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Uniformly Improving the Cramér-Rao Bound and

Maximum-Likelihood Estimation

Yonina C. Eldar

Abstract

An important aspect of estimation theory is characterizing the best achievable performance in a given estimation

problem, as well as determining estimators that achieve the optimal performance. The traditional Cramér-Rao type

bounds provide benchmarks on the variance of any estimator of a deterministic parameter vector under suitable

regularity conditions, while requiring a-priori specification of a desired bias gradient. In applications, it is often not

clear how to choose the required bias. A direct measure of the estimation error that takes both the variance and

the bias into account is the mean-squared error (MSE), which is the sum of the variance and the squared-norm

of the bias. Here, we develop bounds on the MSE in estimating a deterministic parameter vector x0 over all bias

vectors that are linear in x0, which includes the traditional unbiased estimation as a special case. In some settings,

it is possible to minimize the MSE over all linear bias vectors. More generally, direct minimization is not possible

since the optimal solution depends on the unknown x0. Nonetheless, we show that in many cases we can find bias

vectors that result in an MSE bound that is smaller than the CRLB for all values of x0. Furthermore, we explicitly

construct estimators that achieve these bounds in cases where an efficient estimator exists, by performing a simple

linear transformation on the standard maximum likelihood (ML) estimator. This leads to estimators that result in

a smaller MSE than the ML estimator for all possible values of x0.

I. Introduction

One of the prime goals of statistical estimation theory is the development of bounds on the best achievable

performance in estimating parameters of interest in a given model, as well as determining estimators that

achieve these bounds. Such bounds provide benchmarks against which we can compare the performance of

any proposed estimator, and insight into the fundamental limitations of the problem.

Here, we consider the class of estimation problems in which we seek to estimate an unknown deterministic

parameter vector x0 from measurements y, where the relationship between y and x0 is described by the

probability density function (pdf) p(y;x0) of y characterized by x0.

A classic performance bound is the Cramér-Rao lower bound (CRLB) [1], [2], [3], which characterizes the

smallest achievable total variance of any unbiased estimator of x0. Although other variance bounds exist

in the literature, this bound is relatively easy to determine, and can often be achieved. Specifically, in the
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case in which the measurements y are related to the unknowns x0 through a linear Gaussian model, the

maximum likelihood (ML) estimate of x0, which is given by the value of x that maximizes p(y;x), achieves

the CRLB. Furthermore, when x0 is estimated from independent identically distributed (iid) measurements,

under suitable regularity assumptions on the pdf p(y;x0), the ML estimator is asymptotically unbiased and

achieves the CRLB [2], [4].

Although the CRLB is a popular performance benchmark, it only provides a bound on the variance of the

estimator assuming zero bias. In many cases the variance can be made smaller at the expense of increasing the

bias, while ensuring that the overall estimation error is reduced [5]. Furthermore, in some problems, restricting

attention to unbiased approaches leads to unreasonable estimators, that may, for example, be independent of

the problem parameters; see [6], [7] for some examples. Biased estimation methods are used extensively in a

variety of different signal processing applications, such as image restoration [8] where the bias corresponds to

spatial resolution, smoothing techniques in time series analysis [9], [10], and spectrum estimation [11]. Thus,

the design of estimators is typically subject to a tradeoff between variance and bias.

The total variance of any estimator with a given bias is bounded by the biased CRLB [12], which is an

extension of the CRLB for unbiased estimators. The specification of the biased CRLB requires an a-priori

choice of the bias gradient. However, in applications it is typically not obvious how to make such a choice. In

[13], [14] the uniform CRLB was developed which is a bound on the smallest attainable variance that can be

achieved using any estimator with bias gradient whose norm is bounded by a constant. Although the uniform

CRLB requires fixing only one parameter, and is therefore often more practical than the biased CRLB, it is

still not clear in general how to optimally choose the bias gradient norm.

Evidently, standard CR-type bounds require specification of a bias measure which is often not practical.

Instead, it would be desirable to obtain a bound directly on the estimation error x̂−x0, where x̂ is an estimate

of x0, without having to pre-specify the bias. To characterize the best possible bias-variance tradeoff we may

consider the mean-squared error (MSE) which is the average of the squared-norm error ‖x̂ − x0‖2, and is

equal to the sum of the variance and the squared-norm of the bias. Thus, ideally, we would like to obtain a

bound on the smallest possible MSE in a given estimation problem. Note that since x0 is deterministic in our

setting, the MSE will in general depend on x0 itself. Unfortunately, since no limitations are imposed on x̂,

the minimal bound is the trivial (zero) bound which can be achieved with x̂ = x0.

For specific estimation problems estimators have been developed that have smaller MSE than the CRLB

for all values of x0. A classical example is the estimation of the mean of a Gaussian random variable for

which the CRLB is achieved by using the well known least-squares estimator (which is also the ML estimator

for this problem). James and Stein showed that the MSE can be reduced by using a biased estimator that

is a nonlinear shrinkage of the ML estimator [15], [16]. Subsequently, a variety of other linear [17], [18]

and nonlinear [19], [20], [21], [22] approaches have been developed for this problem that outperform the ML
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estimator for all values of x0.

To treat the general problem, instead of attempting to minimize the MSE over all possible estimators, we

may restrict attention to estimators with bias vectors that lie in a suitable class; the CRLB is an example

where we consider only estimators with zero bias. More generally, we may allow for bias vectors that are linear

in x0. Our goal then is to find the smallest MSE achievable over all estimators with linear bias. A similar

strategy was introduced in [23] for certain scalar estimation problems, and later extended in [24] to vector-

valued estimates with bias gradient matrix proportional to the identity, and restricted parameter values. The

advantage of considering linear bias vectors is two-fold: Analytically, this case is easier than other bias forms.

From a practical perspective, since the bias vector is linear, we can easily construct estimators achieving the

corresponding bound, based on efficient unbiased estimators. Specifically, if we find an optimal bias vector

that minimizes the suggested MSE bound, and if in our problem an efficient estimator exists (i.e., an unbiased

estimator achieving the CRLB), then we can obtain an estimator achieving the corresponding MSE bound

by simply multiplying the efficient estimator by a linear transformation constructed from the optimal bias

vector.

It turns out that it is not always possible to minimize the proposed MSE bound over all linear bias vectors,

since the optimal bias typically depends on x0 itself. In cases when direct minimization cannot be achieved,

we may still be able to find a bias vector such that the resulting MSE is smaller than that of the CRLB for

all possible values of x0. We are then guaranteed that if an efficient estimator exists, then there also exits an

estimator, which is a simple linear transformation of the efficient estimator, whose MSE is smaller than the

CRLB for all x0.

We begin in Section II by developing a bound on the MSE that depends on the bias of the estimator and

the Fisher information. In Section III we discuss cases in which the suggested MSE bound can be minimized

directly over linear bias vectors. For the more general setting we propose, in Section IV, concrete methods

for finding a linear bias vector such that the resulting MSE bound is smaller than the CRLB for all values

of x0. To this end we first show that such a bias vector can be obtained as a solution to a certain convex

optimization problem. We then restrict our attention, in Section V, to estimation problems in which the

CRLB is quadratic in x0, and analyze the resulting problem for two special cases: In Section VI we consider

the case in which x0 is not restricted. In Section VII we treat the case in which x0 lies in a quadratic set; this

includes the scenario in which we seek to estimate a nonnegative parameter such as the variance or the SNR.

