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Abstract

Although subband transform coding is a useful approach to image compression, the performance

of this method has not been analyzed so far for color images, especially when the selection of color

components is considered. Obviously, the RGB components are not suitable for such a compression

method due to their high inter-color correlation. On the other hand, the common selection of YUV

or YIQ is rather arbitrary and in most cases not optimal.

In this work we introduce a rate-distortion model for color image compression and employ it to

�nd the optimal color components and optimal bit allocation (optimal rates) for the compression.

We show that the DCT (Discrete Cosine Transform) can be used to transform the RGB components

into an e¢cient set of color components suitable for subband coding. The optimal rates can be

also used to design adaptive quantization tables in the coding stage with results superior to �xed

quantization tables. Based on the presented results, our conclusion is that the new approach can

improve presently available methods for color compression.
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1 Introduction

It is well known that natural images are characterized by high correlation between their RGB

components [1], [2], [5], [8], [20]. This data redundancy has to be considered in order to reduce

the volume of information that has to be stored or transmitted for a given image. Most of the

techniques for color image compression reduce the redundancies between the colors components by

transforming the colors primaries into a decorrelated color space such as YIQ or YUV [4], [10],

[18] or by performing the Karhunen-Loeve Transform on the color components in some color space

[3], [6], [19]. Another approach to exploiting the high correlations of the RGB primaries is by

approximating subordinate colors as a function of a base color in the RGB domain [2], [12]. When

using decorrelation methods, the choice of the YUV or YIQ color space is the most common, but

it is usually not optimal as demonstrated in this work in the context of subband transform coding

systems.

1.1 Subband transforms

Subband transforms include the Discrete Cosine Transform (DCT), Discrete Fourier Transform

(DFT) and Karhunen-Loeve Transform (KLT), as well as wavelet tree decompositions, wavelet

packets and �lter banks. The most familiar systems based on subband transform coding are the

JPEG [18] and JPEG2000 [4], [10] standards for image coding. Other examples include the EZW

wavelet based algorithm [14] or the CEB algorithm [16] for images and for example Uniform DFT

Filter Banks [13] for speech coding.

Subband transforms are a generalization of block transforms. If we consider a non-expansive

transform (which transforms an input signal into an output signal of the same size), the input

sequence x is divided into m dimensional vectors x[k] and each is transformed to form the (m

dimensional) output vector y[k]. However, in contrast to a simple block transform, multiple input

vectors are used to form one output vector according to:

y[k] =
X

i2z

AH [i]x[k � i]; (1)

where AH [i] is a series of matrices. If A[i] 6= 0 only for i = 0; (1) describes a block transform. The

inverse transform, if exists, is of the form:

x[k] =
X

i2z

S[i]y[k � i]: (2)
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1.2 Filter bank interpretation of subband transforms

The subband transforms can be considered as a �lter bank. It can be shown that (1) can be rewritten

in the form:

yq[n] = y[nm+ q] =
X

i

aHq [i]x[n� i]; (3)

where yq[n] is the sequence of the q
th components of each output vector y[k], that we will refer

to as the qth subband: Also aq[i] denotes the q
th column of A[i]: Writing the inner product in (3)

explicitly, we get:

yq[n] =
X

i

m�1X

j=0

(aq[i])
�

j x[m(n� i) + j] (4)

with (aq[i])
�

j denoting the complex conjugate of the j
th element of aq[i]: The last equation can be

rewritten as:

yq[n] =
X

l

hq[l] x[mn� l] = (x � hq)[mn]; (5)

where the scalar �lter responses hq[l] are related to the matrix series A[i] (to the element at the

(q; j) position) according to:

(AH [i])q;j = hq[mi� j]: (6)

It is clear that the meaning of (5) is that the input signal x passes through a bank of (analysis)

�lters hq and then is down-sampled by a factor of m to obtain the subband yq[n]: In a similar way

the synthesis equation (2) can be rewritten in the form:

xp[n] = x[nm+ p] =
X

i2z

m�1X

q=0

(sq[i])pyq[n� i] =
m�1X

q=0

X

i2z

sq[n� i])pyq[i] (7)

=
m�1X

q=0

X

i2z

gq[nm+ p�mi]yq[i] =
m�1X

q=0

(~yq � gq)[nm+ p]:

Here ~yq[i] is de�ned as:

~yq[i] =

(
yq
�
i
m

�
if m divides i

0 otherwise
;
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Figure 1: Subband transforms �lter bank representation: analysis and synthesis.

sq[i] is the q
th column of the matrix S[i]; (sq[i])p is its p

th element and the synthesis scalar �lters

gq are related to the matrix series S[i] by:

gq[mi+ j] = (sq[i])j = (S[i])j;q: (9)

Here xp[n] denotes the p
th polyphase component of the input sequence x similarly to the notation

yq[n]:

The meaning of (7) is that the subbands yq[n] are up-sampled by a factor of m and when �ltered

by the synthesis �lter bank gq and summed up, the result is the reconstructed input sequence x.

Both the analysis and synthesis operations in the form of a �lter bank are summed up in Fig. 1.

1.3 Vector space interpretation of subband transforms

Equation (5) for the �lter bank analysis can be rewritten in the form of the vector product of Cn in

the following way:

yq[n] =
X

l

hq[l] x[mn� l] =
X

l

hq[�l] x[mn+ l] (10)

=
X

l

hq[mn� l] x[l] =
X

l

��q [l �mn] x[l] =< x;�
(n)
q >;

where �q[k] = h�q [�k] are sequences derived from the subband analysis �lters and �
(n)
q it the

sequence �q[k] delayed by mn samples in vector form. Therefore, (10) suggests that the transform

coe¢cients yq[n] can be regarded as the result of the inner product of the input vector x and the
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analysis vectors �
(n)
q . In a similar way (7) describing the �lter bank synthesis operation can be

rewritten as:

x[k] =
m�1X

q=0

X

i2z

gq[k �mi]yq[i] (11)

=
m�1X

q=0

X

i2z

yq[i]s
(i)
q [k]

with s
(i)
q [k] denoting the sequences sq[k] = gq[k] (that are identical to the synthesis �lters) delayed

by mi samples (s
(i)
q [k] = gq[k �mi]). Therefore, in vector form:

x =

m�1X

q=0

X

i2z

yq[i]s
(i)
q ; (12)

where s
(i)
q are the synthesis vectors. Here the outer sum (on q) is on the subbands and the inner

one (on i) is on the transform coe¢cients in each subband.

