
Curing Hotspots in Wormhole NoCs
Isask'har Walter1, Israel Cidon2, Ran Ginosar2, Avinoam Kolodny2

Electrical Engineering Department, Technion, Haifa, Israel

1zigi@tx.technion.ac.il 2{cidon, ran, kolodny}@ee.technion.ac.il

ABSTRACT

Network on Chip (NoC) has been proposed for future SoC

interconnect. Hotspots are SoC modules which occasionally

receive traffic that exceeds the rate at which they can absorb data.

Hotspots are common in real-life SoCs, such as external DRAM

or internal components (caches, CAMs, special purpose

processors) that are bandwidth limited and in high demand by

other units. In this paper we demonstrate that hotspot modules on

wormhole-based NoCs dramatically reduce network efficiency

and unfairly allocate system resources. A single hotspot may ruin

the performance of the entire NoC. In order to resolve these

problems, we introduce a novel low-cost end-to-end credit based

resource allocation technique that regulates access to the hotspot

module. Using simulation, we show the effectiveness of the

suggested mechanism.1

Categories and Subject Descriptors
System-Level Design and Co-Design: Network-on-Chip (NoC)

General Terms
Algorithms, Performance, Design

Keywords

Network on-Chip, wormhole, flow-control, hotspot, SoC

1. INTRODUCTION
Wormhole [1] switching is commonly employed in NoC (e.g. [2],

 [3], [4], [5]), thanks to its small buffer requirements and low

latencies at light load. Each packet is divided into small fixed size

parts called flits, which are transmitted to the next hop without

waiting for the entire packet to be received. This causes the

transmitted packet to be “spread” along the path between the

source and destination nodes in a pipeline fashion. The main

drawback of wormhole interconnect is the high sensitivity to

packet blocking, calling for high performance networks to operate

at relatively low utilization and to include multiple virtual

channels [6].

Bandwidth can be allocated to NoC links for providing adequate

performance [7], but speeding up the operation of IP modules is

impossible or has an unacceptable cost. Furthermore, at certain

times the aggregated traffic demand might exceed the destination

module’s bandwidth capacity. A bandwidth-limited SoC module

working close to its capacity is termed a hotspot. In this situation,

when the module is unable to consume incoming packets fast

enough, the entire network may be affected. Hop-by-hop

backpressure causes buffers at the router adjacent to the hotspot to

This work was partially supported by the Semiconductor Research

Corporation (SRC), Intel Corp., and the iSRC consortium

be filled up and become stalled blocking new arrivals to this

router. This creates a domino effect, by which the delivery of

packets to ports of more distant routers is slowed down, forming a

saturation tree [8] with the hotspot module as its root, as

illustrated in Figure 1. The NoC suffers increased delays in packet

delivery and unfair network utilization (modules near the hotspot

get larger portion of its capacity).

While this effect may also exist in packet based store-and-forward

networks, the threat is particularly troublesome in wormhole

based architectures due to packet “stretching” across several hops.

As a result, hotspot effects may extend network wide instantly. It

is important to note that this hotspot phenomenon is independent

of links bandwidth, as a saturation tree may build up in a system

with infinite capacity links and a single heavily loaded module.

Consequently, even carefully designed, largely over-provisioned

NoCs may suffer of poor performance if potential hotspots are left

unhandled.

We propose a novel credit-based resource allocation mechanism

for solving hotspot congestion problems in wormhole-based

NoCs. A hotspot allocation controller is introduced to arbitrate

short, high priority credit requests. The controller regulates

hotspot access according to the quality of service requirements of

the specific system. Credit requests and grants are transmitted as

high-priority packets (grants may be piggybacked on other

messages). Auto-refresh or pre-allocation can be used for selected

modules to eliminate light load latencies. One side of the

mechanism is implemented in modules’ interfaces and the other in

a strategic location, while NoC routers remain unchanged. This

prevents the accumulation of packets destined at a hotspot module

in the network. Consequently, other traffic remains unaffected

even when the hotspot load increases significantly.

