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Abstract

We present the Sequential Subspace Optimization (SESCQRyder large-
scale smooth unconstrained problems. At each iteratioreaech for a min-
imum of the objective function over a subspace spanned bygufrent gra-
dient and by directions of few previous steps. We also inelinto this sub-
space the direction from the starting point to the curremtpand a weighted
sum of all previous gradients, following [Nemirovski-198Zhis safeguard
measure provides an optimal worst case convergence ratdeflg N2 (for
convex problems), wherd' is the iteration count. In the case of quadratic
objective, the method is equivalent to the conjugate grasdimethod.

We identify an important class of problems, where subspatienza-
tion can be implemented extremely fast. This happens whermlbfective
function is a combination of expensive linear mappings witimputation-
ally cheap non-linear functions. This is a typical situatia many appli-
cations, like tomography, signal and image denoising widsi8 Pursuit,
pattern recognition with Support Vector Machine, and mathers. We
demonstrate highly competitive humerical results usingngxes from the
mentioned areas.

1 Introduction

We consider an unconstrained minimization of a smooth function

min f(x). Q)

XER™

When the number of variables is very large, say 10* — 107 and more, there is a
need for optimization algorithms, for which storage requirement and commatio
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cost per iteration grow not more than linearlyrinAn early algorithm of this type

is the conjugate gradient (CG) method [5], [4], [15]. It is known thatviz@sst case
convergence rate for quadratic problem®ig —2) (in terms of objective function),
wherek is the iteration count. This rate of convergence is independent of the
problem size and is optimalg. it coincides with the complexity of convex smooth
unconstrained optimization (seeg. [10]). The extensions of CG to nonlinear
functions by Fletcher-Reeves and Polak-Ribi(see.g.[15]) are no longer worst-
case optimal.

1.1 Nemirovski-Nesterov methods

The optimality of the quadratic CG method is associated with the following prop-
erties:

1. The current gradient is orthogonal to the directions of all previtesss
2. The current gradient is orthogonal to all previous gradients.

3. The objective function improvement at iteratibris at leastO(||g(xx)|?),
whereg(xy) = Vxf(xx) is the gradient of the objective function at iterate
X

Nemirovski [9] suggested to relax these requirements, in order to builgtémal
method for convex smooth unconstrained optimization:

1. The current gradient should be orthogonal to the sum of all pre\dteps,
i.e. orthogonal tad} = x;, — xo.

2. The current gradient should be orthogonal to a weighted sum ofeafiqus
gradientsd? = Zf;ol w;g(x;) with pre-specified weights; .

3. The optimization at the current iteration should be performed over a sub-
space, which includes the current gradigf;, ).

These three requirements can be satisfied by a method which sequentially mini-
mizes the objective function over subspaces spanned by the three mdntame
tors:d}, dz, andg(x;). Note that this method is optimal with respect to the num-
ber of subspace minimizations, however the overall number of functiaiéria
evaluations is suboptimal by a factorlog & [9]. Nemirovski also suggested meth-
ods with 2-d and even 1-d subspace optimization instead of 3-d one [W&hefF
progress in this direction was achieved by Nesterov [13], [14], (@} proposed

a worst-case optimal algorithm with no line search, which achieves the optimal
complexity in terms of function/gradient evaluations.
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In practical situations, however (in contrast to the worst case), the meudtimeth-
ods often behave even poorer than conventional algorithms like non-{@@®@ar
Truncated Newton (TN) (seg. [4] for a description of TN). In the current work
we present a method, which is equivalent to CG in the quadratic case ftend o
outperforms CG and TN in non-quadratic case, while preserving wass-opti-
mality.

1.2 Extended subspace optimization

Our crucial observation is that for many important problems subspace oatiariz

can be implemented extremely fast. This happens, for example, when the objec
tive function is a combination of expensive linear mappings with computation-
ally cheap non-linear functions. It is a typical situation in many applications, lik
tomography, signal and image processing with Basis Pursuit, pattermigong

with Support Vector Machine, and many others. Another example is careira
optimization, where barrier or penalty aggregate may have this property ar line
programming, semidefinite programmirgfc. In such situations the overall cost

of subspace optimization is about one function and gradient evaluation!