Note that if the synthesis vectors s
(i)
q1 are mutually orthogonal, the subband transform is called

orthogonal and it is called orthonormal if they also have unit norm. Also note that the subband

transform can be applied iteratively to the subbands resulting in a multi-level or tree decomposition.

Then the subbands will no longer be uniform as in Fig. 1 in their sample rate (the number of

coe¢cients in each subband) and passband bandwidth.

This paper is organized as follows. In Section 2 we introduce the rate-distortion model for

subband transforms and extend it to color images. In section 3 we discuss the derivation of the

optimal CCT and subband rates based on the model. Section 4 is devoted to applications of the

model to image compression and discussion of the results. Finally, conclusions are summarized in

Section 5.

2 Rate-Distortion theory of subband coders

2.1 Rate Distortion of the PCM scheme

The rate-distortion performance of a scalar quantizer with independently coded samples for a sto-

chastic source x with variance �2x can be modeled as [15]:

d(R) = g(R)�2x2
�2R; (13)

5



where d() is the MSE (Mean Square Error) distortion, R is the rate in bits per sample and g() is

a weak function of the source. For large enough R, g(R) �= "2, where "2 is a constant dependent

upon the distribution of x and therefore:

d(R) = "2�2x2
�2R: (14)

The scheme that performs scalar quantization with independent coding of the source samples is

called PCM (Pulse Code Modulation). An example of such a system is a uniform scalar quantizer

with entropy coded output.

2.2 Rate-Distortion of an orthonormal subband transform

Consider an encoder that �rst transforms an N samples source signal x into a set of subbands by

an orthonormal (hence energy preserving) subband transform and then each subband coe¢cients yb

are coded independently by the PCM scheme, while the decoder reconstructs the signal xrec from

the dequantized transform coe¢cients ŷb. We get [15]:

dx = E

"
1

N

X

k

(x[k]� xrec[k])
2

#
=
1

N
E
h
kx� xreck

2
i
(N - length of the signals). (15)

Substituting

x =
B�1X

q=0

X

i2z

yq[i]s
(i)
q ; xrec=

B�1X

q=0

X

i2z

ŷq[i]s
(i);
q (16)

according to (12) where B is the number of subbands, dx becomes:

dx =
1

N
E

2
4


B�1X

b=0

X

i

(yb[i]� ŷb[i]) s
(i)
b



2
3
5 = 1

N
E

2
4


B�1X

b=0

X

i

�yb[i]s
(i)
b



2
3
5 ; (17)

where

�yb[i] , yb[i]� ŷb[i] (18)

is the (quantization) error in the coe¢cient i of subband b. Therefore:

dx =
1

N

B�1X

b=0

B�1X

p=0

X

i

X

j

E [�yb[i]�yp[j]]
D
s
(i)
b ; s

(j)
p

E
(19)

Using the orthonormality assumption:
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D
s
(i)
b ; s

(j)
p

E
= �[b� p]�[i� j]; (20)

(19) is reduced into the form:

dx =
1

N

B�1X

b=0

X

i

E
h
(�yb[i])

2
i
=
1

N

B�1X

b=0

X

i

db; (21)

where db is the MSE distortion of subband b:

db , E
h
(�yb[i])

2
i
: (22)

(21) can be rewritten in the form:

dx =
B�1X

b=0

�bdb (23)

with �b denoting the ratio between the number of coe¢cients in subband b and the total number of

samples in the source N . Since the transform is also non-expansive, the following equation holds:

B�1X

b=0

�b = 1 (24)

Substituting d(R) of (14) as the MSE distortion expression of each subband db into (23) we get:

dx = d(R) =
B�1X

b=0

�b�
2
b"
22�2Rb : (25)

where �2b is the variance of the subband indexed b (b 2 [0; B� 1]) and Rb is the rate allocated to it.

2.3 Rate-Distortion of a non-orthogonal subband transform

When examining a non-orthogonal subband transform, the derivation of the expression for the MSE

distortion for such a transform is the same as for orthogonal transforms in section 2.2 up to (19),

i.e., for a signal x encoded by a subband transform coder and decoded into the signal xrec:

dx = E

"
1

N

X

k

(x[k]� xrec[k])
2

#
=
1

N

B�1X

b=0

B�1X

p=0

X

i

X

j

E [�yb[i]�yp[j]]
D
s
(i)
b ; s

(j)
p

E
: (26)

However, we cannot assume now that the vectors s
(i)
b and s

(j)
p are orthogonal for i 6= j or b 6= p:

The assumption here is that the quantization errors �yb[i] in each subband coe¢cient yb[i] of each
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subband are uncorrelated with zero mean [15]. Therefore:

E [�yb[i]�yp[j]] = �[b� p]�[i� j] (27)

and

dx =
1

N

B�1X

b=0

X

i

E
h
(�yb[i])

2
i s(i)b


2
=
1

N

B�1X

b=0

X

i

Gbdb: (28)

Here

Gb ,
s(i)b


2

(29)

is independent of i and is the energy gain of subband b: Similar to (23) we rewrite (28) as:

dx =

B�1X

b=0

�bGbdb: (30)

Substituting the PCM MSE of (14) for db, we get:

dx =

B�1X

b=0

�bGb�
2
b"
22�2Rb ; (31)

which is a generalization of (25), since for an orthogonal transform we can use (31) with Gb = 1 for

all b 2 [0; :::; B � 1].