IP4

R

IP1

R

IP2

R

IP5

R

IP6

R

IP8

R

IP9

R

IP10

R

IP12

R

IP3

R

IP7

R

IP13

R

D
R
A
M

M
e
m
o
ry

IP11

R

Figure 1: SoC hotspot at external DRAM interface and the

resulting NoC saturation tree (highlighted links)

gitta

lesley
Text Box
CCIT Report #568 December 2005

The rest of this paper is organized as follows: Related work is

surveyed in section 2. In section 3 we discuss the negative effects

of hotspots in wormhole-based NoCs. In section 4, an end-to-end

allocation technique is proposed to allow fair sharing of the

hotspot resource and to mitigate effects on non-hotspot traffic

(traffic not destined at the hotspot module), and section 5 presents

simulation of the suggested mechanism.

2. RELATED WORK
The problem of hotspot contention has been thoroughly explored

in off-chip interconnection networks (e.g. [8], [9]). Many papers

analyzed hotspot effects on non-hotspot traffic and suggested

various schemes for improving system performance. However,

most previous works have addressed multi-computer networks, in

which the design considerations are significantly different from

those of NoCs. For example, most works modify the network

routers in order to throttle packet injection at high loads (e.g.,

 [10], [11]), discard packets (e.g., [12]), deflect packets away of

loaded locations (e.g. [13], [14]), use separate buffers for traffic

destined at a hotspot module (e.g. [9]), or simply use a large

number of virtual channels. However, when applied to NoCs,

such modifications considerably increase NoC router gate count,

resulting in excessive area and power consumption and reduced

speed. Typically, NoCs must employ static shortest path routing

based on a simple routing function, because of on-chip cost and

performance considerations. Moreover, those works do not

address the hotspot allocation fairness problem. If we assume a

router-based solution to this problem (such as fair queueing

mechanism per source-destination pair [15]) or complicated

admission control [16], the NoC costs become infeasible.

The proposed hotspot resource allocation mechanism is

considerably different from traditional end-to-end flow-control

mechanisms. Flow-control is conducted on a per-source basis

(e.g. TCP, static window in [17]), and prevents overflow in the

destination buffers pre-allocated for this source (e.g. [18]). Flow

control does not treat the hogging of network resources and does

not address the problem of fair allocation of scarce hotspot

resources. In addition, existing schemes require at least one

destination buffer per potential source, which is inappropriate in

on-chip NoCs. Our scheme, using credit request messages, takes

care of all latter problems.

3. HOTSPOT EFFECTS
The formation of a saturation tree due to hotspot congestion has

several negative effects on system performance. Hotspot access

latency is increased, as packets destined at the hotspot contend for

buffer space and bandwidth. However, this effect is unavoidable

when demand approaches available hotspot module capacity.

Unfortunately, additional significant problems arise: Typically,

different source modules are at different distances from the

hotspot module (as illustrated in Figure 2 using a common NoC

topology). Since a packet has to win local output port arbitration

in each router along its path, the hotspot module is not fairly

shared. In particular, modules close to the hotspot enjoy a larger

share of saturation bandwidth than distant ones. Location and

distance diversity also lead to differences in access latency, as

distant modules experience very long access times. This will be

referred to as the source fairness problem.

Performance degradation due to hotspot load is not restricted to

hotspot (HS) traffic (i.e., traffic destined at the hotspot). In typical

NoCs, HS and non-HS traffic compete for the same network

resources, i.e. buffer space, link bandwidth and router ports.

Therefore, hotspots may hinder the delivery of non-HS packets

(Figure 3). The above discussion may apply to any network.

However, left unhandled, hotspot effects in a wormhole network

are more severe than in a store-and-forward one, as packets are

blocked across multiple routers and buffering space is limited.

IP1

R

IP5

R

IP2

R

IP3

R

IP6

R

IP7

R

IP9

R

IP13

R

IP10

R

IP11

R

IP14

R

IP15

R

IP4

R

IP8

R

IP16

R

IP12

R

(HS)

Figure 2: Source Unfairness in a 4×4 YX routed NoC

On its way to the hotspot module (#1), packets generated by

module 16 have to win 6 arbitrations, while module 5 packets

have to win only 2.