In both settings we show that a linear bias vector exists such that the resulting MSE bound is smaller than

the CRLB for all possible values of x0. This vector can be found as a solution to a semidefinite programming

problem (SDP) which is a tractable convex problem that can be solved very efficiently [25], [26]. We then

develop necessary and sufficient optimality conditions in both settings which lead to further insight into the

solution and in some cases can be used to derive closed form expressions for the optimal bias vector. In
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Section VIII we demonstrate through an example that by a linear transformation of the ML estimator, we

can reduce the MSE for all values of x0.

In the sequel, we denote vectors in C
m (m arbitrary) by boldface lowercase letters and matrices in C

n×m

by boldface uppercase letters. The identity matrix of appropriate dimension is denoted by I, (̂·) denotes an

estimated vector or matrix, (·)∗ is the Hermitian conjugate of the corresponding matrix, and xi is the ith

component of the vector x. The true value of an unknown vector parameter x is denoted by x0, and the true

value of an unknown scalar parameter x is written as x0. The gradient of a vector ∂b(x0)/∂x is a matrix,

with ijth element equal to ∂bi(x0)/∂xj . For a square matrix A, Tr(A) is the trace of A, A ≻ 0 (A º 0)

means that A is Hermitian and positive (nonnegative) definite, and A º B means that A − B º 0.

II. MSE Bound

We treat the problem of estimating a deterministic parameter vector x0 ∈ C
m from a given measurement

vector y ∈ C
n, that is related to x0 through the pdf p(y;x0).

A popular measure of estimator performance is the MSE, which is defined as

E
{
‖x̂ − x0‖2

}
= ‖b(x0)‖2 + Tr(Cx̂). (1)

Here

b(x0) = E {x̂} − x0, (2)

is the bias vector of x̂ and

Cx̂ = E {[x̂ − E {x̂}][x̂ − E {x̂}]∗} , (3)

is its covariance matrix.

Under suitable regularity conditions on p(y;x) (see e.g., [1], [2], [27]), the covariance of any unbiased

estimator x̂ of x0 is bounded below by the CRLB which is given by J−1(x0), where J(x0) is the Fisher

information matrix

J(x0) = E

{[
∂ log p(y;x0)

∂x

]∗ [
∂ log p(y;x0)

∂x

]}
, (4)

and is assumed to be nonsingular. Thus, the MSE of any unbiased estimator satisfies

E
{
‖x̂ − x0‖2

}
≥ Tr

(
J−1(x0)

)
. (5)

An estimator achieving the CRLB has minimum variance among all unbiased estimators. There are a variety

of estimation problems in which the CRLB cannot be achieved, but nonetheless a minimum variance unbiased

(MVU) estimator can be found. An example is when p(y; x0) is the uniform distribution on [0, x0]. For this

problem the CRLB is not defined (see [27]) however an MVU estimator of x0 exists. The discussion in the
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remainder of the paper also holds true when we replace the CRLB J−1(x0) everywhere by the variance of an

MVU estimator. In this case, the proposed estimators are linear transformations of the corresponding MVU

estimator.

Often, the MSE can be further reduced by using a biased estimator. If x̂ is an estimator of x0 with bias

vector b(x0), then the biased CRLB states that [12]

Cx̂ º (I + D(x0))J
−1(x0) (I + D(x0))

∗ , (6)

where D(x0) = ∂b(x0)/∂x is the bias gradient matrix. Substituting (6) into (1) it follows that the MSE of

any estimator with bias b(x0) is bounded below by

‖b(x0)‖2 + Tr
(
(I + D(x0))J

−1(x0) (I + D(x0))
∗
)
. (7)

Ideally, to obtain the tightest possible MSE bound, we would like to minimize the bound (7) over all

bias vectors b(x0). For every fixed value of x0 the minimum can be achieved with b(x) = x0 − x; for this

choice b(x0) = 0 and D(x0) = −I. The estimator achieving this bound is x̂ = x0 which clearly cannot be

implemented. Thus, in general we cannot minimize (7) for all x0. Nonetheless, in some cases, we may be able

to minimize the bound over all bias vectors in a suitable class. When the bound cannot be minimized directly,

it still may be possible to find a bias b(x0) such that the resulting MSE bound is smaller than the unbiased

CRLB for all possible values of x0. Our goal therefore is to minimize the MSE bound over all bias vectors in

a suitable class (which includes the zero bias), when possible. Otherwise, we aim at finding a bias vector such

that the resulting MSE bound is smaller than the unbiased CRLB for all values of x0 in a predefined set.

For our class of bias vectors we consider linear bias vectors of the form

b(x) = Mx, (8)

for some m × m matrix M. With this choice of bias, the MSE bound of (7) becomes

MSEB (M,x0)

= x∗
0M

∗Mx0 + Tr
(
(I + M)J−1(x0)(I + M)∗

)
. (9)

If M = 0, then as we expect the bound coincides with the CRLB: MSEB (0,x0) = Tr(J−1(x0)).

An advantage of restricting attention to linear bias vectors is that we can use results on unbiased estimation

to find estimators that achieve the corresponding MSE bound. Specifically, if x̂ is an efficient unbiased
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estimator, i.e., an estimator that achieves the CRLB, then the MSE of

x̂b = (I + M)x̂ (10)

is equal to MSEB (M,x0). To see this, since E{x̂} = x0,

b(x̂b) = (I + M)E {x̂} − x0 = Mx0. (11)

Using the fact that x̂b − E {x̂b} = (I + M)(x̂ − x0) and Cx̂ = J−1(x0),

Cx̂b
= (I + M)E {[x̂ − x0][x̂ − x0]

∗} (I + M)∗

= (I + M)J−1(x0)(I + M)∗, (12)

so that the MSE of x̂b is given by MSEB (M,x0). Therefore, if x̂ achieves the CRLB and we find an M such

that MSEB (M,x0) < MSEB (0,x0) for a suitable set of x0, then the MSE of x̂b will be smaller than that of

x̂ for all x0 in the set. This allows us to reduce the MSE by a simple linear transformation. The important

point is that this improvement is for all choices of x0 in a suitable set (which can be the entire space C
m).

In contrast, if we consider more general non-linear bias vectors, then even if we find a bias that results in

an MSE bound that is lower than the CRLB, and an efficient estimator exists, it is still unclear in general

how to obtain an estimator achieving the resulting MSE bound.

III. Minimal MSE Bound with Linear Bias

We begin by discussing cases in which the bound (9) can be minimized directly.

