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Abstract. Differentiated services architectures are scalable solutions for providing class-based

Quality of Service (QoS) over packet switched networks. While qualitative attributes of the offered

service classes are often well defined, the actual differentiation between classes is left as an open

issue. We address here the proportional QoS model, which aims at maintaining pre-defined ratios

between the service class delays (or related congestion measures). In particular, we consider

capacity assignment among service classes as the means for attaining this design objective.

Starting with a detailed analysis for the single hop model, we first obtain the required ca-

pacity assignment for fixed flow rates. We then analyze the scheme under a reactive scenario, in

which self-optimizing users may choose their service class in response to capacity modifications.

We demonstrate the existence and uniqueness of the equilibrium in which the required ratios are

maintained, and address the efficient computation of the optimal capacities. We further provide

dynamic schemes for capacity adjustment, and consider the incorporation of pricing and conges-

tion control to enforce absolute performance bounds on top of the proportional ones. Finally, we

extend our basic results to networks with general topology.
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1 Introduction

1.1 Background and Motivation

The need for providing service differentiation over the Internet is an ongoing concern in the net-

working community. The Differentiated Services architecture [2] has been proposed as a scalable

solution for QoS provisioning. Instead of reserving resources per session (e.g., as in the Integrated

Services (IntServ) model [3]), packets are marked to create a smaller number of packet classes,

which offer different service qualities. The premise of differentiated services is to combine simple

priority mechanisms at the network core with admission control mechanisms at the network edges

only, in order to create diverse end-to-end services.

Several service classes in specific architectures such as Diffserv [2] have been formally defined.

For instance, the purpose of the Expedited Forwarding (EF) class [4] is to provide no-loss and

delay reduction to its subscribers. The Assured Forwarding (AF) [5] services are intended for users

who need reliable forwarding even in times of network congestion. A Service Level Agreement

(SLA) is formed between the user and the network provider, in which the user commits to interact

with the network in a given way, usually reflected by the allowed bandwidth for each service class.

Yet, current technical specifications (e.g., Diffserv standards) deliberately do not quantify the

provider part of the agreement, i.e., the actual service characteristics, which users will obtain by

using the above mentioned classes. Hence, the two elements that jointly determine the QoS in

the different service classes, namely, the resource allocation policy (which may be carried out by

internal packet scheduling rules) and the regularization of user traffic (e.g., by admission control or

pricing) are left as open design issues. Apparently, service characteristics would have to be defined

and publicly declared in order to make the distinction between the service classes meaningful to

the user and possibly worth paying for.

Differentiated services networks cannot offer strict quality guarantees, as resources are allo-

cated to the service classes based on some average network conditions [6]. Hence, these networks

are considered as a “soft QoS” model [7]. The provider may thus declare loose upper bounds

on QoS measures, or alternatively provide probabilistic or time-dependent guarantees. Another

option, which we consider here, is to announce relative quality guarantees, which means that some

traffic is simply intended to be treated better than other traffic (faster handling and lower average

loss rate). The proportional QoS model [8] has been introduced in order to add concreteness to

the notion of relative guarantees. In this model, pre-defined QoS ratios between the classes are to

be maintained. These announced ratios are independent of the congestion level of the network.

Thus, when a user signs an SLA for a class based on relative performance guarantees, it always

gets a concrete performance enhancement over lower service classes. Consequently, the QoS can

be easily quantified and advertised as, for example: “service class K provides half the delay of ser-
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vice class K +1, at any given time”. We note that this proportional QoS can be offered alongside

absolute bounds on the relevant performance measure, as we elaborate below (Section V).

In this paper we concentrate on delay-like performance measures, which are formulated through

general congestion-dependent cost functions. Delay quality is essential for several modern appli-

cations, such as carrying voice over the Internet. Delay ratios are easier to maintain in comparison

with absolute end-to-end delay guarantees, primarily because they may hold for different levels

of congestion, and secondly because keeping the ratios locally (on a link basis) leads to fulfilling

this objective on the network level. Although our focus is on delay, other QoS measures may

potentially be included within the proportional QoS framework. We briefly consider in Section

2.4 the extension of the proportional QoS model to relative packet-loss differentiation.

