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Abstract

We present the Sequential Subspace Optimization (SESOP) method for large-
scale smooth unconstrained problems. At each iteration we search for a min-
imum of the objective function over a subspace spanned by thecurrent gra-
dient and by directions of few previous steps. We also include into this sub-
space the direction from the starting point to the current point, and a weighted
sum of all previous gradients, following [Nemirovski-1982]. This safeguard
measure provides an optimal worst case convergence rate of order1/N2 (for
convex problems), whereN is the iteration count. In the case of quadratic
objective, the method is equivalent to the conjugate gradients method.

We identify an important class of problems, where subspace optimiza-
tion can be implemented extremely fast. This happens when the objective
function is a combination of expensive linear mappings withcomputation-
ally cheap non-linear functions. This is a typical situation in many appli-
cations, like tomography, signal and image denoising with Basis Pursuit,
pattern recognition with Support Vector Machine, and many others. We
demonstrate highly competitive numerical results using examples from the
mentioned areas.

1 Introduction

We consider an unconstrained minimization of a smooth function

min
x∈Rn

f(x). (1)

When the number of variables is very large, sayn = 104−107 and more, there is a
need for optimization algorithms, for which storage requirement and computational
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cost per iteration grow not more than linearly inn. An early algorithm of this type
is the conjugate gradient (CG) method [5], [4], [15]. It is known that CGworst case
convergence rate for quadratic problems isO(k−2) (in terms of objective function),
wherek is the iteration count. This rate of convergence is independent of the
problem size and is optimal,i.e. it coincides with the complexity of convex smooth
unconstrained optimization (seee.g. [10]). The extensions of CG to nonlinear
functions by Fletcher-Reeves and Polak-Ribière (seee.g.[15]) are no longer worst-
case optimal.

1.1 Nemirovski-Nesterov methods

The optimality of the quadratic CG method is associated with the following prop-
erties:

1. The current gradient is orthogonal to the directions of all previous steps.

2. The current gradient is orthogonal to all previous gradients.

3. The objective function improvement at iterationk is at leastO(‖g(xk)‖2),
whereg(xk) = ∇xf(xk) is the gradient of the objective function at iterate
xk.

Nemirovski [9] suggested to relax these requirements, in order to build an optimal
method for convex smooth unconstrained optimization:

1. The current gradient should be orthogonal to the sum of all previous steps,
i.e. orthogonal tod1

k = xk − x0.

2. The current gradient should be orthogonal to a weighted sum of all previous
gradientsd2

k =
∑k−1

i=0 wig(xi) with pre-specified weightswi.

3. The optimization at the current iteration should be performed over a sub-
space, which includes the current gradientg(xk).

These three requirements can be satisfied by a method which sequentially mini-
mizes the objective function over subspaces spanned by the three mentioned vec-
tors:d1

k, d
2
k, andg(xk). Note that this method is optimal with respect to the num-

ber of subspace minimizations, however the overall number of function/gradient
evaluations is suboptimal by a factor oflog k [9]. Nemirovski also suggested meth-
ods with 2-d and even 1-d subspace optimization instead of 3-d one [12]. Further
progress in this direction was achieved by Nesterov [13], [14], [10],who proposed
a worst-case optimal algorithm with no line search, which achieves the optimal
complexity in terms of function/gradient evaluations.
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In practical situations, however (in contrast to the worst case), the mentioned meth-
ods often behave even poorer than conventional algorithms like non-linear CG or
Truncated Newton (TN) (seee.g. [4] for a description of TN). In the current work
we present a method, which is equivalent to CG in the quadratic case, and often
outperforms CG and TN in non-quadratic case, while preserving worst-case opti-
mality.

1.2 Extended subspace optimization

Our crucial observation is that for many important problems subspace optimization
can be implemented extremely fast. This happens, for example, when the objec-
tive function is a combination of expensive linear mappings with computation-
ally cheap non-linear functions. It is a typical situation in many applications, like
tomography, signal and image processing with Basis Pursuit, pattern recognition
with Support Vector Machine, and many others. Another example is constrained
optimization, where barrier or penalty aggregate may have this property in linear
programming, semidefinite programming,etc. In such situations the overall cost
of subspace optimization is about one function and gradient evaluation!

Motivated by this observation we tend to increase the dimensionality of the search
subspaces and use quite accurate subspace optimization (contrary to the trends of
Nemirovski-Nesterov). The first additional vector we include is the last step

pk = xk − xk−1.

