
Skyless Dehazing

Sarit Shwartz, Einav Namer and Yoav Y. Schechner

Department of Electrical Engineering

Technion - Israel Institute of Technology.

Haifa 32000, Israel

psarit@tx.technion.ac.il, einav@ee.technion.ac.il

yoav@ee.technion.ac.il

Abstract

Turbidity problems caused by scattering such as in haze or water, can be elim-
inated by processing of several different pictures of the same scene taken under
different ambient scattering conditions. For example, in haze these are different
polarization states. From this image set, the scene is recovered as it would have
looked like if there were no turbidity. In addition, the distance map of the scene
is recovered as well. This reconstruction requires estimation of parameters of the
ambient scattering. For example, in haze, these parameters are the polarization
degree and the saturation value of the airlight.

In previous work these parameters were estimated using image pixels corre-
sponding to objects that are effectively at an infinite distance from the camera.
Nevertheless, the need to measure such objects limited the applicability of visibility
recovery methods. In this work we present several alternative methods for esti-
mation of the required parameters, without using samples from infinite distance
objects. Therefore, the recovery methods have a wider applicability.
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Figure 1: (Dashed rays) Light coming from the sun and scattered towards the camera by
atmospheric particles is the airlight A. (Solid ray) Light emanating from the object Lobject is
attenuated by the medium along the line of sight, resulting in direct transmission D. Both A

and D depend on the distance z. The scene is imaged through a polarizing filter oriented at
angle α.

1 Introduction

The dehazing algorithm described in Ref. [?] show a way to recover Lobject, based on p
and A∞. These parameters are measured from the raw images by looking at pixels which
correspond to objects at infinity. These pixels can be assign to the sky near the horizon.
However, the sky near the horizon is not always visible. Sometimes due to a very strong
haze and sometimes when the sky are not photographed at all. In this paper, we show
different methods by which this problem can be overcome, and those infinity parameters
can be achieved without the existence of infinity in the picture.

2 Theoretical Background

In this section we describe the principles behind the basic dehazing algorithm of Ref. [?].
Consider Fig. 1. When acquiring an outdoor scene, the resulting image is a combination
of two main components. The first originated from the object radiance. Let us denote by
Lobject the object radiance as if was taken in a clear atmosphere, without scattering on
the line of sight. Due to attenuation in the atmosphere, the camera senses a fraction of
this radiance,1 which is the direct transmission

D = Lobjectt , (1)

where
t = e−βz (2)

1There is a proportion factor between the scene radiance and image irradiance that depends on the
imaging system, but does not depend on the medium and its characteristics. We thus leave this factor
out.

2



is the transmittance of the atmosphere. The transmittance depends on the distance z
between the object and the camera, and on the atmospheric attenuation coefficient β.

The second component is known as path radiance, or airlight. It originates from the
scene illumination (e.g., by the sun), portion of which is scattered into the line of sight
by atmospheric particles. It is given by

A = A∞(1 − t) , (3)

where A∞ is the of airlight, which depends on the atmospheric and illumination conditions.
Contrary to the direct transmission, this component increases with the distance and
dominates the acquired image irradiance

Itotal = D + A (4)

at long range. This is a major cause for reduction of image contrast in haze.
In haze, the airlight is often partially polarized. Hence, we can modulate it by mounting

a polarizing filter at angle α in the imaging system. When rotating the polarizer, there is
an orientation at which the image is least intense. Let us denote this image as Imin. Ref. [?]
assumes that polarization is associated only with the airlight. If so, then Imin corresponds
to the lowest amount of airlight. Hence, this is the image with the best contrast that
can be achieved by optical filtering. We denote this optimal polarizer orientation as θ‖.
We may then rotate the polarizer by 90o relative θ‖. This time the image irradiance is
strongest, since we sense the principle polarization component of the airlight. Denote this
image as Imax.