2.4 Extension to a color image

Denote each pixel in a color image in the RGB domain by a 3x1 vector x = [R G B]T . We �rst

apply a color component transform to the image, denoted by a matrixM to obtain at each pixel a

new vector of 3 components C1; C2; C3, denoted ex = [C1 C2 C3]T and related to x by:

ex =Mx: (32)

Then each component in the C1,C2,C3 color space is subband transformed, quantized and its

samples are independently encoded (e.g. entropy coded). This description corresponds to such

image compression algorithms as JPEG [18] and JPEG 2000 [4], when applied to a color image up

to and including the quantization stage (note that after the quantization stage, JPEG or JPEG2000

encode the transform coe¢cients not independently, but using the correlation between them, so the

above description does not apply).

We denote by exrec the reconstructed image in the C1C2C3 domain after inverse quantization, and
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by xrec the reconstructed image in the RGB domain, when

exrec = Mxrec (33)

similarly to (32). Now we can de�ne the error covariance matrix in the RGB domain Er, given by

Er = E
�
(x� xrec)(x� xrec)

T
�

(34)

and the error covariance matrix in C1C2C3 domain fEr, given by

fEr = E
�
(ex� exrec)(ex� exrec)T

�
(35)

where E[�] stands for statistic mean.

It is easy to show that:

fEr = E
�
(ex� exrec)(ex� exrec)T

�

= E
�
(Mx�Mxrec)(Mx�Mxrec)

T
�

=ME
�
(x� xrec)(x� xrec)

T
�
MT

=MErMT:

(36)

Equivalently:

Er =M�1fErM�T
(37)

The average MSE between the original and reconstructed images in the RGB domain is then simply:

MSE =
1

3
trace(Er) =

1

3
trace

�
M�1fErM�T

�

=
1

3
trace

�
fErM�T

M�1
�

=
1

3
trace

�
fEr(MMT )�1

�
:

(38)

Assuming that the errors in the three color components C1, C2, C3 (that occur due to the quanti-

zation inherent in the compression process) are uncorrelated, i.e.

E [(Ci� Cirec)(Cj � Cjrec)] = 0; i; j 2 f1; 2; 3g; i 6= j (39)

(where Cirec is the reconstructed Ci component), it is clear that fEr is diagonal and therefore the
expression for the average MSE of (38) simpli�es to:
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MSE =
1

3

3X

i=1

fErii
�
(MMT )�1

�
ii

=
1

3

3X

i=1

MSECi
�
(MMT )�1

�
ii
;

(40)

where MSECi denotes the MSE of the component Ci.

Using (31) for this MSE, one can easily derive the following expression for the average MSE:

MSE =
1

3

3X

i=1

B�1X

b=0

�bGb�
2
bi"

2
i 2
�2R

bi

�
(MMT )�1

�
ii
: (41)

Rbi stands for the rate allocated for the subband b of component i and �
2
bi is this subband�s variance.

The expression can also be rewritten in the following equivalent form:

MSE =
1

3

3X

i=1

B�1X

b=0

�bGb�
2
bi"

2
i e
�aRbi

�
(MMT )�1

�
ii
; (42)

where a = 2ln2.

The expression obtained can be used to �nd the optimal subband rates allocation for minimal

MSE for a given color components transform, to �nd the optimal color components transform for

a given rates allocation or to �nd both optimal rates allocation and color transform. In the next

section we minimize the MSE function.

2.5 Finding the optimal rates and color components transform

We would like to minimize the MSE expression of (42) subject to the constraint of some total rate

allocation R for the image (in bits per pixel). We note that the rates of the 3 color components,

denoted Ri, simply sum up, i.e.,

R =

3X

i=1

Ri; (43)

while the subband rates of each component sum up as a weighted sum :

Ri =
B�1X

b=0

�bRbi: (44)
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Using Lagrange multipliers method, we therefore have to minimize the function

L (fRbig;M; �) =
1

3

3X

i=1

B�1X

b=0

�bGb�
2
bi"

2
i e
�aRbi

�
(MMT )�1

�
ii
+ �

 
3X

i=1

B�1X

b=0

�bRbi �R

!
; (45)

where � denotes the Lagrange multiplier.

It can be shown (Appendix A), that minimizing for Rbi and M yields the following equations:

Rbi =
R

3
+
1

a
ln

0
B@

"2iGb�
2
bi

�
(MMT )�1

�
ii�Q3

k=1GMk

� 1
3

�Q3
k=1 "

2
k

� 1
3

�Q3
k=1

�
(MMT )�1

�
kk

� 1
3

1
CA : (46)

GMk here is the weighted geometric mean of the subband variances of the component k (corrected

by the energy gains Gb), i.e.,

GMk =

B�1Y

b=0

(Gb�
2
bk)

�b : (47)

We can see that the equation for optimal rates allocation depends on the color components transform

M. The optimal color component transform is the one minimizing the following target function:

~f(M) =

3Y

k=1

�
(MMT )�1

�
kk
GMk: (48)

Taking the energy gains in GMk out of the target function, since not dependent on M the target

function simpli�es to:

f(M) =
3Y

k=1

�
(MMT )�1

�
kk

B�1Y

b=0

(�2bk)
�b (49)

We will now concentrate on the ~f(M) target function minimization. As can be seen, no con-

straints are needed here for the matrix minimizing this function to be invertible because of the
Q3
k=1

�
(MMT )�1

�
kk
part. Also, the solution of this problem is a transform which is adaptive to

the image, similar to the result of Pinhasov et al. in [9] in the context of disparity estimation in

stereo vision of color images.

