CCIT Report #573

February 2006

EquiCast: Scalable Multicast with Selfish Users

Idit Keidar Roie Melamed Ariel Orda

Abstract

Peer-to-peer (P2P) networks suffer from the problem of “freeloaders”, i.e., users who consume re-
sources without contributing anything in return. In this paper, we tackle this problem taking a game
theoretic perspective by modeling the system as a non-cooperative game. We introduce EquiCast, a
wide-area P2P multicast protocol for large groups of selfish nodes. EquiCast is the first P2P multicast
protocol that iformally provento enforce cooperation iselfish environmentsAdditionally, we prove
that EquiCast incurs a low constant load on each user.

lesley
Text Box
CCIT Report #573

February 2006

1 Introduction

Peer-to-peer (P2P) networks can distribute digital content to a large number of users over the Internet by
distributing the load among the peers [18, 5]. However, these networks suffer from the problem of “freeload-
ers”, i.e., users who consume resources without contributing their fair share [2]. In order to discourage
“freeloaders”, some P2P systems employ incentives to motivate users to cooperate, e.g., contribute upload
bandwidth or disk space for some other users. However, while current incentive-based P2P systems reward
cooperation to some extent, no existing protocol has been proven to enforce cooperation in selfish envi-
ronments. Moreover, such systems, e.g., [5, 10], typically rely on user altruism. For example, a node is
expected to upload data blocks to other nodes for no return whenever it has available bandwidth [5, 10].
Hence, current incentive-based P2P systems do not solve the problem of “freeloaders” [12], and would not
have worked well at all if users would have behaved selfishly, e.g, leaving a content distribution system after
they have finished downloading the file [12, 10].

Nowadays, user altruism is common since most users are connected to the Internet using static machines
via ISPs with a flat pricing model, and hence sending a packet does not incur a cost on its sender. However,
these paradigms are changing. First, the increasing access to digital content is expected to drive ISPs to
implement a tiered pricing scheme, where high end pricing plans shall allow unlimited downloads and
uploads, while lower tier pricing plans shall limit traffic bandwidth [18]. With such a pricing scheme,
users will most likely cease to be altruistic [18]. This may lead to low P2P system availability [13, 12]
or even system collapse [2, 17]. Second, wireless hotspots are proliferating in recent years, and users are
increasingly connecting to the Internet and downloading content to mobile devices such as laptops and cell
phones. In such networks, pricing is typically based on connection time or transmission volume. Moreover,
battery power is a critical resource for mobile devices. Hence, user altruism can hardly be expected in such
networks. Therefore, we believe that it is important to design P2P systems that work well even when all
users are selfish.

In this paper, we address this challenge. We introdbgeiCast a wide-area P2P multicast protocol
for distributing content to large groups of selfish nodes. We treat the problem of free-loading from a game
theoretic perspective, and we model the systemmasacooperative gamén such a game, nodes are selfish
butrational, i.e., each user chooses its ostmategyregarding its level of cooperation so as to minimize its
own cost [9]. More specifically, the goal of each node is to receive all the multicast packets while minimizing
its sending rate. We restrict the strategies a node can chogsetteol-obedienbnes, where a protocol-
obedient strategy determines how many connections the node maintains and how many packets it sends
on each connection, though it does not include hacking the protocol’s code or assuming that others do so.
We believe that this set of strategies is reasonable, since users usually do not have the technical knowledge
required in order to modify an application code. Our formal model and cost function are presented in
Section 3, and in Section 5.1 we formally define the set of protocol-obedient strategies.

In EquiCast, a single distribution serv@i(which can be implemented by multiple machines acting as
one logical server) organizes the nodes into a statérlay network We divide the time into rounds, and
in each roundS injects new data packets to a small random subset of the nodes in the overlay. Nodes,
then, communicate with their overlay neighbors in order to retrieve missing data p&8kéte.provides a
“safety net” for a node whose data receiving rate is lower than the multicast rate, by sending data packets to
either the node or its neighbors. This additional overhead incurr&@li®modest, since most of the nodes
are expected to receive most if not all the multicast packets from their overlay neighbors.

EquiCast enforces cooperation through two mechanisms. The first@m#éoring mechanispwhereby
each node monitors the sending rate of each of its neighbors. Specifically, for each néigtdtit node,
maintainsn’s balance which is the difference between the number of data packbts sent ta so far and
the expected per-link throughput. As long7as balance is greater than or equal to a predefined negative

thresholdZ, 7 is considered to be cooperative, amadtontinues to send data packetsito Otherwisen
terminates its connection with. Note, however, that it is always possible for cooperative nodes to have a
balance greater than or equalfiavith respect to all of their neighbors.

The second mechanism is a per-lipgnalty mechanispwhich further motivates nodes to adhere to the
expected link throughput. It charges a neighbor with one additfomgpacket for every round the neighbor
has a negative balance, where a fine packet is a dummy packet that has the same size as a data packet. Fine
packets, as opposed to data packets, do not affect the node’s balance. Therefore, a node is motivated to
achieve a non-negative balance, whenever possible. Note that the multicast rate is tens of data packets per
round, and hence the penalty mechanism incurs a modest overhead. In general, in EquiCast, each node is
required to have an upload bandwidth that is slightly higher, e.gLOB; than the multicast rate. Note that
similar requirements are also assumed by multicast systems for cooperative environments [3].

In Section 5, we prove that, in environments in which all the nodes are selfish, EquiCast disseminates
all the multicast packets to all the nodes. Additionally, every protocol-obedient strategy in which a node
exclusively cooperates with all its neighbatsictly dominatesevery protocol-obedient strategy in which
it does not. We are unaware of any previous P2P multicast protocol that was formally proven to enforce
cooperation in environments in whiettl nodes are selfish.

