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Abstract

We present an algorithm for constructing a hierarchy of partitions with certain locality properties
for general unweighted connected graphs. Every level in the hierarchy is a collection of disjoint sets of
neighboring nodes, which we refer to as weak clusters. (Weak clusters are not necessarily connected.)
The construction has two salient properties. First, it forms a refinement hierarchy, i.e., each (weak)
cluster of a certain level is fully subsumed in some cluster of the next level. Second, every level is
associated with a radius r and a slack function α(r) < r, which characterize the sizes of its clusters.
More specifically, r dictates an upper bound on a cluster’s radius and α(r) is a lower bound on
the minimal radius of some neighborhood that a cluster must cover. This construction servers as
a building block for an efficient distributed aggregation algorithm. It may also suite other locality-
sensitive algorithms based on hierarchal clustering, in which minimal cluster sizes are a concern.

1 Introduction

Graph constructions are an important building block for efficient locality-sensitive algorithms, which are
essential for contemporary large-scale distributed systems. Such constructions are often called Locality-
Preserving (LP) representations, as their structure “faithfully captures the topology of the network itself”
[9]. Examples for LP representations and their role in distributed computing include using graph col-
oring for resource allocation [8], hierarchal covers for routing [1], and geographic partitions for resource
allocation [6].

In this paper, we provide an LP representation for solving distributed aggregation problems. Specif-
ically, we present a sequential algorithm, HPART, for constructing a hierarchal partition with special
locality properties, which is required by the efficient I-LEAG aggregation algorithm [2]. Our construction
is applicable to any connected graph G. Each level of the hierarchy provides three data structures: clus-
ters of nodes that partition the graph, cluster representatives called pivots, and routing trees that span
clusters.

At the lowest level, every node is its own cluster. Apart from the highest level, which has a single
cluster that comprises the entire graph, every cluster is completely subsumed in some cluster of the next
level. In level i, cluster sizes are determined according to a radius r = θi, where θ is an algorithmic
parameter. Every cluster is subsumed by a neighborhood of its pivot p with radius r, and subsumes a
neighborhood (of p) with radius α(r), where α(r) < r is a slack function. Therefore, while clusters cannot
grow too much in diameter, they are also guaranteed to cover a minimum area of the graph. We do not
require clusters be connected, since the connectivity of G allows their nodes to communicate. Finally,
every cluster is provided with a directed tree that connects its pivot with those of its subsumed clusters
in the previous level. Based on these trees, a pivot can communicate with all nodes covered by its cluster.
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In I-LEAG, clusters define the environments in which aggregation calculations are held, pivots coor-
dinate the computation, and all communication is based on the routing trees. The hierarchal nature of
the partition enables I-LEAG to compute the correct aggregation result in typical scenarios at low levels
of the hierarchy without needing to recompute at higher levels [2], thus achieving local computation.

Related Work Hierarchal covers that enforce similar radius constraints on their clusters have been
proposed [9] and utilized mainly for routing schemes [1]. However, these constructions are not necessarily
partitions. Partition hierarchies have also been suggested, e.g., [3]. Here, the cluster cardinality was
constrained rather than the radius and hence clusters do not generally span local environments.

There is a large body of work on constructing graph representations in a distributed local manner,
e.g., coloring [7, 8], minimum vertex cover [4], and network decomposition [5]. We concentrate on the
feasibility of the construction and provide a simple sequential algorithm, which is intended to be used as
a preprocessing stage in higher-level locality-sensitive distributed algorithms.

2 Problem Definition

Let G = G(V, E) be an unweighted connected graph, and let Λθ(G) = ⌈logθ(Diameter(G))⌉. We use the
following graph-theoretic notation:

Definition 2.1 (Cluster) A cluster is a subset S ⊆ V of vertices whose induced subgraph G(S) is
connected. A weak cluster is a subset S ⊆ V that is connected in G but not necessarily in G(S). (If G is
connected, any set of nodes is a weak cluster.)

Definition 2.2 (Distance) For every two nodes v1, v2 ∈ V , the distance between v1 and v2 in G,
dist(v1, v2), is the length of the shortest path connecting them. Given a node v and a cluster S, the
distance between v and S is defined as dist(v, S) = minw∈S(dist(w, v)).

Definition 2.3 (Neighborhood) The r−neighborhood (r ∈ R
+) of a node v, Γr(v), is the set of nodes

{v′ | dist(v, v′) ≤ r}.

Definition 2.4 (Weak Radius) Let S be a cluster. The weak radius of S with respect to a node v ∈ S
is defined as WRad(v, S) = maxw∈S(dist(v, w)). The weak radius of S is defined as: WRad(S) =
minv∈S(WRad(v, S)).