2.5.1 Optimal color components transform - approximated target function

The target function of (48) is not easy to minimize. In order to simplify it a bit, we introduce

the concept of the subband transform coding gain. This coding gain is de�ned as the ratio of the

MSE distortion of simple PCM coding (i.e., simple scalar quantization with independent coding of

the sources samples) and the MSE of the subband transform coder (subband transform followed

by PCM coding) for the same rate R. In [15], the coding gain expression GT for a signal x with
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variance �2x coded by a subband coder (SC) is found to be:

GT =
dPCM (R)

dSC(R)
=

�2xQB�1
b=0

�
Gb�

2
b

��b =
�2x
GM

: (50)

Therefore, the coding gain is:

GT =
�2x
GM

: (51)

and the geometric means GMk of the color components can be expressed via their variances in the

image domain e�2k and the coding gains GTk :

GMk =
e�2k
GTk

: (52)

The variances e�2k are the diagonal elements of the covariance matrix in the C1C2C3 image domain:

e� , E
h
(ex� ~�x) (ex� ~�x)T

i
, ~�x , E [~x] (53)

and can also be expressed using the M matrix and the covariance matrix in the RGB image

domain:

� , E
h
(x� �x) (x� �x)

T
i
, �x , E [x] (54)

as:

e�2k =mk
T�mk; (55)

where m1;m2;m3 denote the M matrix rows in column vector form. Substituting (52) and

(55) into (48), we get:

~f(M) =

Q3
k=1

�
(MMT )�1

�
kk
mk

T�mkQ3
k=1GTk

: (56)

If we attempt to minimize the numerator of the expression only, then we seek to minimize:

g(M) ,
3Y

k=1

�
(MMT )�1

�
kk
mk

T�mk; (57)

or equivalently log(g(M)), given by:

log(g(M)) =

3X

k=1

log
��
(MMT )�1

�
kk

�
+

3X

k=1

log
�
mk

T�mk

�
; (58)
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it can be shown (Appendix B), that the gradients of this function according to the rows ofM, when

examining a unitary matrix (so that MMT = I), are:

rmi
log(g(M)) = �2mi +

2�mi

mi
T�mi

: (59)

These equations, when equaled to zero are equivalent to:

�mi =
�
mi

T�mi

�
mi; (60)

and have an interesting solution, namely the eigen vectors of � or the KLT. The KLT matrix is

indeed orthogonal (unitary) and therefore suggests that the target function g(M) can be minimized

by a matrix with orthogonal rows.

However, even though the KLT minimizes the g(M) function, it is only the numerator of the target

function of (56). The denominator of this target function
Q3
k=1GTk is not maximal for the KLT

and in fact the Karhunen-Loeve transform is not the solution of the full target function. In the next

section we discuss this problem�s solution.

2.5.2 Optimal color components transform - approximated solution

In order to minimize (48), we �rst de�ne the subband covariance matrices e�b as:

e�b , E
��
eYb � ~�Yb

��
eYb � ~�Yb

�T�
~�Yb

, E
h
eYb
i
; (61)

where eYb = [~Yb1 ~Yb2 ~Yb3]
T is the vector of the subband b coe¢cients of the three color components

C1, C2, C3 at each index in the subband. Due to the linearity of the transform, it is easy to show

that (32), suggests that each subband vector Yb = [YbR YbG YbB]
T of the R, G, B transform

coe¢cients goes through the same color components transform to the C1C2C3 domain:

eYb =MYb: (62)

Therefore, e�b can be expressed by �b - the RGB subband b covariance matrix de�ned by:

�b , E
h�
Yb � �Yb

� �
Yb � �Yb

�T i
�Yb

, E [Yb] (63)

according to:

e�b =M�bMT : (64)

Then we can express the variance �2bk as

�2bk =mk
T�bmk: (65)
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Substituting in (49) and taking the logarithm of the resulting target function f(M), we get:

logf(M) =
3X

k=1

 
log
�
(MMT )�1

�
kk
+
B�1X

b=0

�blog
�
mk

T�bmk

�
!

(66)

The exact analytic solution of this problem is di¢cult to �nd, however, based on the solution of the

approximated target function g(M) in section 2.5.1, we de�ne by MGKLT (GKLT - Generalized

KLT) the matrix satisfying the equations:

rmi
log(f(M)) = �2mi + 2

B�1X

b=0

�b
�bmi

mi
T�bmi

= 0; (67)

which are the gradient equations for the log(f(M)) target function with the assumption of orthog-

onality for M (MMT = I) and are somewhat similar to (59) (see Appendix C). They can be

rewritten in the form:
B�1X

b=0

�b
�bmi

mi
T�bmi

=mi; (68)

similar to (60). We further propose an iterative approach to �nd the MGKLT matrix, however

beforehand we are obliged to note that the vectors solving (68) are not orthogonal (so that these

equations� solution does not exactly minimize the target function), but they are usually close to

orthogonality, i.e., de�ning the cosine of the angle between mi and mj as

cos(�ij) =
mi

Tmjp
(mi

Tmi) (mj
Tmj)

; i; j 2 f1; 2; 3g; i 6= j; (69)

and we can state that cos(�ij) are usually close to 0.

Also note that (68) means that mi is an eigen vector of the matrix
PB�1
b=0 �b

�b
mi

T�bmi

that belongs

to the eigen value 1.

An iterative algorithm for �nding the GKLT We propose the following algorithm:

1. Take a random 3x1 vector v. Given the B subband covariance matrices �b, calculate thePB�1
b=0 �b

�b
vT�bv

matrix as in (68).

2. Find the eigen values �i and eigen vectors of the matrix calculated in the previous step.

3. For the ith eigen vector vi, i 2 f1; 2; 3g do:

while(j�i � 1j � " )

(a) Calculate the
PB�1
b=0 �b

�b
vi
T�bvi

matrix.
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(b) Find its eigen values and eigen vectors decomposition.