Finally, for simplicity, throughout most of the paper we describe only a static version of EquiCast, in
which no node joins or leaves the service. In Section 6, we sketch out a dynamic version of EquiCast that
supports node joins and leaves.

2 Related Work

We are familiar with only two previous P2P multicast protocols for selfish environments [17, 11]. Ngan

et al. [17] propose an incentive-based multicast protocol based on detection of selfish nodes and periodic
reconstruction of multicast trees that exclude previously misbehaving nodes. However, this protocol induces
high overhead. For example, with0 nodes, the trees’ reconstruction requires each node t@25érxdntrol
messages every two minutes; and when the group siz@isnodes, each node sends nealyp control
messages every two minutes, in addition to data messages. Habib and Chuang [11] propose an incentive-
based protocol for media streaming, in which cooperative nodes receive high quality of service whereas
“freeloaders” receive low quality streaming. While this protocol rewards cooperation to some extent, it does
not solve the problem of “freeloaders”. These two solutions, however, consider a different model, in which
only a fraction of the nodes are selfish. Moreover, neither is formally proven to enforce cooperation.

Several previous distributed Internet services such as content distribution [5, 10], storage [6], and
lookup [4] reward cooperation to some extent by incentivizing cooperative behavior. The BitTorrent [5]
and Avalanche [10] content distribution systems support the tit-for-tat strategy, in which a user preferen-
tially uploads blocks of information to users from which it is also downloading blocks. But these systems
rely on user altruism, and hence they do not purport to work in a selfish environment where all users are
rational and selfish, and every packet incurs a cost on its sender. In the SAMARA storage system [6], each
node is required to contribute as much disk space to the system as it is using, and in the GIA lookup sys-
tem [4] the quality of service experienced by a node is proportional to its contribution to the system. None
of the aforementioned services, however, models the system as a hon-cooperative game or formally proves
cooperation as we do.

In P2P protocols based on a centralizegutation systeme.g., eMule [1] and [2], each node sends
to and requests from the system reports about the level of cooperation of other nodes. Hence, a node is
motivated to collaborate with other nodes. However, this approach achieves limited scalability [2], since the
reputation system continuously communicates with all the nodes.

Finally, cost-sharingmulticast solutions e.g., [7], consider a different model, in which multicast is pro-
vided over a dedicated infrastructure, and the infrastructure cost is shared among all nodes. Such an ap-
proach, however, is not applicable to P2P systems.

3 Model and Problem Statement

We consider a large static collection dfhodesny, ns, ...,nn. A single distribution serves distributesP
data packets to the nodes, whétés a random variable distributed exponentially with a large expectation,
e.g., larger than0,000. Sknows all the node identities, e.g., by each node registering its8If at

Network and timing model. Each node can directly communicate with every other node andSwithe
multicast rate i data packets pértime units. Each node has an upload bandwidth of at mest packets

perd time units, wheré: andc are small constants such that3, c>4, andp%k=0. In addition, we require

that (k% —Fk)(c—3)<p andk?(c—2)—2k<p, in order to prove that every protocol-obedient strategy in which

a node exclusively cooperates with all its neighbors strictly dominates every protocol-obedient strategy in
which it does not. There is a bound Aftime units on packet delay, and sending a packet incurs zero delay
on the sender. Local computations also incur zero delay. Finally, for simplicity, we assume no packet loss.

The game formulation. We model the system asrmn-cooperative gamén which theplayersare the

N nodes. Each node choosesteategyout of a set of possiblgrotocol-obedient strategiesWe defer

the definition of this set to Section 5.1, since it relies on the protocol’'s code described in Section 4.3.
Generally speaking, a protocol-obedient strategy must run the protocol as is and can only determine how
many connections to maintain and how many packets to send.

Each node is selfish andtional, i.e.,n; chooses a strategy; that minimizes its selfish cost as defined
below. A strategyA strictly dominatesanother strategys if choosing A always incurs a lower cost than
choosingB, regardless of the strategies chosen by other nodestrofgly dominating strategstrictly
dominates all other strategies. Althou8is not one of the players, we model its random injections of data
packets as its strategy,, and hence our proof of cooperation is valid regardlesSofandom choices.

Note thatsty does not determine the length of the session, Re.Denote byr; the total number of data
packets received by; throughout the multicast session, andd\the total number of packets sent hy
throughout the multicast session. Then, the cost function for a npidedefined as:

_f oo ifr <P
fz(Sto,Stl, ...,StN) = { s, ifr =P

That is, ifn; receives all the multicast packets, then its cost is the number of packets it has sent during the
multicast session. Otherwise;’s cost is infinite.

Problem statement. Our goal is to design a scalable P2P multicast protocol, in which if each node chooses

a dominating strategy out of the set of protocol-obedient ones, then each node receives all the multicast
packets. A second goal is efficiency, i.e., the maximal and expected sending/recieving overhead incurred on
each node isP(H—%) andP(1+§) packets, respectively, wheteloes not depend gn

4 EquiCast

Section 4.1 describes EquiCast’s architecture. Section 4.2 provides a high-level description of EquiCast’s
cooperation enforcement scheme, and Section 4.3 describes the protocol in detail.

4

4.1 Architecture

Sorganizes the nodes into a static overlay that satisfies the following properties: (KRRG1) each node in the
overlay has exactly: neighbors for some parameter (KRRG2) the overlay’s diameter is logarithmic in

N; and (KRRG3) the expected distance between a given node and a random node in the overlay equals the
average distance between a pair of nodes in the overlay: Fyrak-regular random graphsatisfies these
properties with high probability [20, 8, 14]S constructs the overlay, e.g., using one of the constructions

in [20], and sends to each node the identities of its overlay neighbors, henceforth, simplyneéitelors

Note that since the construction is centralized, no node cooperation is required.