Dovrolis et al. [8] proposed a class of schedulers, based on the Proportional Delay Differen-

tiation (PDD) model, which aims at providing predetermined delay ratios. The schedulers are

implemented by observing the history of the encountered delays (or alternatively, by measuring

the delay of the packet at the head of each service class), and serving the class which most ex-

ceeds its nominal delay ratio relative to other classes. In [9], proportional delays are maintained

by modifying the weights of a Weighted Fair Queuing (WFQ) scheduler [10] based on predictions

of the average delays. Several other schedulers were suggested for obtaining proportional QoS over

other congestion measures, separately or simultaneously (see [11] for a survey). These schedulers

have been incorporated in various applications such as class provisioning [12] and optical burst

switching networks [13].

In the present work we do not impose the delay ratios on a per packet basis (which usually

requires time monitoring of queued packets), but rather propose using capacity allocation for this

objective. While the capacity allocation model abstracts away the details of packet scheduling, it

may be considered an approximated model for existing schedulers such as WFQ. This is further

discussed in Section 2. We model the differentiation mechanism as a general capacitated link,

in which the capacity (e.g., in bits per seconds) assigned to each service class determines its

performance. Since users are free to modify their flows subsequent to each capacity allocation,

we examine the viability of our framework under a reactive user model. The network provider

assigns a capacity manager in order to maintain the delay-ratios design objective, in face of

changing network conditions. We pose the overall model as a non-cooperative game between the

manager and the network users, and explore the associated capacity management policies and

equilibrium conditions.

An important consideration for our model is the time scale at which capacity updates take

place. We view capacity management as the means to regulate proportional QoS where ser-

vice quality is averaged over relatively long time scales, ranging perhaps from minutes to hours.

Even longer time scales should be considered for fixed capacity allocation. Accordingly, capac-
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ity allocation and updates should be based on average network conditions over time intervals of

corresponding duration.

Several previous papers have addressed differentiated services models with reactive users.

Perhaps the simplest approach is Odlyzko’s Paris Metro Pricing (PMP) proposal [14], where

differentiation is induced by assigning a different price to separated service classes. Other papers

explicitly consider the connection between the network (social or economic) objective, scheduling

mechanism, and the underlying user model. For example, [15] and [16] determine the prices that

maximize the provider’s profits using a priority queue and a WFQ scheduler, respectively. In [17],

the authors focus on incentive prices in priority queues, leading to a socially optimal equilibrium.

Our approach differs from the above references, by considering the maintenance of the relative

service characteristics as a primary management priority.

Our model allows users to choose between the service classes according to their needs. This

choice can be viewed as a selection of a route, hence leading to a selfish routing problem. Other

papers have considered selfish routing with infinitesimal users, originated in the transportation

literature [18] and has been extensively studied since (see [19] for a recent survey). The case of

finitely many users, each carrying substantial flow has been introduced to the networking literature

more recently (see [20, 21, 22]). We shall use a similar routing model to represent the user’s choice

of service class in response to given capacity allocation.

1.2 Contribution and Organization

Our starting point is a single hop (or single link) network which offers a fixed set of service

classes. This model will later serve as a building block for the general network case. It can also

be considered as an approximation of a single path in a network, neglecting variations in traffic

over intersecting network paths. Under mild assumptions on the delay functions, we first show

that there exists a unique capacity assignment which induces the ratio objective for every set of

fixed flows, and show how it may be efficiently computed. Having established these properties, we

extend our analysis of the capacity allocation problem within a reactive user environment. Using a

standard flow model (see [23], Sec. 5.4) we represent the user population as a set of self-optimizing

decision makers, who may autonomously decide on their flow assignment to each service class.

Users differ by their flow utility, their sensitivity to delay and by the way in which they sign up to

the network. We show that for every required delay ratios, there exists an equilibrium point, in

which the declared ratios are fulfilled; this equilibrium is unique under some further conditions.

