 + C

∑

i

ξ
q
i (4)

s.t. yi(w
Txi + b) ≥ 1 − ξi

ξi ≥ 0 ∀i,
(5)

where C is a regularization parameter, q = 1 for a linear penalty on the slacks, and q = 2
for a quadratic penalty. Problem (4, 5) is usually referred to as L2-SVM due to l2-norm
of w. Another approach (see Fung and Mangasarian (2000)) is to minimize the l1-norm of
w. The justification for this approach is that components of w which do not contribute to
the separation will be optimized to zero. This is equivalent to feature selection process of
the data, i.e. features of the data which are not useful for separation will be ignored. The
general expression for L1 and L2-SVM is

min
w,b

‖w‖p
p + C

∑

i

ξ
q
i s.t. (5), (6)

with p = 1 or 2, and q = 1 or 2.

Kernel-Based SVM For specific data sets, an appropriate nonlinear mapping x 7→ φ(x)
can be used to embed the original features into a Hilbert feature space F with inner product
〈., .〉. One can seek for an affine classifier on the image φ(X) ⊂ F . Usually, explicit
knowledge of φ(x) is not required, it is sufficient to use the kernel

K(xi,xj) = 〈φ(xi), φ(xj)〉. (7)

3



Narkiss and Zibulevsky

The L2-SVM in the feature space F ⊃ φ(X) is:

min
w∈F ,b

〈w,w〉 + C
∑

i

ξ
q
i , q = 1 or 2 (8)

s.t. yi(〈w, φ(xi)〉 + b) ≥ 1 − ξi

ξi ≥ 0 ∀i,
(9)

The optimal w belongs to the Span(φ(x1), . . . , φ(xm)), therefore we can set

w =

m
∑

j=1

αjyjφ(xj). (10)

Substituting this into (8), we get:

min
α,b

m
∑

i,j=1

yiyjαiαj〈φ(xi), φ(xj)〉 + C
∑

i

ξ
q
i

s.t. yi(
m

∑

j=1

αjyj〈φ(xj), φ(xi)〉 + b) ≥ 1 − ξi

ξi ≥ 0 ∀i,

(11)

and using the kernel definition (7):

min
α,b

m
∑

i,j=1

yiyjαiαjK(xi,xj) + C
∑

i

ξ
q
i , q = 1 or 2 (12)

s.t. yi(

m
∑

j=1

αjyjK(xj ,xi) + b) ≥ 1 − ξi

ξi ≥ 0 ∀i.

(13)

A classifier can be defined as the sign of the following kernel-based affine function:

f(x) =

m
∑

i=1

K(x,xi)yiαi + b. (14)

Unconstrained SVM formulation In order to use unconstrained optimization tech-
niques, we convert the constrained problem (6) into equivalent unconstrained form. When
q = 1, we use the following penalty function

ϕ̃1(t) =

{

0 for t ≤ −1,

t + 1 otherwise,
(15)

or equivalently

ϕ̃1(t) =
1

2
(|t + 1| + t + 1). (16)

4



Support Vector Machine via Sequential Subspace Optimization

When q = 2, we set

ϕ̃2(t) =

{

0 for t ≤ −1,

(t + 1)2 otherwise,
(17)

The unconstrained representation of (6) is:

min
w,b

‖w‖p
p + C

m
∑

i=1

ϕ̃q(−yi(w
Txi + b)). (18)

The kernel SVM (12, 13) can also be represented in the unconstrained form:

min
α,b

m
∑

i,j=1

yiyjαiαjK(xi,xj) + C

m
∑

i=1

ϕ̃q(−yi(
m

∑

j=1

αjyjK(xj ,xi) + b)). (19)

In the following we use a vector notation

y = [y1, · · · , ym]T ; x̃i = −yixi; X̃ = [x̃1, · · · , x̃m];

K̃ − m × m matrix with the elements K̃ij = yiyjK(xi,xj).