There is a deep reason to do so: Iteration of quadratic CG can be definedas an
optimization in the subspace of the current gradientg(xk) and the last steppk
(seee.g. [4]). Preserving this property is a natural way to extend CG to the non-
quadratic case. Note that Fletcher-Reeves and Polak-Ribière nonlinear CG method
lack this property, which could be very helpful: every iteration is guaranteed to be
at least as good as steepest descent. On the other hand, by theexpanding manifold
property, quadratic CG achieves minimum over the subspace of the current gradient
and all previous steps and gradients. We can approximate this property including
several previous steps and gradients into the optimization subspace.

Let us summarize: Using only 2-d subspace optimizations in directionsg(xk)
andpk, we get a method, which coincides with CG, when the problem becomes
quadratic. This property is favorable in the proximity of the solution, where the
problem has a good quadratic approximation. Globally (in our experience)this
method behaves better and is more stable then Polak-Ribière CG. Using two ad-
ditional Nemirovski directions:d1

k = xk − x0 andd2
k =

∑k−1
i=0 wig(xi) with

appropriate weightswi, we guarantee the worst-case optimality of the method. In-
cluding more previous steps and gradients into the optimization subspace helpsto
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further reduce the number of iterations, while moderately increasing the iteration
cost.

We also introduce pre-conditioning into this scheme, using pre-multiplication of
gradients by an approximate inverse Hessian (in our experiments we have used
diagonal approximation). This measure quite often significantly acceleratescon-
vergence.

The paper is organized as follows. In Section 2 we describe the sequential subspace
optimization algorithm and discuss its properties. In Section 3 we present a way to
conduct an efficient minimization of functions in subspace. Section 4 is devoted to
computational experiments. Finally, conclusions are summarized in Section 5.

2 Sequential Subspace Optimization (SESOP) algorithm

In this section we describe the SESOP algorithm, which is a general method for
smooth unconstrained optimization. We define the algorithm with its various modes,
discuss its properties and prove its complexity.

2.1 Construction of subspace structure

In order to define the subspace structure, denote the following sets of directions:

1. Current gradient: g(xk) - the gradient at thek’th point xk.

2. Nemirovski directions:

d
(1)
k = xk − x0

d
(2)
k =

k
∑

i=0

wig(xi),
(2)

wherewk is defined by

wk =

{

1 for k = 0

1
2 +

√

1
4 + w2

k−1 for k > 0.
(3)

3. Previous directions:

pk−i = xk−i − xk−i−1, i = 0, . . . , s1. (4)

4. Previous gradients:
gk−i, i = 1, . . . , s2. (5)
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The mandatory direction 1 and any subset of directions 2 - 4 can be used tode-
fine the subspace structure. We will discuss possible considerations forseveral
constellations.

2.2 Algorithm summary

Let D be a matrix of the chosenM (column) directions described in Subsection
2.1, andα a column vector ofM coefficients. On every iteration we find a new
directionDα in the subspace spanned by the columns ofD. The algorithm is
summarized as follows:

1. Initializexk = x0, D = D0 = g(x0).

2. Normalize the columns ofD.

3. Find
α∗ = argmin

α
f
(

xk + Dα
)

. (6)

4. Update current iterate:
xk+1 = xk + Dα∗. (7)

5. Update matrixD according to the chosen set of subspace directions in Sub-
section 2.1.

6. Repeat steps 2 - 5 until convergence.

Implementation notes:

1. The choice of the subspace dimensionM , is a trade off between the increase
in computational cost per iteration and the possible decrease in number of
iterations. Using just 2-d subspace optimizations in directions of the cur-
rent gradientg(xk) and of the previous steppk, we get a method, which
coincides with CG, when the problem becomes quadratic. This property is
favorable in the proximity of the solution, where the problem has a good
quadratic approximation. Also globally (in our experience) this method be-
haves better and is more stable then Polak-Ribière CG.

2. Including two additional Nemirovski directions (2), we guarantee the worst-
case optimality of the method (when solving concrete non-worst case classes
of problems, these two directions may not bring significant improvement,
therefore can be omitted after careful testing). Including more previous steps
and gradients into the optimization subspace helps to further reduce the num-
ber of iterations, while moderately increasing the iteration cost. The guiding
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principle is that the dimensionM of the search subspace should not be higher
than a few tens or maybe hundreds of directions.

3. For the firstM−1 iterations, some directions may be a combination of other
directions, or may not exist. We take advantage of this fact, to decrease the
size of matrixD for these iterations, and reduce the computation load. After
more thanM iterations, the size ofD does not change.

4. Preconditioning A common practice for optimization speedup is to use a
preconditioner matrix. One can use a preconditioned gradientMg(xk) in-
stead ofg(xk), where the matrixM approximates the inverse of the Hessian
at pointxk. There is a trade off between the pre-conditioner calculation time,
and the optimization runtime saving.