We provide an efficient computation scheme of the optimal capacity allocation, which can be used

when full information of user-specific characteristics is available. However, since in most cases

a user model can only be estimated, two alternative reactive schemes are suggested, in which

the network manager adapts its capacity based on current per-class conditions only. We provide
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partial convergence results for the reactive schemes.

The basic model described above is extended in several directions. We address the incorpo-

ration of pricing and congestion control mechanisms alongside capacity management. We show

that keeping the total incoming flow (over all service classes) below a certain level, suffices to

ensure upper bounds (which correspond to the same pre-specified ratios) on the delays of each

service class. This leaves a degree of freedom regarding the regulation of the individual service

class flows, which can be exploited to satisfy supplementary network objectives that include profit

maximization and fairness. We finally show how proportional QoS can be carried over to general

network topologies, by maintaining the specified proportions over each link separately.

The organization of the paper is as follows: The basic network model is described in Section

2. We then consider the calculation of the manager’s capacity allocation for fixed network flows

(Section 3). The equilibrium analysis for a reactive user model is given in Section 4. Section 5

concentrates on pricing and congestion control issues. General network topologies are considered

in Section 6. Conclusions and further research directions are outlined in Section 7.

2 The Single-Hop Model

2.1 Network Description

In our single hop model all users employ the same link for shipping their flow. Let I = {1, 2, . . . , I}

be a finite set of users, which share a link that offers a set of service classes A = {1, 2, . . . , A}. We

consider the link with its respective service classes as a two terminal (source-destination) network,

which is connected by a set of parallel arcs (see Figure 1). Each arc represents a different service

class. Thus, the set of arcs is also denoted by A, and the terms service class and arc are used

interchangeably. Denote by f i
a the flow which user i ships on arc a, and by fa =

∑

i∈I f i
a the total

flow on that arc. The network manager has available a constant link capacity C, to be divided

between the service classes. This capacity is to be dynamically assigned in order to address

different network conditions. We denote by ca the allocated capacity at arc a. The capacity

allocation of the manager is then the vector c = (c1, . . . , cA). An allocation c is feasible if its

components obey the nonnegativity and total capacity constraint, namely (i) ca ≥ 0, a ∈ A and

(ii)
∑

a∈A ca = C. The set of all feasible capacity allocations c is denoted by Γ.
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Figure 1: The single hop network.

2.2 Latency Functions

Let Da be the latency (delay) function at service class a. An important example of a latency

function is the well known M/M/1 delay function, namely

Da(ca, fa) =







1
ca−fa

fa < ca

∞ otherwise
(2.1)

(with the possible addition of a fixed propagation delay, see [23]). More generally, Da may stand

for a general measure of link congestion. We shall consider latency models that comply with the

following assumptions.

B1 The delay in each service class a is a function of ca and fa only. Namely, Da(c, f) =

Da(ca, fa).

B2 Da is positive, finite and continuous in each of its two arguments for ca > fa.

B3 Da = ∞ for ca < fa, and Da → ∞ for fa → ca.

B4 Da is strictly increasing, convex and continuously differentiable in fa for ca > fa.

B5 Da is strictly decreasing in ca for ca > fa.

Assumption B1 implies that the performance in each service class is unaffected by the capacity and

traffic intensity in other service classes. This would be the case when separate network resources

are allocated at any given time to each service class (e.g., separate queues and wavelengths in a

WDM fiber system). In shared multiplexing systems such as WFQ and Weighted Round Robin

(WRR) [24], the same assumption may be still applied to approximate the delays under heavy

traffic conditions (in which differentiation is mostly crucial) [16]. Assumption B3 induces a strict

meaning to the notion of capacity as an upper bound on sustainable flow, which is central to

this paper. The monotonicity and continuity properties in Assumptions B2, B4, B5 are natural,
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while the convexity assumption in B4 is necessary for the analysis and is consistent with common

latency models like (2.1).

