
EquiCast: Scalable Multicast with Selfish Users

Idit Keidar Roie Melamed Ariel Orda

Abstract

Peer-to-peer (P2P) networks suffer from the problem of “freeloaders”, i.e., users who consume re-
sources without contributing anything in return. In this paper, we tackle this problem taking a game
theoretic perspective by modeling the system as a non-cooperative game. We introduce EquiCast, a
wide-area P2P multicast protocol for large groups of selfish nodes. EquiCast is the first P2P multicast
protocol that isformally provento enforce cooperation inselfish environments. Additionally, we prove
that EquiCast incurs a low constant load on each user.

1

lesley
Text Box
CCIT Report #573February 2006

1 Introduction

Peer-to-peer (P2P) networks can distribute digital content to a large number of users over the Internet by
distributing the load among the peers [18, 5]. However, these networks suffer from the problem of “freeload-
ers”, i.e., users who consume resources without contributing their fair share [2]. In order to discourage
“freeloaders”, some P2P systems employ incentives to motivate users to cooperate, e.g., contribute upload
bandwidth or disk space for some other users. However, while current incentive-based P2P systems reward
cooperation to some extent, no existing protocol has been proven to enforce cooperation in selfish envi-
ronments. Moreover, such systems, e.g., [5, 10], typically rely on user altruism. For example, a node is
expected to upload data blocks to other nodes for no return whenever it has available bandwidth [5, 10].
Hence, current incentive-based P2P systems do not solve the problem of “freeloaders” [12], and would not
have worked well at all if users would have behaved selfishly, e.g, leaving a content distribution system after
they have finished downloading the file [12, 10].

Nowadays, user altruism is common since most users are connected to the Internet using static machines
via ISPs with a flat pricing model, and hence sending a packet does not incur a cost on its sender. However,
these paradigms are changing. First, the increasing access to digital content is expected to drive ISPs to
implement a tiered pricing scheme, where high end pricing plans shall allow unlimited downloads and
uploads, while lower tier pricing plans shall limit traffic bandwidth [18]. With such a pricing scheme,
users will most likely cease to be altruistic [18]. This may lead to low P2P system availability [13, 12]
or even system collapse [2, 17]. Second, wireless hotspots are proliferating in recent years, and users are
increasingly connecting to the Internet and downloading content to mobile devices such as laptops and cell
phones. In such networks, pricing is typically based on connection time or transmission volume. Moreover,
battery power is a critical resource for mobile devices. Hence, user altruism can hardly be expected in such
networks. Therefore, we believe that it is important to design P2P systems that work well even when all
users are selfish.

In this paper, we address this challenge. We introduceEquiCast, a wide-area P2P multicast protocol
for distributing content to large groups of selfish nodes. We treat the problem of free-loading from a game
theoretic perspective, and we model the system as anon-cooperative game. In such a game, nodes are selfish
but rational, i.e., each user chooses its ownstrategyregarding its level of cooperation so as to minimize its
own cost [9]. More specifically, the goal of each node is to receive all the multicast packets while minimizing
its sending rate. We restrict the strategies a node can choose toprotocol-obedientones, where a protocol-
obedient strategy determines how many connections the node maintains and how many packets it sends
on each connection, though it does not include hacking the protocol’s code or assuming that others do so.
We believe that this set of strategies is reasonable, since users usually do not have the technical knowledge
required in order to modify an application code. Our formal model and cost function are presented in
Section 3, and in Section 5.1 we formally define the set of protocol-obedient strategies.

In EquiCast, a single distribution serverS (which can be implemented by multiple machines acting as
one logical server) organizes the nodes into a staticoverlay network. We divide the time into rounds, and
in each round,S injects new data packets to a small random subset of the nodes in the overlay. Nodes,
then, communicate with their overlay neighbors in order to retrieve missing data packets.Salso provides a
“safety net” for a node whose data receiving rate is lower than the multicast rate, by sending data packets to
either the node or its neighbors. This additional overhead incurred onS is modest, since most of the nodes
are expected to receive most if not all the multicast packets from their overlay neighbors.

EquiCast enforces cooperation through two mechanisms. The first is amonitoring mechanism, whereby
each node monitors the sending rate of each of its neighbors. Specifically, for each neighborn̂, each noden
maintainŝn’s balance, which is the difference between the number of data packetsn̂ has sent ton so far and
the expected per-link throughput. As long asn̂’s balance is greater than or equal to a predefined negative

2

thresholdL, n̂ is considered to be cooperative, andn continues to send data packets ton̂. Otherwise,n
terminates its connection witĥn. Note, however, that it is always possible for cooperative nodes to have a
balance greater than or equal toL with respect to all of their neighbors.

The second mechanism is a per-linkpenalty mechanism, which further motivates nodes to adhere to the
expected link throughput. It charges a neighbor with one additionalfinepacket for every round the neighbor
has a negative balance, where a fine packet is a dummy packet that has the same size as a data packet. Fine
packets, as opposed to data packets, do not affect the node’s balance. Therefore, a node is motivated to
achieve a non-negative balance, whenever possible. Note that the multicast rate is tens of data packets per
round, and hence the penalty mechanism incurs a modest overhead. In general, in EquiCast, each node is
required to have an upload bandwidth that is slightly higher, e.g., by10%, than the multicast rate. Note that
similar requirements are also assumed by multicast systems for cooperative environments [3].

In Section 5, we prove that, in environments in which all the nodes are selfish, EquiCast disseminates
all the multicast packets to all the nodes. Additionally, every protocol-obedient strategy in which a node
exclusively cooperates with all its neighborsstrictly dominatesevery protocol-obedient strategy in which
it does not. We are unaware of any previous P2P multicast protocol that was formally proven to enforce
cooperation in environments in whichall nodes are selfish.

Finally, for simplicity, throughout most of the paper we describe only a static version of EquiCast, in
which no node joins or leaves the service. In Section 6, we sketch out a dynamic version of EquiCast that
supports node joins and leaves.