5. Newton method in subspace optimization Basically SESOP is a first order
method, which can work using only first order derivatives. In many cases
the objective function is twice differentiable, but the Hessian cannot be used
due to memory and other limitations. However, in the subspace optimization
(step 3 of the algorithm), we often use Newton method because of the small
size of this auxiliary problem.

2.3 Complexity analysis

This section is in large extent with help of [11].

Theorem 1 Let f(x) : Rn → R be a smooth convex function, with a Lipschitz
continuous gradientg(x) and Lipschitz constantL, meaning that

‖g(x1) − g(x2)‖ ≤ L‖x1 − x2‖ ∀x1,x2 ∈ Rn. (8)

Let also each optimization subspace in SESOP be spanned by the currentgradient,
Nemirovski directions(2), (3), and possibly several other vectors, then the worst
case complexity is

ǫN+1 ≤ LR2

N2
, (9)

whereǫN+1 = f(xN+1)−f(x∗) is the inaccuracy in objective function at iteration
numberN +1, andR is the radius of the ball around the initial pointx0 where the
solution must exist:

‖x∗ − x0‖ ≤ R. (10)

Proof of Theorem 1 In the following we start with three propositions and then
complete the proof.
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Proposition 1 Under the conditions of Theorem 1:

f(xn+1) ≤ f(xn) −
‖g(xn)‖2

2L
, (11)

wheren is the iteration index.

Proof of proposition The first and the second directional derivatives off(x) in
the gradient directiong(x) are

f ′
g
(x) = 〈g(x),g(x)〉 = ‖g(x)‖2 (12)

f ′′
gg

(x) = g(x)THg(x) ≤ L‖g(x)‖2, (13)

whereH is the Hessian matrix atx. Proof of inequality (13) is given in Appendix
A.
Consider the minimization off(x) along the descent direction−g(x) at some
point x. We denoteϕ(α) , f(x − αg) andq(α) is a quadratic function which
possesses the following properties (see Figure 1):

q(0) = ϕ(0)

q′(0) = ϕ′(0)

q′′(α) = L‖g(x)‖2 ≥ ϕ′′(α).

(14)

It is easy to see that
q(α) ≥ ϕ(α), (15)

therefore the guaranteed decrease∆f(x) of the functionf(x) at one gradient step
with exact line search is higher than the decrease of the corresponding majorant
q(α) to its minimum point

∆f(x) ≥ q′(0)2

2q′′
, (16)

as illustrated in Figure 1. Using (12), (13) we get

∆f(x) ≥ ‖g(x)‖2

2L
. (17)

Since the gradient is one of SESOP directions, we obtain (11).

Proposition 2 Under the conditions of Theorem 1:

ǫn ≤ 〈g(xn),x0 − x∗〉. (18)

Proof of proposition Denoteǫn , f(xn) − f(x∗). From (11) we get

ǫn − ǫn+1 ≥ ‖g(xn)‖2

2L
. (19)
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α

q(α)

ϕ(α)

q′(0)2

2q′′

∆f

Figure 1:Illustration of equation 16: The functionϕ(α) and its quadratic majorantq(α) :

∆f(x) ≥ q′(0)2

2q′′
.

Consider the functionf along the directionx − x∗. We denoteϕ̃(α) , f(x −
α(x−x∗)). Due to the convexity off , ϕ̃ is also convex, meaning that the function
is above its linear model

ϕ̃(0) − ϕ̃(1) ≤ ϕ̃′(0) · 1. (20)

Substitutingf(x) = ϕ̃(0), f(x∗) = ϕ̃(1) we get

f(x) − f(x∗) ≤ 〈g(x),x − x∗〉. (21)

From (21), the upper bound for the error at iteration n is

ǫn ≤ 〈g(xn),xn − x∗〉. (22)

Due to the fact that the objective function has been minimized in the span ofxn−1−
x0 andxn − xn−1, it follows that

g(xn) ⊥ xn − x0. (23)

From (22) and (23) we obtain (18).

Proposition 3 Under the conditions of Theorem 1, with weightswn:

N
∑

n=0

wnǫn ≤
√

2LR

√

√

√

√

N
∑

n=0

wn2(ǫn − ǫn+1). (24)
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Figure 2: Illustration of equation (28), ify2 = x1 + x2 + x3, and every vector is
perpendicular to the sum of all previous vectors, then‖y2‖2 = ‖y1‖2 + ‖x3‖2 =
(‖x1‖2 + ‖x2‖2) + ‖x3‖2.

