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ABSTRACT 

Network on Chip (NoC) has been proposed for future SoC 

interconnect. Hotspots are SoC modules which occasionally 

receive traffic that exceeds the rate at which they can absorb data. 

Hotspots are common in real-life SoCs, such as external DRAM 

or internal components (caches, CAMs, special purpose 

processors) that are bandwidth limited and in high demand by 

other units. In this paper we demonstrate that hotspot modules on 

wormhole-based NoCs dramatically reduce network efficiency 

and unfairly allocate system resources. A single hotspot may ruin 

the performance of the entire NoC. In order to resolve these 

problems, we introduce a novel low-cost end-to-end credit based 

resource allocation technique that regulates access to the hotspot 

module. Using simulation, we show the effectiveness of the 

suggested mechanism.1 

Categories and Subject Descriptors 
System-Level Design and Co-Design: Network-on-Chip (NoC) 

General Terms 
Algorithms, Performance, Design 

Keywords 

Network on-Chip, wormhole, flow-control, hotspot, SoC 

1. INTRODUCTION 
Wormhole  [1] switching is commonly employed in NoC (e.g.  [2], 

 [3],  [4],  [5]), thanks to its small buffer requirements and low 

latencies at light load. Each packet is divided into small fixed size 

parts called flits, which are transmitted to the next hop without 

waiting for the entire packet to be received. This causes the 

transmitted packet to be “spread” along the path between the 

source and destination nodes in a pipeline fashion. The main 

drawback of wormhole interconnect is the high sensitivity to 

packet blocking, calling for high performance networks to operate 

at relatively low utilization and to include multiple virtual 

channels  [6]. 

Bandwidth can be allocated to NoC links for providing adequate 

performance  [7], but speeding up the operation of IP modules is 

impossible or has an unacceptable cost. Furthermore, at certain 

times the aggregated traffic demand might exceed the destination 

module’s bandwidth capacity. A bandwidth-limited SoC module 

working close to its capacity is termed a hotspot. In this situation, 

when the module is unable to consume incoming packets fast 

enough, the entire network may be affected. Hop-by-hop 

backpressure causes buffers at the router adjacent to the hotspot to 
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be filled up and become stalled blocking new arrivals to this 

router. This creates a domino effect, by which the delivery of 

packets to ports of more distant routers is slowed down, forming a 

saturation tree  [8] with the hotspot module as its root, as 

illustrated in Figure 1. The NoC suffers increased delays in packet 

delivery and unfair network utilization (modules near the hotspot 

get larger portion of its capacity). 

While this effect may also exist in packet based store-and-forward 

networks, the threat is particularly troublesome in wormhole 

based architectures due to packet “stretching” across several hops. 

As a result, hotspot effects may extend network wide instantly. It 

is important to note that this hotspot phenomenon is independent 

of links bandwidth, as a saturation tree may build up in a system 

with infinite capacity links and a single heavily loaded module. 

Consequently, even carefully designed, largely over-provisioned 

NoCs may suffer of poor performance if potential hotspots are left 

unhandled. 

We propose a novel credit-based resource allocation mechanism 

for solving hotspot congestion problems in wormhole-based 

NoCs. A hotspot allocation controller is introduced to arbitrate 

short, high priority credit requests. The controller regulates 

hotspot access according to the quality of service requirements of 

the specific system. Credit requests and grants are transmitted as 

high-priority packets (grants may be piggybacked on other 

messages). Auto-refresh or pre-allocation can be used for selected 

modules to eliminate light load latencies. One side of the 

mechanism is implemented in modules’ interfaces and the other in 

a strategic location, while NoC routers remain unchanged. This 

prevents the accumulation of packets destined at a hotspot module 

in the network. Consequently, other traffic remains unaffected 

even when the hotspot load increases significantly. 
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Figure 1: SoC hotspot at external DRAM interface and the 

resulting NoC saturation tree (highlighted links) 
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The rest of this paper is organized as follows: Related work is 

surveyed in section 2. In section 3 we discuss the negative effects 

of hotspots in wormhole-based NoCs. In section 4, an end-to-end 

allocation technique is proposed to allow fair sharing of the 

hotspot resource and to mitigate effects on non-hotspot traffic 

(traffic not destined at the hotspot module), and section 5 presents 

simulation of the suggested mechanism.  