(c) Take the ith eigen vector as the new vi and the i
th eigen value as the new �i.

Here the " parameter is the threshold, indicating how close will vi get to solving (68). When

the algorithm converges, the GKLT is the matrix with vi; (i = 1; 2; 3) as its rows.

2.6 Optimal rates with down-sampling

Some coding systems (e.g. JPEG [18]) perform down-sampling on some of the color components

prior to coding. For such systems the down-sampling can be taken into account by introducing

down-sampling factors �i, so that the constraint on the global rate for the image is:

3X

i=1

�i

B�1X

b=0

�bRbi = R; (70)

where for example, if the down-sampling is by a factor of 2 horizontally and vertically, then

�i =

(
1 full component

0:25 down-sampled component

Therefore, the Lagrangian of (45) changes to:

L (fRbig;M; �) =
1

3

3X

i=1

B�1X

b=0

�bGb�
2
bi"

2
i e
�aRbi

�
(MMT )�1

�
ii
+ �

 
3X

i=1

�i

B�1X

b=0

�bRbi �R

!
; (71)

and the solution for the optimal rates is (Appendix D):

Rbi =
R
3X

j=1

�j

+
1

a
ln

0
BBBBBBBBB@

"2iGb�
2

bi((MMT )�1)
ii

�i

Q3
k=1

�
((MMT )�1)

kk
"2
k
GMk

�k

�
�k
3X

j=1

�j

1
CCCCCCCCCA

; GMk =

B�1Y

b=0

(Gb�
2
bk)

�b : (72)

The solution of (72) actually covers also the case when no down-sampling is employed of (46) if we

substitute 1 for all �i.
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Note that in the derivation of the Lagrangian, we have taken the quantization errors into account

for the MSE and have neglected the down-sampling errors. The reason is that taking the down-

sampling errors into account complicates the theoretical analysis and makes it dependent upon the

down-sampling and up-sampling schemes employed.

2.7 Optimal rates with Rbi � 0 constraints

Observing (72), one can note that the ln(�) part and as a result the whole Rbi expression can

be negative especially when considering low rates R and small energy subbands (small �2bi). To

avoid this, we have to add the constraints Rbi � 0 to our minimization problem and therefore, the

Lagrangian of (71) becomes:

L (fRbig;M; �; f�big) =
1

3

3X

i=1

B�1X

b=0

�bGb�
2
bi"

2
i e
�aRbi

�
(MMT )�1

�
ii

(73)

+�

 
3X

i=1

�i

B�1X

b=0

�bRbi �R

!
�

3X

i=1

B�1X

b=0

�biRbi; (74)

where �bi are the Lagrange multipliers for the new constraints and the expression of (73) is relevant

to subband coders with or without down-sampling of some of the color components. Minimizing

the Lagrangian for the rates Rbi requires �nding the rates that are positive and those that are zero.

We de�ne by Acti the set of all the active subbands in color component i, that is those subbands

with positive rates:

Acti , fb 2 [0; B � 1] j Rbi > 0g :

We also de�ne the following:

�i ,
X

b2Acti

�b; GMAi ,
Y

b2Acti

(Gb�
2
bi)

�b
�i , (75)

i.e., the relative part of the coe¢cients in the active subbands from the total signal length (�i ) and

the weighted geometric mean of their variances (corrected by the energy gains Gb) GMAi. Then

the solution becomes (Appendix E):
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Rbi =
R

3X

j=1

�j�j

+
1

a
ln

0
BBBBBBBBB@

"2iGb�
2

bi((MMT )�1)
ii

�i

Q3
k=1

�
((MMT )�1)

kk
"2
k
GMAk

�k

�
�k�k
3X

j=1

�j�i

1
CCCCCCCCCA

(b 2 Acti): (76)

2.7.1 How do we know which subbands are active (Rbi > 0) ?

A reasonable question that rises considering (76) is how can we know which subbands are the active

ones. The following algorithm can be used to �nd the active subbands iteratively:

Proposed algorithm

1. Assume all the subbands are active and calculate the rates.

2. While some Rbi < 0

� Set Acti = fb 2 [0; B � 1] j Rbi > 0g

� Calculate new rates.

3. Check that the Lagrange multipliers �bi � 0, where (Appendix E):

�bi =

(
a
3�b

�
(MMT )�1

�
ii
"2i
�
�20ie

�aR0i � �2bi
�

b =2 Acti

0 b 2 Acti
:

Here �20i and R0i are the variance and rate of the subband 0 of component i, respectively,

when subband 0 is assumed to have the maximal variance for that component (e.g. the DC

subband for the DCT) and therefore is assumed to be active (0 2 Acti).

Next we present the DCT (Discrete Cosine Transform) color components transform and its

connection to the f(M) target function.

2.8 DCT color components transform performance

The one dimensional 3x1 DCT transform matrix

MDCT =

0
B@
0:5774 0:5774 0:5774

0:7071 0:0000 �0:7071

0:4082 �0:8165 0:4082

1
CA (77)
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or (if normalized to L1 norm of 1 for each row, so that it transforms for example the intensity values

range of [0,255] to a new range of the same width):

fMDCT =

0
B@
0:3333 0:3333 0:3333

0:5000 0:0000 �0:5000

0:2500 �0:5000 0:2500

1
CA (78)

can be used on the [R G B]T vector as the color components transform. It has been shown [17], [7]

that the DCT can be used as an approximation for the KLT transform. However, we have stated

earlier that the KLT is not optimal from the minimal MSE point of view and it does not minimize

the f(M) target function of (48). Therefore, the DCT is not of interest as an approximation of the

KLT, but because of the following property:

although the DCT is not a solution to (48), it usually achieves very close values of the target

function to those of the solution and the optimal transform, i.e. the one minimizing f(M). The

performance of the DCT vs. other transforms is demonstrated in the next section.