An additional assumption which will be required for some of our results is:

B6 Da is a function of (ca − fa) only, and is strictly decreasing in (ca − fa) over ca > fa.

Note that the last assumption, together with Assumption B4, implies that if Da(ca, fa) > Da(ĉa, f̂a)

then ∂Da(ca,fa)
∂fa

> ∂Da(ĉa,f̂a)
∂fa

. Consequently, ∂Da

∂fa
is uniquely determined by the value of Da.

2.3 The manager’s objective

We can now precisely formulate the proportional QoS objective. Taking the delay of class 1 as a

reference, the ratios are described by a vector ρ = (ρ1, . . . , ρA), 0 < ρa < ∞, where ρ1
△
= 1. The

manager’s objective is to have the delays D1, . . . , DA satisfy

Da(ca, fa) = ρaD1(c1, f1) ∀ a ∈ A. (2.2)

We refer to that relation as the fixed ratio objective. For concreteness, we shall assume that

ρ1 ≤ ρ2 ≤ · · · ≤ ρA, so that service classes are ordered from best to worst. It will be convenient to

define the following cost function for the manager which complies with the fixed ratio objective:

JM (c, f) =







0 if (2.2) holds,

∞ otherwise.
(2.3)

2.4 QoS Criteria

While the treatment in this paper is geared towards delay as a main QoS measure, in some

applications other QoS measures, such as packet-loss or jitter, may be as important. Observe

that our model definitions and assumptions throughout this section are not specific to delay.

Any congestion measure (or combination of several congestion measures) which can be quantified

through an appropriate flow-based model may be considered, as long as (i) the set of assumptions

B1-B5 is obeyed for that measure, and (ii) the measure is additive over the path links, a property

which is required for distributed capacity allocation in general network topologies (see Section 6).

As an example, we address the possible incorporation of packet-loss performance within the

proportional QoS framework. Packet losses naturally occur as a consequence of finite buffer space.

A proportional-loss objective may be considered, where the manager is interested in maintaining

predetermined loss-probability ratios between the service classes (perhaps in conjunction with

certain delay ratios). An interesting issue here is the meaning of “capacity” in relation to the loss
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metric. Capacity may stand for service-rate (as in (2.1)), buffer space, or a combination of them

both.

Note that although the loss metric is multiplicative, loss can be approximately treated as addi-

tive, assuming low loss rates, which hold under moderate congestion levels. Verifying compliance

with Assumptions B1-B5 requires explicit models for loss over the Internet, which are usually

unavailable. However, examination of a simplified queueing model, the M/M/1/K queue [25],

indicates that when capacity corresponds to service-rate, the average loss complies with most

of these assumptions (excluding B3, which is not needed when the loss is not excessive). The

detailed study of loss and other performance measures, as well as multiple QoS criteria, is left for

future research.

3 Capacity Assignment with Fixed Flows

In this section we consider the network manager’s optimal capacity assignment, i.e., an assignment

which induces the ratio objective for given network flows. We show the existence and uniqueness

of this assignment, and moreover provide the means for its calculation. We exemplify our results

by the M/M/1 delay model. The proofs for the results of this section appear in Appendix A.

The analysis of the fixed flow case is significant on its own, as it suggest that the manager

is always able to induce the ratio objective, at least for short terms. Additionally, the optimal

capacity assignment for fixed flows naturally serves as the manager’s best response in the game

formulation with reactive users, to be considered in Section 4.

3.1 Basic Properties

We consider the manager’s optimal capacity assignment to a given set of service-class flows

f1, . . . , fA. Henceforth, we will refer to this assignment as the best response capacity allocation.

The best response here is a capacity allocation which minimizes (2.3); note that if the minimum

is finite, then (2.2) is satisfied. We show next that the manager has a unique best response, which

can be computed by a monotone search over a scalar variable.

Proposition 1 Consider the single-hop model with latency functions obeying Assumptions B1-

B5 and a desired ratio vector ρ. Let (f1, . . . , fA) be a fixed flow configuration with
∑

a∈A fa < C.