In the next section, we show that, under our model assumptions, for each node, maintaining connections
with its & neighbors is a dominating strategy. Hence, connections are expected to persist. However, if a given
connection is terminated, e.g., due to a node failure, then amada end up with less thanneighbors. In
such casesy contactsS, andSemulates a selfish rational EquiCast nédand a new connection is formed
betweenn andn. n's interface is identical to the interface of each EquiCast node with the following two
exceptions: in's balance with respect to is initialized to the lowest possible balance, i.B;,and ii) in
each roundp must send a fine packetforegardless of its balance with respeciitmtherwisen terminates
its connection withn. Hence, as we show in Section 5.2, a node prefers to maintain a connection with a
non-emulated node over an emulated one.

4.2 Overview

We divide the time into‘h[%} rounds. Every rounds createp new data packets, and for each nedé&

sends copies of thegepackets ta: with a probability of £, so that, on average, each data packet is sent to
k nodes.

In each round, every node gossips with its neighbors about new data packets it has received in the
previous round, i.e., for each neighbar,sends a gossip packet containing the identities of all the data
packets it has received in the previous round. After receiving gossip packets from its neighteaysests
from each of its neighbors data packets that the neighbor has and were not previously receivdtisby
given packet is available at more than one neighbor, themdomly picks one of those neighbors to request
the packet from. Finally, sends its neighbors the data packets they requested from it.

We note that since a given packet is sent3p each of the nodes with equal probability and since
the expected distance between a random node and a given node equals the average distance between a pair
of nodes in the overlay (KRRG3), if all the nodes comply with the protocol, then the average latency with
which nodes receive data packets is identical for all nodes, and the expected throughpataspackets
per-round on every overlay link. In a previous study [16], we used a similar technique in order to support
reliable multicast in cooperative environments. The aim of this study is achieving similar results in a non-
cooperative environment.

In order to motivate cooperation, we introducamanitoring mechanispwhereby each node monitors
the sending rate of each of its neighbors. For each neighbomaintainsn.neighborbalancef:], which is
the difference between the number of data packétas sent so far and the expected per-link throughput of
? data packets per-round. Note that, in a given roanaiay have less thafnew data packets that have not
yet been received at, whereas in another round it may have more thafata packets fon. Therefore, we
allow for some slack in the balance. The allowed imbalance is captured by a negative thieshslibng
asn’s balance with respect te is greater than or equal 0, 7 is considered to be cooperative hyBut if
7's balance with respect te drops belowZ, thenn terminates the connection with Note that, as long as

A k-regular random graphwith N nodes is a graph chosen uniformly at random from the sétmefgular graphs withv
nodes.

7’s balance with respect to is greater than or equal tb, the uploading rate from to 7 is unaffected by
the downloading rate from to n. This independence is required in order to prove cooperation.

In order to further motivate nodes to adhere to the expected throughput, we introduce a penéiti
mechanisnthat charges a neighbor with one additiofiak packet for every round the neighbor has a
negative balance with respect to the node, where a fine packet contains no useful data but has the same size
as a data packet. If the node does not receive a fine packet from a neighbor with a negative balance, then
it terminates its connection with that neighbor. Fine packets, as opposed to data packets, do not affect the
node’s balance. Therefore, a node is motivated to achieve a non-negative balance, where all sent packets
contribute to its balance. Moreover, it is beneficial for nodes to have a strictly positive balance whenever
possible. This is because there is no guarantee that a given neighbor will requestiaplecigtts from the
node in forthcoming rounds. If a neighbor requests fewer thaackets when the node’s balance toward
it is zero, then the balance becomes negative, and the node pays the fine. Note that a node cannot optimize
its balance according to the session duratior? & a random variable distributed exponentially. Note also
that the penalty mechanism does not eliminate the neefl,feince without this threshold, a selfish node
could have sent only fine packets.

Although nodes are motivated to have a non-negative balance, due to randomnessy anaydeave
an insufficient number of hew packets for a given neighbor in order to be able to maintain a balance greater
than or equal td_. In order to avoid a disconnection in such a scenatioan askSto send up to! new
data packets on behalf of it to a given neighfian return for sending the same number of fine packe to
7 countsSs packets towards’s balance only if ignoring these packets would drdpbalance with respect
to n below L. Hence contactsSonly when its balance with respectiadrops belowl. In addition, after
the end of the multicast sessioncan askSto send to it up tdL|k data packets in return for sending the
same number of fine packets$o

On the one hand, the allowed imbalance should be large enough to reduce the probability of a cooperative
node reachind., in order to avoid over-loadin§. On the other hand, a high imbalance allows a selfish node
to receive many data packets, i.f.|k, without sending any data packets in return. Hence, there is an
inherent tradeoff between the overhead incurreds@md the number of data packets a node can receive
for free. For example, setting to —200 is a good tradeoff between the two opposite requirements. On the
one hand, ift=3, then a node can get onp0 data packets without contributing anything in return to the
system. Since we assume that the multicast session is significantly longer, including i, [##spackets,
it seems like users will not be satisfied with getting a m@#@ packets and will therefore be motivated to
contribute. On the other hand, such a bound is expected to incur a modest overlsebldt@that the value
of L is independent of all the other system parameters.

4.3 Detailed description
4.3.1 The source protocol

Each roundS createp new data packets, and for each nedi sends a copy of these packetsitovith a
probability of%. In the rare case in which, at a given round, no node is chosen to receive copiegof the
new data packet§restarts the round. Note that this does not add to the round duration, since computation
time is zero.