Proof of proposition Lets sum (18) for all steps, with weightswn:

N
∑

n=0

wnǫn ≤ 〈
N

∑

n=0

wng(xn),x0 − x∗〉. (25)

Using Cauchy-Schwartz inequality we get

N
∑

n=0

wnǫn ≤ ‖
N

∑

n=0

wng(xn)‖ ·R, (26)

whereR is given by (10). Since the direction
∑N

n=0wng(xn) is one of the algo-
rithm subspace directions, then

g(xn) ⊥
n−1
∑

k=0

wkg(xk), (27)

and following Pythagoras rule (see Figure 2)

‖
N

∑

n=0

wng(xn)‖2 =
N

∑

n=0

w2
n‖g(xn)‖2 ≤ 2L

N
∑

n=0

w2
n(ǫn − ǫn+1), (28)

where the last inequality is due to (19). Substituting (28) to (26) we obtain (24).

By the monotonicity ofǫn it follows

ǫN ≤
√

2LR

√

∑N
n=0wn

2(ǫn − ǫn+1)
∑N

n=0wn
. (29)

For example, ifwn = 1∀n, we getǫN ≤
√

2LRǫ0/N , which is the known com-
plexity of steepest descent [10].
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In order to complete the proof of Theorem 1 we show that one can do betterusing
the optimal weights. Rearranging (24) we get

N
∑

n=0

wnǫn ≤
√

2LR
√

w2
0ǫ0 + (w2

1 − w2
0)ǫ1 + · · · + (w2

N − w2
N−1)ǫN − w2

N ǫN+1.

(30)
Denotes ,

∑N
n=0wnǫn. In order to evaluateǫN we would like to get

s ≤
√

2LR
√

s− w2
N ǫN+1, (31)

for this purpose we need to choose weights such that

wn =

{

w2
0 for n = 0

w2
n − w2

n−1 for n > 0.
(32)

The obvious solution is

wn =

{

1 for n = 0

1
2 +

√

1
4 + w2

n−1 for n > 0,
(33)

where the last term is the larger root of (32). Notice that for largek, wk ≈ k
2 . By

(31)

w2
N ǫN+1 ≤ s− s2

2LR2
. (34)

Our goal is the upper bound ofǫN so we are interested in the ”worst” value ofs

ŝ = argmax
s

{

s− s2

2LR2

}

. (35)

The maximum is achieved ifs = LR2. Substituting to (34)

ǫN+1 ≤ LR2

4w2
N

≈ LR2

N2
, (36)

which proves Theorem 1.

3 Reduced computations for subspace minimization

Consider a function of the form

f(x) = ϕ(Ax) + ψ(x). (37)

Such functions are very common in many applications. The multiplicationsAx

andATy are usually the most computationally expensive operations for calculating
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the functionf and its gradient. Our aim is to construct an optimization algorithm
which will avoid such operations whenever possible. It is worthwhile emphasizing
that we ”change the rules” for comparison of computation load between different
optimization algorithms. Instead of the common method of counting the number
of function and gradient calculations, we will count the number of matrix-vector
multiplications. Methods based on subspace optimization often iterate the multi-
dimensional minimizer incrementally in the form

xk+1 = xk +
M
∑

i=1

αiri, (38)

where the coefficientsαi, the directionsri and the number of directionsM are de-
termined according to the specific optimization scheme. Such a framework allows
us to save a large part of the matrix-vector multiplications originally needed for
calculation of the objective function value (37). The termAxk+1 can be broken
into

Axk+1 = Axk + A

M
∑

i=1

αiri

= Axk +
M
∑

i=1

αiAri

= v0 +

M
∑

i=1

viαi,

(39)

wherevi = Ari. For each new directionri we need to calculate and save one
vector (vi). Total memory requirement isM directionsri, M matrix-vector mul-
tiplications resultsvi and one accumulative vector termv0. Obviously, as the data
dimensionn increases, the complexity reduction from using (39) is more signifi-
cant. For line search operation along a single direction, or subspace minimization
along several directions, there is no need to perform any matrix-vector multipli-
cation, since the function and its gradient with respect toα are gained using the
pre-calculated set of vectorsvi. For more details on gradient and Hessian calcula-
tion in subspace see Appendix C.