IP1

R

IP2

R

IP5

R

IP3

R

IP4

R

IP7

R

IP8

R

IP9

R

IP10

R

IP13

R

IP14

R

IP11

R

IP12

R

IP16

R

IP15

R

(HS)

IP6

R

Figure 3: Hotspot traffic obstructing non-HS traffic.

Flow 16�1 may slow-down (or block) flow 10�8 (which shares

a link), and in turn may affect flow 9�12.

4. HOTSPOT RESOURCE ALLOCATION
In order to reduce the dramatic effects of hotspots in a wormhole-

based NoC (section 5), a credit-based resource allocation

mechanism is suggested: Each source gets a quota that limits the

number of flits it can send towards a hotspot module. When a

source quota is exhausted, it can resume transmission only after

being granted additional credit. Consequently, a saturation tree

can not form and traffic not destined at the hotspot module

remains unaffected during congested periods.

Two types of control messages regulate the access to a hotspot: If

a source has insufficient credit to start delivery of a data packet to

a hotspot module, it sends a credit request packet to a hotspot

allocation controller, describing the requested transaction. When

appropriate, the controller sends back credit using a credit reply

packet. Due to their significance and short length, credit request

and reply messages are given a high priority level and cannot be

held back in the network by data packets. In this work, we assume

a prioritized virtual channel mechanism such as the one described

in [6], to deliver control messages, guaranteeing fast hotspot

controller access regardless of data traffic loads.

Since control packets are a few flits long and a single control

packet credits a large chunk of data over the same path, it is clear

that the control traffic is a small percentage of the HS traffic.

Therefore, the buffers of the prioritized virtual channel are kept at

low utilization, resulting in minimal network queuing time. In

order to overcome credit request and reply latency in light load

periods, source quota can be slowly self refreshing.

4.1 Control Messages
Using a credit request message, a source describes the data

packet(s) it wishes to send to the hotspot module and asks for

credit to do so. In addition to the Destination ID field of a regular

data packet, a request packet contains two mandatory fields:

Source ID and Length. The former states the requesting module

identity and the latter describes the size (in flits) of the data

packet to be delivered. The system designer may choose to

include additional information which would enable the hotspot

controller to decide upon the best service order. This information

can be embedded in optional fields of the request packet. An

example of such a field is a priority value, which indicates the

"urgency" of the data packet, relative to requests that are sent by

other sources of the same kind. A deadline field that indicates the

requested completion time can help the hotspot controller sort the

requests in the best servicing order, postponing less urgent

requests to be serviced later. If requests can be ignored unless

they are served by a certain time, an expiration field may be used.

Figure 4(a) illustrates an example of a credit request packet in

which each field fits a flit (more fields per flit are of-course

possible). Figure 4(b) illustrates a credit reply packet. The

destination ID field is used to route the packet back to the

requester. The source ID enables the requester to identify the

controller sending the reply and is necessary in a system with

multiple hotspots. The Credit field states the number of credits

granted in the reply packets. Generally, this number is equal to

the length field in the matching request packet. However, a

hotspot controller may choose to reply with a larger number in

order to credit modules ahead of time during light load periods.

The hotspot module may also reply with less credit than

requested. In this case, a source may choose to send part of the

data packet, thus freeing up local buffer space, or send another

pending but shorter packet instead. Other optional fields may

include a specific time or earliest time of transmission so credit

can be given and scheduled among multiple sources ahead of

time.

4.2 Implementation
The source control logic is embedded in the network interfaces

that connect cores to the NoC infrastructure: Sources capable of

communicating with potential hotspots are equipped with logic

that stores current quota, generates quota requests and handles

incoming quota replies. In order to keep track of available credit,

the source interface includes a credit status table (CST), with an

entry for each potential hotspot module. If all potential hotspots

are known during design time, the entries can be pre-coded in

hardware. Otherwise, these numbers can be programmed as part

of the configuration process.