Motivated by this observation we tend to increase the dimensionality of thehsear
subspaces and use quite accurate subspace optimization (contrary emtieedf
Nemirovski-Nesterov). The first additional vector we include is the lagt ste

Pr = X — Xg—1-

There is a deep reason to do so: Iteration of quadratic CG can be daSreul
optimization in the subspace of the current gradigft;.) and the last stepy
(seee.qg. [4]). Preserving this property is a natural way to extend CG to the non-
guadratic case. Note that Fletcher-Reeves and Polalke#Ribhbnlinear CG method
lack this property, which could be very helpful: every iteration is guasshte be

at least as good as steepest descent. On the other hand,dxp#reling manifold
property, quadratic CG achieves minimum over the subspace of the ograeirent

and all previous steps and gradients. We can approximate this propdugfiinge
several previous steps and gradients into the optimization subspace.

Let us summarize: Using only 2-d subspace optimizations in directi@is)
andp, we get a method, which coincides with CG, when the problem becomes
quadratic. This property is favorable in the proximity of the solution, wheee th
problem has a good quadratic approximation. Globally (in our experighce)
method behaves better and is more stable then PolakRikiG. Using two ad-
ditional Nemirovski directionsd; = xj, — x¢ andd; = Zf;ol w;g(x;) with
appropriate weights);, we guarantee the worst-case optimality of the method. In-
cluding more previous steps and gradients into the optimization subspacedelps

3
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further reduce the number of iterations, while moderately increasing théatera
cost.

We also introduce pre-conditioning into this scheme, using pre-multiplication of
gradients by an approximate inverse Hessian (in our experiments we bagle u
diagonal approximation). This measure quite often significantly accelerates
vergence.

The paper is organized as follows. In Section 2 we describe the sedsebsaace
optimization algorithm and discuss its properties. In Section 3 we present towa
conduct an efficient minimization of functions in subspace. Section 4 igedvo
computational experiments. Finally, conclusions are summarized in Section 5.

2 Sequential Subspace Optimization (SESOP) algorithm

In this section we describe the SESOP algorithm, which is a general method for
smooth unconstrained optimization. We define the algorithm with its various modes,
discuss its properties and prove its complexity.

2.1 Construction of subspace structure
In order to define the subspace structure, denote the following setsofidirs:

1. Current gradient: g(xy) - the gradient at thé’th point xy.
2. Nemirovski directions:

d,(:) = X — Xg

b 2)
d](f) = szg(xl)7
=0

wherewy, is defined by

1 fork=0
wy = 9 4 3)

1+y/3+wi , fork>0.
3. Previousdirections:
Pk—i = Xp—i — Xp—i—1, 1=0,...,51. (4)

4. Previousgradients:
Sk—i» izla"'752' (5)
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The mandatory direction 1 and any subset of directions 2 - 4 can be usled to
fine the subspace structure. We will discuss possible consideratiosg\eral
constellations.

2.2 Algorithm summary

Let D be a matrix of the chosem! (column) directions described in Subsection
2.1, anda a column vector of\f coefficients. On every iteration we find a new
direction D« in the subspace spanned by the column®of The algorithm is
summarized as follows:

1. Initializexk =x09, D =Dy = g(XQ).
2. Normalize the columns dp.

3. Find
o = argmin f(x; + Da). (6)
«

4. Update current iterate:
Xk+1 = Xk + Dao™. (7)

5. Update matriXD according to the chosen set of subspace directions in Sub-
section 2.1.

6. Repeat steps 2 - 5 until convergence.

Implementation notes:

1. The choice of the subspace dimensidnis a trade off between the increase
in computational cost per iteration and the possible decrease in number of
iterations. Using just 2-d subspace optimizations in directions of the cur-
rent gradientg(x) and of the previous step;, we get a method, which
coincides with CG, when the problem becomes quadratic. This property is
favorable in the proximity of the solution, where the problem has a good
quadratic approximation. Also globally (in our experience) this method be-
haves better and is more stable then Polak&éCG.