4 Computational Experiments

We compared the performance of several algorithms with several large-scale op-
timization problems: Computational Tomography (CT) and Basis Pursuit (BP).
More experiments with Support Vector Machine (SVM) are presented in [8]. The
algorithms used were
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1. Sequential subspace optimization method, using various numbers of direc-
tions;

2. Polak-Ribìere nonlinear conjugate gradient method;

3. Truncated-Newton method;

4. Nesterov method [13], [14].

In our experiments the line search methods were cubic interpolation for CG, and
back-tracking search with Armijo rule for all other methods, see for example[4].
Newton method was used for subspace minimization in SESOP algorithm. We
bring results with and without the usage of diagonal pre-conditioning to show the
effect of this practice. The parameters for comparison between algorithmsare
number of iterations, normalized to two matrix-vector multiplications per iteration,
as shown in Table 1, and computation time1.

Method Matrix-vector mult.
per iteration

Subspace 2
Conjugate Gradient 2
Truncated Newton 2 per inner CG iter.

+ 2 per outer Newton iter.
Nesterov 3

Table 1:Number of heavy operations for different optimization methods.

Notation: SESOPi is an abbreviation for SESOP usingi previous directions. When
we do not include Nemirovski directions in our scheme, we use the notation SESOPi−.
CGfast means CG with reduced computations for linesearch minimization, as ex-
plained in Section 3.

4.1 Computerized Tomography (CT)

Tomography (seee.g. [6]) is a method of imaging the inner structure of an ob-
ject without physically cutting it. Reconstruction is performed from transmission
or reflection data collected by illuminating the object from many different direc-
tions. Tomography became extremely useful mainly in medical applications as
x-ray imaging, emission imaging (PET, SPECT) and ultrasound. In this section
we solve the two dimensional straight-ray transmission tomography, in which the
object is illuminated by straight rays of high frequency radiation (usually in the
x-ray spectrum). Thus, a projection can be treated as line integrals along abeam

1Experiments were conducted in MATLAB, on IntelR© XenonTM CPU 2.8GHz core with 2Gb
memory, running Linux
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of parallel rays. Letx(u, v) be a function supported inΩ ∈ R2, representing the
property of the object to be reconstructed. A projection obtained by illuminating
the object at angleθ is given by

R(ρ, θ) =

∫ ∞

−∞

∫ ∞

−∞
x(u, v) δ(ρ− u cos θ − v sin θ) du dv, (40)

whereδ denotes the Dirac delta function. The functionR(ρ, θ) is called the Radon
transform ofx. Recovery of the functionx given its Radon transform is done by
solving the inverse problem of (40) and is termed reconstruction. Since only a
finite number of projections can be acquired (i.e. θ is discrete), and a finite number
of bins at each projection (y is discrete), we use the discrete version of the Radon
transform, and also discretize the plain(u, v) into ”pixels”, so the unknown image
is represented by a matrixX = [xij ]. For simplicity of presentation we parse the
matrix column-wise to a long vectorx. The model is

y = Ax + ξ, (41)

wherey is the observation vector,Ax is the Radon transform, implemented with a
projection matrixA, andξ is Gaussian noise. The structure of the projection matrix
A is described in Appendix B. In emission or transmission tomography the noise
is Poisson, so this is a simplified example only to demonstrate the performance of
the optimization.

Reconstruction of sparse images Suppose that the original image is known to
be sparse (say, constructed from ”wires”). This may be important for example in
recovering blood vessels filled by a contrast material. A convenient way toenforce
sparsity of a solution, while preserving convexity of the objective functionis to add
somel1-norm penalty term (seee.g.[1]). This brings us to the following penalized
least square formulation

min
x

1

2
‖Ax − y‖2

2 + µ‖x‖1, (42)

wherey is the observed noisy projection data andµ is a regularization parameter.
In order to use smooth optimization, we approximate thel1-norm by a smooth
function1Tψ(x) (for details see Appendix D).

min
x

1

2
‖Ax − y‖2

2 + µ1Tψ(x). (43)

Some ways to determine the value for the regularization parameterµ are suggested
in [1] and require a crude estimation of the noise variance.
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Figure 3:Sparse tomography: Left: Original sparse image, Right: Reconstructed image