2 Related Work

We are familiar with only two previous P2P multicast protocols for selfish environments [17, 11]. Ngan
et al. [17] propose an incentive-based multicast protocol based on detection of selfish nodes and periodic
reconstruction of multicast trees that exclude previously misbehaving nodes. However, this protocol induces
high overhead. For example, with500 nodes, the trees’ reconstruction requires each node to send256 control
messages every two minutes; and when the group size is2000 nodes, each node sends nearly400 control
messages every two minutes, in addition to data messages. Habib and Chuang [11] propose an incentive-
based protocol for media streaming, in which cooperative nodes receive high quality of service whereas
“freeloaders” receive low quality streaming. While this protocol rewards cooperation to some extent, it does
not solve the problem of “freeloaders”. These two solutions, however, consider a different model, in which
only a fraction of the nodes are selfish. Moreover, neither is formally proven to enforce cooperation.

Several previous distributed Internet services such as content distribution [5, 10], storage [6], and
lookup [4] reward cooperation to some extent by incentivizing cooperative behavior. The BitTorrent [5]
and Avalanche [10] content distribution systems support the tit-for-tat strategy, in which a user preferen-
tially uploads blocks of information to users from which it is also downloading blocks. But these systems
rely on user altruism, and hence they do not purport to work in a selfish environment where all users are
rational and selfish, and every packet incurs a cost on its sender. In the SAMARA storage system [6], each
node is required to contribute as much disk space to the system as it is using, and in the GIA lookup sys-
tem [4] the quality of service experienced by a node is proportional to its contribution to the system. None
of the aforementioned services, however, models the system as a non-cooperative game or formally proves
cooperation as we do.

In P2P protocols based on a centralizedreputation system, e.g., eMule [1] and [2], each node sends
to and requests from the system reports about the level of cooperation of other nodes. Hence, a node is
motivated to collaborate with other nodes. However, this approach achieves limited scalability [2], since the
reputation system continuously communicates with all the nodes.

3

Finally, cost-sharingmulticast solutions e.g., [7], consider a different model, in which multicast is pro-
vided over a dedicated infrastructure, and the infrastructure cost is shared among all nodes. Such an ap-
proach, however, is not applicable to P2P systems.

3 Model and Problem Statement

We consider a large static collection ofN nodesn1, n2, ...,nN . A single distribution serverSdistributesP
data packets to the nodes, whereP is a random variable distributed exponentially with a large expectation,
e.g., larger than10,000. Sknows all the node identities, e.g., by each node registering itself atS.

Network and timing model. Each node can directly communicate with every other node and withS. The
multicast rate isp data packets perδ time units. Each node has an upload bandwidth of at mostp+kc packets
perδ time units, wherek andc are small constants such thatk≥3, c≥4, andp%k=0. In addition, we require
that(k2−k)(c−3)<p andk2(c−2)−2k<p, in order to prove that every protocol-obedient strategy in which
a node exclusively cooperates with all its neighbors strictly dominates every protocol-obedient strategy in
which it does not. There is a bound of∆ time units on packet delay, and sending a packet incurs zero delay
on the sender. Local computations also incur zero delay. Finally, for simplicity, we assume no packet loss.

The game formulation. We model the system as anon-cooperative game, in which theplayersare the
N nodes. Each node chooses astrategyout of a set of possibleprotocol-obedient strategies. We defer
the definition of this set to Section 5.1, since it relies on the protocol’s code described in Section 4.3.
Generally speaking, a protocol-obedient strategy must run the protocol as is and can only determine how
many connections to maintain and how many packets to send.

Each node is selfish andrational, i.e.,ni chooses a strategysti that minimizes its selfish cost as defined
below. A strategyA strictly dominatesanother strategyB if choosingA always incurs a lower cost than
choosingB, regardless of the strategies chosen by other nodes. Astrongly dominating strategystrictly
dominates all other strategies. AlthoughS is not one of the players, we model its random injections of data
packets as its strategyst0, and hence our proof of cooperation is valid regardless ofS’s random choices.
Note thatst0 does not determine the length of the session, i.e.,P . Denote byri the total number of data
packets received byni throughout the multicast session, and bysi the total number of packets sent byni

throughout the multicast session. Then, the cost function for a nodeni is defined as:

fi(st0, st1, ..., stN) =
{ ∞ if ri < P

si if ri = P .

That is, ifni receives all the multicast packets, then its cost is the number of packets it has sent during the
multicast session. Otherwise,ni’s cost is infinite.

Problem statement. Our goal is to design a scalable P2P multicast protocol, in which if each node chooses
a dominating strategy out of the set of protocol-obedient ones, then each node receives all the multicast
packets. A second goal is efficiency, i.e., the maximal and expected sending/recieving overhead incurred on
each node isP (1+ c·k

p) andP (1+ ε
p) packets, respectively, whereε does not depend onp.

4 EquiCast

Section 4.1 describes EquiCast’s architecture. Section 4.2 provides a high-level description of EquiCast’s
cooperation enforcement scheme, and Section 4.3 describes the protocol in detail.

4

4.1 Architecture

Sorganizes the nodes into a static overlay that satisfies the following properties: (KRRG1) each node in the
overlay has exactlyk neighbors for some parameterk; (KRRG2) the overlay’s diameter is logarithmic in
N ; and (KRRG3) the expected distance between a given node and a random node in the overlay equals the
average distance between a pair of nodes in the overlay. Fork≥3, ak-regular random graph1 satisfies these
properties with high probability [20, 8, 14].S constructs the overlay, e.g., using one of the constructions
in [20], and sends to each node the identities of its overlay neighbors, henceforth, simply calledneighbors.
Note that since the construction is centralized, no node cooperation is required.