Since the objective in (9) is convex in M, we can find the minimal value by setting the derivative to 0,

which yields

M(J−1(x) + xx∗) = −J−1(x), (13)

where for brevity we denoted x = x0. Using the matrix inversion lemma the optimal M can be written as

M̂ = −I +
1

1 + x∗J(x)x
xx∗J(x). (14)

In general M will depend on x which is unknown, so that there is no constant value of M that minimizes

the bound. However, if (14) is independent of x, then this choice of M minimizes the bound for all possible

values of x. This occurs when x = x is a scalar, and J−1(x) = α|x|2 for some α > 0. In this case the optimal

choice of M = M̂ follows from (14) as

M̂ = − α

1 + α
, (15)
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and the corresponding bound is

MSEB (M̂, x) =
α

1 + α
|x|2 =

1

1 + α
J−1(x) < MSEB (0, x) (16)

for all x such that J−1(x) > 0. If x̂ achieves the CRLB, then an estimator achieving MSEB (M̂, x) can be

found using (10), which leads to the following theorem.

Theorem 1: Let y denote measurements of a deterministic parameter x0 with pdf p(y; x0). Assume that

the Fisher information with respect to x0 has the form J(x0) = 1/(α|x0|2) for some α > 0. Then the MSE of

any estimate x̂ of x0 with linear bias satisfies

E
{
|x̂ − x0|2

}
≥ α

1 + α
|x0|2. (17)

Furthermore, if there exists an efficient estimator x̂ that achieves the CRLB J−1(x0), then the estimator

x̂b =
1

1 + α
x̂

achieves the bound (17), and has smaller MSE than x̂ for all x0 6= 0.

We now consider some examples illustrating the results of Theorem 1.

Example 1. Suppose that we are given N iid measurements yi, 1 ≤ i ≤ N that are each distributed uniformly

on [0, x0], and we wish to estimate x0. As mentioned in Section II, in this case the CRLB is not defined;

however, an MVU estimator exists and is given by x̂ = (1+1/N)ymax, where ymax = maxi yi [28, p. 108]. The

minimum variance achievable with an unbiased estimator is equal to the MSE of x̂ and is given by 1
N(N+2)x

2
0.

Since the MSE has the form αx2
0 with α = 1

N(N+2) , we can use Theorem 1 to conclude that the estimator

x̂b =
N + 2

N + 1
ymax (18)

has smaller MSE for all values of x0. The same estimator was shown in [6] to minimize the MSE among all

invariant estimates with the property that x̂(cy1, . . . , cyN ) = cx̂(y1, . . . , yN ) for all c > 0.

Example 2. Consider the problem of estimating the variance σ2 of a Gaussian random variable with known

mean µ from N iid measurements yi, 1 ≤ i ≤ N . An efficient estimate of σ2 achieving the unbiased CRLB

J−1(x) = 2σ4/N is

x̂ =
1

N

N∑

i=1

(yi − µ)2. (19)
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From Theorem 1, it follows that the estimator

x̂b =
1

N + 2

N∑

i=1

(yi − µ)2 (20)

has smaller MSE than x̂ for all values of σ2 > 0. Note, that this estimator has been proposed previously in

[29].

If µ is not known, then the CRLB cannot be achieved. However, in this case the estimator

x̂ =
1

N − 1

N∑

i=1

(yi − ȳ)2 (21)

with ȳ = (1/N)
∑N

i=1 yi is an MVU estimator with MSE 2σ4/(N − 1). Applying Theorem 1 to (21) we

conclude that

x̂b =
1

N + 1

N∑

i=1

(yi − ȳ)2 (22)

has smaller MSE for all values of µ and σ2. This result has also been obtained in [30], [2, p. 316] and [31].

The MSE of x̂b is 2σ4/(N + 1) which is smaller than the CRLB for unbiased estimators for known, as well as

unknown, µ.

Example 3. As a final example, suppose we wish to estimate the mean x0 of an exponential random variable

from N iid measurements yi, 1 ≤ i ≤ N where

p(y; x0) =
1

x0
e−y/x0 , x0 ≥ 0. (23)

An efficient estimator in this case is the ensemble average x̂ = (1/N)
∑N

i=1 yi, whose MSE is x2
0/N . From

Theorem 1, the MSE of the estimator

x̂b =
1

N + 1

N∑

i=1

yi (24)

is x2
0/(N + 1), which is less than the CRLB for all x0 > 0.

IV. Dominating the CRLB with Linear Bias

We have seen in the previous section that in some special cases we can minimize the MSE over all linear

bias vectors. Even when direct minimization is not possible, we may still be able to find a matrix M such that

the resulting MSE bound is smaller than the unbiased CRLB for all possible values of the true parameter x0.

Thus, our goal now is to find a matrix M such that

MSEB (M,x0) < MSEB (0,x0) (25)
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for all values of x0 in some set U . If the matrix M satisfies (25), then we will say that M (strictly) dominates

[32] the CRLB on U . This will ensure that if x̂ is an efficient estimator, then the estimator x̂b = (I + M)x̂

will have smaller MSE than x̂ for all values of x0 ∈ U . In addition to satisfying (25), we would like M to have

the property that there is no other matrix M′ 6= M such that

MSEB (M′,x0) ≤ MSEB (M,x0) (26)

for all x0 in U . Such a matrix M will be called admissible [32]. Our problem therefore is to find an admissible

M that dominates the CRLB on U . It turns out that an admissible dominating matrix can be found as a

solution to a convex optimization problem, as incorporated in the following theorem.

Theorem 2: Let y denote measurements of a deterministic parameter vector x0 with pdf p(y;x0). Let

MSEB (M,x0) = x∗
0M

∗Mx0 + Tr
(
(I + M)J−1(x0)(I + M)∗

)
,

be a bound on the MSE of any estimate x̂ of x0 with linear bias b(x0) = Mx0, where J(x0) is the Fisher

information matrix, and let U ⊆ C
m. Define

M̂ = arg min
M

sup
x∈U

{MSEB (M,x) − MSEB (0,x)} . (27)

Then

1. M̂ is unique;

2. M̂ is admissible on U ;

3. If M̂ 6= 0, then MSEB (M,x) < MSEB (0,x) for all x ∈ U .

Note that the minimum in (27) is well defined since the objective is continuous and coercive [33].

Proof: The proof follows immediately from the proof of [34, Theorem 1] by noting that MSEB (M,x) is

continuous, coercive and strictly convex in M.

From Theorem 2 we conclude that if we find an M̂ 6= 0 that is the solution to (27), and if x̂ achieves the

CRLB, then the MSE of x̂b = (I + M̂)x̂ is smaller than that of x̂ for all x0 ∈ U ; furthermore, no other

estimator with linear bias exists that has a smaller (or equal) MSE than x̂b for all values of x0 ∈ U .

The problem (27) is convex in M for any constraint set U since the supremum of a convex function over

any set U is convex. For arbitrary forms of J−1(x0) we can solve (27) by using any one of the many known

iterative algorithms for solving minimax problems, such as subgradient algorithms [35] or the prox method

[36]. To obtain more efficient solutions, in the following sections we restrict the form of J−1(x0) such that

the resulting optimization problem can be converted into one of the standard convex forms for which very

efficient software exists.
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V. Quadratic Inverse Fisher Information

The most common tractable class of convex programs is the linear program which is the problem of mini-

mizing a linear function subject to linear (affine) constraints. Recent advances in convex optimization lead to

a generalization of the results and algorithms for linear programs to more complicated convex programs. A

broad class of convex problems for which polynomial-time algorithms exists are semidefinite programs (SDPs)

[25], [26]. These are optimization problems that involve minimizing a linear function subject to linear matrix

inequalities, i.e., matrix inequalities of the form G(M) º 0 where G(M) is linear in M. Once a problem

is formulated as an SDP, standard software packages, such as the Self-Dual-Minimization (SeDuMi) package

[37], can be used to solve the problem in polynomial time within any desired accuracy. Using principles of

duality theory in vector space optimization, the SDP formulation can also be used to derive necessary and

sufficient optimality conditions.