Numerical Results In our experiment we created sparse images of ellipses of
sizes 1282, 2562 pixels (see Figure 3), and used100 uniformly spaced angles of
projections, with Gaussian noise (std =0.08× (image maximum range)). We com-
pared the time and number of iterations of different methods to solve (43) to an
accurate solution (‖∇f‖ ≤ 10−4) with various optimization algorithms, and the
convergence to ’good result’ solution. ’Good result’ solution was defined when
the PSNR first reached 0.01dB from the final stable PSNR. Figures 4,5 present the
inaccuracy in objective function and the PSNR as a function of iteration number. It-
eration numbers and runtime are summarized in Table 2. In all cases, the subspace
method outperforms the CG method by25% less iterations to full convergence
as well as to ’good results’. Runtime of subspace method is better than CG with
reduced linesearch computations (CGfast). The number of matrix-vector multi-
plication decreases as the number of previous directions used by SESOP method
becomes higher, but overall runtime with iterations may increase. The best choice
in this example is to use a single previous direction and to include Nemirovski di-
rections (SESOP1). Pre-conditioning improved convergence almost by a factor of
2.
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Figure 4:Sparse tomography: Inaccuracy in objective function [log scale] with iterations
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Figure 5:Sparse tomography: PSNR with iterations
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No pre-conditioning Pre-conditioning
Image Convergence Good results Convergence Good results

size Method iter time iter time iter time iter time
1282 Nesterov ∞ ∞ 159 32.5

SESOP0 3335 638 67 14.5 1734 334 190 38.4
SESOP1− 478 85.9 70 14 194 36 46 9.66
SESOP1 349 72 70 15.5 138 28.4 36 8.21
SESOP8 314 91 49 15.7 132 38.1 35 10.9
SESOP32 270 171 43 21.6 105 60 30 11.4
SESOP128 219 334 42 19.7 87 53.8 30 11.4

CGfast 467 150 70 17 294 118.6 48 13
CG 465 1148 70 68.7 294 1245 48 66.4
TN 3821 511 2637 372 2632 355 2053 280

2562 Nesterov ∞ ∞ 225 210
SESOP0 ∞ ∞ 89 98 2644 2225 245 216

SESOP1− 720 620 96 86.5 256 209 54 50.3
SESOP1 528 507 74 69 182 166 41 39.4
SESOP8 490 631 70 86 177 199 42 52
SESOP32 400 860 59 118 142 286 35 55
SESOP128 322 2300 54 112 109 290 35 54.2

CGfast 700 936 97 102.4 377 627 54 63.2
CG 705 8998 97 431 377 7983 54 358
TN 6876 4300 3065 1911 5050 3208 2729 1728

Table 2:Sparse tomography: Iterations and CPU runtime [sec] to convergence (‖∇f‖ ≤
10−4), and to ’good results’ (PSNR reached 0.01dB from the final PSNR).∞ - no conver-
gence in 5000 iterations.

4.2 Basis Pursuit (BP)

Basis Pursuit [1] is a way for decomposing a signal into a sparse superposition of
dictionary elements, usingl1-norm penalization. When the signal is sparse enough,
it is equivalent tol0 minimization, wherel0(α) stands for the number of non-zero
elements inα [3]. BP in highly overcomplete dictionaries leads to large-scale
optimization problems. We bring an example of image de-noising with contourlets
dictionary [2], [7]. The noisy picturey is described as

y = x + n, (44)

wherex is the original picture (parsed column-wise), andn is Gaussian noise with
varianceσ2

n. We assumex = Φα whereΦ is a ”synthesis” operator (equivalent to
a matrix of basis functions in its columns). Assuming Laplace distribution of the
original picture’s coefficients:

p(α) ∼
∏

i

e
−

√
2

σi
|αi|, (45)
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the MAP estimation for the coefficients is achieved by maximizing the log-likelihood

min
α

1

2σ2
n

‖Φα− y‖2
2 +

∑

i

λi|αi|. (46)

In order to use smooth optimization, we approximate the absolute value by a
smooth function (see Appendix D). The free parametersλi =

√
2
σ̂i

can be esti-
mated, for example, by averaging coefficients of the noisy picture in the contourlets
domain neighborhood [7].

Numerical Results The experiment was conducted on the popular image ’pep-
pers’. For picture size of2562 pixels, the number of coefficients is87, 296. We
compared the time and number of iterations of different methods to solve (46) to
an accurate solution (‖∇f‖ ≤ 10−4) with various optimization algorithms, and
the convergence to ’good results’. ’Good results’ were defined whenthe PSNR
first reached0.01dB from the final stable PSNR. Inaccuracy in objective function
is shown in Figure 6, Figure 7 presents the PSNR measure, and image resultsare
shown in Figure 8. Iteration numbers and runtime are summarized in Table 3. Pre-
conditioning improved convergence significantly, by factors of102 − 103. The
number of previous directions in the subspace method had very little impact on the
results when pre-conditioning was used, otherwise 8 or 32 previous directions were
usually the best choice. The effect of omitting Nemirovski directions (SESOP1−)
is not very dramatic. The most important result in this example is that the subspace
method converged faster than CG with reduced linesearch computations (CGfast),
although for identical number of iterations for ’Good results’ theCGfast was faster
(pictures of sizes2562, 5122).