In the next section, we show that, under our model assumptions, for each node, maintaining connections
with itsk neighbors is a dominating strategy. Hence, connections are expected to persist. However, if a given
connection is terminated, e.g., due to a node failure, then a noden can end up with less thank neighbors. In
such cases,n contactsS, andSemulates a selfish rational EquiCast noden̂, and a new connection is formed
betweenn andn̂. n̂’s interface is identical to the interface of each EquiCast node with the following two
exceptions: i)n’s balance with respect tôn is initialized to the lowest possible balance, i.e.,L; and ii) in
each round,n must send a fine packet tôn regardless of its balance with respect ton̂, otherwisên terminates
its connection withn. Hence, as we show in Section 5.2, a node prefers to maintain a connection with a
non-emulated node over an emulated one.

4.2 Overview

We divide the time intoR=dP
p e rounds. Every round,Screatesp new data packets, and for each noden, S

sends copies of thesep packets ton with a probability of k
N , so that, on average, each data packet is sent to

k nodes.
In each round, every noden gossips with its neighbors about new data packets it has received in the

previous round, i.e., for each neighbor,n sends a gossip packet containing the identities of all the data
packets it has received in the previous round. After receiving gossip packets from its neighbors,n requests
from each of its neighbors data packets that the neighbor has and were not previously received byn. If a
given packet is available at more than one neighbor, thenn randomly picks one of those neighbors to request
the packet from. Finally,n sends its neighbors the data packets they requested from it.

We note that since a given packet is sent byS to each of the nodes with equal probability and since
the expected distance between a random node and a given node equals the average distance between a pair
of nodes in the overlay (KRRG3), if all the nodes comply with the protocol, then the average latency with
which nodes receive data packets is identical for all nodes, and the expected throughput isp

k data packets
per-round on every overlay link. In a previous study [16], we used a similar technique in order to support
reliable multicast in cooperative environments. The aim of this study is achieving similar results in a non-
cooperative environment.

In order to motivate cooperation, we introduce amonitoring mechanism, whereby each noden monitors
the sending rate of each of its neighbors. For each neighborn̂, n maintainsn.neighborbalance[̂n] , which is
the difference between the number of data packetsn̂ has sent so far and the expected per-link throughput of
p
k data packets per-round. Note that, in a given round,n̂ may have less thanpk new data packets that have not
yet been received atn, whereas in another round it may have more thanp

k data packets forn. Therefore, we
allow for some slack in the balance. The allowed imbalance is captured by a negative thresholdL. As long
asn̂’s balance with respect ton is greater than or equal toL, n̂ is considered to be cooperative byn. But if
n̂’s balance with respect ton drops belowL, thenn terminates the connection witĥn. Note that, as long as

1A k-regular random graphwith N nodes is a graph chosen uniformly at random from the set ofk-regular graphs withN
nodes.

5

n̂’s balance with respect ton is greater than or equal toL, the uploading rate fromn to n̂ is unaffected by
the downloading rate from̂n to n. This independence is required in order to prove cooperation.

In order to further motivate nodes to adhere to the expected throughput, we introduce a per-linkpenalty
mechanismthat charges a neighbor with one additionalfine packet for every round the neighbor has a
negative balance with respect to the node, where a fine packet contains no useful data but has the same size
as a data packet. If the node does not receive a fine packet from a neighbor with a negative balance, then
it terminates its connection with that neighbor. Fine packets, as opposed to data packets, do not affect the
node’s balance. Therefore, a node is motivated to achieve a non-negative balance, where all sent packets
contribute to its balance. Moreover, it is beneficial for nodes to have a strictly positive balance whenever
possible. This is because there is no guarantee that a given neighbor will request at leastp

k packets from the
node in forthcoming rounds. If a neighbor requests fewer thanp

k packets when the node’s balance toward
it is zero, then the balance becomes negative, and the node pays the fine. Note that a node cannot optimize
its balance according to the session duration, asP is a random variable distributed exponentially. Note also
that the penalty mechanism does not eliminate the need forL, since without this threshold, a selfish node
could have sent only fine packets.

Although nodes are motivated to have a non-negative balance, due to randomness, a noden may have
an insufficient number of new packets for a given neighbor in order to be able to maintain a balance greater
than or equal toL. In order to avoid a disconnection in such a scenario,n can askS to send up top

k new
data packets on behalf of it to a given neighborn̂ in return for sending the same number of fine packets toS.
n̂ countsS’s packets towardsn’s balance only if ignoring these packets would dropn’s balance with respect
to n̂ belowL. Hence,n contactsSonly when its balance with respect ton̂ drops belowL. In addition, after
the end of the multicast session,n can askS to send to it up to|L|k data packets in return for sending the
same number of fine packets toS.

On the one hand, the allowed imbalance should be large enough to reduce the probability of a cooperative
node reachingL, in order to avoid over-loadingS. On the other hand, a high imbalance allows a selfish node
to receive many data packets, i.e.,|L|k, without sending any data packets in return. Hence, there is an
inherent tradeoff between the overhead incurred onS and the number of data packets a node can receive
for free. For example, settingL to−200 is a good tradeoff between the two opposite requirements. On the
one hand, ifk=3, then a node can get only600 data packets without contributing anything in return to the
system. Since we assume that the multicast session is significantly longer, including at least10,000 packets,
it seems like users will not be satisfied with getting a mere600 packets and will therefore be motivated to
contribute. On the other hand, such a bound is expected to incur a modest overhead onS. Note that the value
of L is independent of all the other system parameters.

4.3 Detailed description

4.3.1 The source protocol

Each round,Screatesp new data packets, and for each noden it sends a copy of these packets ton with a
probability of k

N . In the rare case in which, at a given round, no node is chosen to receive copies of thep
new data packets,Srestarts the round. Note that this does not add to the round duration, since computation
time is zero.