It turns out that for a large class of inverse Fisher information matrices, the problem (27) can be reduced

to an SDP. In the remainder of the paper we treat the case in which J−1(x0) has the quadratic form

J−1(x) =

ℓ∑

i=1

Bixx∗B∗
i +

k∑

i=1

(Cixz∗i + zix
∗C∗

i ) + A, (28)

for some matrices A º 0, Bi,Ci and vectors zi. (Alternatively, when considering MVU estimators, we assume

that the minimum variance has the form (28)). As we will see, when the inverse Fisher information has such

a quadratic form, and U is chosen appropriately, the problem (27) can be reduced to an SDP. Besides leading

to analytically tractable expressions, there are many cases in which the inverse Fisher information can be

written in the form (28). Several examples are presented below.

Example 1. Suppose that we are given N iid measurements yi, 1 ≤ i ≤ N , where yi has an exponential

distribution as in (23). In this case, J−1(x) = (1/N)x2, which can be written in the form (28) with ℓ = 1,

B1 = 1/
√

N and all the remaining parameters equal to 0. Another model which results in the same inverse

Fisher information is when yi is a Bernoulli trial with parameter x so that

yi =





1, w.p. x;

0, w.p. 1 − x.

(29)

Example 2 [27]. Consider the problem of estimating the mean µ and variance σ2 of a Gaussian random

variable from N iid measurements. In this case x = [µ σ2]T , and

J−1(x) =
σ2

N


1 0

0 2σ2


 , (30)
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which has the form (28) with ℓ = 1, k = 1,

A = 0, C1 =
1

N


0 1

0 0


 , z1 =


1

0


 , B1 =

√
2

N


0 0

0 1


 . (31)

Since the Fisher information matrix is diagonal, it follows that for µ known, the inverse Fisher information

with respect to σ2 is

J−1(σ2) =
2σ4

N
, (32)

in which case ℓ = 1, B1 =
√

2/N and all the remaining parameters are equal 0.

If σ2 is known and µ is Gaussian with zero mean and unknown variance σ2
µ, then

J−1(σ2
µ) = 2

(
σ2

µ +
σ2

N

)2

, (33)

so that now ℓ = 1, k = 1,

A = 2
σ4

N2
, C1 = 4

σ2

N
, z1 = 1, B1 =

√
2. (34)

Example 3. Suppose that the observation vector y is a vector of counts with mean g(x) where

g(x) = Hx + c (35)

for some known invertible matrix H and known constant vector c. The elements yi of y are assumed to be

independent, with a Poisson distribution

ln f(yi;x) = yi ln
(
gi(x)

)
− gi(x) + a,

where a is a known constant. This problem arises for example in emission-computed tomography [38]. The

Fisher information in this case is given by [39]

J(x) = H∗ diag

(
1

g1(x)
, . . . ,

1

gm(x)

)
H, (36)

and

J−1(x) = H−1 diag
(
g1(x), . . . , gm(x)

)
H−∗, (37)

where H−∗ = (H−1)∗. We can express J−1(x) of (37) in the form (28) with ℓ = m, k = 0

A = H−1 diag (c1, . . . , cm)H−∗,

Ci = H−1Ei([H]i), zi = [H−∗]i, 1 ≤ i ≤ m, (38)



12

where [H]i denotes the ith row of the matrix H and Ei(d) is the matrix whose ith row is equal to the vector

d, and whose remaining elements are equal zero.

Example 4. As another example, suppose that

y = Hx + w, (39)

where w is a Gaussian random vector with zero mean and known covariance C. In this case the inverse Fisher

information matrix with respect to x is

J−1(x) = (H∗C−1H)−1, (40)

which has the form (28) with ℓ = 0, k = 0 and A = (H∗C−1H)−1.

Example 5. As a final example, consider an unknown scalar µ in additive white Gaussian noise with unknown

variance σ2. The inverse Fisher information for estimating the SNR x = µ2/σ2 is

J−1(x) =
1

N
(4x + 2x2), (41)

which has the form (28) with ℓ = 1, k = 1,

A = 0, C1 =
4

N
, z1 = 1, B1 =

√
2

N
. (42)

In Section VI we treat the case in which U = C
m so that x0 is not restricted, and show that with J−1(x0)

given by (28), the optimal M can be found as a solution to an SDP. We also develop necessary and sufficient

optimality conditions on M that lead to further insight into the solution.

In some settings, we may have additional information on the parameter vector x0 which can result in a

lower MSE bound. The set U is then chosen to capture these properties of x0. For example, we may know

that the norm of x0 is bounded: x∗
0x0 ≤ U for some U > 0. There are also examples where there are natural

restrictions on the parameters, for example if x0 represents the variance or the SNR of a random variable,

then x0 > 0. More generally, x0 may lie in a specified interval α ≤ x0 ≤ β. These constraints can all be

viewed as special cases of the quadratic constraint x0 ∈ Q where

Q = {x|x∗A1x + 2b∗
1x + c1 ≤ 0}, (43)

for some A1,b1 and c1. Note that we do not require that A1 º 0 so that the constraint set (43) is not

necessarily convex. In Section VII, we discuss the scenario in which x0 ∈ Q, and show that again an

admissible dominating M can be found by solving an SDP. Using the results of [40], the ideas we develop can
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also be generalized to the case of two quadratic constraints of the form Q.

Before proceeding to the detailed developments, it is important to note, that even in cases where M is

computed via an SDP, i.e., a closed form solution does not exists, the calculation of M does not depend on

the data y. Therefore, M can be computed off line. Once the data is received, to implement the proposed

estimator all that is needed is to multiply the unbiased estimator by the matrix I + M so that the additional

cost incurred is negligible.

VI. Dominating Bound on the Entire Space

We first treat the case in which U = C
m so that x0 is not restricted. As we will show, if Bi 6= 0 for some

i, then a strictly dominating M over the entire space can always be found. This implies that under this

condition, the CRLB can always be improved on uniformly.

With J−1(x0) given by (28), the MSE bound of (9) can be written compactly as

MSEB (M,x0) = x∗A0(M)x + 2ℜ{b∗
0(M)x} + c0(M), (44)

where we defined

A0(M) = M∗M +
ℓ∑

i=1

B∗
i ((I + M)∗(I + M) − I)Bi;

b0(M) =
k∑

i=1

C∗
i ((I + M)∗(I + M) − I) zi;

c0(M) = Tr (((I + M)∗(I + M) − I)A) . (45)

From Theorem 2, an admissible dominating matrix M can then be found as the solution to

min
M

max
x

{x∗A0(M)x + 2ℜ{b∗
0(M)x} + c0(M)} , (46)

which can be written as mint,M t subject to

x∗A0(M)x + 2ℜ{b∗
0(M)x} + c0(M) ≤ t, for all x. (47)

The constraint (47) is equivalent to [41, p. 163]

G(M)
△
=


 A0(M) b0(M)

b∗
0(M) c0(M) − t


 ¹ 0. (48)

Since the choice of parameters M = 0, t = 0 satisfies the constraint (48), our problem is always feasible.