The CST is updated by the interface control logic upon receiving

credit reply packets and upon injecting a packet: Source module

interfaces are modified so that data packets are no longer injected

towards potential hotspots as soon as link-level flow-control

allows it. Instead, the source control logic looks up the CST using

the destination ID. If an entry with a matching module ID does

not exist, the destination is not a potential hotspot and the data

packet can be injected into the network immediately. Otherwise,

the current credit status is retrieved and compared with the size of

the data packet. If sufficient quota exists, the packet is injected

into the network and its size is subtracted from the corresponding

CST entry, reflecting the consumed credit. Otherwise, a request

packet is generated applying for the missing credit. Meanwhile,

the data packet waits in the source network interface buffers until

a credit reply arrives.

Potential hotspot modules are equipped with an allocation

controller that receives credit request messages, decides upon

service order and sends credit reply packets. This scheduling logic

can be implemented as part of a hotspot network interface, as an

independent module, or as a unit serving multiple hotspot

modules. In this work, we assume that the scheduler is embedded

within potential hotspot interfaces.

The implementation of the scheduler unit includes a pending

requests table (PRT), with an entry for each source module. The

entry fields are selected during design time, according to specific

system needs. For example, a simple system may only need the

source number and length fields, while other advanced designs

D
est. ID

S
o

u
rce ID

L

en
g

th

P
rio

rity

E
x

p
iratio

n

D
ead

lin
e

…

D
est. ID

S

o
u

rce ID

C
red

it

(a) (b)

Figure 4: Credit request (a) and reply (b) messages.

The request message may include optional fields that

describe the matching data packet.

may also describe request priority, deadline and expiration values.

When receiving a credit request packet, the scheduler control

logic decodes the request and logs it in its PRT. In order to select

a source to be serviced, a local arbiter examines the PRT and

chooses a module, subject to QoS definitions. In order to grant the

selected source permission to access the hotspot module, the

scheduler control logic encodes a data reply packet carrying

adequate credit and sends it to the appropriate source.

5. NUMERICAL RESULTS
In this section, the performance of the suggested hotspot

allocation mechanism is examined by means of simulation.

Results are compared to a wormhole based NoC with no such

hotspot resolution mechanism. The presented results quantify the

extent to which the allocation scheme solves hotspot effects

(system performance degradation and the source fairness

problem).

The following evaluation model is used:

1. The system consists of 16 modules, arranged in 4×4 grid

with a single hotspot module, placed at the upper-leftmost

corner. Fixed, deadlock-free YX routing is employed.

2. All network links and non-hotspot modules have identical

capacity (10 Gbit/sec).

3. The hotspot module has only 1Gbit/sec capacity.

4. Data packets are 200 flits long and are generated by a

Poisson process; Flits are 16 bits long.

5. Routers have a 10-flit input queue per port.

6. All possible non-HS flows exist in the system and have

identical characteristics. Similarly, all possible HS flows

exist and have identical characteristics.

7. A prioritized virtual channel is used to deliver control

packets, which are two flits long each.

8. Routers resolve contention for output port in a round-robin

manner.

9. The hotspot scheduler, which is implemented as part of the

hotspot network interface, employs round-robin arbitration

among pending requests.

In general, each set of results has been obtained for a fixed non-

HS traffic, which serves as background communication, and for

varying hotspot load on a system similar to the one illustrated in

Figure 2. The term "end-to-end latency" in this paper refers to the

time elapsed since the packet is created in the source until the last

flit is consumed by the destination. Therefore, the measured

latency accounts for source queuing, network blocking, virtual

channel multiplexing, link bandwidth and for the end-to-end

protocol overhead.

The results were generated using the OPNET based simulator

 [19], modeling a wormhole network at the flit level. The model

accounts for all network layer characteristics, including wormhole

flow-control, virtual channels, routing, finite router buffers and

link capacities.

5.1 System Performance
Figure 5(a) shows mean end-to-end delay in the system, with and

without the allocation protocol. It is clear that the allocation

mechanism considerably reduces the average access latency.