      

2. RELATED WORK 
The problem of hotspot contention has been thoroughly explored 

in off-chip interconnection networks (e.g.  [8],  [9]). Many papers 

analyzed hotspot effects on non-hotspot traffic and suggested 

various schemes for improving system performance. However, 

most previous works have addressed multi-computer networks, in 

which the design considerations are significantly different from 

those of NoCs. For example, most works modify the network 

routers in order to throttle packet injection at high loads (e.g., 

 [10],  [11]), discard packets (e.g.,  [12]), deflect packets away of 

loaded locations (e.g.  [13],  [14]), use separate buffers for traffic 

destined at a hotspot module (e.g.  [9]), or simply use a large 

number of virtual channels. However, when applied to NoCs, 

such modifications considerably increase NoC router gate count, 

resulting in excessive area and power consumption and reduced 

speed. Typically, NoCs must employ static shortest path routing 

based on a simple routing function, because of on-chip cost and 

performance considerations. Moreover, those works do not 

address the hotspot allocation fairness problem. If we assume a 

router-based solution to this problem (such as fair queueing 

mechanism per source-destination pair  [15]) or complicated 

admission control  [16], the NoC costs become infeasible. 

The proposed hotspot resource allocation mechanism is 

considerably different from traditional end-to-end flow-control 

mechanisms. Flow-control is conducted on a per-source basis 

(e.g. TCP, static window in  [17]), and prevents overflow in the 

destination buffers pre-allocated for this source (e.g.  [18]). Flow 

control does not treat the hogging of network resources and does 

not address the problem of fair allocation of scarce hotspot 

resources. In addition, existing schemes require at least one 

destination buffer per potential source, which is inappropriate in 

on-chip NoCs.  Our scheme, using credit request messages, takes 

care of all latter problems. 

 

3. HOTSPOT EFFECTS  
The formation of a saturation tree due to hotspot congestion has 

several negative effects on system performance. Hotspot access 

latency is increased, as packets destined at the hotspot contend for 

buffer space and bandwidth. However, this effect is unavoidable 

when demand approaches available hotspot module capacity. 

Unfortunately, additional significant problems arise: Typically, 

different source modules are at different distances from the 

hotspot module (as illustrated in Figure 2 using a common NoC 

topology). Since a packet has to win local output port arbitration 

in each router along its path, the hotspot module is not fairly 

shared. In particular, modules close to the hotspot enjoy a larger 

share of saturation bandwidth than distant ones. Location and 

distance diversity also lead to differences in access latency, as 

distant modules experience very long access times. This will be 

referred to as the source fairness problem. 

Performance degradation due to hotspot load is not restricted to 

hotspot (HS) traffic (i.e., traffic destined at the hotspot). In typical 

NoCs, HS and non-HS traffic compete for the same network 

resources, i.e. buffer space, link bandwidth and router ports. 

Therefore, hotspots may hinder the delivery of non-HS packets 

(Figure 3). The above discussion may apply to any network. 

However, left unhandled, hotspot effects in a wormhole network 

are more severe than in a store-and-forward one, as packets are 

blocked across multiple routers and buffering space is limited. 
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Figure 2: Source Unfairness in a 4×4 YX routed NoC 

On its way to the hotspot module (#1), packets generated by 

module 16 have to win 6 arbitrations, while module 5 packets 

have to win only 2.  
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Figure 3: Hotspot traffic obstructing non-HS traffic. 

Flow 16�1 may slow-down (or block) flow 10�8 (which shares 

a link), and in turn may affect flow 9�12. 



4. HOTSPOT RESOURCE ALLOCATION 
In order to reduce the dramatic effects of hotspots in a wormhole-

based NoC (section  5), a credit-based resource allocation 

mechanism is suggested: Each source gets a quota that limits the 

number of flits it can send towards a hotspot module. When a 

source quota is exhausted, it can resume transmission only after 

being granted additional credit. Consequently, a saturation tree 

can not form and traffic not destined at the hotspot module 

remains unaffected during congested periods.    