2. Including two additional Nemirovski directions (2), we guarantee thesivo
case optimality of the method (when solving concrete non-worst caseslasse
of problems, these two directions may not bring significant improvement,
therefore can be omitted after careful testing). Including more previeps s
and gradients into the optimization subspace helps to further reduce the num-
ber of iterations, while moderately increasing the iteration cost. The guiding

5
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principle is that the dimensial/ of the search subspace should not be higher
than a few tens or maybe hundreds of directions.

3. Forthe first\M — 1 iterations, some directions may be a combination of other
directions, or may not exist. We take advantage of this fact, to decrease the
size of matrixD for these iterations, and reduce the computation load. After
more thanM iterations, the size dD does not change.

4. Preconditioning A common practice for optimization speedup is to use a
preconditioner matrix. One can use a preconditioned gradiégtxy) in-
stead ofg(xy ), where the matri;M approximates the inverse of the Hessian
at pointx. There is a trade off between the pre-conditioner calculation time,
and the optimization runtime saving.

5. Newton method in subspace optimization Basically SESOP is a first order
method, which can work using only first order derivatives. In manggas
the objective function is twice differentiable, but the Hessian cannot &g us
due to memory and other limitations. However, in the subspace optimization
(step 3 of the algorithm), we often use Newton method because of the small
size of this auxiliary problem.

2.3 Complexity analysis
This section is in large extent with help of [11].

Theorem 1 Let f(x) : R™ — R be a smooth convex function, with a Lipschitz
continuous gradieng(x) and Lipschitz constant, meaning that

lg(x1) — g(x2)|| < Lllx1 —x2| Vx1,x2 € R™ (8)

Let also each optimization subspace in SESOP be spanned by the gureadiant,
Nemirovski directiong2), (3), and possibly several other vectors, then the worst
case complexity is

LR?
Wa (9)

whereen 1 = f(xn+1)—f(x*) is the inaccuracy in objective function at iteration
numberN + 1, and R is the radius of the ball around the initial poist, where the
solution must exist:

ENt+1 <

|x* — x0]| < R. (10)

Proof of Theorem 1  In the following we start with three propositions and then
complete the proof.
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Proposition 1 Under the conditions of Theorem 1:

D]

f(Xny1) < f(xn) o, (11)

wheren is the iteration index.

Proof of proposition  The first and the second directional derivativeg (f) in
the gradient directiog(x) are

fe(x) = (g(x),8(x)) = llg(x)| (12)

e (¥) = 8(x) Hg(x) < L||g(x)|?, (13)

whereH is the Hessian matrix at. Proof of inequality (13) is given in Appendix
A

Consider the minimization of (x) along the descent directiong(x) at some
pointx. We denotep(a) = f(x — ag) andq(a) is a quadratic function which
possesses the following properties (see Figure 1):

q'(0) = ¢'(0) (14)
¢"(a) = Lllgx)[* > ¢" ().
It is easy to see that
(@) = p(a), (15)

therefore the guaranteed decreaséx) of the functionf (x) at one gradient step
with exact line search is higher than the decrease of the correspondjotanta
q(a) to its minimum point

/ 0 2
Afe = L0, (16)
as illustrated in Figure 1. Using (12), (13) we get
g ()|
> =
Af(x) > P (17)
Since the gradient is one of SESOP directions, we obtain W.1).
Proposition 2 Under the conditions of Theorem 1.:
en < (g(xn),x0 — x*). (18)
Proof of proposition  Denotee,, = f(x,) — f(x*). From (11) we get
2
€n — €ntl > Hg(xn)H . (19)

- 2L
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Figure 1:llustration of equation 16: The functiop(a) and its quadratic majoranta) :
Af(x) > LO°

2q//

Consider the functiorf along the directiorx — x*. We denotep(a) £ f(x —
a(x —x*)). Due to the convexity of , ¢ is also convex, meaning that the function
is above its linear model

$(0) —@(1) < ¢'(0) - 1. (20)
Substitutingf (x) = ¢(0), f(x*) = @(1) we get
fx) = f(x7) < (g(x),x —x7). (21)

From (21), the upper bound for the error at iteration n is
€n < <g(xn),xn - X*>' (22)

Due to the fact that the objective function has been minimized in the span of-
xo andx,, — x,,_1, it follows that

g(x,) L x, — Xo. (23)

From (22) and (23) we obtain (138

Proposition 3 Under the conditions of Theorem 1, with weighis

N N
Z Wn€n < \/2LR¢ Z wWn2(€n — €nt1)- (24)
n=0 n=0
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Figure 2: lllustration of equation (28), ifys = x; + x2 + x3, and every vector is
perpendicular to the sum of all previous vectors, thien|? = |y1l|? + ||x3]®> =
(lxall® + llx2[1?) + llxs 1.