2.9 Performance of di¤erent color component transforms for a DCT coder

In this section we present results of images compression using a DCT based coder with di¤erent

color components transforms (CCT) and optimal rates. The coding system consists of the following

stages:

* Apply the CCT as preprocessing.

* Transform each color components by two-dimensional DCT.

* Uniform scalar quantization is then applied to each subband separately. The quantization step

sizes are chosen so that optimal subband rates are achieved as will be described in subsection

3.1.

* Apply lossless coding of the transform coe¢cients, similar to the baseline JPEG algorithm

[18]:

� Use di¤erential coding to the DC coe¢cients

� Use zigzag scan, run length coding and Hu¤man variable length coding (combined with

variable-length integer codes) for the AC coe¢cients.

We use (76) for the optimal rates. The results for di¤erent CCTs and the same image rate or same

compression ratio (CR) are summarized in Table 1. The �Opt Trans� CCT is the one minimizing

the target function of (49) found by numeric methods of optimization. The performance criterion

here is the PSNR (Peak Signal to Noise Ratio) de�ned as:

18



PSNR = 10log10

�
2552

MSE

�
(79)

for a 8 bit per pixel (each color component) image.

It can be concluded from Table 1, that the optimal CCT indeed yields the best results on

average, but the DCT is close behind. The GKLT can sometimes serves as a good approximation

of the optimal transform (for example for the Lena, Girl, Landscape images), however, sometimes

it fails (e.g., for Peppers and Baboon). All these transforms are on average better than the RGB to

YUV transform and the KLT, which fails for low inter-color correlation images in the RGB domain,

such as Peppers and Baboon, but gives good performance for such images as Lena, where the RGB

components inter-color correlations are high.

Image YUV DCT KLT GKLT Opt Trans CR

Lena 30.019 30.372 30.355 30.243 30.285 37.75

Peppers 30.013 30.144 29.475 29.965 30.148 30.05

Baboon 30.010 30.468 28.595 30.204 30.540 13.33

Girl 30.015 30.359 30.343 30.417 30.450 43.87

Tree 30.018 30.295 30.601 30.508 30.649 13.76

Landscape 30.019 30.382 30.195 30.140 30.145 13.26

Jelly Beans 30.019 30.294 30.294 30.225 30.314 49.04

Mean PSNR 30.016 30.330 29.980 30.243 30.362

Table 1: PSNR for DCT compression with optimal rates and di¤erent CCT at the same CR

(compression ratio).
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We, therefore, propose the DCT as CCT - additional results are given in the next section.

3 Application: DCT Based Color Compression

In this section we propose a new algorithm for color image compression based on the 2D DCT block

transform. Features of this algorithm include:

* It employs the DCT as color component transform

* It uses the optimal rates equation to design its quantization tables.

The stages of the algorithm are:

1. Apply the CCT (DCT) to the RGB color components of a given image to obtain new color

components C1; C2; C3.

2. Apply the 2D block DCT to each color component Ci:

3. Quantize each subband of each color component independently using uniform scalar quantizers

to achieve the optimal subband rates. This is the lossy stage of the compression.

4. Code the quantized DCT coe¢cients similarly to JPEG [18]: di¤erential coding for the DC

coe¢cients and zigzag scan, run-length coding and Hu¤man coding (combined with variable-

length integer codes) for the AC coe¢cients. This stage is lossless coding.

Our rate-distortion model provides the expression for the optimal rates as derived in (76) taking

into account both down-sampling of some of the components and the non-negativity of the rates.

However, several questions are still unanswered:

1. How do we determine the quantization step �bi required to achieve the rate Rbi for subband

b of color component i?

2. How do we measure the rates of the quantized subbands?

3.1 Determining the quantization steps

Consider a stochastic source X with distribution fX(x), uniformly quantized to X̂ with (small) step

size of � and then entropy coded. To calculate the entropy of X̂, we divide the axis of the real

numbers into equal intervals of size �; so that the qth interval is displayed in Fig. 2. Note that q

is an integer that can be both positive, negative or zero.
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q∆-∆/2 q∆+∆/2q∆q∆-∆/2 q∆+∆/2q∆

Figure 2: Quantization intervals for uniform scalar quantization.

Assuming that fX(x) is approximately constant inside the intervals, the entropy of X̂ is:

H(X̂) = �

1X

q=�1

Pq log2 Pq
�= �

1X

q=�1

fX(q�)� log2 (fX(q�)�) (80)

�= �

1Z

�1

fX(x) log2 (fX(x)) dx�

1Z

�1

fX(x) log2�dx

= h(X)� log2�:

Here Pq is the probability that X̂ = q, that is, the probability that X falls into the qth quantization

interval. Also h(X) is the entropy of the continuous variableX. Since we assume that X̂ is e¢ciently

entropy coded (e.g. by Hu¤man or arithmetic coding), its bit rate R is given by:

R �= H(X̂): (81)

Note that even if X̂ is not entropy coded and we wish to know the average error in the MSE

sense caused by its quantization and reconstruction, we can use our rate-distortion model when the

rate is measured by its entropy. In such a case we can write R = H(X̂) without approximation.

Using (80) and (81)

� = 2h(X)�R (82)

and when 2 quantization steps �1 and �2 are considered:

�1

�2
= 2�(R1�R2): (83)

Using (83) the following algorithm is proposed:

Optimal quantization steps algorithm:

1. Calculate the optimal rates R�bi (by (76)).

2. Set some initial quantization steps �bi and calculate the resulting rates Rbi.

3. Update the quantization steps according to:
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�newbi = �bi2
�(R�

bi
�Rbi)

until the optimal rates R�bi are su¢ciently close, i.e., E (jR�bi �Rbij) < " for some small

constant ".

Based on practical considerations the following should be noted:

� The algorithm can be run for a limited number of iterations (typically 5-10).

� The rates Rbi are estimated using subband entropies.