Once these images are acquired, Ref. [?] describes Itotal as

Îtotal =
Imax + Imin

2
. (5)

where Imax is also written as I‖, and Imin is also written as I⊥. Based on Eqs.(4,5)

L̂object =
Îtotal − Â

t̂
, (6)

is the dehazing of the scene, where

t̂ = 1 − Â

A∞
(7)

is the estimated transmittance and

Â =
Imax − Imin

p
(8)

is the estimated airlight. The parameter p appearing in Eq. (8) is the degree of polarization
of airlight. For narrow fields of view (FOV), this parameter does not vary much. Note
that we also make use of the airlight saturation value A∞. Both of these parameters are
generally unknown, and thus provide the incentive for this paper. Before detailing how
these parameters are estimated, let us assume for the moment that they are known.

Eq. (6) expresses the dehazed scene radiance. Note that in addition, Eqs. (2,7) recover
a distance map of the scene

βẑ = − log

[
1 − Â

A∞

]
. (9)
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Figure 2: A hypothesized method for estimating p and A∞. [Left] Measurements of pixels
corresponding to objects of a certain class (e.g., “bushes”, “boulders”) are predicted to lie on a
straight line in the (∆I, Îtotal). [Right] Parameters derived from the measurements create linear
constraints on p and A∞. Intersection of such constraints uniquely determines p and A∞.

2.1 Prior Methods for Parameter Estimation

The dehazing method described above requires knowledge of the airlight saturation value
A∞ and of its degree of polarization p. Past methods have derived these parameters
by measuring clear sky pixels [4]. However, such pixels may not always be available in
the field of view. Moreover, the sky by the horizon may be cloudy, ruining that kind of
estimation.

There is thus a need to estimate A∞ and p, without resorting to sky measurements.
One prior work has suggested exploiting knowledge of different objects in the scene [4].
Suppose we can mark scene points (xk, yk) which, in the absence of scattering, would have
a similar, but unknown radiance. For example, boulders in the scene have an unknown
radiance Lboulders. It is easy to show from the previous equations that

Îtotal(k) = Lboulders + Cboulders∆I(k) , (10)

where ∆I(x, y) ≡ [Î⊥(x, y) − Î‖(x, y)], and

Cboulders ≡
(

1

p
− Lboulders

pA∞

)
(11)

is constant. Boulder points at different distances from the viewer will have intensity
readouts due to the effects of scattering. Therefore, they will have different values of Itotal

and ∆I(x, y). According to Eq. (10), Îtotal(k) as a function of ∆I(k) forms a straight line,
as depicted on the left of Fig. 2. Extrapolating the line, its intercept yields the radiance
value Lboulders. The slope of the fitted line is Cboulders. We end up with a linear equation
(11) that relates the unknown (1/p) to the unknown A∞.

Ref. [4] notes that if a similar analysis is done for an additional class of objects, say
bushes, then an additional linear constraint is derived. This determines the required
parameters, as depicted on the right of Fig. 2. However, this method has shortcomings: it
requires the presence of several types of distinct scene features in the scene. It would not
be possible to operate this method is an environment having only a single type of ground
or ground-cover (forest). Moreover, it is inconvenient and less reliable to identify objects
of different classes.
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3 Estimating p using ICA method

3.1 Problem Formulation

One of our goals is to decouple the airlight and direct transmission. We assume that
direct transmission is not polarized, hence its energy is evenly distributed between the
polarization components. The variations due to the polarizer rotation are assumed to be
mainly due to airlight. The light ray from the light source to a scatterer and the line
of sight from the camera to the scatterer define a plane of incidence. We can divide the
airlight to two polarization components that are parallel and perpendicular to this plane.
Define A‖, A⊥ as the parallel and perpendicular airlight components. Then,

A = A‖ + A⊥ , (12)

and the degree of polarization is

p = (A⊥ − A‖)/A . (13)

When the polarizing filter is oriented such that the image irradiance is minimal, we
measure

I‖ = A(1 − p)/2 + D/2 . (14)

This is the best state of the polarizer because here the image irradiance is the closest
to the irradiance corresponding to the direct transmission (except for a factor of 1/2).
There is a difference between I‖ and D/2, because the airlight is not completely polarized
A‖ �= 0.

We can acquire two polarized images. The first image is I‖, taken with polarizer angle
of θ‖. The second image is acquired when the filter is oriented perpendicular to θ‖.

I⊥ = A(1 + p)/2 + D/2 . (15)

Note that I⊥ is the worst state of the polarizer, because the airlight is enhanced relative
to the direct transmission.