Proof of proposition  Lets sum (18) for all steps, with weights, :

N N
Z Wnen < (Z wpg(Xn),Xp — X*). (25)
n=0 n=0

Using Cauchy-Schwartz inequality we get

N N
n=0 n=0

whereR is given by (10). Since the directioEﬁ’:0 wng(xy,) is one of the algo-
rithm subspace directions, then

n—1

g(xn) LY wig(x), (27)
k=0

and following Pythagoras rule (see Figure 2)

Hang (xn)||? = anHg (xn)|? < 2sz n—€nt1),  (28)

where the last inequality is due to (19). Substituting (28) to (26) we obtain 4

By the monotonicity ot,, it follows

N 2 _
ex < V2LR Vg untlen nt) (29)

N
En:O W,

For example, ifw,, = 1Vn, we getey < vV2LRey/N, which is the known com-
plexity of steepest descent [10].
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In order to complete the proof of Theorem 1 we show that one can do betiey
the optimal weights. Rearranging (24) we get

N
anen < VZLR\/U)%GO + (wf —wd)er + -+ (W — WA )eN — W ENT1
n=0

(30)
Denotes £ ZLO wn€n. IN order to evaluatey we would like to get

s < V2LR\/s — wien+1, (31)

for this purpose we need to choose weights such that

v — w3 forn =0 (32)
" w2 —w2_; forn > 0.

The obvious solution is

1 forn =20
wn = . (33)
§+ Z—I—wn_l f0rn>0,

where the last term is the larger root of (32). Notice that for ldrge; ~ g By
(31)

2
2 S
<§— —s.
WNEN+1 S S 2LR2 (34)
Our goal is the upper bound ef; so we are interested in the "worst” value of
R s
§= argISnaX {s — 2LRQ} (35)
The maximum is achieved i = LR?. Substituting to (34)
LR?> LR?
< T x—
EN+1 > 4w]2V N2 ) (36)

which proves Theorem B

3 Reduced computations for subspace minimization

Consider a function of the form

f(x) = p(Ax) + ¥ (x). 37)

Such functions are very common in many applications. The multiplicatfoxs
andATy are usually the most computationally expensive operations for calculating

10
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the functionf and its gradient. Our aim is to construct an optimization algorithm
which will avoid such operations whenever possible. It is worthwhile ersighnay

that we "change the rules” for comparison of computation load betweesreiiff
optimization algorithms. Instead of the common method of counting the number
of function and gradient calculations, we will count the number of matrotere
multiplications. Methods based on subspace optimization often iterate the multi-
dimensional minimizer incrementally in the form

M
Xir1 =Xk Y ouTy, (38)

i=1

where the coefficients;, the directions:; and the number of direction® are de-
termined according to the specific optimization scheme. Such a framework allows
us to save a large part of the matrix-vector multiplications originally needed for
calculation of the objective function value (37). The teAx;; can be broken

into

M
AXk+1 = AXk + A Z o;r;
=1
M
= Ax; + Y aiAr, (39)
=1

M
=vo+ § Vi,
i=1

wherev; = Ar;. For each new direction; we need to calculate and save one
vector (v;). Total memory requirement &/ directionsr;, M matrix-vector mul-
tiplications results/; and one accumulative vector tewy. Obviously, as the data
dimensionn increases, the complexity reduction from using (39) is more signifi-
cant. For line search operation along a single direction, or subspace mitiimiza
along several directions, there is no need to perform any matrix-vecthiphau
cation, since the function and its gradient with respect @re gained using the
pre-calculated set of vectors. For more details on gradient and Hessian calcula-
tion in subspace see Appendix C.