Then (i) there exists a unique capacity allocation c ∈ Γ such that the ratio objective (2.2) is met.

(ii) This capacity allocation can be obtained by a monotone search procedure over the scalar c1,

which is specified in the proof.
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Instead of monotone search, the best response capacity allocation can also be obtained as the

solution of a convex optimization problem.

Proposition 2 Under the conditions of Proposition 1, the best response capacity allocation can

be obtained by solving the following convex optimization problem:

min
c=(c1,...,cA)

ĴM (c, f), s.t. ca ≥ fa ∀a ∈ A,

A
∑

a=1

ca = C,

where

ĴM (c, f) = −
A

∑

a=1

∫ ca

fa+ǫa

g
(

ρ−1
a Da(xa, fa)

)

dxa (3.4)

and g(·) is any continuous and strictly increasing function with g(0) = 0, g(∞) = ∞. Further,

ǫa ≥ 0 is a small non-negative constant, which is taken to be strictly positive if

∫ fa+δ

fa

g
(

ρ−1
a Da(xa, fa)

)

dxa = ∞ ∀δ > 0.

For example, if we take g(x) = x then ǫa > 0 is required for the M/M/1 delay function (2.1),

while ǫa = 0 can be used for Da(ca, fa) = 1√
ca−fa

.

3.2 Iterative Capacity Assignment

A rather different approach for obtaining the best response allocation during network operation

would be to simply update the capacities at each service class based on the observed deviations

from the ratio objective. This approach eliminates the need for an explicit calculation of the best

response capacity allocation. Define the average normalized delay D̂(c, f)
△
= 1

A

∑

ρ−1
a Da(ca, fa).

The required capacities can be obtained by the following update rule:

ca := ca + ǫαa

(

Da(ca, fa) − ρaD̂(c, f)
)

. (3.5)

Here ǫ > 0 is a small step-size, and αa = ρ−1
a . Note that the choice of {αa} guarantees that

∑

a ca

is kept fixed, which is required by the fixed capacity constraint.

For ǫ small, the update rule (3.5) may be approximated by the differential equation

d

dt
ca = αa

(

Da(ca, fa) − ρaD̂(c, f)
)

. (3.6)

We then have the following convergence result:

Proposition 3 Under the conditions of Proposition 1, the update rule (3.6) converges asymptot-

ically to the (unique) best response capacity allocation.
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Observe that in either approach (namely, a direct or an iterative calculation) the information

required by the manager is the total flow at each service class. Alternatively, an estimate of the

current delay at each service class could be used directly, as these are the required parameters in

(3.4)–(3.5).

3.3 M/M/1 Latency functions

The M/M/1 delay model has special significance, as it is frequently used for estimating queuing

delays [23]. Clearly, the results obtained so far in this section hold for the M/M/1 delay model

case, since it obeys Assumptions B1-B5. Yet, there are some additional distinctive features of this

specific model, which we highlight next. Our first result considers the manager’s best-response

capacity allocation for a given set of per-class flows.

Proposition 4 Consider the single-hop model with M/M/1 latency functions (2.1) and a desired

ratio vector ρ. Then under the conditions of Proposition 1,

ca = fa + (C −
∑

α∈A
fα)

ρ−1
a

∑

α∈A ρ−1
α

. (3.7)

This formula provides an explicit solution for the best response capacity allocation. Note that

the excess capacity (C −
∑

α fα) is divided between the service classes, where each class a ∈ A

obtains a share which is inversely proportional to ρa. Interestingly, a similar expression is obtained

for the classical capacity assignment problem of minimizing the network average delay (see [25],

p.331).

We next provide a concrete expression for the cost function (3.4) which is minimized by

satisfying the fixed ratio objective.

Proposition 5 Consider the single-hop model with M/M/1 latency functions (2.1) and a desired

ratio vector ρ. Let

J̄M (c, f)
△
=

∑

a∈A
waDa(ca, fa), (3.8)

where wa = 1
ρ2

a

. Then the (unique) feasible capacity allocation which minimizes (3.8) is also the

best response capacity allocation.