Upon receiving a request from a nodeo sendx data packets to another nofleS verifies that: (i)
<R, (ii) this request is followed by the sending offine packets from; (iii) » andn are neighbors; (iv)
neithern nor 7 has asked to replace the other node with an emulated node; ana (8)not pretending
to be another node (IP-spoofing). The latter is checked, e.g., by sending a random sirthgtte should
send back t@ in one of the fine packets. # passes the checks, th&sends tan copies ofxr new data
packets that it intends to distribute in the next round. If two or moré'®heighbors aslS to send data

packets to1, thenS sends tau different packets on behalf of each neighbor. We neglect the possibility that
in the next roundh will be chosen bysto receive data packets from it, as the probability for this scenario is
k 2

" After the end of the multicast sessio8,provides a “safety net” for cooperative nodes that did not
receive all theP multicast packets. Specifically, upon receivindine packets from a node, S sendse

data packets ta, for z<|L|k. In order to avoid server overloading at the end of the multicast session, we
use the randomized back-off strategy described in [19].

4.3.2 The node protocol

Fig. 1 presents the data structures and parameters maintained by an EquiCast nhodendigklsmatholds

the node’s neighbors. The array_balanceholds the node’s balance with respect to each of its neighbors,
and the arrayeighborbalanceholds the neighbors’ balances with respect to the node. Thésebntains
identifiers of data packets that the node heard about (from one or more of its neighbors) but has not yet
received. The arrageqsholds identifiers of data packets that the node asks its neighbors to send to it. The
(negative) threshold, determines the minimal allowed balance. Finally, each node chooses its own upper
boundH on its balance with respect to a given neighbor, which defines its level of cooperation.

Data structures:
neighbors- set of the overlay neighboring nodes.
my_balance[k]— outgoing balance, initiallyn € neighbors, my_balance[n] = 0.
neighborbalance[k]— incoming balance, initially'n € neighbors, neighbor_balance[n] = 0.
H —an upper bound on the balance, chosen by the node.
ids— set of data packet identifiers that the node has not yet received, inftially
regs[n] — a set of data packets identifiers to ask from neighhanitially Vn € neighbors, reqn] = 0.
Parameters:
L — alower bound on the balance (a negative number).
Figure 1: EquiCast’s data structures and parameters.

The pseudo-code of the node’s protocol is presented is Fig. 2. It consists of four phases, which are
executed sequentially.

In the first phase, which last& time units, a node sends to its neighbors identifiers of data packets it
received in the previous round (lines 1-5).

In the second phase, which also lagtdime units, if the node does not receive a gossip packet from
some neighbor, then the node terminates its connection with that neighbor (lines 6-8). Then, the node
processes gossip packets it has received from its neighbors. For each identifiertie setid_set holds
all the neighbors that have the corresponding data packet. One such neigkbr@ndomly chosen from
this set, and the node askgo send it the corresponding data packet by appending the identifieq40:).

In the third phase, which lasts-3A time units, if the node does not receive a request packet from some
neighbor, then the node terminates its connection with that neighbor (lines 19-21). Then, the node sends
data packets to each of its neighbors. It sends as many requested packets as possibtes pcte3
data packets to a given neighberas long as its balance with respectita@oes not exceed! (line 21).
Additionally, the node increases its balance with respeathiy «. If the node’s balance with respectids
smaller thanl, then the node askdto send ton sufficiently many packets so that at the end of the current
round the node will have a balance that is equal to or larger thaith respect to: (lines 23-25).

In the fourth phase, which lasts time units, the node updates each neighbor’s balance according to
the number of data packets it received from the neighbor and an behalf of the neighbor in the
previous phase (lines 28—-32). Note that the node does not accept unsolicited data packets from its neighbors.
Likewise, the node accepts data packets fi®on behalf of some neighbar only if, at the beginning of

2In this case, ifi is chosen bysto receive data packets in roundhenScan send data packetsidn roundt+1.

Phase | (gossip) 20. /* Send data packets */

1. /* Send gossip packets to neighbors */ 21. send up tar data packets ta according ton’s request,
2. foreachn € neighbors wherex = min(H+% —my_balance[n], £ +c—3)
3. create new gossip packetwvith 22. my_balance[n] <+ my_balance[n]+z—%

all the data packet identifiers received in the last round®3. if my_balance[n]<L then
4. send(GOSSIRp) ton 24, w — min(f+c—(z+3),%)
5. waitAtime 25. sendSw fine packets and

ask it to sendv data packets ta

Phase Il (process gossip, send requests) 26. my_balance[n] < my_balance[n]+w
6. foreachn € neighbors from which 27. waitd — 3A time

no GOSSIP packet arrived
7. disconnect fromn Phase IV (update data structures, pay fine)
8. contactSand ask for an alternative neighbor 28. foreachneighborm

9. ids «+ set of identifiers received in gossip packets, whos29. d <« number of data packets that | asketb send me
corresponding data packets were not received yet in phase Il and were received fromin this round

10. foreachn € neighbors reqs[n] < 0 30. if neighbor_balance[n]<L+% and | received in this
11. foreachid € ids roundm data packets frors on behalf ofn then
12. id_set « set of neighbors that gossiped abadit 31. d—d+m
13. ne < arandom neighbor fromi_set 32. neighbor_balance[n] < neighbor_balance[n]+d—%
so thatjregs[ne]|<£+c—3 33. /* Send a fine packet (if needed) */
14. ifthere is no suche then continue 34. foreachneighbom
15. regs[ne] < regsne] U {id} 35. if my_balance[n] < 0then
16. foreachn € neighbors 36. send a FINE packet to
17. send(REQUESTyegs[n]) ton 37. wait A time
18. wait A time 38. foreachneighborn
39. /* Check if neighbor is OK */

Phase Ill (send data) 40. if neighbor_balance[n] < L or
19. foreachn € neighbors from which neighbor _balance[n] < 0 andn did not

no REQUEST packet arrived send me a FINE packet in this routtten
20. disconnect fromm 41. disconnect from
21. contactSand ask for an alternative neighbor 42. contactSand ask for an alternative neighbor