Two types of control messages regulate the access to a hotspot: If 

a source has insufficient credit to start delivery of a data packet to 

a hotspot module, it sends a credit request packet to a hotspot 

allocation controller, describing the requested transaction. When 

appropriate, the controller sends back credit using a credit reply 

packet. Due to their significance and short length, credit request 

and reply messages are given a high priority level and cannot be 

held back in the network by data packets. In this work, we assume 

a prioritized virtual channel mechanism such as the one described 

in [6], to deliver control messages, guaranteeing fast hotspot 

controller access regardless of data traffic loads.   

Since control packets are a few flits long and a single control 

packet credits a large chunk of data over the same path, it is clear 

that the control traffic is a small percentage of the HS traffic. 

Therefore, the buffers of the prioritized virtual channel are kept at 

low utilization, resulting in minimal network queuing time. In 

order to overcome credit request and reply latency in light load 

periods, source quota can be slowly self refreshing. 

 

4.1 Control Messages 
Using a credit request message, a source describes the data 

packet(s) it wishes to send to the hotspot module and asks for 

credit to do so. In addition to the Destination ID field of a regular 

data packet, a request packet contains two mandatory fields: 

Source ID and Length. The former states the requesting module 

identity and the latter describes the size (in flits) of the data 

packet to be delivered. The system designer may choose to 

include additional information which would enable the hotspot 

controller to decide upon the best service order. This information 

can be embedded in optional fields of the request packet. An 

example of such a field is a priority value, which indicates the 

"urgency" of the data packet, relative to requests that are sent by 

other sources of the same kind. A deadline field that indicates the 

requested completion time can help the hotspot controller sort the 

requests in the best servicing order, postponing less urgent 

requests to be serviced later. If requests can be ignored unless 

they are served by a certain time, an expiration field may be used. 

Figure 4(a) illustrates an example of a credit request packet in 

which each field fits a flit (more fields per flit are of-course 

possible). Figure 4(b) illustrates a credit reply packet. The 

destination ID field is used to route the packet back to the 

requester. The source ID enables the requester to identify the 

controller sending the reply and is necessary in a system with 

multiple hotspots. The Credit field states the number of credits 

granted in the reply packets. Generally, this number is equal to 

the length field in the matching request packet. However, a 

hotspot controller may choose to reply with a larger number in 

order to credit modules ahead of time during light load periods. 

The hotspot module may also reply with less credit than 

requested. In this case, a source may choose to send part of the 

data packet, thus freeing up local buffer space, or send another 

pending but shorter packet instead. Other optional fields may 

include a specific time or earliest time of transmission so credit 

can be given and scheduled among multiple sources ahead of 

time. 

 

 

 

 

4.2 Implementation 
The source control logic is embedded in the network interfaces 

that connect cores to the NoC infrastructure: Sources capable of 

communicating with potential hotspots are equipped with logic 

that stores current quota, generates quota requests and handles 

incoming quota replies. In order to keep track of available credit, 

the source interface includes a credit status table (CST), with an 

entry for each potential hotspot module. If all potential hotspots 

are known during design time, the entries can be pre-coded in 

hardware. Otherwise, these numbers can be programmed as part 

of the configuration process. 

The CST is updated by the interface control logic upon receiving 

credit reply packets and upon injecting a packet: Source module 

interfaces are modified so that data packets are no longer injected 

towards potential hotspots as soon as link-level flow-control 

allows it. Instead, the source control logic looks up the CST using 

the destination ID. If an entry with a matching module ID does 

not exist, the destination is not a potential hotspot and the data 

packet can be injected into the network immediately. Otherwise, 

the current credit status is retrieved and compared with the size of 

the data packet. If sufficient quota exists, the packet is injected 

into the network and its size is subtracted from the corresponding 

CST entry, reflecting the consumed credit. Otherwise, a request 

packet is generated applying for the missing credit. Meanwhile, 

the data packet waits in the source network interface buffers until 

a credit reply arrives.  