Proof: The function J̄M is obtained by setting g(x) = x2 in (3.4). Thus, it follows from

Proposition 2 that the manager’s best responses for JM and J̄M are identical. ¤

We conclude from the last proposition that by achieving the ratio objective, the manager in

fact minimizes a reasonable social cost function, which is just a weighted sum of the delays over

the different service classes. Indeed, the weights wa are inversely proportional in ρ2
a, which gives

higher weight to better, and naturally more expensive, service classes.
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4 Reactive Users

In this section we turn our attention to the case of reactive users, namely, users who modify their

flow allocation according to network conditions, and particularly in response to capacity changes.

We begin by formulating the user model which leads to a noncooperative game description of the

users-manager interaction. We then analyze the properties of the (Nash) equilibrium point of this

game. We further consider the convergence of adaptive algorithms for capacity assignment. The

proofs of the results in this section are provided in Appendix B.

4.1 User Model

Recall that we consider a finite set I of users. Each user i is free to choose its flow f i
a for

each service class a ∈ A. We allow for pre-specified upper bounds si
a on the users flow, so that

0 ≤ f i
a ≤ si

a. The total flow of user i is denoted by f i △
=

∑

a∈A f i
a, and its flow configuration is

the vector f i = (f i
1, . . . , f

i
A). The flow configuration f is the vector of all user flow configurations,

f = (f1, . . . , f I). A user flow configuration f i is feasible if its components obey the flow constraints

as described above. We denote by Fi the set of all feasible user flow configurations f i, and by F

the set of all feasible flow configurations f . Finally, a system configuration (c, f) is feasible if it

consists of a feasible flow configuration and a feasible capacity allocation (defined in Section 2.1).

Users are distinguished first by their flow utility function U i(f i), which quantifies their sub-

jective utility for shipping a total flow f i. Thus, we accommodate users with elastic flow demand.

We make the following assumptions regarding U i: For every user i ∈ I, the utility function

U i : ℜ → ℜ is bounded above, concave and continuously differentiable. We note that utility func-

tions with the above characteristics are commonly used within the networking pricing literature

[6, 26]. The total cost J i for user i is given by

J i(c, f) = βi
A

∑

a=1

f i
aDa(ca, fa) +

A
∑

a=1

f i
ap

i
a − U i(f i). (4.9)

The left term of J i represents the delay cost, which is the total delay of the user, multiplied by its

delay sensitivity βi > 0. The middle term stands for the network usage price, where we assume

linear tariffs [6], i.e., pi
a is the price per unit flow of user i in class a.

The above cost function allows to treat different types of network users in a unified mathe-

matical framework. This includes:

1) Elastic or Plastic users. An elastic user’s total flow is generally not constant, and varies ac-

cording to the network conditions. A plastic user is interested in shipping a fixed amount of total

flow into the network. Such a user can be modeled by a flow utility function which has a sharp

maximum at the required total rate.
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2) Static SLA users. Static SLAs are typically negotiated on a regular (e.g., monthly or yearly)

basis. The agreement means that the users can start data transmission (subject to the rates

they buy) whenever they wish without signaling their Internet service providers [3]. Thus, from

user i’s point of view, static SLAs are manifested by the maximal flow rates si
a in each service

class. In this paper we do not consider the establishment phase of static SLAs, and therefore their

associated prices are irrelevant to our analysis. Accordingly, we have pi
a = 0 for every static SLA

user, since payment was already transferred for acquiring each si
a.

3) Dynamic SLA users. Dynamic SLA users buy differentiated services on-demand, meaning that

they pay a price per unit traffic pi
a over each service class. In a reasonable pricing model, these

prices could be identical for all users, that is pi
a = pa for every i ∈ I. As these users are not

limited by static SLAs, we can set si
a = M , where M > C is an arbitrary large constant.