Upon receiving a request from a noden to sendx data packets to another noden̂, S verifies that: (i)
x≤ p

k ; (ii) this request is followed by the sending ofx fine packets fromn; (iii) n andn̂ are neighbors; (iv)
neithern nor n̂ has askedS to replace the other node with an emulated node; and (v)n is not pretending
to be another node (IP-spoofing). The latter is checked, e.g., by sending a random string ton thatn should
send back toS in one of the fine packets. Ifn passes the checks, thenS sends tôn copies ofx new data
packets that it intends to distribute in the next round. If two or more ofn̂’s neighbors askS to send data

6

packets tôn, thenSsends tôn different packets on behalf of each neighbor. We neglect the possibility that
in the next round̂n will be chosen byS to receive data packets from it, as the probability for this scenario is
k
N .2

After the end of the multicast session,S provides a “safety net” for cooperative nodes that did not
receive all theP multicast packets. Specifically, upon receivingx fine packets from a noden, S sendsx
data packets ton, for x≤|L|k. In order to avoid server overloading at the end of the multicast session, we
use the randomized back-off strategy described in [19].

4.3.2 The node protocol

Fig. 1 presents the data structures and parameters maintained by an EquiCast node. The setneighborsholds
the node’s neighbors. The arraymy balanceholds the node’s balance with respect to each of its neighbors,
and the arrayneighborbalanceholds the neighbors’ balances with respect to the node. The setids contains
identifiers of data packets that the node heard about (from one or more of its neighbors) but has not yet
received. The arrayreqsholds identifiers of data packets that the node asks its neighbors to send to it. The
(negative) thresholdL determines the minimal allowed balance. Finally, each node chooses its own upper
boundH on its balance with respect to a given neighbor, which defines its level of cooperation.

Data structures:
neighbors– set of the overlay neighboring nodes.
my balance[k]– outgoing balance, initially∀n ∈ neighbors, my balance[n] = 0.
neighborbalance[k]– incoming balance, initially∀n ∈ neighbors, neighbor balance[n] = 0.
H – an upper bound on the balance, chosen by the node.
ids – set of data packet identifiers that the node has not yet received, initially∅.
reqs[n] – a set of data packets identifiers to ask from neighborn, initially ∀n ∈ neighbors, req[n] = ∅.
Parameters:
L – a lower bound on the balance (a negative number).

Figure 1: EquiCast’s data structures and parameters.
The pseudo-code of the node’s protocol is presented is Fig. 2. It consists of four phases, which are

executed sequentially.
In the first phase, which lasts∆ time units, a node sends to its neighbors identifiers of data packets it

received in the previous round (lines 1–5).
In the second phase, which also lasts∆ time units, if the node does not receive a gossip packet from

some neighbor, then the node terminates its connection with that neighbor (lines 6–8). Then, the node
processes gossip packets it has received from its neighbors. For each identifier inids, the setid set holds
all the neighbors that have the corresponding data packet. One such neighborn is randomly chosen from
this set, and the node asksn to send it the corresponding data packet by appending the identifier toreqs[n].

In the third phase, which lastsδ−3∆ time units, if the node does not receive a request packet from some
neighbor, then the node terminates its connection with that neighbor (lines 19–21). Then, the node sends
data packets to each of its neighbors. It sends as many requested packets as possible, up tox= p

k+c−3
data packets to a given neighborn, as long as its balance with respect ton does not exceedH (line 21).
Additionally, the node increases its balance with respect ton by x. If the node’s balance with respect ton is
smaller thanL, then the node asksS to send ton sufficiently many packets so that at the end of the current
round the node will have a balance that is equal to or larger thanL with respect ton (lines 23–25).

In the fourth phase, which lasts∆ time units, the node updates each neighbor’s balance according to
the number of data packets it received from the neighbor and fromS on behalf of the neighbor in the
previous phase (lines 28–32). Note that the node does not accept unsolicited data packets from its neighbors.
Likewise, the node accepts data packets fromS on behalf of some neighborn only if, at the beginning of

2In this case, if̂n is chosen byS to receive data packets in roundt, thenScan send data packets ton̂ in roundt+1.

7

Phase I (gossip)
1. /* Send gossip packets to neighbors */
2. foreachn ∈ neighbors
3. create new gossip packetp with

all the data packet identifiers received in the last round
4. send〈GOSSIP,p〉 to n
5. wait ∆ time

Phase II (process gossip, send requests)
6. foreachn ∈ neighbors from which

no GOSSIP packet arrived
7. disconnect fromn
8. contactSand ask for an alternative neighbor
9. ids ← set of identifiers received in gossip packets, whose

corresponding data packets were not received yet
10. foreachn ∈ neighbors reqs[n] ← ∅
11. foreachid ∈ ids
12. id set ← set of neighbors that gossiped aboutid
13. ne ← a random neighbor fromid set

so that|reqs[ne]|< p
k
+c−3

14. if there is no suchne then continue
15. reqs[ne] ← reqs[ne] ∪ {id}
16. foreachn ∈ neighbors
17. send〈REQUEST,reqs[n]〉 to n
18. wait ∆ time

Phase III (send data)
19. foreachn ∈ neighbors from which

no REQUEST packet arrived
20. disconnect fromn
21. contactSand ask for an alternative neighbor

20. /* Send data packets */
21. send up tox data packets ton according ton’s request,

wherex = min(H+ p
k
−my balance[n], p

k
+c−3)

22. my balance[n] ← my balance[n]+x− p
k

23. if my balance[n]<L then
24. w ← min(p

k
+c−(x+3),p

k
)

25. sendSw fine packets and
ask it to sendw data packets ton

26. my balance[n] ← my balance[n]+w
27. wait δ − 3∆ time

Phase IV (update data structures, pay fine)
28. foreachneighborn
29. d ← number of data packets that I askedn to send me

in phase II and were received fromn in this round
30. if neighbor balance[n]<L+ p

k
and I received in this

roundm data packets fromSon behalf ofn then
31. d ← d + m
32. neighbor balance[n] ← neighbor balance[n]+d− p

k

33. /* Send a fine packet (if needed) */
34. foreachneighborn
35. if my balance[n] < 0 then
36. send a FINE packet ton
37. wait ∆ time
38. foreachneighborn
39. /* Check if neighbor is OK */
40. if neighbor balance[n] < L or

neighbor balance[n] < 0 andn did not
send me a FINE packet in this roundthen

41. disconnect fromn
42. contactSand ask for an alternative neighbor

Figure 2: Code for EquiCast node.

the fourth phase,n has a balance lower thanL+ p
k with respect to the node. Then, if the node has a negative

balance with respect ton, then it sends one fine packet ton. Finally, if n either has a balance lower thanL
or did not send the fine packet it was required to, then the node terminates its connection withn.