Figure 2: Code for EquiCast node.

the fourth phase; has a balance lower thdint£ with respect to the node. Then, if the node has a negative
balance with respect to, then it sends one fine packetrto Finally, if n either has a balance lower than
or did not send the fine packet it was required to, then the node terminates its connection with

5 Proof of Cooperation

Recall thatP, the number of data packets in a session, is a random variable distributed exponentially with
a large expectation, at least an order of magnitude larger|fljan Hence, in every roundis expected to
create more thajl|k new data packets in the future. In this section, we neglect the probability that, starting
from some round, Swill create less thanl|k new data packets, and hence we assume that, in every round,
the probability thaBwill create more thatL |k data packets in the future 1s Therefore, for every constant
const, “’T’%St is negligible, and for simplicity is assumed to ke

In Section 5.1 we define the set pfotocol-obedient strategiesind in Section 5.2 we prove that ev-
ery protocol-obedient strategy in which a node cooperates with all its neighbors strictly dominates every
protocol-obedient strategy in which it does not. Additionally, we prove that if a node chooses such a domi-
nating strategy, then it receives all the multicast packets.

5.1 The set of protocol-obedient strategies

We say that a connectiontisaintainedbetween two neighboring nodesand, if both n’s andn’s strategy

is to be connected to each other assuming the other node does so too. That is,anath send the
necessary packets in order to avoid a situation where the protocol dictates that the connection be terminated.
Note thatn andn can be either real nodes or nodes emulate8 by

Definition 1 (Protocol-obedient strategy). A node’s strategy iprotocol-obedienif (i) the node runs the
protocol’'s code described in Fig. 2 without changing any of the protocol’'s parameters ei{¢epid (ii)
the node maintains connections only with nodes whose identities are received from S.

We believe that this set of strategies is reasonable for the common user, since such a user usually does
not have the technical knowledge to modify an application code. Moreover, in many P2P applications, a
node communicates with nodes whose identities are received from a centralized server. For example, in
BitTorrent, a node locates other nodes by contacting a “tracker”, which is a centralized process that keeps
track of all nodes interested in a specific file [5, 12]. Note that we do allow a node to decide whether or not
to send each packet. This allows a node to disconnect from a neighbor by simply not sending the necessary
packets. Since such behavior is not supported by the code of most P2P applications, our assumptions about
protocol-obedient strategies are less restrictive than theses applications’ codes.

5.2 Proof of cooperation

Throughout this section, we use the following notations related to a naed a given neighbat of n:
b.(n,n) is n’s balance towards after¢ rounds as stored in.my_balance[n]. x;(n,n) is the number of
1=t

data packets (or Son behalf ofr) sends to: during roundt, and Xy (n,n) = > .~ x¢(n, 7).
The following three lemmas are technical, and their proof is deferred to Appendix A.

Lemma 1. At the end of each round, for every two neighboring nodesnd 7, n.my_balance[n| =
n.neighbor_balance[n].

Lemma 2. Assume that a nodeis connected to another node If bothn’s andn’s strategy is maintaining
the connection between them, then this connection is maintained.

Lemma 3. If a noden maintains a connection with another nod¢hrough the first rounds of the multicast
session, therX, (n, 7)=2+b(n, n).

Lemma 4. If a noden maintains connections withnodes throughout the multicast session, then it receives
from its neighbors and from S on behalf of its neighbors at |dastLk data packets (recall thaL is
negative).

Proof. By Lemma 3, for every neighbot of n, Xr(n, n):%—i—bR(ﬁ,n). Recall thatbg(n,n)>L and
R:%. Hence, from all itst neighborsy receives at leaskp+ Lk=P+ Lk data packets. O

Lemma 5. The per-round overhead of maintaining a connection over the entire multicast session is between
?+2 and £ +-c packets.

Proof. The overhead of maintaining a connection consists of: (i) data overbéayl (.e., packets that
contribute to the node’s balance with respect to the neighbor, (ii) gossip/request packets, and (iii) penalty
packets.

According to the protocol (Fig. 2, lines 21-25), the maximum data overhegid-is-3 data packets

(n,n) (n,n)

per-round. By Lemma 3, and sindsis fixed, XRR :£+bR 7 2£+%:% The gossip/request overhead

9

is fixed, namely: two packets per-round. The penalty on either a negative balance or on maintaining a
connection with an emulated node is one fine packet per round, and zero otherwise. Hence, the minimal and
maximal per-round overheads gfe-2 and% +-c packets, respectively. O

Lemma 6. If a noden maintains connections with at most-1 nodes throughout the multicast session,
then f,,=cc.

Proof. We first note that, during the multicast sessierannot request fror8to send it data packets. From
at mostk—1 neighbors and frons on behalf of these neighbors,can receive at most=(k—1)(£+c—3)
data packets per round. Recall tiat—k)(c—3)<p. Hence,z<p. We note thatr<p even ifn maintains
connections with more thai-1 nodes for a bounded number of rounds. This is sinoeceives a bounded
number, denoted agm, of data packets from these nodes, and héﬁé‘gﬂ:x< p. Finally, if n receives
up to|L|k data packets frons after the end of the multicast session, then it still cannot receive alPthe

multicast packets, sinc 5% —.< p. Hence, f,,=oc. O

Lemma 7. If a noden maintains connections with nodes throughout the multicast session, thigrioo
and %§p+kc.

Proof. We first note that, can always maintain connections withnodes if it chooses to do so, singe
can always maintain connections withnodes emulated b8 Hence, according to Lemma 4 jifmaintains
connections wittk nodes throughout the multicast session, then it receives atfeakk data packets from
its neighbors and fror$ on behalf of its neighbors. In addition, after the end of the multicast sessitan
receive up tdL|k data packets fror (in return for sendinga fine packet for each data packet), and hence
frn=snp<00.