Potential hotspot modules are equipped with an allocation 

controller that receives credit request messages, decides upon 

service order and sends credit reply packets. This scheduling logic 

can be implemented as part of a hotspot network interface, as an 

independent module, or as a unit serving multiple hotspot 

modules. In this work, we assume that the scheduler is embedded 

within potential hotspot interfaces. 

The implementation of the scheduler unit includes a pending 

requests table (PRT), with an entry for each source module. The 

entry fields are selected during design time, according to specific 

system needs. For example, a simple system may only need the 

source number and length fields, while other advanced designs 
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Figure 4: Credit request (a) and reply (b) messages. 

The request message may include optional fields that 

describe the matching data packet.  

 



may also describe request priority, deadline and expiration values. 

When receiving a credit request packet, the scheduler control 

logic decodes the request and logs it in its PRT. In order to select 

a source to be serviced, a local arbiter examines the PRT and 

chooses a module, subject to QoS definitions. In order to grant the 

selected source permission to access the hotspot module, the 

scheduler control logic encodes a data reply packet carrying 

adequate credit and sends it to the appropriate source. 

5. NUMERICAL RESULTS 
In this section, the performance of the suggested hotspot 

allocation mechanism is examined by means of simulation. 

Results are compared to a wormhole based NoC with no such 

hotspot resolution mechanism. The presented results quantify the 

extent to which the allocation scheme solves hotspot effects 

(system performance degradation and the source fairness 

problem).  

The following evaluation model is used: 

1. The system consists of 16 modules, arranged in 4×4 grid 

with a single hotspot module, placed at the upper-leftmost 

corner. Fixed, deadlock-free YX routing is employed. 

2. All network links and non-hotspot modules have identical 

capacity (10 Gbit/sec). 

3. The hotspot module has only 1Gbit/sec capacity. 

4. Data packets are 200 flits long and are generated by a 

Poisson process; Flits are 16 bits long. 

5. Routers have a 10-flit input queue per port. 

6. All possible non-HS flows exist in the system and have 

identical characteristics. Similarly, all possible HS flows 

exist and have identical characteristics. 

7. A prioritized virtual channel is used to deliver control 

packets, which are two flits long each. 

8. Routers resolve contention for output port in a round-robin 

manner. 

9. The hotspot scheduler, which is implemented as part of the 

hotspot network interface, employs round-robin arbitration 

among pending requests. 

 

In general, each set of results has been obtained for a fixed non-

HS traffic, which serves as background communication, and for 

varying hotspot load on a system similar to the one illustrated in 

Figure 2. The term "end-to-end latency" in this paper refers to the 

time elapsed since the packet is created in the source until the last 

flit is consumed by the destination. Therefore, the measured 

latency accounts for source queuing, network blocking, virtual 

channel multiplexing, link bandwidth and for the end-to-end 

protocol overhead. 

The results were generated using the OPNET based simulator 

 [19], modeling a wormhole network at the flit level. The model 

accounts for all network layer characteristics, including wormhole 

flow-control, virtual channels, routing, finite router buffers and 

link capacities. 

 

5.1 System Performance 
Figure 5(a) shows mean end-to-end delay in the system, with and 

without the allocation protocol. It is clear that the allocation 

mechanism considerably reduces the average access latency. 

Figure 5(b) breaks the results down, separating HS-traffic from 

non-HS traffic. Due to the bandwidth consumed by the control 

packets, the mean delay of the HS traffic is slightly increased 

when using the proposed mechanism. However, there is a 

dramatic improvement in the delay of the background traffic, 

which is now largely unaffected by the mounting hotspot load. 