5 Proof of Cooperation

Recall thatP , the number of data packets in a session, is a random variable distributed exponentially with
a large expectation, at least an order of magnitude larger than|L|k. Hence, in every round,S is expected to
create more than|L|k new data packets in the future. In this section, we neglect the probability that, starting
from some roundt, Swill create less than|L|k new data packets, and hence we assume that, in every round,
the probability thatSwill create more that|L|k data packets in the future is1. Therefore, for every constant
const, const

R is negligible, and for simplicity is assumed to be0.
In Section 5.1 we define the set ofprotocol-obedient strategies, and in Section 5.2 we prove that ev-

ery protocol-obedient strategy in which a node cooperates with all its neighbors strictly dominates every
protocol-obedient strategy in which it does not. Additionally, we prove that if a node chooses such a domi-
nating strategy, then it receives all the multicast packets.

8

5.1 The set of protocol-obedient strategies

We say that a connection ismaintainedbetween two neighboring nodesn andn̂, if bothn’s andn̂’s strategy
is to be connected to each other assuming the other node does so too. That is, bothn and n̂ send the
necessary packets in order to avoid a situation where the protocol dictates that the connection be terminated.
Note thatn andn̂ can be either real nodes or nodes emulated byS.

Definition 1 (Protocol-obedient strategy).A node’s strategy isprotocol-obedientif (i) the node runs the
protocol’s code described in Fig. 2 without changing any of the protocol’s parameters exceptH; and (ii)
the node maintains connections only with nodes whose identities are received from S.

We believe that this set of strategies is reasonable for the common user, since such a user usually does
not have the technical knowledge to modify an application code. Moreover, in many P2P applications, a
node communicates with nodes whose identities are received from a centralized server. For example, in
BitTorrent, a node locates other nodes by contacting a “tracker”, which is a centralized process that keeps
track of all nodes interested in a specific file [5, 12]. Note that we do allow a node to decide whether or not
to send each packet. This allows a node to disconnect from a neighbor by simply not sending the necessary
packets. Since such behavior is not supported by the code of most P2P applications, our assumptions about
protocol-obedient strategies are less restrictive than theses applications’ codes.

5.2 Proof of cooperation

Throughout this section, we use the following notations related to a noden and a given neighbor̂n of n:
bt(n, n̂) is n’s balance towardŝn after t rounds as stored inn.my balance[n̂]. xt(n, n̂) is the number of
data packetsn (or Son behalf ofn) sends tôn during roundt, andXt(n, n̂) =

∑i=t
i=0 xt(n, n̂).

The following three lemmas are technical, and their proof is deferred to Appendix A.

Lemma 1. At the end of each round, for every two neighboring nodesn and n̂, n.my balance[n̂] =
n̂.neighbor balance[n].

Lemma 2. Assume that a noden is connected to another nodên. If bothn’s andn̂’s strategy is maintaining
the connection between them, then this connection is maintained.

Lemma 3. If a noden maintains a connection with another noden̂ through the firstt rounds of the multicast
session, thenXt(n, n̂)= tp

k +bt(n, n̂).

Lemma 4. If a noden maintains connections withk nodes throughout the multicast session, then it receives
from its neighbors and from S on behalf of its neighbors at leastP+Lk data packets (recall thatL is
negative).

Proof. By Lemma 3, for every neighbor̂n of n, XR(n̂, n)=Rp
k +bR(n̂, n). Recall thatbR(n, n̂)≥L and

R=P
p . Hence, from all itsk neighbors,n receives at leastRp+Lk=P+Lk data packets.

Lemma 5. The per-round overhead of maintaining a connection over the entire multicast session is between
p
k+2 and p

k+c packets.

Proof. The overhead of maintaining a connection consists of: (i) data overhead (XR), i.e., packets that
contribute to the node’s balance with respect to the neighbor, (ii) gossip/request packets, and (iii) penalty
packets.

According to the protocol (Fig. 2, lines 21–25), the maximum data overhead isp
k+c−3 data packets

per-round. By Lemma 3, and sinceL is fixed, XR(n,n̂)
R = p

k+ bR(n,n̂)
R ≥ p

k+L
R= p

k . The gossip/request overhead

9

is fixed, namely: two packets per-round. The penalty on either a negative balance or on maintaining a
connection with an emulated node is one fine packet per round, and zero otherwise. Hence, the minimal and
maximal per-round overheads arep

k+2 and p
k+c packets, respectively.

Lemma 6. If a noden maintains connections with at mostk−1 nodes throughout the multicast session,
thenfn=∞.

Proof. We first note that, during the multicast session,n cannot request fromSto send it data packets. From
at mostk−1 neighbors and fromSon behalf of these neighbors,n can receive at mostx=(k−1)(p

k+c−3)
data packets per round. Recall that(k2−k)(c−3)<p. Hence,x<p. We note thatx<p even ifn maintains
connections with more thank−1 nodes for a bounded number of rounds. This is sincen receives a bounded
number, denoted asnum, of data packets from these nodes, and hencexR+num

R =x< p. Finally, if n receives
up to |L|k data packets fromS after the end of the multicast session, then it still cannot receive all theP

multicast packets, sincexR+|L|k
R =x< p. Hence,fn=∞.

Lemma 7. If a noden maintains connections withk nodes throughout the multicast session, thenfn<∞
and fn

R ≤p+kc.

Proof. We first note thatn can always maintain connections withk nodes if it chooses to do so, sincen
can always maintain connections withk nodes emulated byS. Hence, according to Lemma 4, ifn maintains
connections withk nodes throughout the multicast session, then it receives at leastP+Lk data packets from
its neighbors and fromSon behalf of its neighbors. In addition, after the end of the multicast session,n can
receive up to|L|k data packets fromS(in return for sendingSa fine packet for each data packet), and hence
fn=sn<∞.