4 Computational Experiments

We compared the performance of several algorithms with several laaie-ap-
timization problems: Computational Tomography (CT) and Basis Pursuit (BP).
More experiments with Support Vector Machine (SVM) are presented]inj&
algorithms used were

11
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1. Sequential subspace optimization method, using various numbers of direc
tions;

2. Polak-Ribére nonlinear conjugate gradient method;
3. Truncated-Newton method,;

4. Nesterov method [13], [14].

In our experiments the line search methods were cubic interpolation for @G, a
back-tracking search with Armijo rule for all other methods, see for exafdjple
Newton method was used for subspace minimization in SESOP algorithm. We
bring results with and without the usage of diagonal pre-conditioning tev $he
effect of this practice. The parameters for comparison between algorahens
number of iterations, normalized to two matrix-vector multiplications per iteration,
as shown in Table 1, and computation tifne

Method Matrix-vector mult.
per iteration
Subspace 2
Conjugate Gradient 2
Truncated Newton 2 per inner CG iter.
+ 2 per outer Newton iter
Nesterov 3

Table 1:Number of heavy operations for different optimization nogt.

Notation: SESORis an abbreviation for SESOP usiigrevious directions. When

we do not include Nemirovski directions in our scheme, we use the notatis@BE.
CGtqst means CG with reduced computations for linesearch minimization, as ex-
plained in Section 3.

4.1 Computerized Tomography (CT)

Tomography (see.g. [6]) is a method of imaging the inner structure of an ob-
ject without physically cutting it. Reconstruction is performed from transmissio
or reflection data collected by illuminating the object from many different eirec
tions. Tomography became extremely useful mainly in medical applications as
X-ray imaging, emission imaging (PET, SPECT) and ultrasound. In this section
we solve the two dimensional straight-ray transmission tomography, in which the
object is illuminated by straight rays of high frequency radiation (usually én th
X-ray spectrum). Thus, a projection can be treated as line integrals alosgna

1Experiments were conducted in MATLAB, on In®@l Xenon™ CPU 2.8GHz core with 2Gb
memory, running Linux

12
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of parallel rays. Letr(u,v) be a function supported i1 € R?, representing the
property of the object to be reconstructed. A projection obtained by illumipatin
the object at anglé is given by

R(p,@):/ / x(u,v)d(p —ucosh —vsinb) dudv, (40)

whereé denotes the Dirac delta function. The functBirp, 6) is called the Radon
transform ofz. Recovery of the function: given its Radon transform is done by
solving the inverse problem of (40) and is termed reconstruction. Sinigeaon
finite number of projections can be acquired.(f is discrete), and a finite number
of bins at each projectiory(is discrete), we use the discrete version of the Radon
transform, and also discretize the plé&in v) into "pixels”, so the unknown image

is represented by a matriX = [z;;]. For simplicity of presentation we parse the
matrix column-wise to a long vecter. The model is

y = Ax + &, (41

wherey is the observation vectoAx is the Radon transform, implemented with a
projection matrixA, and¢ is Gaussian noise. The structure of the projection matrix
A is described in Appendix B. In emission or transmission tomaography the noise
is Poisson, so this is a simplified example only to demonstrate the performance of
the optimization.

Reconstruction of sparseimages Suppose that the original image is known to
be sparse (say, constructed from "wires”). This may be importantd@mele in
recovering blood vessels filled by a contrast material. A convenient wayftoce
sparsity of a solution, while preserving convexity of the objective funddn add
somel;-norm penalty term (seeg.[1]). This brings us to the following penalized
least square formulation

1
min | Ax — y[3 + plx, “2)

wherey is the observed noisy projection data ant a regularization parameter.
In order to use smooth optimization, we approximate thaorm by a smooth
function 17y (x) (for details see Appendix D).

o1
min o || Ax =y + p1" v (x). (43)

Some ways to determine the value for the regularization parameter suggested
in [1] and require a crude estimation of the noise variance.