The prices of both static or dynamic SLAs may be viewed as an indirect means for congestion

control [6], and (among other things) prevent flooding of the premium service classes. In this

paper, however, we concentrate on capacity assignment as the management tool, assuming that

prices are static (or change on a slower time scale). The issue of price setting in our context is

addressed later in Section 51.

Remark 1 Strictly plastic users, i.e., users i ∈ I with a constant rate f i, require the additional

constraint
∑

a f i
a = f i. For simplicity, we will not explicitly consider the case of strictly plastic

users, yet all the results in this section still hold if strictly plastic users are incorporated in our

model (provided their total flow requirement
∑

f i is less than the total capacity C).

4.2 The Game Formulation

Having defined cost functions for all parties involved, the interaction between the manager and

the users may now be considered as a non-cooperative game, and will be referred to as the

users-manager game. Note that the manager in our case is not adversarial to the users, but

simply wishes to impose its ratio objective. A Nash Equilibrium Point (NEP) of our game is a

feasible system configuration (c̃, f̃) such that all costs (JM , J i, i ∈ I) are finite, and the following

conditions hold:

JM (c̃, f̃) = min
c∈Γ

JM (c, f̃), (4.10)

J i(c̃, f̃ i, f̃−i) = min
f i∈Fi

J i(c̃, f i, f̃−i) for every i ∈ I

where f̃−i stands for the flow configurations of all users except for the ith one. Namely, the NEP

is a network operating point which is stable in the sense that neither any user, nor the manager,

1One would expect that better service classes (with a lower delay) would be more expensive, although this is

not required for our derivations.
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finds it beneficial to unilaterally change its flow or capacity allocation, respectively.

Before analyzing the overall users-manager game, let us consider the users reaction to a fixed

capacity allocation c = (c1, . . . , cA). In this case we still have a non-cooperative game between the

I users. The definition of the Nash equilibrium of this game remains as in (4.10), but excluding

the network manager’s minimization of JM . The next result establishes the uniqueness of the

user-equilibrium flow of that game. We note that this result is particular to the single hop (parallel

arc) case treated here, and does not fully extend to the general network case treated in Section 6.

Proposition 6 Consider the single-hop model with latency functions obeying Assumptions B1-

B5. Then for every capacity allocation c, the resulting user-equilibrium flow configuration is

unique.

4.3 Analysis of the Users-Manager Equilibrium

We now return to the complete game model, where the users react to the network congestion

conditions, while the capacity manager is concerned with keeping the delay ratios and modifies

the capacity allocation accordingly. Our next result establishes the existence of an equilibrium

point, in which the desired ratios are met.

Theorem 7 Consider the single-hop model with latency functions obeying Assumptions B1-B5

and a desired ratio vector ρ. Then there exists a Nash equilibrium point for the users-manager

game. Any such NEP exhibits finite costs for both the manager and the users. In particular, the

ratio objective (2.2) is satisfied.

The additional Assumption B6 on the latency function is required to establish the uniqueness

of the NEP.

Theorem 8 Consider a single-hop network with latency functions obeying Assumptions B1-B6.

The Nash equilibrium point for the users-manager game in this network is unique.

Besides existence and uniqueness, an additional appealing feature of our framework is the

computational complexity of calculating the equilibrium point. Generally, equilibrium computa-

tion schemes for selfish routing even for a network with fixed capacities are quite involved (see [27]

for a survey). Moreover, most schemes apply under certain conditions, which need not hold in our

case. However, in our framework which includes capacity adjustment according to a pre-specified

delay ratio, the calculation becomes tractable. In the sequel we provide the means for the explicit

calculation of an equilibrium point in the users-manager game. Let us start by assuming that

one of the equilibrium delays, say D1, is given. Our next lemma shows that in this case, the

equilibrium point can be efficiently calculated via a set of quadratic problems.
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Lemma 1 Consider the single-hop model with latency functions obeying Assumptions B1-B6.