We also vectorize generic function notation: f(s) = (f(s1) . . . f(sN ))T . In this way the
unconstrained linear and kernel SVM (18), (19) can be represented correspondingly as

min
w,b

‖w‖p
p + C1T ϕ̃q(X̃

Tw − by); (20)

min
α,b

αT K̃α + C1T ϕ̃q(−K̃α − by). (21)

where 1 denotes vector of ones of the corresponding size.

Smoothing the objective function In the cases when parameters p or q are equal to
one in (20) or (21), the l1-norm or the penalty function ϕ̃(·) are non-smooth functions.
In order to use smooth optimization techniques, we smoothly approximate these functions
using an approximation of the absolute value. In this work we use

|s| ≈ ψǫ(s) = ǫ

(

∣

∣

∣

s

ǫ

∣

∣

∣
+

1

| s
ǫ
| + 1

− 1

)

, ǫ > 0, (22)

where ǫ is a smoothing parameter. The approximation becomes accurate when ǫ → 0.
This function is faster to compute then other known to us absolute value approximations.
Changing the absolute value to ψǫ(·) in (16), we get a smoothed version of ϕ̃1(·):

ϕ(t) =
1

2
(ψǫ(t + 1) + t + 1). (23)

Below we will omit indices ǫ and q. The smoothed version of (20) with p = q = 1 can be
written as

min
w,b

1T ψ(w) + C1T ϕ(X̃Tw − by). (24)

Note again, that if one chooses L2-SVM (p = 2) or the quadratic penalty on the slacks
(q = 2), no smoothing is needed in the corresponding terms of (20), (21).

5



Narkiss and Zibulevsky

Sequential update of the smoothing parameter Whenever a very small value of
the smoothing parameter is required for good performance of the classifier, the direct un-
constrained optimization may become difficult. In this situation one can use a sequential
nested optimization: Starting with a moderate value of ǫ, optimize the objective function
to a reasonable accuracy, then reduce ǫ by some factor and perform the optimization again,
starting from the currently available solution, and so on... Another alternative is to use
the smoothing method of multipliers (Zibulevsky, 1996, 2003), which combines the ideas of
Lagrange multipliers with the ideas of smoothing of non-smooth functions, and provides a
very accurate solution.

Parameters tuning Adjustment of the regularization parameter C, the smoothing pa-
rameter ǫ and the optimization stopping criterion constants is conducted by validation: the
data is split into ’training’ and ’validation’ sets; we optimize (24) on the ’training’ set, and
count the separation errors on the ’validation’ set. This process is repeated using different
parameters, and the best combination is chosen. The performance of the final ’trained’
classification algorithm is measured on ’test’ data, which is not a part of the ’training’ or
’validation’ sets.

3. Sequential Subspace Optimization (SESOP) algorithm

In this section we present SESOP algorithm (Narkiss and Zibulevsky, 2005), which is a
general method for smooth unconstrained optimization. In the following we will use it as
an optimization engine for the unconstrained SVM.

For an unconstrained smooth minimization problem

min
x∈Rn

f(x). (25)

SESOP performs an iterative sequence of optimizations of the objective function f over affine
subspaces spanned by previous steps and gradients, as described below. We will define the
algorithm with its various modes, and discuss its properties. A detailed complexity analysis
appears in (Narkiss and Zibulevsky, 2005).

3.1 Construction of subspace structure

In order to define the subspace structure, denote the following sets of directions:

1. Current gradient: g(xk) - the gradient at the k’th point xk.

2. Nemirovski directions:

d
(1)
k = xk − x0

d
(2)
k =

k
∑

i=0

wig(xi),
(26)

where wk is defined by

wk =

{

1 for k = 0

1
2 +

√

1
4 + w2

k−1 for k > 0.
(27)

6



Support Vector Machine via Sequential Subspace Optimization

3. Previous directions:

pk−i = xk−i − xk−i−1, i = 0, . . . , s1. (28)

4. Previous gradients:

gk−i, i = 1, . . . , s2. (29)

The mandatory direction 1 and any subset of directions 2 - 4 can be used to define the
subspace structure. We will discuss possible considerations for several constellations.