The following two definitions (taken from [2]) require our construction to be a (θ, α)-local partition
hierarchy:

Definition 2.5 (Partition Hierarchy) An m-level partition hierarchy is a triplet
〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ m, where:

• {Si} is a set of partitions, in which for every cluster S′ ∈ Si−1 there exists a cluster S ∈ Si such
that S′ ⊆ S. The topmost level, Sm, contains a single cluster equal to V .

• {Pi} is a set of pivots. Pi includes a single pivot for every cluster S ∈ Si. Si(p) ∈ Si denotes the
cluster such that p ∈ S.

• {Ti} is a set of forests. For every p ∈ Pi, Ti contains a directed tree Ti(p) whose root is p and whose
leaves are either {p′ ∈ Pi−1 | Si−1(p

′) ⊆ Si(p)} or S0(p) if i = 0.
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The forest set {Ti} induces a logical tree that has a single root and spans the entire graph by concatenating
the paths formed by tree edges between levels. (The underlying graph of this logical tree can contain
cycles, and its edges can be traversed more than once.) For every p ∈ Pi, we refer to T̃i(p) as the
logical subtree rooted at p. We denote by Height(Ti(p)) and Height(T̃i(p)) the heights of Ti(p) and T̃i(p),
respectively. We refer to a hierarchy whose clusters can be weak as a weak partition hierarchy. Otherwise,
it is strong.

A K-bounded slack function is a monotone non-decreasing function α:N → R
+ such that α(d) ∈

[ d
K

, d], for some K ≥ 1.

Definition 2.6 ((θ, α)-local Partition Hierarchy) Let θ ≥ 2 and let α be a slack function. A Λθ-level
partition hierarchy 〈{Si}, {Pi}, {Ti}〉 is called (θ, α)-local if for every p ∈ Pi, it holds that Γα(θi)(p) ⊆

Si(p) ⊆ Γθi(p), and Height i(T̃i(p)) ≤ θi.

3 Partition Hierarchy Construction

Our hierarchal partitioning algorithm (HPART) is depicted in Algorithm 1. HPART accepts a graph G
and a constant θ ≥ 5 and returns a (θ, α)-local weak partition hierarchy of G, where α(r) = r/θ is a
θ-bounded slack function. At level 0 (line 1), every node is a cluster. Subsequently, HPART operates in
phases, constructing a partition level in each phase. The construction itself is done in two loops:

• Lines 4 - 14: Build a group of connected clusters that fulfill the requirements for the current level.
These clusters, however, do not necessarily cover the whole graph.

• Lines 15 - 21: Expand the clusters of (1) until all the whole graph is covered. While the resulting
clusters may not be connected, the partition requirements are maintained.

During the first loop, V holds uncovered nodes, and P ⊆ V holds only those uncovered nodes that are
pivots of the previous level. In every iteration, a new cluster S is added to the current level i based on an
uncovered θi−1-neighborhood of some node p (line 5). S comprises the nodes of all clusters of level i − 1
that intersect with this neighborhood (lines 6-7), and its spanning tree T is formed by connecting the
pivots of these clusters to p using shortest paths while avoiding cycles (lines 8-11). p acts as the cluster’s
pivot. Finally, S, T and p are added to the current level (line 12), and P and V are updated.

In the second loop, each iteration selects one uncovered cluster (of the previous level) to be covered
by one of the newly created clusters of the current level i. Specifically, HPART selects a yet uncovered
cluster with pivot p′ ∈ Pi−1, and adds its nodes to a cluster S ∈ Si whose pivot p ∈ Pi is closet to p′

(lines 16-17). After updating the corresponding tree T (line 18), HPART adjusts level i’s cluster and tree
sets (line 19), and updates P. (V is not used in this loop.) It is easy to see that HPART has polynomial
execution time.

Correcntess The proof is based on the following three lemmas, which establish several properties that
hold after each of the algorithm’s two main loops.

Lemma 3.1 For every level i, Si is a partition.

Proof. By induction on i. S0 is trivially a partition. We assume that the lemma holds for level i − 1
and prove for level i. During the first loop, whenever a new cluster S is formed (line 7), every pivot
p′ ∈ Pi−1 whose cluster Si−1(p

′) is added to S is removed from P. We refer to such pivots as covered by
S. As a result, each new cluster covers disjoint sets of pivots. Since Si−1 is a partition, every covered
pivot uniquely identifies a cluster that does not overlap with any other cluster of level i− 1. Hence, upon
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Algorithm 1 (HPART)

Input: A connected graph G(V, E) and an integer θ ≥ 5
Output: A (θ, α)-local partition hierarchy 〈{Si}, {Pi}, {Ti}〉, i ∈ [0, Λθ(G)], for α(r) = r/θ
Variables: Partition set {Si}, pivots set {Pi} and forest set {Ti}, all initially ∅