4.3 Other Numerical Experiments with SESOP

In [8] we bring more numerical results with SESOP in the area of pattern recogni-
tion using Support Vector Machines. Just to summarize briefly: we have solved six
problems with103 − 106 variables. SESOP was consistently faster than Nesterov
method, CG and TN, on average outperforming TN ten times and CG about two
times.

17



Sequential Subspace Optimization Narkiss & Zibulevsky

5 10 15 20 25 30 35
10

−8

10
−6

10
−4

10
−2

10
0

10
2

f−
f*

Iteration

Truncated Newton

SESOP 1

CG 

Figure 6:Basis pursuit: Inaccuracy in objective function [log scale] with iterations
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Original Noisy

Reconstructed

Figure 8:Basis pursuit de-noising example for picture ’peppers’: Top left - original image,
Top right - noisy image, Bottom - reconstructed image (PSNR increase 8dB)
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No pre-conditioning Pre-conditioning
Image Convergence Good results Convergence Good results

size Method iter time iter time iter time iter time
1282 SESOP1− ∞ ∞ 1275 218.21 25 5.39 5 1.23

SESOP1 ∞ ∞ 957 173.17 25 5.42 5 1.09
SESOP2 ∞ ∞ 1135 211.48 25 5.54 5 1.06
SESOP8 ∞ ∞ 842 208.43 25 6.47 5 1.05
SESOP32 4860 2363.61 410 228.02 25 6.68 5 1.08
CGfast ∞ ∞ 1186 732.41 55 8.22 7 1.28

CG ∞ ∞ 1186 189.51 56 11.42 7 4.67
TN 12655 922.02 4 461.4 56 7.88 12 5.52

2562 SESOP1− ∞ ∞ ∞ ∞ 83 66.77 8 8.05
SESOP1 ∞ ∞ ∞ ∞ 83 69.62 8 8.07
SESOP2 ∞ ∞ 3900 3200.07 83 74.36 8 8.44
SESOP8 ∞ ∞ 3400 3532.76 80 92.67 8 8.63
SESOP32 ∞ ∞ 2000 4704.36 79 154.17 8 8.72
CGfast ∞ ∞ ∞ ∞ 335 211 8 7.18

CG ∞ ∞ ∞ ∞ 339 211.73 8 25.97
TN ∞ ∞ 9581 3272.76 306 126.99 3 3.68

5122 SESOP1− ∞ ∞ ∞ ∞ 75 349.22 8 48.2
SESOP1 ∞ ∞ ∞ ∞ 74 366.75 8 52.06
SESOP2 ∞ ∞ ∞ ∞ 75 382.23 8 51.7
SESOP8 ∞ ∞ ∞ ∞ 74 450.54 8 53.01

SS32 ∞ ∞ ∞ ∞ 74 681.62 8 50.94
CGfast ∞ ∞ ∞ ∞ 268 984.15 10 45.13

CG ∞ ∞ ∞ ∞ 277 1499.22 10 245.4
TN ∞ ∞ ∞ ∞ 156 432.18 9 184.15

Table 3:Basis Pursuit de-noising example: Iterations and CPU runtime [sec] to conver-
gence, and to ’good results’.∞ - no convergence in 5000 iterations.
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5 Conclusions

We have demonstrated that SESOP is an efficient tool for large-scale unconstrained
optimization. The main advantages of SESOP are optimal worst-case complexity
for smooth convex unconstrained problems, low memory requirements and low
computation load per iteration. Unconstrained optimization is a building block
for many constrained optimization techniques, which makes SESOP a promising
candidate for embedding into many existing solvers.

Acknowledgment. We are grateful to Arkadi Nemirovski for his most useful ad-
vice and support. Our thanks to Boaz Matalon for the Contourlet code andexpla-
nations, and to Dori Peleg for the references to pattern recognition data sets. This
research has been supported in parts by the ”Dvorah” fund of the Technion and
by the HASSIP Research Network Program HPRN-CT-2002-00285, sponsored by
the European Commission. The research was carried out in the OllendorffMinerva
Center, funded through the BMBF.

Appendix

A Proof of (13)

Consider the first order Taylor expansion of∇xf(x) aroundx0

∇xf(x0 + t · v) = ∇xf(x0) + ∇2
x
f(x0)

T tv + o(tv). (47)

After a simple manipulation and division by t we get

∇xf(x0 + t · v) −∇xf(x0)

t
=

∇2
x
f(x0)

T tv + o(tv)

t
. (48)

The value of the right hand side, whent→ 0, is

lim
t→0

∇2
x
f(x0)

T tv + o(tv)

t
= ∇2

x
f(x0)v. (49)

Explanation:

lim
t→0

∣

∣

∣

∣

o(tv)

t

∣

∣

∣

∣

= ‖v‖ lim
t→0

‖o(tv)‖
|t| ‖v‖

= ‖v‖ lim
t→0

‖o(tv)‖
‖tv‖

= ‖v‖0 = 0.