To dehaze the image, we first have to remove the airlight A. The key step here is the
estimation of p, the degree of polarization of airlight. p relates the unknown airlight A to
the difference between the image irradiances I‖ and I⊥.

Assume that p is uniform over the acquired scene. Then, the two acquired images
constitute the following equation system:{

I⊥ = (1 + p)A/2 + D/2
I‖ = (1 − p)A/2 + D/2

. (16)

Assume for a moment that p is known. Then, the equation system is easy to invert and
the direct transmission and the airlight can be calculated from the acquired images as{

A = (I⊥ − I‖)/p
D = (p − 1)I⊥/p + I‖(p + 1)/p

. (17)

However, typically p is unknown. Nevertheless, we propose a method for estimating p
based on the acquired images.
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3.2 Independent Component Analysis

There are applications in which the acquired signals are pointwise mixtures of statistically
independent sources. We know neither the original sources nor the mixing process. The
goal of ICA is: given only the acquired mixtures, find the separation process that yields
the original sources. This is done by finding the separation process that minimize the
statistical independence between the estimated sources (see [2] and references therein).

Denote {s1, . . . , sK} as the set of K original independent sources, and {u1, . . . , uK}
as the set of acquired sources. Denote, M as the linear mixing process that transform
{s1, . . . , sK} to {u1, . . . , uK}. Each one of the original sources and the acquired sources
can be rearranged in row vectors. In this case M is represented by a simple matrix called
the separation matrix. ⎡

⎢⎣
u1
...
uK

⎤
⎥⎦ = M

⎡
⎢⎣

s1
...
sK

⎤
⎥⎦ . (18)

Denote {ŝ1, . . . , ŝK} as the set of estimated sources. Denote W as the linear separation
process that transform {u1, . . . , uK} to {ŝ1, . . . , ŝK}. By rearranging the estimated sources
and the acquired sources in row vectors we can express W as a simple matrix termed the
separation matrix. ⎡

⎢⎣
ŝ1
...
ŝK

⎤
⎥⎦ = W

⎡
⎢⎣

u1
...
uK

⎤
⎥⎦ . (19)

Mutual information (MI) is a natural measure for statistical dependency. Therefore MI
is commonly use in ICA algorithms. MI of two signals can be expressed as

Iŝ1,ŝ2 = Hŝ1 + Hŝ2 −Hŝ1,ŝ2 . (20)

Here Hŝk
, k = 1, 2 is the marginal entropy of source k, and Hŝ1,ŝ2 is the joint entropy of

the sources. Therefore, in order to estimate the MI of the sources we need to estimate the
joint and marginal entropies of the sources. Nevertheless, in the special case of pointwise
mixtures the MI expression can be simplified to

I(ŝ1, ŝ2) = Hŝ1 + Hŝ2 − log | det(W)| − Hu1,u2 . (21)

Here Hu1,u2 is independent of W and is thus constant for a given measurements set
{u1, u2}. For this reason, we ignore it in the optimization process. This way the only
terms we need to estimate from the data are the marginal entropies.

3.3 Dehazing by ICA

The dehazing formulation Eqs. (16) and (17) can be ragarded as a special case of ICA.
By comparing Eqs. (16) and (17) to Eqs. (18) and (19) respectively, we can identify A,D
with s1, s2 and I⊥, I‖ with u1, u2 respectively. In addition, the mixing matrix and the
separation matrix in this case have a special structure:

M =

[
(1 + p)/2 1/2
(1 − p)/2 1/2

]
, W =

[
1/p −1/p
(p − 1)/p (p + 1)/p

]
. (22)
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It is important to note that the assumption that the direct transmission and the airlight
signals are statistically independent is not obvious. For instance, the airlight signal in-
creases with the distance z while the direct transmission decreases with z. Therefore,
the airlight image will be brighter where the direct transmission image is darker. Nev-
ertheless, the direct transmission image contains color information which is independent
of the objects distance z. Moreover, the amount of airlight between the objects and the
camera does not depend on the objects color rather it depends only on z. Therefore, the
independence assumption is valid for natural scenes, which is typically colorful.

MI optimization has three inherent ambiguities. The first ambiguity is scale ambiguity.
The order in which the reconstructed sources appear does not change their MI. Therefore,
the estimated sources given by ICA optimization can appear in arbitrary order. This
ambiguity does not concern us in this work.