3.2 Algorithm summary

Let D be a matrix of the chosen M (column) directions described in Subsection 3.1, and
α a column vector of M coefficients. At every iteration we find a new direction Dα in the
subspace spanned by the columns of D. The algorithm is summarized as follows:

1. Initialize xk = x0, D = D0 = g(x0).

2. Normalize the columns of D.

3. Find

α∗ = argmin
α

f
(

xk + Dα
)

. (30)

4. Update current iterate:

xk+1 = xk + Dα∗. (31)

5. Update matrix D according to the chosen set of subspace directions in Subsection 3.1.

6. Repeat steps 2 - 5 until convergence.

Implementation notes:

1. The choice of the subspace dimension M , is a trade off between the increase in com-
putational cost per iteration and the possible decrease in iterations number. Using
just 2-d subspace optimizations in directions of the current gradient g(xk) and of
the previous step pk, we get a method, which coincides with CG, when the problem
becomes quadratic. This property is favorable in the proximity of the solution, where
the problem has a good quadratic approximation. Also globally (in our experience)
this method behaves better and is more stable then Polak-Ribière CG.

2. Including two additional Nemirovski directions (26), we guarantee the worst-case opti-
mality of the method (when solving concrete non-worst case classes of problems, these
two directions may not bring significant improvement, therefore can be omitted after
careful testing). Including more previous steps and gradients into the optimization
subspace helps to further reduce the number of iterations, while moderately increas-
ing the iteration cost. The guiding principle is that the dimension M of the search
subspace should not be higher than a few tens or maybe hundreds of directions.

7



Narkiss and Zibulevsky

3. For the first M−1 iterations, some directions may be a combination of other directions,
or may not exist. We take advantage of this fact, to decrease the size of matrix D for
these iterations, and reduce the computation load. After more than M iterations, the
size of D does not change.

4. Preconditioning A common practice for optimization speedup is to use a precon-
ditioner matrix. One can use a preconditioned gradient Mg(xk) instead of g(xk),
where the matrix M approximates the inverse of the Hessian at point xk. There is a
trade off between the pre-conditioner calculation time, and the optimization runtime
saving.

5. Newton method in subspace optimization Basically SESOP is a first order
method, which can work using only first order derivatives. In many cases the ob-
jective function is twice differentiable, but the Hessian cannot be used due to memory
and other limitations. However, in the subspace optimization (step 3 of the algorithm),
we often use Newton method because of the small size of this auxiliary problem.

4. Reduced computations for subspace minimization

Consider a function of the form

f(x) = ϕ(Ax) + ψ(x). (32)

Such functions are very common in many applications. The multiplications Ax and ATy

are usually the most computationally expensive operations for calculating the function f

and its gradient. Our aim is to construct an optimization algorithm which will avoid such
operations whenever possible. It is worthwhile emphasizing that we ”change the rules” for
comparison of computation load between different optimization algorithms. Instead of the
common method of counting the number of function and gradient calculations, we will count
the number of matrix-vector multiplications. Methods based on subspace optimization often
iterate the multi-dimensional minimizer incrementally in the form

xk+1 = xk +
M
∑

i=1

αiri, (33)

where the coefficients αi, the directions ri and the number of directions M are determined
according to the specific optimization scheme. Such a framework allows us to save a large
part of the matrix-vector multiplications originally needed for calculation of the objective
function value (32). The term Axk+1 can be broken into

Axk+1 = Axk + A

M
∑

i=1

αiri

= Axk +
M
∑

i=1

αiAri

= v0 +
M
∑

i=1

viαi,

(34)

8



Support Vector Machine via Sequential Subspace Optimization

where vi = Ari. For each new direction ri we need to calculate and save one vector (vi).
Total memory requirement is M directions ri, M matrix-vector multiplications results vi

and one accumulative vector term v0. Obviously, as the data dimension n increases, the
complexity reduction from using (34) is more significant. For line search operation along
a single direction, or subspace minimization along several directions, there is no need to
perform any matrix-vector multiplication, since the function and its gradient with respect
to α are gained using the pre-calculated set of vectors vi.