14

In our development below, we consider the case in which the constraint (48) is strictly feasible, i.e., there

exists a matrix M such that G(M) ≺ 0. Conditions for strict feasibility are given in the following lemma.

Lemma 1: The constraint (48) is strictly feasible if and only if

W
△
=

ℓ∑

i=1

B∗
i Bi ≻ 0. (49)

Proof: We first show that strict feasibility is equivalent to

A0(M) ≺ 0 for some M. (50)

Clearly, if (48) is strictly feasible then (50) is satisfied. Conversely, if (50) holds, then we can always choose

a large enough t such that (48) is strictly feasible. Indeed, using Schur’s Lemma (see Appendix A), strict

feasibility reduces to the condition

A0(M) ≺ 1

c0(M) − t
b0(M)b0(M)∗. (51)

Since for some M, A0(M) ≺ 0, there exists a small enough t such that (50) holds.

We now show that (49) is equivalent to (50). Suppose first that (49) is satisfied, and let M = αI with

α = −λmin/(1+λmin) where λmin is the smallest eigenvalue of W. With this choice we can immediately verify

that (50) is satisfied, and the problem is strictly feasible. Conversely, suppose that (49) does not hold; this

implies that there exists a vector v such that Wv = 0. Since W is a sum of positive semidefinite matrices,

this is possible if and only if B∗
i Biv = 0 for all i, or equivalently, Biv = 0 for all i. It then follows that

v∗A0(M)v = v∗M∗Mv ≥ 0, and (50) cannot be satisfied.

If (48) is not strictly feasible then, as we show in Appendix B, it can always be reduced to a strictly feasible

problem with additional linear constraints on M. A similar approach to that taken here can then be followed

for the reduced problem. Due to the fact that any feasible problem can be reduced to a strictly feasible one,

in the remainder of this section we assume that our problem is strictly feasible.

In the next subsection we show that the optimal M can be found as a solution to an SDP. We then develop

an alternative SDP formulation via the dual program, that also provides further insight into the solution, in

Section VI-B. Finally, in Section VI-C we derive a set of necessary and sufficient optimality conditions on M.

A. SDP Formulation of the Problem

The constraint (48) is not written in convex form, so that we cannot directly apply standard convex

algorithms or Lagrange duality theory to find the optimal M. Fortunately, this constraint can be converted

into convex form, as incorporated in the following lemma.
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Lemma 2: The problem

min
t,M

{t : G(M) ¹ 0} , (52)

with G(M) given by (48) is equivalent to the convex problem

min
t,M,X

{t : Z(M,X) ¹ 0, M∗M ¹ X} , (53)

where

Z(M,X) =


X +

∑ℓ
i=1 B∗

i ΦBi
∑k

i=1 C∗
i Φzi

∑k
i=1 z∗i ΦCi Tr (AΦ) − t


 , (54)

and for brevity we denoted Φ = X + M + M∗.

Proof: See Appendix C.

From Lemma 2 we see that (52) can be written as a convex problem. Moreover, the optimal M can be

found using standard software packages by noting that the problem (53) can be written as an SDP. Indeed,

the matrix Z(M,X) is linear in both M and X; using Schur’s Lemma (Appendix A) the constraint M∗M ¹ X

can be written as 
X M∗

M I


 º 0, (55)

which is also a linear matrix inequality.

B. Dual Problem

To gain more insight into the form of the optimal M, and to provide an alternative method of solution

which in some cases may admit a closed form solution, we now rely on Lagrange duality theory.

Since the problem (53) is convex and strictly feasible, the optimal value of t is equal to the optimal value

of the dual problem. To find the dual, we first write the Lagrangian associated with our problem:

L = t + Tr(Π̃Z(M,X)) + Tr (∆(M∗M − X)) (56)

where ∆ º 0 and

Π̃ =


 Π w

w∗ π


 º 0 (57)

are the dual variables.

Differentiating the Lagrangian with respect to t and equating to 0,

π = 1. (58)
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Differentiating with respect to X and equating to 0,

∆ = Π +

ℓ∑

i=1

BiΠB∗
i +

k∑

i=1

(ziw
∗C∗

i + Ciwz∗i ) + A

= Π + S(Π,w), (59)

where we defined

S(Π,w) =
ℓ∑

i=1

BiΠB∗
i +

k∑

i=1

(ziw
∗C∗

i + Ciwz∗i ) + A. (60)

Finally, the derivative with respect to M yields M∆ = −S(Π,w), which after substituting the value of ∆

from (59), becomes

M (S(Π,w) + Π) = −S(Π,w). (61)

The condition Π̃ º 0 implies that Π º ww∗. Therefore,

S(Π,w) º S(ww∗,w) = J−1(w) ≻ 0, (62)

and S is invertible. Thus, from (61),

M = −S(Π,w) (S(Π,w) + Π)−1 . (63)

An important observation from (63) is that regardless of Π, M of (63) is not equal 0. Therefore, from

Theorem 2 it follows that as long as the problem is strictly feasible, we can improve the CRLB for all values

of x0 by a linear transformation. In Appendix D we show that M is also non-zero when the problem is not

strictly feasible, as long as Bi 6= 0 for some i. We therefore have the following proposition.

Proposition 1: Consider the setting of Theorem 2 with U = C
m and J−1(x0) given by (28). Then M̂ = 0 if

and only if Bi = 0 for all i.

Proof: If Bi = 0 for all i, then A0(M) ¹ 0 only if M = 0. Since M = 0 is feasible, we conclude that in

this case M = 0 is the optimal solution. The proof of the reverse implication is given in Appendix D.

Substituting (63) into the Lagrangian, the dual problem becomes

min
w,Π

Tr
(
S(Π,w) (S(Π,w) + Π)−1

S(Π,w)
)

, (64)

subject to (57). Using Schur’s Lemma, (64) can be written as

min
Y,w,Π

Tr (Y) (65)
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subject to


 Y S(Π,w)

S(Π,w) S(Π,w) + Π


 º 0;


Π w

w 1


 º 0, (66)

which is again an SDP.