The remaining ambiguities are the scale and sign ambiguities. Suppose we have two
statistically independent sources. Multiplying each one of these sources with some arbi-
trary constant does not influence their MI which is zero. Therefore, the estimated sources
given by ICA optimization can have any arbitrary scale. The sign ambiguity is the special
case in which the scale is −1. This ambiguity implies that we can estimate the direct
transmission and the airlight images up to a scale and sign. Moreover, the scale ambigu-
ity implies that we have infinite number of solutions to the minimization problem. This
can destabilize the numerical optimization. However, in the special case of the dehazing
problem we can exploit the special structure of the mixing and the separation matrices
(Eq. 22) in order to bypass all the ICA ambiguities as detailed in Sec. 3.3.3.

3.3.1 Dehazing Optimization

Let us look at the structure of the separation matrix W (Eq. 22). This structure implies
that up to a scale p the airlight A is a simple substraction of the two acquired images.
Hence, we denote Â as our estimation for the airlight (up to a scale p)

Â = I⊥ − I‖ . (23)

Denote
w1 = (p − 1) , w2 = (p + 1) . (24)

and D̂ as the estimation of the direct transmission up to a scale p. Then Eq. (22) implies
that

D̂ = w1I
⊥ + w2I

‖ . (25)

Recall that our goal is to separate the airlight and the direct transmission signals by
minimizing the statistical dependency between Â and D̂. We do that by minimizing the
MI between the two estimated sources. By substituting Eqs. (23) and (25) into Eq. (21)
we get

I(D̂, Â) = HD̂ + HÂ − log

∣∣∣∣det

[
1 −1
w1 w2

]∣∣∣∣ = HD̂ + HÂ − log |(w2 + w1)| . (26)
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Note that Â does not depend on w1, w2. Therefore, HÂ is constant and can be ignored in
the optimization process. Therefore, the optimization problem we need to solve is

min
w1,w2

{
I(D̂, Â)

}
=

{
min
w1,w2

HD̂ − log |(w2 + w1)|
}

. (27)

By definition, the degree of polarization is limited to 0 < p < 1 this means that
0 < w2 + w1 < 2. In this region − log |(w2 + w1)| is a convex function. Hence, if we use
an entropy estimator which is convex in w1, w2 we can guaranty convergence to a unique
solution. We are interested in an entropy estimator which is not only convex in w1, w2 but
also accurate and efficient to calculate. In the next section we detail such an estimator.

3.3.2 Entropy Estimation by Sparsity

We are interested in an accurate and efficient entropy estimator which is also a convex
function in w1, w2. Such an estimator exists for sparse signals. However, natural images
are not sparse. Therefore, apparently we can not exploit sparsity. Nevertheless, a natural
image can be easily transformed into a sparse signal by simple linear transformation such
as Sobel operator, or wavelets transformation. Such transformations do not change the
mixing matrix since they are linear and therefore commutative with the transformation as
shown in [3] and references therein. Hence, we can apply a sparsifying linear transforma-
tion on the original sources. Then, we apply the ICA separation algorithm described in
this work to estimate p. Finally, we can reconstruct the dehazed image from the original
images using the estimated p.

A PDF model that is widely used in the literature to model sparse images is the
generalized Laplacian (see for example [5])

p(D̂) = c(ρ) exp(−|D̂|ρ) , where 0 < ρ < 2 . (28)

Here c(ρ) is the normalization factor of p(D̂). The sparsity of the represented signal is
determined by the parameter ρ. The smaller ρ is, the narrower the PDF, representing a
sparser signal. Note that this PDF model assumes that the source has a unit variance.
This implicit normalization makes the optimization robust to some numerical issues. How-
ever, this implicit normalization does not solve the scale ambiguity problem, the true scale
of the signals is still unknown. We detail how to reconstruct the true scale in Sec. 3.3.3.