By Lemma 5, maintaining connections incurs sending at mestkc packets per-round. In addition,

since%:O (L andk are fixed), sending at mogt|% fine packets at the end of the multicast session does
not increase the per-round overhead. T|’¢§$p+kc. O

We now discuss a scenario in which a nedeaintains connections with more thamodes throughout
the multicast session. Note thatcan maintain up t@k connections if it maintains connections with all
of its initial neighbors and wittk emulated nodes as well. However, by Lemma 5 and due to bandwidth
limitations,n cannot maintain more tha@i—kgj connections. Below, we prove that maintaining connections

with additional nodes other than its neighbors can only incre&seost.

Lemma 8. Every protocol-obedient strategy in which a nodmaintains connections withnodes through-
out the multicast session strictly dominates every protocol-obedient strategy in avhieintains connec-
tions withj nodes throughout the multicast session, whieré.

Proof. By Lemma 5, ifn maintains connections with+1 or more nodes throughout the multicast ses-
sion, thensz >(k+1)(%+2), i.e., %2(kz+1)(§+2). By Lemma 7, ifn maintains connections withnodes
throughout the multicast session, th%rﬁp+kc. Recall thak?(c—2)—2k<p. Hencep+ke<(k+1)(R+2).
Therefore, maintaining connections throughout the multicast session incurs a lower cost than the cost of
maintainingk-+1 or more connections throughout the multicast session. O

The following lemma shows that it is preferable for a node to maintain connectiong:wigighbors
throughout the multicast session.

Lemma 9. Every protocol-obedient strategy in which a nedmaintains connections withnodes through-
out the multicast session strictly dominates every protocol-obedient strategy in avhielimtains connec-
tions withj nodes, wherg=#k.

10

Proof. We note that maintaining a connection for a bounded number of rounds cannot r&slogst, since
from this connectiom receives a bounded number of data packets, denotedras and*z*=0. Hence,
the theorem follows from Lemmas 6, 7, and 8. O

We next show that a node benefits more from connections with its originaighbors than from emu-
lated ones.

Lemma 10. Assume that a hode maintains a connection with a non-emulated nadelhen,n does not
replace its connection with with a connection with an emulated noele

Proof. Recall thate's interface is identical té’s interface with the following two exceptions:sijs balance
with respect te is initialized to the lowest possible balance, i&.and ii) in each round; must send a fine
packet toe, regardless of its balance with respecttotherwisee terminates its connection witlh Hence,
there is no difference between the data receiving rate fi@nd the data receiving rate fram

The overhead of maintaining a connection with eitheor e is composed of: (i) data overhead, (ii)
gossip/request packets, and (iii) penalty packets. The gossip/request overhead is fixed. The data sending
rate toe is larger than or equal to the data sending rate, teincen’s balance with respect tis initialized
to the lowest possible balance, i.6., The penalty overhead incurred by maintaining a connectioneaigh
larger than or equal to the penalty overhead incurred by maintaining a connectiomn wiitice, each round,
n is required to send a penalty packettaegardless of its balance with respecktoFinally, in order to
maintain a connection with, n needs to send a join messagestdHence, the overhead of maintaining a
connection withe is larger than the overhead of maintaining a connection withlence, since there is no
difference between the data receiving rate fromand the data receiving rate froemn does not replace its
connection withn with a connection witle. O

Theorem 1. If all nodes choose strongly dominating strategies out of the set of protocol-obedient strategies,
then every node exclusively maintains connections with its inittaheighbors throughout the multicast
session, and it receives all the multicast packets.

Proof. By Lemmas 9 and 10y’s strategy is maintaining connections with its initkaheighbors throughout
the multicast session. By Lemma 2, these connections are maintained. heeeusively maintains
connections with its initiak neighbors throughout the multicast session. Finally, by Lemmaréceives

all the multicast packets. O

We have shown that it is beneficial for nodes to maintain their connections with their neighbors. We
now show that it is also beneficial for themdooperatewith their neighbors, by maintaining a non-negative
balance. That s, each node setshtparameter to be equal to or larger tltarThis reduces the probability
for nodes reaching a balance lower thiarand hence limits the overhead Sn

Lemma 11. Assume that a node maintains connections with hodes throughout the multicast session.
Assume also that some neighlsoof n requests fromn to send to ity<f+-c—3 data packets in some round
r, and in the beginning of round n has a negative balance bfwith respect ta:. Then, in round-, n sends
min(|b|, q¢) data packets ta.

Proof. We first note that, at the end of each round, (n,n)>L, sincen maintains the connection with.
Thus, the sending rate t does not affect the data receiving rate framand hence: can minimize its
sending rate t@ in order to minimize its cost.

The per-round overhead incurred by maintaining the connectionwibnsists of: (i) data overhead
(%), (ii) gossip/request packets, and (iii) penalty packets. The gossip/request overhead is fixednHence,
tries to minimize the data and penalty overheads.

11

(n,n) (n,n)

By Lemma 3,Xal%t) —p br(u) - The per-round data overhead is bounded from belov isys.
SincelL is a constant that does not depend®we can neglec%, i.e., assume it is zero. The per-round
penalty overhead is the percentage of rounds in which the balance is negative. Recall that, in each round, the
probability thatSwill create more thatL|k data packets in the future is Hence, the overall cost is lower
if n maintains a zero balance with respecfitat the end of each round when this is possible. Therefore,
sendsnin(|b], q) data packets té in roundr. O

6 Dynamic Setting

We now describe in a nutshell a dynamic version of EquiCast, c8lle@ (Dynamic EquiCast)n which
nodes can join and leave the protocol during its execution. Below, we detail only the differences between
the two versions.