We conclude that the optimal matrix M is given by (63), where Π and w are the solution to the dual problem

of minimizing (65) subject to (66). In some cases, the dual problem may admit a closed form solution, leading

to an explicit expression for M via (63). As an example, suppose that x = x is a scalar and J−1(x) = a+ b2x2

with a > 0. The dual problem becomes

min
π≥0

(a + b2π)2

a + (b2 + 1)π
. (67)

The optimal solution can be shown to be

π = max

(
a(1 − b2)

b2(b2 + 1)
, 0

)
, (68)

leading to

M̂ = max

(
− 2b2

b2 + 1
,−1

)
. (69)

Therefore, if x̂ achieves the CRLB J−1(x) = a + b2x2, then the estimator

x̂b =





1−b2

1+b2
x̂, |b| ≤ 1;

0, |b| ≥ 1

(70)

achieves the MSE

MSEB (M̂, x) =





a (1−b2)2

(1+b2)2
+ b2x2, |b| ≤ 1;

x2, |b| ≥ 1,

(71)

which is smaller than J−1(x) for all x.

C. Necessary and Sufficient Optimality Conditions

To complete our description of the optimal M, we now use the Karush-Kuhn-Tucker (KKT) theory [33] to

develop necessary and sufficient optimality conditions.

The KKT conditions state that M,X and t are optimal if and only if there exist matrices Π̃,∆ º 0 such

that

1. dL/dX = 0, dL/dM = 0 and dL/dt = 0 where the Lagrangian L is defined by (56);
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2. Feasibility: Z(M,X) ¹ 0 where Z(M,X) is defined by (54);

3. Complementary slackness: Tr(Π̃Z(M,X)) = 0 and Tr (∆(M∗M − X)) = 0.

We have seen already that the first condition results in π = 1, ∆ = Π + S(Π,w) and M given by (63). Since

∆ ≻ 0, we have immediately from the second complementary slackness condition that X = M∗M. The first

complementary slackness condition then becomes

0 = Tr(Π̃Z(M,X))

= Tr ((MΠ + (I + M)S(Π,w))M∗) + Tr(MS(Π,w)) − t

= Tr(MS(Π,w)) − t. (72)

Thus, the matrix M is optimal if and only if there exists a matrix Π and a vector w such that Π º ww∗ and

the following conditions hold:

M = −S(Π,w) (S(Π,w) + Π)−1 ;
A0(M) b0(M)

b∗
0(M) c0(M) − Tr (MS(Π,w))


 ¹ 0, (73)

were A0(M),b0(M), c0(M) are defined by (45), and S(Π,w) is given by (60).

VII. Dominating Bound on a Quadratic Set

We now treat the case in which the parameter vector x is restricted to the quadratic set Q of (43). To find

an admissible dominating matrix in this case we need to solve the problem

min
M

max
x∈Q

{MSEB (M,x) − MSEB (0,x)}. (74)

We assume that the set Q is not empty, and that there exists an x in the interior of Q. However, we do not

make any further assumptions on the parameters A1,b1 and c1; In particular, we do not assume that A1 º 0.

We first consider the inner maximization in (74) which, omitting the dependence on M, has the form

max
x

{x∗A0x + 2ℜ{b∗
0x} + c0 : x∗A1x + 2b∗

1x + c1 ≤ 0}. (75)

The problem of (75) is a trust region problem, for which strong duality holds (assuming that there is a strictly

feasible point) [42]. Thus, it is equivalent to

min
λ≥0,t,M

t (76)
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subject to 
λA1 λb1

λb∗
1 λc1 + t


 º


A0(M) b0(M)

b∗
0(M) c0(M)


 . (77)

It is easy to see that (77) is always feasible, since both matrices in (77) can be made equal to 0 by choosing

M = 0, and λ = t = 0. From Lemma 1 it follows that if
∑ℓ

i=1 B∗
i Bi ≻ 0 then the problem is strictly feasible

with λ = 0. Since any feasible problem can be reduced to a strictly feasible one using the method described

in Appendix B, we assume in the remainder of this section that the problem is strictly feasible.

The problem of minimizing (76) subject to (77) is very similar to that of (53). Indeed, our problem can be

written compactly as

min
t,λ≥0,M

{t : G(M) ¹ λF} , (78)

where G(M) is defined in (48) and

F =


A1 b1

b∗
1 c1


 . (79)

Therefore, the development of the solution is analogous to the development in the previous section. We begin

with the equivalent of Lemma 2, which shows that the optimal M can be found by solving an SDP:

Lemma 3: The problem

min
t,λ≥0,M

{t : G(M) ¹ λF} , (80)

with G(M) and F given by (48) and (79) respectively, is equivalent to the convex problem

min
t,λ≥0,M,X

{t : Z(M,X) ¹ λF, M∗M ¹ X} , (81)

where Z(M,X) is defined in (54).

A. Dual Problem

We now can use Lagrange duality theory, as in Section VI-B, to gain more insight into the optimal M.

The Lagrangian associated with the problem (81) is

L = t + Tr(Π̃(Z(M,X) − λF)) + Tr (∆(M∗M − X)) (82)

where ∆ º 0 and Π is defined by (57). Since λ ≥ 0, the minimum of the Lagrangian is finite only if

Tr(Π̃F) = Tr(ΠA1) + 2ℜ{w∗b1} + c1 ≤ 0. (83)

The optimal value is then obtained at λ = 0, and the Lagrangian becomes the same as that associated with
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the unconstrained problem (53). Thus, the dual of (81) is

min
Y,w,Π

Tr (Y) (84)

subject to


 Y S(Π,w)

S(Π,w) S(Π,w) + Π


 º 0;


Π w

w 1


 º 0;

Tr(ΠA1) + 2ℜ{w∗b1} + c1 ≤ 0, (85)

which is again an SDP.

We conclude that the optimal matrix M is given by (63), where Π and w are the solution to the dual

problem of minimizing (84) subject to (85). Note that regardless of Π, M of (63) is not equal 0. Therefore,

from Theorem 2 it follows that as long as the problem is strictly feasible, we can improve the CRLB for all

values of x0 ∈ Q by a linear transformation.

B. Necessary and Sufficient Optimality Conditions

Following the same steps as in Section VII-B we can show, using the KKT conditions, that the matrix M is

optimal if and only if there exists a matrix Π and a vector w such that Π º ww∗ and the following conditions

hold:

M = −S(Π,w) (S(Π,w) + Π)−1 ;

Tr(ΠA1) + 2ℜ{w∗b1} + c1 ≤ 0;

λ (Tr(ΠA1) + 2ℜ{w∗b1} + c1) = 0;
A0(M) b0(M)

b∗
0(M) c0(M) − Tr (MS(Π,w))


 ¹ λ


A1 b1

b∗
1 c1


 , (86)

were A0(M),b0(M), c0(M) are defined by (45), and S(Π,w) is given by (60).

As an example, suppose that J−1(x) = A and the set Q is defined by x∗x ≤ c. In this case, a strictly

dominating M is given by

M = − Tr(A)

Tr(A) + c
I. (87)
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Indeed, since ℓ = k = 0, and b1 = 0, the conditions (86) are satisfied with

Π =
c

Tr(A)
A, t = − Tr2(A)

Tr(A) + c
, λ =

Tr2(A)

(Tr(A) + c)2
. (88)

The corresponding MSE bound is

E
{
‖x̂ − x0‖2

}
≥ Tr(A)

(Tr(A) + c)2
(Tr(A)x∗

0x0 + c2). (89)

This result is summarized in the following theorem.