1: S0 ← {{v} | v ∈ V }, P0 ← V , T0 ← ∅
2: for level i = 1 to Λθ(G)) do
3: P ← Pi−1, V ← V
4: while ∃v ∈ V s.t. Γθi−1(v) ⊆ V do /* build initial clusters */
5: let p ∈ {v ∈ V | Γθi−1(v) ⊆ V }
6: P ← {p′ ∈ P | Si−1(p

′) ∩ Γθi−1(p) 6= ∅}
7: S ←

⋃
p′∈P

Si−1(p
′)

8: T ← ∅
9: for all p′ ∈ P do

10: T ← T ∪ {e ∈ L | L ⊆ E is some shortest path from p′ to p s.t. T ∪ L has no cycles}
11: end for
12: Si ← Si ∪ {S}, Pi ← Pi ∪ {p}, Ti ← Ti ∪ {T}
13: P ← P − {p}, V ← V − S
14: end while
15: while P 6= ∅ do /* expand clusters to include all clusters of Si−1 */
16: let p′ ∈ P and p ∈ Pi s.t. dist(p, p′) = minp∈Pi

{dist(p, p′)}
17: S ← Si(p), S′ ← S ∪ Si−1(p

′)
18: T ← Ti(p), T ′ ← T ∪ {e ∈ L | L is some shortest path from p′ to p s.t. T ∪ L has no cycles}
19: Si ← (Si − {S}) ∪ {S′}, Ti ← (Ti − {T}) ∪ {T ′}
20: P ← P − {p}
21: end while
22: end for
23: return 〈{Si}, {Pi}, {Ti}〉, i ∈ [0, Λθ(G)]

completing the first loop, all clusters in Si are disjoint. As the second loop only expands these cluster by
covering any remaining (uncovered, disjoint) clusters from Si−1, we conclude that Si is a partition.

Lemma 3.2 For every level i > 0 and every p ∈ Pi, Ti(p) is a tree that connects every p′ ∈ Pi−1 such
that p′ ∈ Si(p) to p by a shortest path.

Proof. Let i > 0 and p ∈ Pi be a pivot. The algorithm attempts to join Ti(p) every p′ ∈ Pi−1 such
that p′ ∈ Si(p), either in line 10 (when Si(p) is created) or in line 18 (when Si(p) is expanded to cover
Si−1(p

′)). Because Ti(p) is initialized to ∅ and cycles are avoided at all times, Ti(p) is always a tree.
Furthermore, Ti(p) is comprised of shortest paths only. Therefore, we only need to show that whenever
lines 10 or 18 are executed, either Ti(p) already includes a path from p′ to p, or there exists a shortest
path from p′ to p that does not create a cycle in Ti(p).

Consider a pivot p′ ∈ Pi−1 that is about to be added to Ti(p). If Ti(p) already includes a path from
p′ to p, we are done. Otherwise, denote by L′ some shortest path from p′ to p. (L′ exists because the
graph is connected.) If L′ does not introduce cycles to Ti(p), we are done. Otherwise, L′ must cross at
least one node that is already spanned by Ti(p). Let v be the first such node (in the direction from p′ to
p). Denote the existing path in Ti(p) that connects v′ to p by L′′. Since every part of a shortest path is
also a shortest path, the distance from v to p along L′′ must equal that along L′. Therefore, the path L
formed by concatenating the path from p′ to v (along L′) and L′′ is also a shortest path, which does not
introduce any cycles to Ti(p).
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Lemma 3.3 For every level i, ∀p ∈ Pi: (1) Γθi−1(p) ⊆ Si(p); (2) Height(Ti(p)) ≤ 4θi−1; and (3),
Si(p) ⊆ Γ5θi−1(p).

Proof. By induction on i. The lemma holds trivially for S0. We assume that the lemma holds for level
i − 1 and prove for level i. It follows immediately from the construction of a new cluster in line 7 and
the fact that Si−1 is a partition that ∀p ∈ Pi: Γθi−1(p) ⊆ Si(p) upon completing the first loop. Since the
second loop does not introduce new clusters nor reduce existing ones, (1) holds.

To prove (2) and (3), we initially claim that upon completing the first loop, ∀p ∈ Pi: WRad(p, Si(p)) ≤
3θi−1. To see this, let p be the node chosen in line 5, P be the set of level i − 1 pivots defined in line 6,
and S be the cluster constructed in line 7. For every p′ ∈ P: dist(p, Si−1(p

′)) ≤ θi−1 by construction. In
addition, according to the induction hypothesis and the fact that θ ≥ 5: Si−1(p

′) ⊆ Γ5θi−2(p′) ⊆ Γθi−1(p′),
so WRad(Si−1(p

′)) ≤ θi−1. Thus, it holds that:

WRad(p, S) = max v∈S(dist(p, v)) = max p′∈P

(
max v∈Si−1(p′)(dist(p, v))

)
≤

max p′∈P

(
dist(p, Si−1(p

′)) + 2WRad(Si−1(p
′))

)
≤ 3θi−1.