Figure 5(b) breaks the results down, separating HS-traffic from

non-HS traffic. Due to the bandwidth consumed by the control

packets, the mean delay of the HS traffic is slightly increased

when using the proposed mechanism. However, there is a

dramatic improvement in the delay of the background traffic,

which is now largely unaffected by the mounting hotspot load.

The small increase in HS traffic delay due to the load of control

messages can be further circumvented. The designer can prevent

control messages from consuming the limited hotspot bandwidth

by placing the scheduler in a location such that the control path

does conflict with the hotspot data path. For example, if the

hotspot module is a bandwidth limited off-chip DRAM, the

hotspot controller can be placed on-chip (e.g., as part of the

network interface), meaning that control messages are never

transmitted on the slow off-chip bus to DRAM. Note that in the

absence of the resource allocation mechanism, the mean hotspot

access latency may be misleading at high loads. When congestion

is high, the limited hotspot bandwidth is not fairly divided

between modules. In particular, some modules systematically

experience a delay which is considerably higher than the mean

delay. This does not happen in a resource controlled network, as

demonstrated below (section 5.2).

Figure 5: Mean HS (Hotspot) and non-HS traffic End-to-End

Delay vs. Hotspot Load

(b)

(a)

5.2 Source Fairness
Figure 6(a) demonstrates the severity of the source fairness

problem in a wormhole network in steady-state. When the hotspot

maximal utilization is approached, the delays vary largely

between sources. While modules close to the hotspot experience

only a slight increase in their end-to-end delay (e.g. module 1 and

5), the delay seen by distant modules is hundreds of times larger.

This unfairness increases as the number of SoC modules grows.

Figure 6(b) shows the results of activating the hotspot allocation

mechanism in a system with the same loads. The fair arbitration

scheme manages to distribute the limited resource almost equally

among the system modules.

Figure 6: Mean Source End-to-End Delays vs. Hotspot Load.

Each curve represents the mean delay experienced by a single

source, normalized by the zero-load delay.

(a) uncontrolled network; (b) controlled network.

An additional important performance metric under heavy load is

the saturation throughput: assuming that all sources always have

data to send to the hotspot module, saturation throughput is the

bandwidth each source achieves. This predicts the system

behavior at periods of extreme congestion in which the total load

exceeds the hotspot capacity and the system operates beyond

saturation point. As generally, NoC routers employ a round-robin

based arbitration between ports, each router effectively divides its

upstream saturation bandwidth equally among requesting ports.

Therefore, in a basic wormhole based network, the further a

module is from the hotspot, the less bandwidth it will get. This

unfairness also increases with the number of SoC modules.

Figure 7 shows the saturation throughput with and without

allocation control mechanism. When no control is applied,

module 5 enjoys 25% of the hotspot limited bandwidth, while

module 16 gets less than 1% due to the large number of hops on

the path to the hotspot. The hotspot allocation mechanism

distributes the saturation throughput fairly among source modules,

even when the network is extremely loaded. This is attributed to

the fact that control messages can bypass the slowly-moving data

packets and do not suffer from the source fairness problems.

Figure 7: Saturation throughput with and without control

When no control is used, distant modules only gets a small share

of the bandwidth.

6. SUMMARY
The unique characteristics of wormhole routing make it

particularly suitable for high-performance networks-on-chip but

also highly vulnerable to destination modules hotspots, which

may immediately extend system wide.

In this work, we have examined the effects of hotspot congestion

caused by a highly utilized module. Two main problems were

identified: A source fairness problem, caused by grid topology

and router local arbitration policy; and degradation of the entire

system performance, as non-hotspot traffic is obstructed during

hotspot congestion. In order to solve both problems, we suggest a

novel end-to-end hotspot allocation mechanism. Short control

messages, delivered over a prioritized virtual-channel, are used to

(a)

(b)

arbitrate access to the hotspot module, thus significantly reducing

packet blocking probability and guaranteeing fairness. The

protocol, which is transparent to the system functional units, is

implemented without any modification in the network routers,

allowing them to be fast, small and simple. Simple control logic is

added to source module interfaces, and potential hotspot modules

are enhanced by a simple controller, customized to match system

needs.