By Lemma 5, maintainingk connections incurs sending at mostp+kc packets per-round. In addition,
since |L|kR =0 (L andk are fixed), sending at most|L|k fine packets at the end of the multicast session does

not increase the per-round overhead. Thus,fn

R ≤p+kc.

We now discuss a scenario in which a noden maintains connections with more thank nodes throughout
the multicast session. Note thatn can maintain up to2k connections if it maintains connections with all
of its initial neighbors and withk emulated nodes as well. However, by Lemma 5 and due to bandwidth
limitations,n cannot maintain more thanbp+kc

p
k
+2
c connections. Below, we prove that maintaining connections

with additional nodes other than its neighbors can only increasen’s cost.

Lemma 8. Every protocol-obedient strategy in which a noden maintains connections withk nodes through-
out the multicast session strictly dominates every protocol-obedient strategy in whichn maintains connec-
tions withj nodes throughout the multicast session, wherej>k.

Proof. By Lemma 5, ifn maintains connections withk+1 or more nodes throughout the multicast ses-
sion, thensn

R≥(k+1)(p
k+2), i.e., fn

R ≥(k+1)(p
k+2). By Lemma 7, ifn maintains connections withk nodes

throughout the multicast session, thenfn

R ≤p+kc. Recall thatk2(c−2)−2k<p. Hence,p+kc<(k+1)(p
k+2).

Therefore, maintainingk connections throughout the multicast session incurs a lower cost than the cost of
maintainingk+1 or more connections throughout the multicast session.

The following lemma shows that it is preferable for a node to maintain connections withk neighbors
throughout the multicast session.

Lemma 9. Every protocol-obedient strategy in which a noden maintains connections withk nodes through-
out the multicast session strictly dominates every protocol-obedient strategy in whichn maintains connec-
tions withj nodes, wherej 6=k.

10

Proof. We note that maintaining a connection for a bounded number of rounds cannot reducen’s cost, since
from this connectionn receives a bounded number of data packets, denoted asnum, and num

R =0. Hence,
the theorem follows from Lemmas 6, 7, and 8.

We next show that a node benefits more from connections with its originalk neighbors than from emu-
lated ones.

Lemma 10. Assume that a noden maintains a connection with a non-emulated noden̂. Then,n does not
replace its connection witĥn with a connection with an emulated nodee.

Proof. Recall thate’s interface is identical tôn’s interface with the following two exceptions: i)n’s balance
with respect toe is initialized to the lowest possible balance, i.e.,L; and ii) in each round,n must send a fine
packet toe, regardless of its balance with respect toe, otherwisee terminates its connection withn. Hence,
there is no difference between the data receiving rate fromn̂ and the data receiving rate frome.

The overhead of maintaining a connection with eithern̂ or e is composed of: (i) data overhead, (ii)
gossip/request packets, and (iii) penalty packets. The gossip/request overhead is fixed. The data sending
rate toe is larger than or equal to the data sending rate ton̂, sincen’s balance with respect toe is initialized
to the lowest possible balance, i.e.,L. The penalty overhead incurred by maintaining a connection withe is
larger than or equal to the penalty overhead incurred by maintaining a connection withn̂, since, each round,
n is required to send a penalty packet toe, regardless of its balance with respect toe. Finally, in order to
maintain a connection withe, n needs to send a join message toS. Hence, the overhead of maintaining a
connection withe is larger than the overhead of maintaining a connection withn̂. Hence, since there is no
difference between the data receiving rate fromn̂ and the data receiving rate frome, n does not replace its
connection witĥn with a connection withe.

Theorem 1. If all nodes choose strongly dominating strategies out of the set of protocol-obedient strategies,
then every noden exclusively maintains connections with its initialk neighbors throughout the multicast
session, and it receives all the multicast packets.

Proof. By Lemmas 9 and 10,n’s strategy is maintaining connections with its initialk neighbors throughout
the multicast session. By Lemma 2, these connections are maintained. Hence,n exclusively maintains
connections with its initialk neighbors throughout the multicast session. Finally, by Lemma 7,n receives
all the multicast packets.

We have shown that it is beneficial for nodes to maintain their connections with their neighbors. We
now show that it is also beneficial for them tocooperatewith their neighbors, by maintaining a non-negative
balance. That is, each node sets itsH parameter to be equal to or larger than0. This reduces the probability
for nodes reaching a balance lower thanL, and hence limits the overhead onS.

Lemma 11. Assume that a noden maintains connections withk nodes throughout the multicast session.
Assume also that some neighborn̂ of n requests fromn to send to itq≤ p

k+c−3 data packets in some round
r, and in the beginning of roundr, n has a negative balance ofb with respect tôn. Then, in roundr, n sends
min(|b|, q) data packets tôn.

Proof. We first note that, at the end of each roundt, bt(n, n̂)≥L, sincen maintains the connection witĥn.
Thus, the sending rate tôn does not affect the data receiving rate fromn̂, and hencen can minimize its
sending rate tôn in order to minimize its cost.

The per-round overhead incurred by maintaining the connection withn̂ consists of: (i) data overhead
(XR

R), (ii) gossip/request packets, and (iii) penalty packets. The gossip/request overhead is fixed. Hence,n
tries to minimize the data and penalty overheads.

11

By Lemma 3, XR(n,n̂)
R = p

k+ bR(n,n̂)
R . The per-round data overhead is bounded from below byp

k+L
R .

SinceL is a constant that does not depend onR, we can neglectLR , i.e., assume it is zero. The per-round
penalty overhead is the percentage of rounds in which the balance is negative. Recall that, in each round, the
probability thatSwill create more that|L|k data packets in the future is1. Hence, the overall cost is lower
if n maintains a zero balance with respect ton̂ at the end of each round when this is possible. Therefore,n
sendsmin(|b|, q) data packets tôn in roundr.

6 Dynamic Setting

We now describe in a nutshell a dynamic version of EquiCast, calledDEC (Dynamic EquiCast), in which
nodes can join and leave the protocol during its execution. Below, we detail only the differences between
the two versions.