Theorem 3: Let y denote measurements of a deterministic parameter vector x0 with pdf p(y;x0). Assume

that the Fisher information with respect to x0 has the form J(x0) = A−1, and that ‖x0‖2 ≤ c. If there exists

an efficient estimator x̂, then the estimator

x̂b =
c

Tr(A) + c
x̂

achieves the bound (89), and has smaller MSE than x̂ for all ‖x0‖2 ≤ c.

Closed form expressions for x̂b when J(x0) = A−1 can also be obtained in the case of a weighted norm

constraint of the form x∗
0Tx0 ≤ c for certain choices of T ≻ 0 using similar techniques as those used in [34].

The estimator x̂b of Theorem 3 is a shrinkage estimator, i.e., a constant multiple of the unbiased estimator

x̂. Estimators of this type have been used extensively in the literature [43], [19], [17], [21] following the seminal

work of James and Stein [16].

A special case of Theorem 3 is the linear Gaussian model in which y = Hx0 + w where H is a known full-

rank matrix, and w is a zero-mean Gaussian random vector with covariance C ≻ 0. In this case, J−1(x0) =

(H∗C−1H)−1. The estimator x̂b resulting from the theorem is equal to the minimax MSE estimator developed

in [17], which minimizes the worst-case MSE over all linear estimators1. This estimator was shown in [18] to

dominate the least-squares estimator for all norm bounded parameters; since the least-squares estimator is an

efficient estimator for our problem, our results agree with those of [18].

VIII. Example

In the previous sections we showed analytically that the CRLB can be uniformly improved upon using a

linear bias. We also discussed how to construct an estimator whose MSE is uniformly lower than a given

efficient estimator. Here we demonstrate that these results can be used in practical settings even when an

efficient estimator is unknown.

1The minimax MSE estimator under a weighted norm constraint was also treated in [44]. In the unweighted case the resulting
estimator is equal to that of [17]. However, it was shown in [34] that there is an error in the derivations in [44] which leads to an
erroneous expression for the minimax MSE estimator in the general case.
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Specifically, we propose a linearly modified ML estimator in which we multiply the ML estimator by a

strictly dominating matrix M on the appropriate set, even in cases when the ML estimator is not efficient.

We now demonstrate, through an example, that we can often gain in performance by using such an approach.

Suppose we wish to estimate the SNR of a constant signal in Gaussian noise, from N iid measurements

yi = µ + wi, 1 ≤ i ≤ N (90)

where wi is a zero-mean Gaussian random variable with variance σ2, and the SNR is defined by x = µ2/σ2.

The ML estimator of the SNR is

x̂ =
µ̂2

σ̂2
(91)

where

µ̂ =
1

N

N∑

i=1

yi, σ̂2 =
1

N

N∑

i=1

(yi − µ̂)2. (92)

In general x̂ is biased and does not achieve the CRLB.

As we have seen in Example 5 in Section II, the inverse Fisher information in this case is

J−1(x) =
1

N
(4x + 2x2). (93)

In addition, we know that x ≥ 0 for all choices of µ and σ2. Thus, to obtain a lower bound than the CRLB

we may seek the scalar M̂ that is the solution to

min
M

max
x≥0

{
x2M2 + ((1 + M)2 − 1)J−1(x)

}
. (94)

The optimal value of M can then be found using the SDP formulation of Section VII. Indeed, the constraint

x ≥ 0 can be written as x ∈ Q where Q is defined by (43) with A = 0, b = 1, c = 0. For our estimator, we

then use the linearly transformed ML estimator which is given by (1 + M̂)x̂.

In Fig. 1 we compare the MSE of the ML estimator and the linear ML estimator as a function of the number

of observations N for an SNR of x = 2. For each value of N , the MSE is averaged over 10000 noise realizations.

As can be seen from the figure, the MSE of the linear ML is smaller than that of the ML estimator for all

values of N . In Fig. 2 we plot the value of 1 + M as a function of N for the example in Fig. 1.

In some cases we may have prior information on the range of SNR values possible, which can be exploited

to further improve the performance. Suppose that we know that α ≤ x ≤ β for some values of α and β. The
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Fig. 1. MSE in estimating the SNR as a function of the number of observations N for an SNR of 2 using the ML and
the linearly transformed ML estimators.
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Fig. 2. 1 + M as a function of the number of observations N when estimating an SNR of 2.

ML estimator in this case is

x̂c =





x̂, α ≤ x̂ ≤ β;

α, x̂ ≤ α;

β, x̂ ≥ β,

(95)

where x̂ = µ̂2/σ̂2.

To develop a linear modification of the ML estimator we note that the constraint α ≤ x ≤ β can be written

as

(x − α)(x − β) = x2 − (α + β)x + αβ ≤ 0. (96)
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We can now solve the optimization problem with respect to the set (96).

In Fig. 3 we compare the MSE of the constrained ML estimator and the linear ML estimator subject to

(96), for an SNR of x = 2 and SNR bounds α = 1, β = 5. For each value of N , the MSE is averaged over 10000

noise realizations. As can be seen from the figure, the linearly modified ML estimator performs significantly

better than the ML estimator. In Fig. 4 we plot the value of 1 + M as a function of N .
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Fig. 3. MSE in estimating the SNR as a function of the number of observations N for an SNR of 2 using the ML and
the linearly transformed ML estimators subject to the constraint (96).
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Fig. 4. 1 + M as a function of the number of observations N when estimating an SNR of 2 subject to the constraint
(96).
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IX. Conclusion

In this paper we introduced a general framework for obtaining bounds on the MSE performance of estimators

with linear bias vectors. The bounds we developed dominate the conventional CRLB so that they are uniformly

lower for all feasible values of the unknown parameter vector x0. The key idea we proposed is that a dominating

bound can be obtained by solving a certain minimax optimization problem. We then analyzed the resulting

minimax problem in the case in which the CRLB is quadratic in x0. However, the basic concepts and tools

we proposed are relevant in a more general context and can be used for other forms of the CRLB, as well as

other classes of bias vectors.

It is well known that some of the existing modifications of ML, such as the James-Stein estimator, can be

viewed in an empirical Bayes framework [45]. An interesting direction for future research is to explore the

connection between the proposed methods and empirical Bayes approaches [46].

Appendix

I. Schur’s Lemma

The following result is referred to as Schur’s Lemma [47, p. 28]: Let

M =


 X Y∗

Y Z




be a Hermitian matrix. Then M º (≻) 0 if and only if Z º (≻) 0, X−Y∗Z†Y º (≻) 0 and Y∗(I−ZZ†) = 0.

Equivalently, M º (≻) 0 if and only if X º (≻) 0, Z − YX†Y∗ º (≻) 0 and Y(I − XX†) = 0.

II. Reducing a Feasible problem to a strictly feasible problem

Consider the constraint

G(M)
△
=


A0(M) b0(M)

b∗
0(M) c0(M) − t


 ¹ 0, (97)

and suppose that this constraint is not strictly feasible. We now show how to reduce it to a strictly feasible

constraint together with linear equalities:

Lemma 4: The constraint G(M) ¹ 0 is equivalent to

G2(M)
△
=


V∗

2A0(M)V2 V∗
2b0(M)

b∗
0(M)V2 c0(M) − t


 ¹ 0

MV1 = 0

V∗
1b0(M) = 0, (98)
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where the r columns of V1 form an orthonormal basis for N (W) with W =
∑ℓ

i=1 B∗
i Bi, and V2 is an

m × (m − r) matrix with orthonormal columns that are orthogonal to the columns of V1.