Architecture. DEC is deployed on top of a dynamic overlay that supports node joins and leaves. For
example, we can use the overlay in [15], which is a dynamically maintdirmedular graph composed §f
Hamiltonian cycles.

The cost function. DEC'’s cost function is obtained from EquiCast’s cost function by replacing the re-
quirement to receive all th2 multicast packets with the requirement to receive data packets, where
is the number of rounds during which the node is connected to the overlay.

Ajoin operation. A joining noden sends goin message t& Upon receiving this reques$jincorporates
n into the overlay, e.g., by inserting between% pairs of neighboring nodes [15]. For example, assume
that nodes:; andn, are connected to the overlay priori joining, andn becomesi;’s neighbor instead
of ny. We describe hows setsn’s andni’s incoming Qeighbor_balance) and outgoing .y _balance)
balances with respect to each other.
Prior to incorporating: into the overlaySasks botin; andns for theirincoming and outgoing balances
with respect to each other. If these balances do not matchStisnonnects both; andns from the overlay
by sending an appropriate message to all their neighbors. Hence, since;batldn. are rational, they
could be expected to correctly report about their incoming and outgoing balances with respect to each other.
Denoten4’s outgoing and incoming balances with respechiaat the end of round as B, and Bo1,
respectively. We would like to ensure that's cost will not increase due to's joining. Therefore, at the
beginning of round-1, bothny’s outgoing balance with respecttcandn’s incoming balance with respect
to n1 are set taB12. Additionally, at the beginning of roundt1, bothn,’s incoming balance with respect
to n andn’s outgoing balance with respect tq are set tanaxz(Bs1,0). This is to ensure that will not
pay a fine fomy’s negative outgoing balance with respectito Finally, if B2; <0, thenSsendqBs; | new
data packets tay, in order to ensure that it receives at leasp data packets, whena is the number of
rounds during which; is connected to the overlay. Similarly,fif;»>0, thenSsendsB;, hew data packets
ton.

A leave operation. A leaving node: sends deavemessage t& Upon receiving this requessremoves:
from the overlay, e.g., by connecting each painisfneighbors with each other [15]. For example, assume
that, prior ton’s leave,n was connected to nodeg andns, andn,; andns become neighbors afters
leave. We describe hofsetsn;’s andns’s incoming and outgoing balances with respect to each other.

12

Prior to leaving the overlay; sends t@its incoming and outgoing balances with respect to bgtand
no. Note thatn cannot gain anything from reporting about false balances, and hetweald be expected to
correctly report about its balances with respecit@ndns.

Denoten;’s andns’s outgoing balances with respectiat the end of round as By,, and Bs,,, respec-
tively. We would like to ensure that;’'s andns’s cost will not increase due to's leave. Therefore, at the
beginning of round-+1, n;’s andny’s outgoing balances with respect to each other are sB{t@andB,,,,
respectively. Additionally, in order to ensure the protocol’s correctness, at the beginning ot+#eund's
andns’s incoming balances with respect to each other are sBbtcand By,,, respectively.

Denoten;’s andns’s incoming balances with respectitaat the end of roundasB,,; andB,,2, respec-
tively. If By,>B,1, thenn; may not receiven-p data packets, whene is the number of rounds during
which n; is connected to the overlay. Hence, in such a c8sendsB,,—B,1 nhew data packets to;.
Similarly, if By,> B2, thenSsendsB;,,— B,> new data packets t@,.

Finally, a noden’ that is connected to the overlay for rounds may receive less thanp data packets
if it has negative incoming balances with respect to its neighbors on leave time. Hence, after it leaves the
overlay,n’ can receive up toL|k data packets fron$ in return for sendings a fine packet for each data
packet.

7 Conclusions

“Freeloaders” degrade the performance of P2P systems and may lead to their collapse. We have tackled the
problem of “freeloaders” in a P2P multicast protocol from a theoretic perspective by modeling the system as
a non-cooperative game. We have introduced EquiCast, a P2P multicast protocol for selfish environments. In
such environments, EquiCast distributes all the multicast packets to all the nodes. We have formally proven
EquiCast’s cooperation enforcement scheme, namely: in EquiCast, for each node, collaborating with all its
neighbors is a strongly dominating strategy. We are unaware of any previous P2P multicast protocol that is
proven to enforce cooperation in environments in which all the nodes are selfish. We have also proven that
EquiCast incurs a constant load on each node, and hence it can support large groups of users. Finally, we
have described a dynamic version of EquiCast, which supports node joins and leaves.

Acknowledgements. We thank Amir Ronen and Vadim Drabkin for many helpful comments.

References

[1] EMULE-PROJECT.NET. eMule site. http://www.emule-project.net/.

[2] A. Blanc, Y.-K. Liu, and A. Vahdat. Designing incentives for peer-to-peer routingerérceedings of
the IEEE Infocom Conferenc2005.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Splitstream: High-
bandwidth multicast in a cooperative environmentAGM SIGOPS Symposium on Operating Systems
Principles (SOSR)October 2003.

[4] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like p2p systems
scalable. IPACM SIGCOMM August 2003.

[5] B. Cohen. Incentives build robustness in BitTorrentL$th Workshop on the Economics of Peer-to-Peer
Systems2003.

13

[6] L. Cox and B. Noble. Samsara: Honor among thieves in peer-to-peer storagefCMnSIGOPS
Symposium on Operating Systems Principles (SCZEPS.

[7] J. Feigenbaum, C. H. Papadimitriou, and S. Shenker. Sharing the cost of multicast transmissions.
Journal of Computer and System Sciené&&1):21-41, 2001.

[8] J. Friedman. On the second eigenvalue and random walks in random d-regular graphs. Combinatorica,
vol. 11, pp. 331-362, 1991.