(50)

21



Sequential Subspace Optimization Narkiss & Zibulevsky

Using (8), the norm of (48) is bounded by:
∥

∥

∥

∥

∇xf(x0 + t · v) −∇xf(x0)

t

∥

∥

∥

∥

≤ L‖v‖. (51)

Since this equality holds for everyt, we can taket→ 0

‖∇2
x
f(x0)v‖ ≤ L‖v‖ ∀x0 ∈ Rn. (52)

From Cauchy-Schwartz inequality

‖vT∇2
x
f(x0)v‖ ≤ ‖vT ‖ · ‖∇2

x
f(x0)v‖. (53)

Substituting (53) into (52), withv = ∇xf(x) proves (13). �

B Radon Projection Matrix

DenoteRθ{x} the Radon transform along directionθ, wherex ∈ RN is the im-
ageX parsed into a long vector, column-wise. Using the linear property of the
transform we defineAθ the Radon projection matrix in directionθ in the following
way

Rθ{x} = Rθ{
N

∑

i=1

eixi}

=
N

∑

i=1

Rθ{ei}xi

=





| | |
Rθ{e1} Rθ{e2} · · · Rθ{eN}

| | |



x

= Aθx,

(54)

whereei is a vector of zeros except for 1 in itsi’th element. The Radon projection
matrix using a set of anglesθi, i = 0 . . .M is defined

A =







Aθ0
...

AθM






. (55)

C Gradient and Hessian calculation in subspace

Consider an objective function of the form (37). For simplicity of the analysis we
denote
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• Kϕ - Number of mathematical operations per vector element for calculating
ϕ(u) or∇uϕ(u).

• Kψ - Number of mathematical operations per vector element for calculating
ψ(u) or∇uψ(u).

Each outer iteration of SESOP requires a single evaluation of the objective gradient
with respect tox (mKϕ + nm+ nKψ operations), and an update of the directions
matrix: one matrix-gradient multiplication, one weighted gradient summation to
Nemirovski’s direction, and up to two vector normalization operations (additional
nm+ 3n operations)2.

At the inner iteration of the subspace optimization (6), the basic calculations are
usually function and gradient evaluation with respect toα, neither of which re-
quires a matrix-vector multiplication, as explained in Section 3. Function calcula-
tion requiresm(M + 1) +mKϕ + n(M + 1) + nKψ operations, and the gradient
with respect toα requiresmM +mKϕ + nKψ additional operations.

When Newton method is used for the subspace optimization, calculation of the
Hessian with respect toα will be required as well. Assuming the number of op-
erations for second order derivative calculation is similar to the number of oper-
ations for function calculation, the Hessian with respect toα requires additional
mKϕ +mM2 + nKψ + nM2 operations.

D Absolute value smoothing techniques

In our experiments we considered the following smooth functions to approximate
absolute value

ψ1(s) =
√

s2 + ǫ2

ψ2(s) =
ǫ|s| − log (ǫ|s| + 1)

ǫ

ψ3(s) = ǫ

(∣

∣

∣

∣

t

ǫ

∣

∣

∣

∣

+
1

| t
ǫ
| + 1

− 1

)

,

(56)

whereǫ is a positive smoothing parameter. The approximations become accu-
rate whenǫ → 0. Functionψ3 was found to be substantially faster than the
other two functions in our Matlab implementation. We use the notationψ(s) =
(ψ(s1) . . . ψ(sN ))T .

2When the matrixA is significantly sparse, the number of operations for matrix-vector multipli-
cations is reduced accordingly.

23



Sequential Subspace Optimization Narkiss & Zibulevsky

Sequential update of the smoothing parameter Whenever a very small value
of the smoothing parameter is required for good performance of the problem solu-
tion, the direct unconstrained optimization may become difficult. In this situation
one can use a sequential nested optimization: Starting with a moderate value ofǫ,
optimize the objective function to a reasonable accuracy, then reduceǫ by some
factor and perform the optimization again, starting from the currently available
solution, and so on... Another alternative is to use the smoothing method of multi-
pliers [17], [18], which combines the ideas of Lagrange multipliers with the ideas
of smoothing of non-smooth functions, and provides a very accurate solution.
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