13
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Figure 3:Sparse tomography: Left: Original sparse image, RightoRstucted image

Numerical Results In our experiment we created sparse images of ellipses of
sizes 128, 2562 pixels (see Figure 3), and uséd0 uniformly spaced angles of
projections, with Gaussian noise (sté88 x (image maximum range)). We com-
pared the time and number of iterations of different methods to solve (43) to an
accurate solution|V f|| < 10~%) with various optimization algorithms, and the
convergence to 'good result’ solution. 'Good result’ solution was ddfinben

the PSNR first reached 0.01dB from the final stable PSNR. FigureseésBmrthe
inaccuracy in objective function and the PSNR as a function of iteration aurtb
eration numbers and runtime are summarized in Table 2. In all cases, tipasebs
method outperforms the CG method B§% less iterations to full convergence
as well as to 'good results’. Runtime of subspace method is better than CG with
reduced linesearch computatiofs( ,s;). The number of matrix-vector multi-
plication decreases as the number of previous directions used by SESB&Ime
becomes higher, but overall runtime with iterations may increase. The l@sec

in this example is to use a single previous direction and to include Nemirovski di-
rections (SESOB. Pre-conditioning improved convergence almost by a factor of
2.

14
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Truncated Newton
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Figure 4:Sparse tomography: Inaccuracy in objective function [logle] with iterations
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Figure 5:Sparse tomography: PSNR with iterations
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No pre-conditioning Pre-conditioning
Image Convergence | Good results | Convergence | Good results
size Method iter | time | iter | time | iter | time | iter | time

1282 Nesterov | oo 00 159 | 325
SESOPO | 3335| 638 67 145 | 1734 | 334 190 | 384
SESOPZT 478 | 85.9 70 14 194 36 46 9.66
SESOP1 | 349 72 70 15,5 | 138 28.4 36 8.21
SESOP8 | 314 91 49 15.7 | 132 | 38.1 35 10.9
SESOP32| 270 171 43 21.6 | 105 60 30 11.4
SESOP128 219 334 42 19.7 87 53.8 30 11.4
CGrast | 467 | 150 | 70 | 17 | 294 | 118.6| 48 | 13
CG 465 | 1148 70 68.7 | 294 | 1245 48 66.4
TN 3821| 511 | 2637 | 372 | 2632 | 355 | 2053 | 280
2562 Nesterov | oo 00 225 | 210
SESOPO 00 00 89 98 2644 | 2225 | 245 216
SESOPZT 720 620 96 86.5 | 256 209 54 50.3
SESOP1 | 528 507 74 69 182 166 41 39.4
SESOP8 | 490 631 70 86 177 199 42 52
SESOP32| 400 860 59 118 142 286 35 55
SESOP128 322 | 2300 54 112 109 290 35 54.2
CGyast 700 936 97 102.4| 377 627 54 63.2
CG 705 | 8998 97 431 377 | 7983 54 358
TN 6876 | 4300 | 3065 | 1911 | 5050 | 3208 | 2729 | 1728

Table 2:Sparse tomography: Iterations and CPU runtime [sec] toergence [V f|| <
10~*), and to 'good results’ (PSNR reached 0.01dB from the fin& RS oo - no conver-
gence in 5000 iterations.

4.2 BasisPursuit (BP)

Basis Pursuit [1] is a way for decomposing a signal into a sparse sagigop of
dictionary elements, usinig-norm penalization. When the signal is sparse enough,
it is equivalent td, minimization, wherd(«) stands for the number of non-zero
elements ina [3]. BP in highly overcomplete dictionaries leads to large-scale
optimization problems. We bring an example of image de-noising with contourlets
dictionary [2], [7]. The noisy picturg is described as

y=Xx+n, (44)
wherex is the original picture (parsed column-wise), ant Gaussian noise with
variances?2. We assume = ®a where® is a "synthesis” operator (equivalent to

a matrix of basis functions in its columns). Assuming Laplace distribution of the
original picture’s coefficients:

p(a) ~ He

16
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the MAP estimation for the coefficients is achieved by maximizing the log-likelihood

o1
Hgnﬁll%—y\\%ZAi!ai!- (46)

7

In order to use smooth optimization, we approximate the absolute value by a
smooth function (see Appendix D). The free paramefgrs- ? can be esti-
mated, for example, by averaging coefficients of the noisy pictu?e in thewdets
domain neighborhood [7].