� The initialization of �bi and estimated entropies can be computed based on the Laplacian

distribution assumption for the DCT coe¢cients.

3.2 Results of the algorithm

The algorithm was implemented and compared to the baseline JPEG [18]. First we present quan-

titative measures based on the MSE (PSNR) and WMSE and then some visual results. Similar to

the PSNR (Peak Signal to Noise Ratio) de�nition:

PSNR = 10 log10
2552

MSE
;

we de�ne the PSPNR (Peak Signal to Perceptible Noise Ratio):

PSPNR = 10 log10
2552

WMSE
; (84)

where WMSE for each color component is calculated as:

WMSE =
B�1X

b=0

�bWbGbdb: (85)

Here db denotes the MSE of subband b, Gb it energy gain, �b its sampling rate and Wb is its visual

perception weight. For convenience we have taken the WMSE suggested in the JPEG2000 algorithm

[15]. Therefore, the subbands in (85) are of the DWT (Discrete Wavelet Transform). We consider

256x256 or similar size images displayed on a screen as 12cm x 12cm size images. The visual weights

suggested for a 5-levels DWT decomposition and a viewing distance of 46.875 cm (for our image

size) are given in Table 2 based on the CSF (Contrast Sensitivity Function) of the human visual

system for the YCbCr color space (the weights here squared are the Wb). HL stands for horizontal

high-pass, vertical low-pass subbands, LH for horizontal low-pass, vertical high-pass subbands and

HH for subbands high-pass �ltered in both directions. The LL subband does not appear in the

table, but should be assigned the highest weight of Wb = 1.
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Level
5 4 3 2 1

HL 1.000000 1.000000 1.000000 0.998276 0.756353
Y LH 1.000000 1.000000 1.000000 0.998276 0.756353

HH 1.000000 1.000000 1.000000 0.996555 0.573057
HL 0.883196 0.793487 0.650482 0.450739 0.230503

Cb LH 0.883196 0.793487 0.650482 0.450739 0.230503
HH 0.833582 0.712295 0.531700 0.309177 0.113786
HL 0.910877 0.841032 0.725657 0.552901 0.336166

Cr LH 0.910877 0.841032 0.725657 0.552901 0.336166
HH 0.872378 0.776180 0.625103 0.418938 0.200507

Table 2: Visual (CSF) weights for YCbCr.

For convenience we use a single measure for the PSPNR: the average PSPNR for the three color

components.

3.2.1 Quantitative results

The quantitative results are given in Table 3 for the same rate or compression ratio for both

algorithms: the new algorithm and JPEG. It can be seen that the new algorithm (New Alg) improves

JPEG performance by 1.24dB PSNR and 1.69dB PSPNR on average. It is clear that the PSNR

is not a good measure when the human observer is considered, for example, when the di¤erence in

the PSNR is small. Then the PSPNR di¤erence may be large as, for instance, in the Lena image,

meaning that the small di¤erence in the images is in details important to the human observer (such

as low spatial frequencies of the image). On the other hand, larger di¤erences in the PSNR, do not

necessarily correspond to larger di¤erences in the PSPNR when most of the error is concentrated

in the high spatial frequencies, for example, to which the human eye is less sensitive.

3.2.2 Visual results

1. Lena (256x256) at 0.469 bpp (bits per pixel):

The results in terms of PSNR and PSPNR of JPEG and the new algorithm are given below.

PSNR Average PSPNR

Image New Alg JPEG Di¤ New Alg JPEG Di¤ Rate CR

Lena 29.015 28.447 0.566 39.846 37.679 2.167 0.469 51.20
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PSNR Average PSPNR

Image New Alg JPEG Di¤ New Alg JPEG Di¤ CR

Lena 30.019 29.785 0.234 39.073 37.559 1.514 41.87

Peppers 30.015 28.640 1.375 37.848 35.787 2.061 31.59

Baboon 30.010 26.370 3.639 38.957 36.061 2.896 14.43

Fruit 29.977 29.302 0.675 39.185 37.042 2.143 38.72

Girl 29.960 29.072 0.888 38.557 37.413 1.143 47.72

House 29.975 29.213 0.762 38.962 37.970 0.991 45.20

Tree 29.963 28.837 1.126 39.236 38.124 1.112 14.03

Mean 29.988 28.746 1.243 38.831 37.137 1.694

Table 3: PSNR and PSPNR for the new algorithm and JPEG at the same compression ratio.
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The original image and the compressed versions for both algorithms: the new algorithm and

JPEG are displayed in Fig. 3. Notice the color artifacts that JPEG introduces in the face area,

which are much less visible in the image of the new algorithm.

2 Peppers (256x256) at 0.731 bpp:

PSNR Average PSPNR

Image New Alg JPEG Di¤ New Alg JPEG Di¤ Rate CR

Peppers 29.995 28.273 1.722 37.844 35.429 2.416 0.731 32.82

For the Peppers image, the results are displayed in Fig. 4. Note the artifacts introduced by

JPEG in the marked area. Fig. 5 zooms in on the area of interest and presents the mentioned

artifacts more clearly. Those artifacts are almost absent form the new algorithm�s image.

3 Baboon (256x256) at 0.287 bpp:

PSNR Average PSPNR

Image New Alg JPEG Di¤ New Alg JPEG Di¤ Rate(bpp) CR

Baboon 22.028 21.469 0.558 32.065 29.693 2.372 0.287 83.67

Fig. 6 displays the result of the compression of the baboon image at the rate of 0.287bpp. Note

the red and green color artifacts for the JPEG algorithm in the marked area which are absent in

the new algorithm�s image.

4 Summary

We have introduced a Rate-Distortion model for color image compression using subband transform

coders. This tool provides prediction of the distortion (MSE) of such coders for given subband rates

and a color components transform. Based on the model, a target function for an optimal CCT and
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optimal rates allocation are derived. The Generalized KLT has been introduced as an approximated

solution to the target function, and an iterative algorithm for its calculation has been proposed.