Computational complexity of outer and inner iteration Consider for example prob-
lem (24). Assume that the absolute value smooth approximation function requires K = 5
arithmetical operations, so that the penalty function (23) costs k = K + 3 = 8 operations.

It is easy to see that the gradient of the objective function (24) requires nK + mn +
km + nM + m operations (using fast computations described above). Each outer iteration
requires up to n(m + 3) additional arithmetical operation for the update of the direction
matrix D. If the data is significantly sparse, the amount of operations drops accordingly.

At the inner iteration of the subspace optimization (30), the basic calculation is usually
function and gradient evaluation with respect to α. The cost of function evaluation is
n + nK + m + mk + nM + m operations, and gradient evaluation in subspace requires
nM +nK+mM +mk additional operations. When Newton method is used for the subspace
optimization, calculation of the Hessian with respect to α will require nK+nM2+mk+mM2

operations.

5. Numerical experiments

We compared the performance of several algorithms for problem (24) with several large-scale
data sets. The algorithms used were

1. SESOP with various numbers of directions;

2. Polak-Ribière nonlinear conjugate gradients;

3. Truncated Newton;

4. Nesterov method (Nesterov, 1983, 2003).

In our experiments the best line search methods were cubic interpolation for CG, and back-
tracking search with Armijo rule for all other methods, see for example (Gill et al., 1981).
Newton method was used for subspace minimization in SESOP algorithm.

The parameters for comparison between algorithms are number of iterations, normalized
to two matrix-vector multiplications per iteration, as shown in Table 1, and computational
time 1.

Notation: SESOPi is an abbreviation for SESOP using directions of i previous steps.
When we do not include Nemirovski directions in our scheme, we use the notation SESOPi−.
CGfast means CG with reduced computations for line search minimization, as explained in
Section 4. All data sets and their description are available at the UCI repository (Hettich

1. Experiments were conducted in MATLAB, on Intel R© XenonTM CPU 2.8GHz core with 2Gb memory,

running Linux

9



Narkiss and Zibulevsky

Method Matrix-vector mult.

per iteration

SESOP 2
Conjugate Gradient 2
Truncated Newton 2 per inner CG iter.

+ 2 per outer Newton iter.
Nesterov 3

Table 1: Number of heavy operations for different optimization methods.

Data set Num. of Num. of Num. of Num. of Features Error

features training validation test sparsity [%]
vectors vectors vectors [%]

Arcene 10000 50 50 100 54 14
Gisette 5000 1750 1750 3500 18 4
Dexter 20000 150 150 300 0.47 15

Dorothea 100000 400 400 350 0.91 7.42
Internet ads 1558 1093 1094 1093 1 3.93

Madelon 500 500 500 1300 100 45

Table 2: Data sets short description. Error percentage was measured on the test set.

et al., 1998) and NIPS ”feature selection challenge 2003” (Guyon and Gunn., 2003). A
short summary of these data sets and our L1-SVM error percentage is presented in Table
2.

Figures 1,2 show the progress with iterations in objective function and in validation
error, for the data set ’Internet ads’. As we see, SESOP8 provides few times faster decrease
of the objective function comparing to CG and TN. Also the validation error is reduced
and stabilized by SESOP8 much earlier.

Tables 3,4 present number of iterations and runtime of different algorithms for several
data sets. We have used two stopping criteria: norm of the gradient ‖∇f‖ ≤ 10−5, and
stabilization of the validation set error (’good results’). Nesterov method was significantly
slower than the other methods, and is not presented in here. SESOP has solved all the
problems, while CG failed to converge in 5000 iterations at data set ”Madelon”. The most
stable performance was demonstrated by SESOP8, which converged on average about twice
faster then CG, and about 10 times faster then TN (see Table 4).