Architecture. DEC is deployed on top of a dynamic overlay that supports node joins and leaves. For
example, we can use the overlay in [15], which is a dynamically maintainedk-regular graph composed ofk

2
Hamiltonian cycles.

The cost function. DEC’s cost function is obtained from EquiCast’s cost function by replacing the re-
quirement to receive all theP multicast packets with the requirement to receivem·p data packets, wherem
is the number of rounds during which the node is connected to the overlay.

A join operation. A joining noden sends ajoin message toS. Upon receiving this request,S incorporates
n into the overlay, e.g., by insertingn betweenk

2 pairs of neighboring nodes [15]. For example, assume
that nodesn1 andn2 are connected to the overlay prior ton’s joining, andn becomesn1’s neighbor instead
of n2. We describe howS setsn’s andn1’s incoming (neighbor balance) and outgoing (my balance)
balances with respect to each other.

Prior to incorporatingn into the overlay,Sasks bothn1 andn2 for their incoming and outgoing balances
with respect to each other. If these balances do not match, thenSdisconnects bothn1 andn2 from the overlay
by sending an appropriate message to all their neighbors. Hence, since bothn1 andn2 are rational, they
could be expected to correctly report about their incoming and outgoing balances with respect to each other.

Denoten1’s outgoing and incoming balances with respect ton2 at the end of roundt asB12 andB21,
respectively. We would like to ensure thatn1’s cost will not increase due ton’s joining. Therefore, at the
beginning of roundt+1, bothn1’s outgoing balance with respect ton andn’s incoming balance with respect
to n1 are set toB12. Additionally, at the beginning of roundt+1, bothn1’s incoming balance with respect
to n andn’s outgoing balance with respect ton1 are set tomax(B21, 0). This is to ensure thatn will not
pay a fine forn2’s negative outgoing balance with respect ton1. Finally, if B21<0, thenSsends|B21| new
data packets ton1, in order to ensure that it receives at leastm·p data packets, wherem is the number of
rounds during whichn1 is connected to the overlay. Similarly, ifB12>0, thenSsendsB12 new data packets
to n.

A leave operation. A leaving noden sends aleavemessage toS. Upon receiving this request,Sremovesn
from the overlay, e.g., by connecting each pair ofn’s neighbors with each other [15]. For example, assume
that, prior ton’s leave,n was connected to nodesn1 andn2, andn1 andn2 become neighbors aftern’s
leave. We describe howSsetsn1’s andn2’s incoming and outgoing balances with respect to each other.

12

Prior to leaving the overlay,n sends toS its incoming and outgoing balances with respect to bothn1 and
n2. Note thatn cannot gain anything from reporting about false balances, and hencen could be expected to
correctly report about its balances with respect ton1 andn2.

Denoten1’s andn2’s outgoing balances with respect ton at the end of roundt asB1n andB2n, respec-
tively. We would like to ensure thatn1’s andn2’s cost will not increase due ton’s leave. Therefore, at the
beginning of roundt+1, n1’s andn2’s outgoing balances with respect to each other are set toB1n andB2n,
respectively. Additionally, in order to ensure the protocol’s correctness, at the beginning of roundt+1, n1’s
andn2’s incoming balances with respect to each other are set toB2n andB1n, respectively.

Denoten1’s andn2’s incoming balances with respect ton at the end of roundt asBn1 andBn2, respec-
tively. If B2n>Bn1, thenn1 may not receivem·p data packets, wherem is the number of rounds during
which n1 is connected to the overlay. Hence, in such a case,S sendsB2n−Bn1 new data packets ton1.
Similarly, if B1n>Bn2, thenSsendsB1n−Bn2 new data packets ton2.

Finally, a noden′ that is connected to the overlay form rounds may receive less thanm·p data packets
if it has negative incoming balances with respect to its neighbors on leave time. Hence, after it leaves the
overlay,n′ can receive up to|L|k data packets fromS in return for sendingS a fine packet for each data
packet.

7 Conclusions

“Freeloaders” degrade the performance of P2P systems and may lead to their collapse. We have tackled the
problem of “freeloaders” in a P2P multicast protocol from a theoretic perspective by modeling the system as
a non-cooperative game. We have introduced EquiCast, a P2P multicast protocol for selfish environments. In
such environments, EquiCast distributes all the multicast packets to all the nodes. We have formally proven
EquiCast’s cooperation enforcement scheme, namely: in EquiCast, for each node, collaborating with all its
neighbors is a strongly dominating strategy. We are unaware of any previous P2P multicast protocol that is
proven to enforce cooperation in environments in which all the nodes are selfish. We have also proven that
EquiCast incurs a constant load on each node, and hence it can support large groups of users. Finally, we
have described a dynamic version of EquiCast, which supports node joins and leaves.

Acknowledgements. We thank Amir Ronen and Vadim Drabkin for many helpful comments.

References

[1] EMULE-PROJECT.NET. eMule site. http://www.emule-project.net/.

[2] A. Blanc, Y.-K. Liu, and A. Vahdat. Designing incentives for peer-to-peer routing. InProceedings of
the IEEE Infocom Conference, 2005.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream: High-
bandwidth multicast in a cooperative environment. InACM SIGOPS Symposium on Operating Systems
Principles (SOSP), October 2003.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like p2p systems
scalable. InACM SIGCOMM, August 2003.

[5] B. Cohen. Incentives build robustness in BitTorrent. In1st Workshop on the Economics of Peer-to-Peer
Systems, 2003.

13

[6] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-peer storage. InACM SIGOPS
Symposium on Operating Systems Principles (SOSP), 2003.

[7] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions.
Journal of Computer and System Sciences, 63(1):21–41, 2001.

[8] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs. Combinatorica,
vol. 11, pp. 331-362, 1991.

[9] D. Fudenberg and J. Tirole.Game Theory. The MIT Press, 1991.

[10] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content distribution. InProceedings
of the IEEE Infocom Conference, 2005.