The performance of various color components transforms for image compression has been studied

and it has been shown that the DCT can be used as a sub-optimal CCT, close to the optimal

adaptive CCT and superior to the commonly used RGB to YUV transform or KLT. This solution

also has an advantage over adaptive CCTs, since it is a �xed straightforward transform. Referring

to optimal subbands rates, we have also considered and analyzed the case of down-sampling color

components, as well as additional constraints for non-negativity of the rates. An algorithm for

designing optimal quantization tables of subband coe¢cients has been introduced and implemented

in the context of a new compression algorithm for color images. Both quantitative (MSE and

WMSE) and visual results have been presented, showing that the proposed compression algorithm

outperforms baseline JPEG. Our conclusion is that in addition to the theoretical aspects of the new

Rate-Distortion model it can also serve as a tool for improving color image compression systems

compared to presently available algorithms.
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Appendices

A Minimization of the Lagrangian of (45)

Taking the gradient of L (fRbig;M; �) according to Rbi equal to 0, we get:

� =
a

3
Gb�

2
bi"

2
i

�
(MMT )�1

�
ii
e�aRbi (86)

Therefore, the rate of subband b of component i can be expressed via its 0 subband rate, for example

as:

Rbi = R0i +
1

a
ln(
Gb�

2
bi

G0�20i
): (87)

using the equality:
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(MMT )�1

�
ii
e�aR0i : (88)

Similarly by (86) the rates of the 0 subbands of di¤erent color components i and j are connected

according to:

R0i = R0j +
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(89)

Expressing all the rates Rbi via R01 and solving the constraint
P3
i=1

PB�1
b=0 �bRbi = R gives us the

solution for R01 and therefore by (87) and (89) for all the rates Rbi:
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where GMk is de�ned in (47). Substituting the rates in (42) results in:
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(91)

and minimizing this expression for M is the same as minimizing (48).

B Minimization of log (g(M))

Starting from log (g(M)) of (58) we get:
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where
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The sum of �rst 2 terms in (92) is the gradient of
P3
k=1 log

�
(MMT )�1

�
kk
, while the 3rd term is

the gradient of
P3
k=1 log

�
mk

T�mk

�
according to m1. If MM

T = I, then:

rm1
log(g(M)) = �2m1 +

2�m1

m1
T�m1

: (94)
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Similar equations can be derived for m2 and m3:

C Minimization of log (f(M))

It is clear that the
P3
k=1 log

�
(MMT )�1

�
kk
part of logf(M) in (66) is the same as in (58) which

minimization is discussed in Appendix B. Therefore we will receive the same expression for its

gradient according to m1 as in (92) and under the assumption MM
T = I it will reduce to �2m1

as in (94). The gradient of the second term in (66):
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and therefore the total gradient equation becomes:

�2m1 + 2
B�1X

b=0

�b
�bm1

m1
T�bm1

= 0: (96)

Similar equations are received for m2 and m3:

D Deriving the optimal rates with down-sampling

Similarly to the mathematical analysis of Appendix A we take the gradient of L (fRbig;M; �) of

(71) equalled to 0 to receive the equations:

� =
a

3�i
Gb�

2
bi"

2
i

�
(MMT )�1

�
ii
e�aRbi : (97)

We then repeat the same process of expressing the rates Rbi via R01as in (87) and (89). While the

�rst equation remains the same, the second one changes to:

R0i = R0j +
1

a
ln

0
B@

"2i �
2

oi((MMT )�1)
ii

�i

"2j�
2

0j((MMT )�1)
jj

�j

1
CA : (98)

where j is taken as 1. Solving the constraint equation

3X

i=1

�i

B�1X

b=0

�bRbi = R (99)

for R01 allows us to express all the rates Rbi as in (72).
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E Deriving the optimal rates with Rbi � 0 constraints

We repeat here the operations in Appendix A, i.e. we take the gradient of L (fRbig;M; �; f�big) of

(73) equal to 0 to receive:

� =
a

3�i
Gb�

2
bi"

2
i

�
(MMT )�1

�
ii
e�aRbi +

�bi
�i�b

: (100)

However, now we have unknown variables �bi in the equations. The solution we propose is to assume

that the 0 (DC) subbands are active, i.e. R0i > 0 (which is a logical assumption since a large part

of the energy is concentrated in these subbands). Therefore, �0i = 0 and the equation for the 0

subbands (and any other active subband) is the same as (97). For some other subband b of color

component i: if it is active too, then its rate Rbi can be expressed through R0i as in (87). If it is not

active, then Rbi = 0 by de�nition and (100) can be used to express its Lagrange multiplier through

R0i:

�bi =
a

3
�b
�
(MMT )�1

�
ii
"2i
�
G0�

2
0ie

�aR0i �Gb�
2
bi

�
: (101)

The 0 subbands rates are expressed through R01, for example, according to (98) and then all the

rates are substituted in the total rate constraint, which is slightly rewritten:

3X

i=1

�i

B�1X

b=0

�bRbi =

3X

i=1

�i
X

b2Acti

�bRbi = R;

i.e. we sum up only the non zero rates of the active subbands. The solution for R01 and therefore

for all the other non zero rates is given by (76).
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Figure 3: Lena at 0.469 bpp: original (top), compressed by JPEG (bottom left) and compressed

by the new algorithm (bottom right).
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Figure 4: Peppers at 0.731 bpp: original (top), compressed by JPEG (bottom left) and com-

pressed by the new algorithm (bottom right).
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Figure 5: Peppers at 0.731 bpp zoomed: original (top), compressed by JPEG (bottom left) and

compressed by the new algorithm (bottom right).
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Figure 6: Baboon at 0.287 bpp: original (top), compressed by JPEG (bottom left) and com-

pressed by the new algorithm (bottom right).
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