[9] D. Fudenberg and J. Tirolé&same TheoryThe MIT Press, 1991.

[10] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content distributi®rodeedings
of the IEEE Infocom Conferenc2005.

[11] A. Habib and J. Chuang. Incentive mechanism for peer-to-peer media streamihgterhmational
Workshop on Quality of Service (IWQoS '02p04.

[12] D. Hales and S. Patarin. How to cheat bittorrent and why nobody does. TR UBLCS-2005-12, Depart-
ment of Computer Science University of Bologna, May 2005.

[13] T. Karagiannis, P. Rodriguez, and D. Papagiannaki. Should isps fear peer-assisted content distribution?
In ACM USENIX IMC 2005.

[14] M. Kim and M. Medard. Robustness in large-scale random network$rdoeedings of the IEEE
Infocom Conference004.

[15] C. Law and K. Siu. Distributed construction of random expander network&HE Infocom 2003.

[16] R. Melamed and I. Keidar. Araneola: A scalable reliable multicast system for dynamic environments.
In 3rd IEEE International Symposium on Network Computing and Applications (IEEE ,NOB4.

[17] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible peer-to-peer multicast In
Workshop on the Economics of Peer-to-Peer Syst2atst.

[18] P. Rodriguez, S.-M. Tan, and C. Gkantsidis. On the feasibility of commercial, legal p2p content
distribution. INACM/SIGCOMM CCR2006.

[19] R. Sherwood, R. Braud, and B. Bhattacharjee. Slurpie: A cooperative bulk data transfer protocol. In
Proceedings of IEEE INFOCOM004.

[20] N. Wormald. Models of random regular grapl®&irveys in Combinatoric276:239-298, 1999.

14

A Proof of Cooperation: Basic Lemmas

Lemma 1. At the end of each round, for every two neighboring nodesnd 7, n.my_balance[n] =
n.neighbor_balance[n).

Proof. By induction.

Base:t = 0. n.my_balance[n] = n.neighbor_balance[n] = 0.

Step: Assume that, at the end of rouna.my_balance[n] = n.neighbor_balance[n|. We will prove that,
at the end of roundH-1, n.my_balance[n| = n.neighbor_balanceln).

In roundt+1, bothn.my_balance[n] andn.neighbor_balance[n] are reduced by (see Fig. 2, lines 22
and 32). In addition, in rount+1, n.my_balance[n] andn.neighbor_balance[n| are increased upon the
sending of data packets fromand fromSon behalf ofn to n (see Fig. 2, lines 22, 26, and 32).

Whenn sendsd new data packets t, n.my_balance[n] is increased byl (see Fig. 2, line 22). Since
there is no packet loss, these packets are received ¥e note that. sends ton only data packets that
7 requested from it in phase Il of rountd-1, asn ignores unsolicited data packets (see Fig. 2, line 29).
Therefore, upon receiving thedata packets; increases..neighbor_balance[n] by d.

If n.my_balance[n] drops belowL during phase Il of round+1, thenn sendsw fine packets t&and
it asksSto sendw data packets on behalf of it fo(see Fig. 2, lines 23-25). Additionally,my_balance|n]
is increased byw (see Fig. 2, line 26). We note thatdoes not request fror8 to send ton more than
? data packets, aSignores such requests (see Section 4.3). Hence, upon receiving the request from
S sendsw data packets on behalf of to n. Since there is no packet loss, these packets are received
atn. According to the induction assumption and the protoéoheighbor_balance[n]<L+% at the be-
ginning of phase IV of round+1. Hence,n accepts the data packets received fri§mand it increases
n.neighbor_balance[n] by w (see Fig. 2, lines 30-32). Finally, we note that iisksSto send data packets
to n whenn.my_balance[n|>L, thenn ignores these data packets (see Fig. 2, line 30), since in this case
n.neighbor_balance[n]>L+% , and hence: asksSto send data packets foonly if n.my_balance[n|<L
during phase Il of a given round. O

Lemma 2. Assume that a node is connected to another node If both n’'s and 7’s strategy is
maintaining the connection between them, then this connection is maintained.

Proof. Without loss of generality, we will prove thatdoes not terminate the connection withSincen’s
strategy is maintaining the connection withthen it terminates the connection within a given round

if: (i) it does not receive a gossip packet framn phase | of round; or if (ii) it does not receive a request
packet fromn in phase Il of round; or if (iii) n did not send ta: a fine packet in round and eithern

is an emulated node or, at the end of rodnd.neighbor_balance[n]<0; or if (iv) at the end of round,
n.neighbor_balance[n]<L.

Sincen’s strategy is maintaining the connection withthen (i), (ii), and (iiij) do not happen. In addition,
we note that» can ensure that, at the end of each roumepy_balance[n]>L by askingSto send data
packets to» whenn.my_balance[n]< L (during phase Il of a given round). Hence, according to Lemma 1,
(iv) does not happen either. O

Lemma 3. If a noden maintains a connection with another noflehrough the firstt rounds of the
multicast session, theli; (n, i2)=2+b;(n, 7).

Proof. By induction.
Base: t = 0.X¢(n, 71) = bo(n,7) = 0. Therefore Xo(n,) = £ + by(n,).
Step: AssumeX,(n,n) = p + by (n,n). We will prove thatX;,(n,n) = ””p + biy1(n,n).

15

Xip1(n,n) = X¢(n,0) + xzp1(n,n) = 2 + by(n,n) + z141(n, 7). From the code (Fig. 2, lines
22 and 26), we know thath;1(n,n) = bi(n,n) + x441(n,n) — 2. Thereforeby(n,n) + x4 1(n, 1) =

bry1(n, 7) + L. Hence, Xpy1(n, 7)) = U2 g (n,). O

16