We now exploit this prior of image statistics to formalize estimation of entropies in our
optimization. Entropy is defined as (see for example [1])

ĤD̂ = E
{

log[p(D̂)]
}

. (29)

Substituting Eq. (28) into Eq. (29) and replacing the expectation with empirical averaging,
we obtain the channel entropy estimator:

ĤD̂ =
1

N

N∑
n=1

|D̂(n)|ρ + C(ρ) . (30)

Here C(ρ) = log[c(ρ)]. Since C(ρ) does not depend on D̂, it can be ignored in the opti-
mization process. The generalized Laplacian model yields a very simple formula (30): the
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entropy is a simple expression of the variables. Moreover, the computational complexity
of this entropy estimator is O(N).

The channel entropy (Eq. 30) is a convex function of D̂(n) only if ρ ≥ 1. However, the
PDF of the transformed images are typically very sparse, i.e. ρ < 1. Therefore, we have a
tradeoff between accuracy and convexity: for efficient optimization, we require a convex
function, while for accuracy we require ρ < 1. The most sparse PDF that still yields a
convex function in (30) is described by ρ = 1. Therefore, we choose to use ρ = 1.

Substituting Eq. (30) in Eq. (35) yields the following MI minimization

min
w1,w2

ID̂,Â = min
w1,w2

{
1

N

N∑
n=1

|D̂(n)| − log |w1 + w2|
}

. (31)

This is the core of our optimization. In addition, we use a local gradient based op-
timization which is very efficient for convex functions allowing for fast convergence to
a global minimum. For this purpose we need to calculate the gradient and the hessian
of Eq. (31). However, the absolute value function used in Eq. (31) is not differentiable.
Nevertheless, we solve this problem by substituting the absolute value function with a
function that is a smooth approximation to the absolute value function. There are several
options for such a function, we use Ref. ( [3])

f(D̂) = ν[|D̂/ν| − log(1 + |D̂/ν|)] . (32)

Here ν is the smoothing parameter, ν → inf ⇒ f(D̂) → |D̂| but the function is not
smooth. while ν → 0 yield a very smooth function but not accurate enough. We use
ν = 0.1. By substituting |D̂(n)| with f [D̂(n)] in Eq. (31) and differentiating it we get the
gradient expression:

∇w1,w2ID̂,Â =

⎡
⎢⎢⎣

1
N

N∑
n=1

ḟ [D̂(n)]I⊥(n) − 1/(w1 + w2)

1
N

N∑
n=1

ḟ [D̂(n)]I‖(n) − 1/(w1 + w2)

⎤
⎥⎥⎦ . (33)

Where ḟ is the derivative of f .
By differentiating a second time we get the Hessian expression:

∇w1,w2ID̂,Â =

⎡
⎢⎢⎣

1
N

N∑
n=1

ḟ [D̂(n)][I⊥(n)]2 1
N

N∑
n=1

ḟ [D̂(n)][I⊥(n)I‖(n)]

1
N

N∑
n=1

ḟ [D̂(n)][I‖(n)I⊥(n)] 1
N

N∑
n=1

ḟ [D̂(n)][I‖(n)]2

⎤
⎥⎥⎦+1/(w1+w2)

2 .

(34)

3.3.3 Image Reconstruction

ICA optimization yields the sources up to a scale. Therefore, we do not reconstruct the
dehazed image from w1 and w2. Rather we first extract p from w1 and w2. Then, we
reconstruct the dehazed image from Eq. (17).
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Let us look at the ratio α = w1/w2. From Eq. (24) we get

α =
w1

w2

= (p − 1)/(p + 1) . (35)

Simple manipulation of Eq. (35) yields

p =
w1 + w2

w2 − w1

=
1 + α

1 − α
. (36)

Now we can reconstruct the direct transmission image using Eq. (17). Note that in this
reconstruction scheme we bypass all inherent ICA ambiguities: permutation, sign and
scale.

In order to perform complete dehazing reconstruct L̂object we need to divide each pixel
in the direct transmission image by e(−βz) (see Eq. 1). However, neither β nor z are
known.

4 Exploiting Distance Information

The method described here is based on distance estimation in several points in the field of
view (FOV). Let us select two points in the FOV, corresponding to similar objects (thus
having the same underlying Lobject). The two points, however, should be at different
distances from the camera. For example they could correspond to two trees placed in
different distances, or two buildings. Let the image coordinates of these two points be
(x1, y1) and (x2, y2), respectively, and their distances are z1 and z2.