[11] A. Habib and J. Chuang. Incentive mechanism for peer-to-peer media streaming. InInternational
Workshop on Quality of Service (IWQoS ’04), 2004.

[12] D. Hales and S. Patarin. How to cheat bittorrent and why nobody does. TR UBLCS-2005-12, Depart-
ment of Computer Science University of Bologna, May 2005.

[13] T. Karagiannis, P. Rodriguez, and D. Papagiannaki. Should isps fear peer-assisted content distribution?
In ACM USENIX IMC, 2005.

[14] M. Kim and M. Medard. Robustness in large-scale random networks. InProceedings of the IEEE
Infocom Conference, 2004.

[15] C. Law and K. Siu. Distributed construction of random expander networks. InIEEE Infocom, 2003.

[16] R. Melamed and I. Keidar. Araneola: A scalable reliable multicast system for dynamic environments.
In 3rd IEEE International Symposium on Network Computing and Applications (IEEE NCA), 2004.

[17] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible peer-to-peer multicast. In2nd
Workshop on the Economics of Peer-to-Peer Systems, 2004.

[18] P. Rodriguez, S.-M. Tan, and C. Gkantsidis. On the feasibility of commercial, legal p2p content
distribution. InACM/SIGCOMM CCR, 2006.

[19] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A cooperative bulk data transfer protocol. In
Proceedings of IEEE INFOCOM, 2004.

[20] N. Wormald. Models of random regular graphs.Surveys in Combinatorics, 276:239–298, 1999.

14

A Proof of Cooperation: Basic Lemmas

Lemma 1. At the end of each round, for every two neighboring nodesn and n̂, n.my balance[n̂] =
n̂.neighbor balance[n].

Proof. By induction.
Base:t = 0. n.my balance[n̂] = n̂.neighbor balance[n] = 0.
Step: Assume that, at the end of roundt, n.my balance[n̂] = n̂.neighbor balance[n]. We will prove that,
at the end of roundt+1, n.my balance[n̂] = n̂.neighbor balance[n].

In roundt+1, bothn.my balance[n̂] andn̂.neighbor balance[n] are reduced bypk (see Fig. 2, lines 22
and 32). In addition, in roundt+1, n.my balance[n̂] andn̂.neighbor balance[n] are increased upon the
sending of data packets fromn and fromSon behalf ofn to n̂ (see Fig. 2, lines 22, 26, and 32).

Whenn sendsd new data packets tôn, n.my balance[n̂] is increased byd (see Fig. 2, line 22). Since
there is no packet loss, these packets are received atn̂. We note thatn sends tôn only data packets that
n̂ requested from it in phase II of roundt+1, asn̂ ignores unsolicited data packets (see Fig. 2, line 29).
Therefore, upon receiving thed data packets,̂n increaseŝn.neighbor balance[n] by d.

If n.my balance[n̂] drops belowL during phase III of roundt+1, thenn sendsw fine packets toSand
it asksSto sendw data packets on behalf of it tôn (see Fig. 2, lines 23–25). Additionally,n.my balance[n̂]
is increased byw (see Fig. 2, line 26). We note thatn does not request fromS to send ton̂ more than
p
k data packets, asS ignores such requests (see Section 4.3). Hence, upon receiving the request fromn,
S sendsw data packets on behalf ofn to n̂. Since there is no packet loss, these packets are received
at n̂. According to the induction assumption and the protocol,n̂.neighbor balance[n]<L+ p

k at the be-
ginning of phase IV of roundt+1. Hence,n̂ accepts the data packets received fromS, and it increases
n̂.neighbor balance[n] by w (see Fig. 2, lines 30–32). Finally, we note that ifn asksSto send data packets
to n̂ whenn.my balance[n̂]≥L, thenn̂ ignores these data packets (see Fig. 2, line 30), since in this case
n̂.neighbor balance[n]≥L+ p

k , and hencen asksS to send data packets tôn only if n.my balance[n̂]<L
during phase III of a given round.

Lemma 2. Assume that a noden is connected to another nodên. If both n’s and n̂’s strategy is
maintaining the connection between them, then this connection is maintained.

Proof. Without loss of generality, we will prove thatn̂ does not terminate the connection withn. Sincen̂’s
strategy is maintaining the connection withn, then it terminates the connection withn in a given roundt
if: (i) it does not receive a gossip packet fromn in phase I of roundt; or if (ii) it does not receive a request
packet fromn in phase II of roundt; or if (iii) n did not send tôn a fine packet in roundt and either̂n
is an emulated node or, at the end of roundt, n̂.neighbor balance[n]<0; or if (iv) at the end of roundt,
n̂.neighbor balance[n]<L.

Sincen’s strategy is maintaining the connection withn, then (i), (ii), and (iii) do not happen. In addition,
we note thatn can ensure that, at the end of each round,n.my balance[n̂]≥L by askingS to send data
packets tôn whenn.my balance[n̂]<L (during phase III of a given round). Hence, according to Lemma 1,
(iv) does not happen either.

Lemma 3. If a noden maintains a connection with another noden̂ through the firstt rounds of the
multicast session, thenXt(n, n̂)= tp

k +bt(n, n̂).

Proof. By induction.
Base: t = 0.X0(n, n̂) = b0(n, n̂) = 0. Therefore,X0(n, n̂) = tp

k + b0(n, n̂).
Step: AssumeXt(n, n̂) = tp

k + bt(n, n̂). We will prove thatXt+1(n, n̂) = (t+1)p
k + bt+1(n, n̂).

15

Xt+1(n, n̂) = Xt(n, n̂) + xt+1(n, n̂) = tp
k + bt(n, n̂) + xt+1(n, n̂). From the code (Fig. 2, lines

22 and 26), we know that:bt+1(n, n̂) = bt(n, n̂) + xt+1(n, n̂) − p
k . Therefore,bt(n, n̂) + xt+1(n, n̂) =

bt+1(n, n̂) + p
k . Hence,Xt+1(n, n̂) = (t+1)p

k + bt+1(n, n̂).

16