For every cluster (created in the first loop) that is not expanded in the second loop, both (2) and (3)
follow immediately from the claim and Lemma 3.2. For the remaining clusters, we show that the lemma
holds after every iteration of the second loop (which expands some existing cluster S ∈ Si). Let p′ ∈ Pi−1

and p ∈ Pi be the pivots chosen in line 16 in some iteration. Observe that upon completing the first
loop, for every v ∈ V : minS∈Si

(dist(v, S)) ≤ θi−1. (If ∃v ∈ V such that ∀S ∈ Si : dist(v, S) > θi−1,
it holds that Γθi−1(v) ⊆ V contradicting the fact that the first loop had terminated.) Specifically, this
observation holds for p′. Therefore, ∃p′′ ∈ Pi such that dist(p′, S̃i(p

′′)) ≤ θi−1, where S̃i(p
′′) denotes p′′’s

cluster just before beginning the second loop. Consequently,

dist(p, p′) ≤ dist(p′′, p′) ≤ dist(p′, S̃i(p
′′)) + WRad(p′′, Si(p

′′)) ≤ θi−1 + 3θi−1 = 4θi−1.

Since p′ is connected to p in Ti(p) by a shortest path (Lemma 3.2), this bounds Height(Ti(p)), proving
(2). Noting that WRad(Si−1(p

′)) ≤ θi−1 (follows from the induction hypothesis as shown above), we also
have that: ∀v ∈ Si−1(p

′): dist(p, v) ≤ dist(p, p′) + WRad(Si−1(p
′)) ≤ 5θi−1, which implies (3).

Theorem 3.4 For every θ ≥ 5, algorithm HPART constructs a (θ, α)-local weak partition hierarchy for
α(r) = r/θ.

Proof. We first note that in every level i, both loops terminate in finite time because of their dependence
on the (finite) pivot set P, for which at least one element is removed in every iteration. (In the first
loop, each removal of a pivot from P implies removal of nodes from V , which determines the stopping
condition.) Lemma 3.1 ensures that for every level i, Si is a partition. The fact that the partitions form
a refinement hierarchy, i.e., every cluster of Si−1 is subsumed in some cluster of Si, is immediate from
the construction.

By assigning α(r) = r/θ, it follows from Lemma 3.3 that:

∀p ∈ Pi: Γα(θi)(p) = Γθi−1(p) ⊆ Si(p) ⊆ Γ5θi−1(p) ⊆ Γθi(p).

Finally, we bound the heights of logical subtrees. Let Height(i) , max p∈Pi
(Height(T̃i(p))). According to

Lemma 3.3(2), we have the following recursion for every level i:

Height(i) ≤ 4θi−1 + Height(i − 1) = 4
i−1∑

n=0

θi + Height(0) = 4
(θi − 1

θ − 1

)
.

For θ ≥ 5, we obtain that Height(i) ≤ θi, concluding that the hierarchy is (θ, α)-local.
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4 Discussion and Future Work

We presented a simple algorithm for constructing local partition hierarchies for any graph, which can
serve as a building block in an efficient aggregation algorithm. This construction can also be applicable
for other locality-sensitive algorithms that operate on hierarchal clusters, particulary in cases where the
radius of the neighborhoods covered by clusters should reside in a controlled interval.

Our construction guarantees weak partition hierarchies, and provides a multiplicative slack function,
namely r/θ. Two immediate questions that arise are whether strong (θ, α)-local partition hierarchies exist
in the general case, and to what degree can the corresponding slack functions be tightened. (A tight slack
function results in more uniform clusters.) Due to the conflict between connectivity and the requirement
that every distinct cluster must subsume a neighborhood of some minimal size, we conjecture that no
(θ, α)-local partition exists for general graphs. However, attractive (θ, α)-local partition hierarchies exist
for some graph families. For example, in [2], we provide a hierarchy with θ = 2 and an additive slack
function (for r ≥ 2) of α(r) = max{r − 1, r/2}.

Finally, although HPART has been presented as a centralized algorithm, it is not difficult to devise
a corresponding distributed implementation for it. Moreover, HPART’s output (the partition hierarchy
itself) can be represented distributively in a memory efficient manner (each node only needs to hold its
parent and children in the trees it belongs to; typically, a node will belong to a single tree in every level).
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