We also have conducted some experiments with diagonal preconditioning, but they did
not show any benefit.

6. Conclusions

We have demonstrated that SESOP algorithm is an efficient tool for solving SVM prob-
lem in unconstrained formulation. The main advantages of SESOP are optimal worst-case
complexity for smooth convex unconstrained problems, low memory requirements and low
computation load per iteration. Our numerical experiments were restricted to the smoothed

10



Support Vector Machine via Sequential Subspace Optimization

200 400 600 800 1000 1200 1400 1600 1800

10
−5

10
0

iteration

f−
f*

SESOP 8 

CG

TN

Figure 1: Accuracy of the objective function f(xk) − foptimal with iterations for data set

’Internet ads’ [log scale]

100 200 300 400 500 600 700 800 900

3

4

5

6

7

8

9

10

11

12

13

iteration

E
rr

o
rs

 [
%

]

TN 

SESOP 8 

CG 

Figure 2: Validation error with iterations for data set ’Internet ads’

11



Narkiss and Zibulevsky

Convergence Good results

Data set Method iter time iter time

Arcene SESOP0 601 68.22 118 11.39
SESOP1− 148 10.61 63 5.62
SESOP1 261 17.59 128 8.76
SESOP8 57 6.36 20 3.5
SESOP32 24 4.16 14 2.97

CG 174 22.24 111 12.86
CGfast 164 10.01 91 4.66

TN 6039 28.53 5890 27.58
Gisette SESOP0 377 49 138 17.28

SESOP1− 96 13.07 46 7.74
SESOP1 232 27.46 119 14.44
SESOP8 74 13.54 34 8.35
SESOP32 49 13.08 27 8.32

CG 158 298.77 119 225.41
CGfast 196 24.47 121 14.23

TN 33827 2153.97 33750 2147.72
Dexter SESOP0 56 9.03 11 2.71

SESOP1− 26 4.98 10 2.61
SESOP1 52 7.72 18 3.38
SESOP8 22 6.15 8 2.52
SESOP32 21 6.35 8 2.46

CG 61 55.14 22 19.79
CGfast 61 13.02 22 4.36

TN 268 11.76 220 9.59
Internet ads SESOP0 3131 667.02 940 149.56

SESOP1− 381 54.5 225 32.42
SESOP1 599 86.83 420 60.19
SESOP8 237 39.06 110 20.18
SESOP32 180 43.7 82 24.17

CG 750 367.58 414 131.83
CGfast 1035 163.98 696 99.93

TN 2378 39.24 1210 20.65
Dorothea SESOP0 901 1566.04 19 21.9

SESOP1− 189 182.44 15 18.49
SESOP1 248 219.35 12 11.83
SESOP8 156 216.2 12 19.53
SESOP32 144 409.9 12 19.69

CG 246 1663.11 7 22.19
CGfast 246 293.22 7 4.36

TN 849 248.35 362 110.64
Madelon SESOP0 ∞ ∞ 2402 58.22

SESOP1− 478 5.53 162 2.06
SESOP1 4493 164.79 3552 112.02
SESOP8 334 4.23 115 1.82
SESOP32 232 5.53 79 2.46

CG ∞ ∞ ∞ ∞
CGfast ∞ ∞ ∞ ∞

TN 35170 69.77 5000 11.06

Table 3: Iterations and CPU runtime [sec] to convergence (‖∇f‖ ≤ 10−5), and to ’good results’
(stabilization of the error rate on the validation set); ∞ – no convergence in 5000 iterations.