Numerical Results The experiment was conducted on the popular image 'pep-
pers’. For picture size a2562 pixels, the number of coefficients &,296. We
compared the time and number of iterations of different methods to solve (46) to
an accurate solution|{ f|| < 10~%) with various optimization algorithms, and
the convergence to 'good results’. 'Good results’ were defined wherPSNR
first reached).01dB from the final stable PSNR. Inaccuracy in objective function
is shown in Figure 6, Figure 7 presents the PSNR measure, and image aesults
shown in Figure 8. Iteration numbers and runtime are summarized in Table-3. Pr
conditioning improved convergence significantly, by factorsiet — 103. The
number of previous directions in the subspace method had very little impacat on th
results when pre-conditioning was used, otherwise 8 or 32 previougidime were
usually the best choice. The effect of omitting Nemirovski directions (SHSQ

is not very dramatic. The most important result in this example is that the stéspa
method converged faster than CG with reduced linesearch computafiGhs ),
although for identical number of iterations for 'Good results’¢h@ s, was faster
(pictures of size€562, 5122).

4.3 Other Numerical Experimentswith SESOP

In [8] we bring more numerical results with SESOP in the area of pattergnéco
tion using Support Vector Machines. Just to summarize briefly: we hdwedssix
problems with10? — 106 variables. SESOP was consistently faster than Nesterov
method, CG and TN, on average outperforming TN ten times and CG about two
times.

17
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Figure 6:Basis pursuit: Inaccuracy in objective function [log s¢aléh iterations
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Figure 7:Basis pursuit: PSNR [dB] with iterations
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Reconstructed &

Nl A

Figure 8:Basis pursuit de-noising example for picture 'peppersp &t - original image,
Top right - noisy image, Bottom - reconstructed image (PShiiRdase 8dB)

19



Sequential Subspace Optimization

Narkiss & Zibulevsky

No pre-conditioning

Pre-conditioning

Image Convergence Good results Convergence | Good results
size Method iter time iter time iter time iter | time
1287 | SESOPZT 00 00 1275| 218.21 | 25 5.39 5 1.23
SESOP1 00 00 957 | 173.17 | 25 5.42 5 1.09
SESOP2 ) 00 1135 | 211.48 | 25 5.54 5 1.06
SESOP8 00 00 842 | 208.43 | 25 6.47 5 1.05
SESOP32| 4860 | 2363.61| 410 | 228.02 | 25 6.68 5 1.08
CGyast ) 00 1186 | 732.41 | 55 8.22 7 1.28

CG 00 00 1186 | 189.51 | 56 11.42 7 4.67

TN 12655| 922.02 4 461.4 | 56 7.88 12 5.52

2562 | SESOPT o0 %) o0 00 83 66.77 8 8.05
SESOP1 00 00 00 00 83 69.62 8 8.07
SESOP2 00 00 3900 | 3200.07| 83 74.36 8 8.44
SESOPS8 00 00 3400 | 3532.76| 80 92.67 8 8.63
SESOP32| oo 00 2000 | 4704.36| 79 154.17 8 8.72
CGyast o0 %) o0 00 335 211 8 7.18

CG 00 00 00 0 339 | 211.73| 8 25.97

TN 00 00 9581 | 3272.76| 306 | 126.99 | 3 3.68

5122 | SESOPT 00 00 00 00 75 | 34922 | 8 48.2
SESOP1 o0 %) o0 00 74 | 366.75| 8 52.06
SESOP2 00 00 00 00 75 | 38223 | 8 51.7
SESOPS8 00 00 00 00 74 | 45054 | 8 53.01

SS32 ) 00 ) 00 74 | 68162 | 8 50.94

CGrast o0 %) o0 00 268 | 984.15| 10 | 45.13

CG o0 %) 00 00 277 | 1499.22| 10 | 2454

TN 00 00 00 00 156 | 432.18 | 9 | 184.15

Table 3:Basis Pursuit de-noising example: Ilterations and CPU ma{sec] to conver-
gence, and to 'good resultslo - no convergence in 5000 iterations.
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5 Conclusions

We have demonstrated that SESOP is an efficient tool for large-scalastreined
optimization. The main advantages of SESOP are optimal worst-case complexity
for smooth convex unconstrained problems, low memory requirements and low
computation load per iteration. Unconstrained optimization is a building block
for many constrained optimization techniques, which makes SESOP a promising
candidate for embedding into many existing solvers.
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Appendix