The small increase in HS traffic delay due to the load of control 

messages can be further circumvented. The designer can prevent 

control messages from consuming the limited hotspot bandwidth 

by placing the scheduler in a location such that the control path 

does conflict with the hotspot data path. For example, if the 

hotspot module is a bandwidth limited off-chip DRAM, the 

hotspot controller can be placed on-chip (e.g., as part of the 

network interface), meaning that control messages are never 

transmitted on the slow off-chip bus to DRAM. Note that in the 

absence of the resource allocation mechanism, the mean hotspot 

access latency may be misleading at high loads. When congestion 

is high, the limited hotspot bandwidth is not fairly divided 

between modules. In particular, some modules systematically 

experience a delay which is considerably higher than the mean 

delay. This does not happen in a resource controlled network, as 

demonstrated below (section  5.2). 

 

  

 

  

 

 

Figure 5: Mean HS (Hotspot) and non-HS traffic End-to-End 

Delay vs. Hotspot Load 

(b) 

(a) 



5.2 Source Fairness 
Figure 6(a) demonstrates the severity of the source fairness 

problem in a wormhole network in steady-state. When the hotspot 

maximal utilization is approached, the delays vary largely 

between sources. While modules close to the hotspot experience 

only a slight increase in their end-to-end delay (e.g. module 1 and 

5), the delay seen by distant modules is hundreds of times larger. 

This unfairness increases as the number of SoC modules grows. 

Figure 6(b) shows the results of activating the hotspot allocation 

mechanism in a system with the same loads.  The fair arbitration 

scheme manages to distribute the limited resource almost equally 

among the system modules. 

 

 

 

 

 

 

 

 

 

Figure 6: Mean Source End-to-End Delays vs. Hotspot Load. 

Each curve represents the mean delay experienced by a single 

source, normalized by the zero-load delay. 

(a) uncontrolled network; (b) controlled network. 

An additional important performance metric under heavy load is 

the saturation throughput: assuming that all sources always have 

data to send to the hotspot module, saturation throughput is the 

bandwidth each source achieves. This predicts the system 

behavior at periods of extreme congestion in which the total load 

exceeds the hotspot capacity and the system operates beyond 

saturation point. As generally, NoC routers employ a round-robin 

based arbitration between ports, each router effectively divides its 

upstream saturation bandwidth equally among requesting ports. 

Therefore, in a basic wormhole based network, the further a 

module is from the hotspot, the less bandwidth it will get. This 

unfairness also increases with the number of SoC modules.  

Figure 7 shows the saturation throughput with and without 

allocation control mechanism. When no control is applied, 

module 5 enjoys 25% of the hotspot limited bandwidth, while 

module 16 gets less than 1% due to the large number of hops on 

the path to the hotspot. The hotspot allocation mechanism 

distributes the saturation throughput fairly among source modules, 

even when the network is extremely loaded. This is attributed to 

the fact that control messages can bypass the slowly-moving data 

packets and do not suffer from the source fairness problems. 

 

 

 

Figure 7: Saturation throughput with and without control 

When no control is used, distant modules only gets a small share 

of the bandwidth. 

 

6. SUMMARY 
The unique characteristics of wormhole routing make it 

particularly suitable for high-performance networks-on-chip but 

also highly vulnerable to destination modules hotspots, which 

may immediately extend system wide. 

In this work, we have examined the effects of hotspot congestion 

caused by a highly utilized module. Two main problems were 

identified: A source fairness problem, caused by grid topology 

and router local arbitration policy; and degradation of the entire 

system performance, as non-hotspot traffic is obstructed during 

hotspot congestion. In order to solve both problems, we suggest a 

novel end-to-end hotspot allocation mechanism. Short control 

messages, delivered over a prioritized virtual-channel, are used to 

(a) 

(b) 



arbitrate access to the hotspot module, thus significantly reducing 

packet blocking probability and guaranteeing fairness. The 

protocol, which is transparent to the system functional units, is 

implemented without any modification in the network routers, 

allowing them to be fast, small and simple. Simple control logic is 

added to source module interfaces, and potential hotspot modules 

are enhanced by a simple controller, customized to match system 

needs. 

Simulation results show that the proposed technique successfully 

solves the source fairness problem and achieves a significant 

improvement in the delay of crossing traffic. In light of these 

results, and since SoCs often include a popular, bandwidth limited 

resource, we believe that hotspot allocation control is an essential 

supplement for any wormhole-based NoC architecture. 
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