Simulation results show that the proposed technique successfully

solves the source fairness problem and achieves a significant

improvement in the delay of crossing traffic. In light of these

results, and since SoCs often include a popular, bandwidth limited

resource, we believe that hotspot allocation control is an essential

supplement for any wormhole-based NoC architecture.

7. REFERENCES
[1] W.J. Dally and C. Seitz, "The Torus Routing Chip",

Distributed Computing, vol. 1, no. 3, 1986.

[2] K. Goossens, J. Dielissen and A. Radulescu, "AEthereal

Network on Chip: Concepts, Architectures, and

Implementations", IEEE Design and Test of Computers,

September/October, 2005.

[3] E. Bolotin, I. Cidon, R. Ginosar and A. Kolodny, "QNoC:

QoS Architecture and Design Process for Network on Chip",

Journal of Systems Architecture, Volume 50, February 2004.

[4] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,

“Hermes: an Infrastructure for Low Area Overhead Packet-

switching Networks on Chip”, Integration, the VLSI Journal,

Oct. 2004.

[5] D. Bertozzi and L. Benini, "Xpipes: A network-on-chip

architecture for gigascale systems-on-chip", Circuits and

Systems Magazine, IEEE Volume 4, Issue 2, 2004.

[6] W. Dally, "Virtual Channels Flow Control", Proc. ISCA,

May 1990.

[7] Z. Guz, I. Walter, E. Bolotin, I. Cidon, A. Kolodny and R.

Ginosar, "Efficient Link Capacity and QoS Design for

Wormhole Network-on-Chip", DATE 2006.

[8] G. F. Pfister and V. A. Norton, "Hot Spot contention and

combining in multistage interconnection networks", IEEE

Trans. Comp., vol. C-34, no. 10, Oct. 1985.

[9] J. Duato, I. Johnson, J. Flich, F. Naven, P. García, and T.

Nachiondo, "A New Scalable and Cost-Effective Congestion

Management Strategy for Lossless Multistage

Interconnection Networks", High-Performance Computer

Architecture (HPCA) 2005 Proceedings.

[10] E. Baydal, P. Lopez and J. Duato, "A Congestion Control

Mechanism for Wormhole Networks", Ninth Euromicro

Workshop on Parallel and Distributed Processing (PDP '01)

Proceedings.

[11] A. Smai and L. Thorelli, "Global Reactive Congestion

Control in Multicomputer Networks", In 5th International

Conference on High Performance Computing, 1998.

[12] W. S. Ho and D. L. Eager, "A Novel Strategy for Controlling

Hot-spot Congestion", Proc. 1989 lnt'l Conf. Parallel

Processing Proceedings.

[13] T. Lang and L. Kurisaki, "Nonuniform Traffic Spots (NUTS)

in Multistage Iinterconnection Networks", Journal of

Parallel and Distributed Computing, 1990.

[14] P. Gawghan and S. Yalamanchi, "Adaptive Routing

Protocols for Hypercube Interconnection Networks", IEEE

Transactions on Computers, May 1993.

[15] S. W. Moon, J. Rexford and K. G. Shin, "Scalable Hardware

Priority Queue Architectures for High-Speed Packet

Switches", IEEE Transactions on Computers, November,

2000.

[16] K. H. Yum, E. J. Kim, C. R. Das, M. Yousif and J. Duato,

"Integrated Admission and Congestion Control for QoS

Support in Clusters," IEEE International Conference on

Cluster Computing (CLUSTER'02), 2002.

[17] V. Shurbanov, D. R. Avresky, P. Mehra and W. J. Watson,

"Flow Control in ServerNet Clusters", Euro-Par 2000.

[18] A. Radulescu, J. Dielissen, S. G. Pestana, O. Gangwal, E.

Rijpkema, P. Wielage and K. Goossens, "An Efficient On-

Chip Network Interface Offering Guaranteed Services,

Shared-Memory Abstraction, and Flexible Network

Programming", IEEE Transactions on CAD of Integrated

Circuits and Systems, January 2005.

[19] OPNET Modeler, www.opnet.com

	Untitled