A Proof of (13)

Consider the first order Taylor expansion\df f (x) aroundxg
Vaf (%0 + - v) = Vi f(x0) + V2 f(x0) tv + o(tv). (47)

After a simple manipulation and division by t we get

Vif(xo+1t-v) — Vuf(xo)  VZf(x0) tv+o(tv)

= 48
; ; (48)
The value of the right hand side, wher- 0, is
2 1
PI% Vi f(xo) ;fv—&-o(tv) V2 f(xo)v. (49)
Explanation:
o(tv )' || lim [o(tv) ||
i 20 [ v
_ v lim [o(tv) ]| (50)
00 It vl
= [|v]|0 = 0.
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Using (8), the norm of (48) is bounded by:

Hvxf(xo +1t-v) = Vxf(xo)
t

‘ < Ijjvl. (51)

Since this equality holds for everywe can take — 0
IVEf(xo)vIl < LIVl ¥xo € R™. (52)
From Cauchy-Schwartz inequality
IV VR f o)Vl < IV - V3 (xo0)v - (53)
Substituting (53) into (52), witk = V«f(x) proves (13). O

B Radon Projection Matrix

DenoteRy{x} the Radon transform along directidnwherex € R is the im-
ageX parsed into a long vector, column-wise. Using the linear property of the
transform we definé 4 the Radon projection matrix in directihin the following

way

N
RQ{X} = R@{Z eixi}
i=1

N
= R {el- }xz
; ’ (54)

| | |

_ (ng{el} Rofes} - Re{ew})x
\ | |

= Ayx,

wheree; is a vector of zeros except for 1 in itsh element. The Radon projection
matrix using a set of anglés, i = 0... M is defined

Ay,
A= . (55)
A9M

C Gradient and Hessian calculation in subspace

Consider an objective function of the form (37). For simplicity of the analye
denote
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e K, - Number of mathematical operations per vector element for calculating
p(u) or Vup(u).

e K, - Number of mathematical operations per vector element for calculating

¥(u) or Vyi(u).

Each outer iteration of SESOP requires a single evaluation of the objecaidiegt

with respect tax (m K, + nm + nKy, operations), and an update of the directions
matrix: one matrix-gradient multiplication, one weighted gradient summation to
Nemirovski’s direction, and up to two vector normalization operations (addition
nm + 3n operations).

At the inner iteration of the subspace optimization (6), the basic calculatiens ar
usually function and gradient evaluation with respectiianeither of which re-
guires a matrix-vector multiplication, as explained in Section 3. Function calcula-
tion requiresn(M + 1) + mK, +n(M + 1) + nkK,, operations, and the gradient
with respect tax requiresnM + mK, + nk, additional operations.

When Newton method is used for the subspace optimization, calculation of the
Hessian with respect ta will be required as well. Assuming the number of op-
erations for second order derivative calculation is similar to the numbepe&f o
ations for function calculation, the Hessian with respeci taequires additional
mK, +mM? + nKy + nM? operations.

D Absolute value smoothing techniques

In our experiments we considered the following smooth functions to appréxima
absolute value

P1(s) = V82 + €2

Un(s) = e|s| —log (e|s| + 1)

€ (56)
1
va(s) _6< T _1>’

wheree is a positive smoothing parameter. The approximations become accu-

rate whene — 0. Functionvys was found to be substantially faster than the
other two functions in our Matlab implementation. We use the notatic) =

(¥(s1) ... ®(sw))"-

2When the matriXA is significantly sparse, the number of operations for matrix-vector multipli-
cations is reduced accordingly.

t

€
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Sequential update of the smoothing parameter  Whenever a very small value

of the smoothing parameter is required for good performance of the pnciulti-

tion, the direct unconstrained optimization may become difficult. In this situation
one can use a sequential nested optimization: Starting with a moderate vajue of
optimize the objective function to a reasonable accuracy, then redigesome
factor and perform the optimization again, starting from the currently availab
solution, and so on... Another alternative is to use the smoothing method of multi-
pliers [17], [18], which combines the ideas of Lagrange multipliers with thasde

of smoothing of non-smooth functions, and provides a very accuratéasolu
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