Proof: Suppose first that G(M) ¹ 0, and let Ṽ be the unitary matrix defined by

Ṽ =


V1 V2 0

0 0 1


 . (99)

Since Ṽ is unitary, Ṽ∗G(M)Ṽ ¹ 0. Now,

Ṽ∗G(M)Ṽ

=




V∗
1M

∗MV1 V∗
1M

∗MV2 V∗
1b0(M)

V∗
2M

∗MV1 V∗
2A0(M)V2 V∗

2b0(M)

b∗
0(M)V1 b∗

0(M)V2 c0(M) − t


 ,

(100)

where we used the fact that A0(M)V1 = M∗MV1. To ensure that Ṽ∗G(M)Ṽ ¹ 0 we must have V∗
1M

∗MV1 ¹
0, which implies that MV1 = 0, and

Ṽ∗G(M)Ṽ

=




0 0 V∗
1b0(M)

0 V∗
2A0(M)V2 V∗

2b0(M)

b∗
0(M)V1 b∗

0(M)V2 c0(M) − t


 .

(101)

From (101), Ṽ∗G(M)Ṽ ¹ 0 only if V∗
1b0(M) = 0 and G2(M) ¹ 0.

Conversely, suppose that (98) holds. Then from (100) we have immediately that Ṽ∗G(M)Ṽ ¹ 0 which

implies that G(M) ¹ 0.

It is easy to see that G2(M) defined in Lemma 4 is always strictly feasible. Indeed, by our definition of V2,

W2 =
ℓ∑

i=1

V∗
2B

∗
i BiV2 ≻ 0. (102)

Strict feasibility then follows in the same way as in Lemma 1.

III. Proof of Lemma 2

In this appendix we prove that the problem (52) is equivalent to (53).

We first note that (52) can be written as

min
t,M

{t : Z(M,X) ¹ 0,X = M∗M} . (103)
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This follows from simply substituting X = M∗M into G(M) and noting that Z(M,M∗M) = G(M). The

problem is that the constraint X = M∗M is not convex. To obtain a convex problem we would like to relax

this constraint to the convex form X º M∗M, leading to (53). As we now show, the original and relaxed

problems have the same solution and are therefore equivalent. To this end it is sufficient to show that if

t̂, M̂, X̂ are optimal for (53), then we can achieve the same value t̂ with X = M̂∗M̂.

To prove the result we therefore need to show that if Z(M̂, X̂) ¹ 0 then Z(M̂, M̂∗M̂) ¹ 0. Now,

Z(M̂, X̂) − Z(M̂, M̂∗M̂)

=


Y +

∑ℓ
i=1 B∗

i YBi
∑k

i=1 C∗
i Yzi

∑
z∗i YCi Tr(AY)


 △

=W(Y), (104)

where we defined

Y = X̂ − M̂∗M̂. (105)

Since X̂ and M̂ are feasible, Y º 0. We now show that W(Y) º 0 for all Y º 0. This follows from the

definition of J−1(x) and the fact that J−1(x) ≻ 0. Since J−1(x) ≻ 0 for all x,

Tr
(
YJ−1(x)

)
º 0 for all x, and all Y º 0. (106)

Now,

Tr(YJ−1(x))

=
[
x 1

]∗



∑ℓ
i=1 B∗

i YBi
∑k

i=1 C∗
i Yzi

∑k
i=1 z∗i YCi Tr(YA)





x

1




=
[
x 1

]∗
W(Y)


x

1


 . (107)

Combining (107) with the fact that
∑ℓ

i=1 B∗
i YBi º 0, we conclude that c∗W(Y)c º 0 for any vector c, so

that W(Y) º 0 for any Y º 0.

IV. Proof of Proposition 1

To prove the proposition we first establish the following lemma, which is analogous to Lemma 2.

Lemma 5: The problem

min
t,M

{t : G2(M) ¹ 0, MV1 = 0, V∗
1b0(M) = 0} , (108)

with G2(M) given by (98) and V1 a matrix whose r columns form an orthonormal basis for N (W) with
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W =
∑ℓ

i=1 B∗
i Bi is equivalent to the convex problem

min
t,M,X

{t : Z2(M,X) ¹ 0, XV1 = 0,

V∗
1b0(M,X) = 0, X º M∗M} , (109)

where

Z2(M,X) =


V∗

2

(
X +

∑ℓ
i=1 B∗

i ΦBi

)
V2 V∗

2b0(M,X)

b∗
0(M,X)V2 Tr (AΦ) − t


 (110)

in which for brevity we denoted Φ = X + M + M∗, V2 is an m × (m − r) matrix with orthonormal columns

that are orthogonal to the columns of V1, and b0(M,X) =
∑k

i=1 C∗
i Φzi.

Proof: By substituting X = M∗M into (108), our problem can be written as

min
t,M,X

{t : Z2(M,X) ¹ 0, XV1 = 0,

V∗
1b0(M,X) = 0, X = M∗M} . (111)

This follows from the fact that Z2(M,M∗M) = G2(M), and that MV1 = 0 if and only if M∗MV1 = 0.

As in the proof of Lemma 2 (see Appendix C), we now show that we can relax the non-convex constraint

X = M∗M to the convex form X º M∗M, leading to (109). To this end it is sufficient to show that if t̂, M̂, X̂

are optimal for (109), then we can achieve the same value t̂ with X = M̂∗M̂.

We first note that

Z2(M̂, X̂) − Z2(M̂, M̂∗M̂) = Q∗W(Y)Q, (112)

where W(Y) and Y are defined in (104) and (105) respectively, and

Q =


V2 0

0 1


 . (113)

In Appendix C it was shown that W(Y) º 0 for any Y º 0 from which it follows that Q∗W(Y)Q º 0 so

that G2(M̂) = Z2(M̂, M̂∗M̂) ¹ Z2(M̂, X̂) ¹ 0. The last inequality follows from the fact that M̂ and X̂ are

feasible for (109).

It remains to show that X = M̂∗M̂ satisfies the conditions XV1 = 0 and V∗
1b0(M̂,X) = 0. Since M̂ and

X̂ are feasible, and BiV1 = 0 we have that

Ṽ∗Z(M̂, X̂)Ṽ =


 0 0

0 Z2(M̂, X̂)


 ¹ 0, (114)
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where Z(M,X) is defined in (54) and Ṽ is defined by (99). From (114) we conclude that Z(M̂, X̂) ¹ 0.

Using the proof of Lemma 2 in Appendix C we then have that Z(M̂, M̂∗M̂) ¹ 0, which in turn implies from

Lemma 4 that XV1 = 0 and V∗
1b0(M̂,X) = 0.

Once we have shown that the problem (108) is equivalent to the convex problem (109), we can use the KKT

conditions to show that M̂ 6= 0, just as in Section VI-A.
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