12



Support Vector Machine via Sequential Subspace Optimization

Convergence Good results

Method iter time iter time

SESOP0 ∞ (5066) ∞ (2359.3) 3628 (1226) 261 (202.8)
SESOP1− 1318 (840) 271.1 (265.6) 5210 (359) 68.9 (66.88)
SESOP1 5885 (1392) 523.7 (358.9) 4249 (697) 210.6 (98.6)
SESOP8 880 (546) 285.54 (281.31) 299 (184) 55.9 (54.08)
SESOP32 650 (418) 482.72 (477.19) 222 (143) 60.07 (57.61)

CG ∞ (1389) ∞ (2406.8) ∞ (673) ∞ (412.1)
CGfast ∞ (1702) ∞ (504.7) ∞ (937) ∞ (127.5)

TN 78531 (43361) 2552 (2482) 46432 (41432) 2327 (2315)

Table 4: Total iterations/time (over Table 3). The numbers in brackets are the totals without
including the data set ’Madelon’.

version of L1-SVM with linear penalty on slack variables, however we believe that other
forms of SVM (L2; kernel-based; having quadratic penalty on slacks) can be approached
with SESOP. Our optimism is partially supported by good results with this method in other
fields, like computerized tomography and image denoising with Basis Pursuit, reported in
(Narkiss and Zibulevsky, 2005).
Unconstrained optimization is a building block for many constrained optimization tech-
niques, which makes SESOP a promising candidate for embedding into many existing
solvers.

Acknowledgments

We are grateful to Arkadi Nemirovski for his most useful advice and support. Our thanks
to Dori Peleg for the references to pattern recognition data sets. This research has been
supported in parts by the ”Dvorah” fund of the Technion and by the HASSIP Research
Network Program HPRN-CT-2002-00285, sponsored by the European Commission. The
research was carried out in the Ollendorff Minerva Center, funded through the BMBF.

References

C. Cortes and V.N. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

Glenn Fung and O. L. Mangasarian. Data selection for support vector machine classi-
fiers. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 64–70, 2000.

Philip E. Gill, Walter Murray, and Margareth H. Wright. Practical Optimization. Academic
Press, 1981.

I. Guyon and S. Gunn. NIPS feature selection challenge. 2003.
http://www.nipsfsc.ecs.soton.ac.uk/datasets/.

13



Narkiss and Zibulevsky

Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Natl. Bur. Stand., 49:409–436, 1952.

S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine learning databases.
University of California, Irvine, Dept. of Information and Computer Sciences, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Guy Narkiss and Michael Zibulevsky. Sequential subspace optimization method for large-
scale unconstrained optimization. Technical report, Technion - The Israel Institute of
Technology, faculty of Electrical Engineering, 2005.

A. Nemirovski. Orth-method for smooth convex optimization (in russian). Izvestia AN
SSSR, Ser. Tekhnicheskaya Kibernetika (the journal is translated to English as Engineer-
ing Cybernetics. Soviet J. Computer & Systems Sci.), 2, 1982.

A. Nemirovski. Efficient methods in convex programming. Technion - The Israel Institute
of Technology, faculty of Industrial Engineering and Managments, 1994.

A. Nemirovski and D. Yudin. Information-based complexity of mathematical programming
(in russian). Izvestia AN SSSR, Ser. Tekhnicheskaya Kibernetika (the journal is translated
to English as Engineering Cybernetics. Soviet J. Computer & Systems Sci.), 1, 1983.

Yu. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/n2) (in russian). Doklady AN SSSR (the journal is translated to English
as Soviet Math. Docl.), 269(3):543–547, 1983.

Yu. Nesterov. Smooth minimization of non-smooth functions. CORE discussion paper,
Universitè catholique de Louvain, Belgium, 2003.

J. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain.
Technical report, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, 1994.

Vladimir Vapnik. Statistical learning theory. Wiley-Interscience, New York, 1998.

M. Zibulevsky. Smoothing method of multipliers for sum-max problems. Technical report,
Dept. of Elec. Eng., Technion, 2003. http://ie.technion.ac.il/˜mcib/.

Michael Zibulevsky. Penalty/Barrier Multiplier Methods for Large-Scale Nonlinear and
Semidefinite Programming. PhD thesis, Technion – Israel Institute of Technology, 1996.
http://ie.technion.ac.il/˜mcib/.

14