A distances z in the picture can be calculated in several ways. One is by using a
map or a DTM, assuming you know where you are. Another is by using instruments to
estimate distance, such as laser beam. If the camera and lens type are known, a simple
magnification calculation can be done, to estimate the distance of an object, that you
know roughly its real size.
Using Eq. (4),

I
‖
1 = Lobject

1 · e−βz1 + A‖
∞ · [1 − e−βz1 ] (37)

I⊥
1 = Lobject

1 · e−βz1 + A⊥
∞ · [1 − e−βz1 ] (38)

where I
‖
1 = I‖(x1, y1) and I⊥

1 = I⊥(x1, y1).
From Eqs. (37,38) we extract A∞ as

A∞ =
A

‖
∞ + A⊥

∞
2

= N1 + Lobject
1 · N2 (39)

where N1 = (I
‖
1 + I

‖
1 )/(2[1 − e−βz1 ]) and N2 = e−βz1/(e−βz1 − 1).

Similarly,

A∞ =
A

‖
∞ + A⊥

∞
2

= N3 + Lobject
1 · N4 (40)

where N3 = (I
‖
2 + I

‖
2 )/(2[1 − e−βz2 ]), N4 = e−βz2/(e−βz2 − 1), and I

‖
2 = I‖(x2, y2), I⊥

2 =
I⊥(x2, y2).

10



Let us assume for a moment that z1, z2 and β are known. Hence Eqs. (39,40) are a set of

two linear equations, with two unknowns, A∞ and Lobject
1 . The intersection between these

two linear constrains yields the desired solution of A∞.
We now determine p. Subtracting Eq. 38 from Eq. 37, and performing additional simple
operations yields,

∆A = A‖
∞ − A⊥

∞ =
I
‖
1 − I⊥

1

1 − e−βz1
(41)

Since z1 and β are known, p can be calculated. By using Eqs. (39,41,??), we denote:

p̂ =
A

‖
∞ − A⊥

∞
A

‖
∞ + A⊥∞

=
2∆A

A∞
(42)

We thus recover the required parameters to perform dehazing based polarization.
Estimating the atmospheric attenuation coefficient β

The parameter β can be measured with Runway Visual Range (RVR) instrument (see
http:////www.rvr.it). Suppose we do not know what β is. We can derive it using a third
object of known distance z3. By performing the same operations in Eqs. (39,40),

A∞ =
A

‖
∞ + A⊥

∞
2

= N5 + Lobject
1 · N6 (43)

where N5 = (I
‖
3 + I

‖
3 )/(2[1 − e−βz3 ]), N6 = e−βz3/(e−βz3 − 1), and

Using Eq. (39,40,43) we can calculate β as well as A∞ and p.
Using ICA method

The ICA process yields the parameter p, without any assumptions on the image. There-

fore, A = I⊥+I‖
P

, is easyly calculated. From Eq.(9, we know that e−βz = 1 − A
A∞ . Again,

let us assume for a moment that we can estimate β and the distance in the point (x0, y0).
Therefore, A∞ can be calculated:

A∞(x0, y0) =
A(x0, y0)

1 − e−βz0
(44)

It is reasonable to determine that A∞ = A∞(x0, y0).
Now, after estimation p and A∞, we can use Eq. 6 and perform dehazing.

5 Combination of Ref. [4] and ICA

Let us choose two points in the picture, k1 and k2, which have different distances from the
camera, but represent the same object. For example, a couple of boulders in the scene.
Using Eq. 10 on k1 and k2, we get

Îtotal(k1) = Lboulders + Cboulders∆I(k1) (45)

Îtotal(k2) = Lboulders + Cboulders∆I(k2) . (46)
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Based on Eqs. (45,46), we can calculate Lboulders and Cboulders:

Cboulders =
Itotal
k1

− Itotal
k2

∆Ik1 − ∆Ik2

(47)

and based on the estimated Cboulders,

Lboulders = Itotal
k1

− Cboulders · ∆Ik1 (48)

The ICA process, as shown in Eq. 36, yields the parameter p, without any assumptions
on the image. Therefore, at this stage we have p, Cboulders and Lboulders, based on 2 similar
samples of boulders. Hance, using Eq. ?? to calculate A∞:

A∞ =
Lboulders

1 − p · Cboulders

(49)
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