Assume that the delay D1 at the NEP is given. Let {Da = ρaD1} and {D′
a

△
= ∂Da

∂fa
} be the

equilibrium delays and their derivatives, as determined by D1. Then the flows at the NEP can be

calculated by solving the following I quadratic optimization problems (with A variables each), one

for each user i ∈ I:

min
f i

{

∑

a

1

2
βiD′

af
i
a

2
+ f i

a

(

βiDa + pi
a

)

− U i(
∑

a

f i
a)

}

subject to : 0 ≤ f i
a ≤ si

a. (4.11)

Once the equilibrium flows at each service class are determined, it is a simple matter to

calculate the equilibrium capacities according to the delay formulas. Since the number of classes

in a Diffserv-like network is small, the calculation procedure (4.11) is computationally manageable.

The only issue that needs to be resolved for a complete calculation scheme is the determination of

D1 at equilibrium. We next show that D1 can be obtained as the fixed point of a monotone map.

Let D1 be an estimate of the equilibrium delay. Solving (4.11) for each user yields (aggregate)

flows {fa} which in turn can be used in (3.4) for obtaining the manager’s best response. This best

response, together with the flows {fa} yield service class delays which meet the ratio objective.

We denote these delays by D̃a(D1), emphasizing that they are a function of the original estimation

of D1. Our next result shows that the equilibrium delay of class 1 can be obtained via an efficient

iterative procedure.

Proposition 9 Consider a network with latency functions obeying Assumptions B1-B6. Then,

1. D̃1(D1) is monotonously decreasing in D1.

2. The equilibrium delay D1 is the unique solution of the equation D1 − D̃1(D1) = 0.

3. The equilibrium delay of class 1 may thus be obtained by a monotone search over the scalar

D1, where each stage involves the calculation of D̃1(D1) through the solution of (3.4) and

(4.11).

4.4 Adaptive Algorithms for Capacity Assignment

Adaptive algorithms are required to account for the reactive and non-stationary nature of the

network users. In this section we consider two plausible options for adaptive capacity management,

which are based on the fixed-flow analysis of Section 3. Propositions 1 and 2 allow the manager to

directly calculate its best response assignment, namely the capacity assignment that will satisfy the

fixed ratio objective given the current network flows. This forms the basis for our first algorithm.
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Algorithm 1 The network manager periodically observes the current network flows over each

service class, and modifies its capacity allocation to its best response capacity allocation (described

in Propositions 1–2).

An alternative approach is based on the iterative update rule (3.5).

Algorithm 2 The network manager periodically observes the current network flows, and adapts

its capacity allocation according to (3.5).

Algorithm 1 is essentially designed to reach the ratio objective within a small number of

capacity re-allocations. Indeed, if the users are not reactive so that network flows are fixed, the

network manager would satisfy its objective within a single capacity modification. This algorithm

inherently incorporates substantial capacity changes in each step, as the current best response

capacity allocation may correspond to a significantly different flow distribution in comparison

with the last capacity allocation. Algorithm 2 represents a different approach, in which capacity

modifications are simple and carried out gradually, in small steps. Sudden changes in capacity

can thus be avoided, possibly at the cost of slower convergence toward the required equilibrium.

An attractive hybrid scheme may be considered, where Algorithm 1 makes the initial capacity

updates, followed by Algorithm 2 which smoothly adapts the capacities towards the required

equilibrium point.

We next address some convergence properties of both algorithms under a reactive user envi-

ronment. To start with, we assume that the users flow configuration reaches the user-equilibrium

point (unique by Proposition 6), and moreover that the network manager adapts its previous

capacity allocation only after the users flow configuration is at equilibrium. It can then be shown

that both algorithms converge to the Nash equilibrium point in the case of two service classes.

A precise statement of these results and the (somewhat lengthy) proofs are omitted from the

main text and can be found in Appendix D. We point out that the analysis in Appendix D relies

heavily on monotonicity properties and is not readily extendible to more than two service classes.

Convergence to the user-equilibrium point under best-response (or similar) dynamics which is

required for our analysis is essentially an open problem which is resolved in simplified scenarios

only (see [20, 28, 29]). However, assuming that users reach a stationary working point approxi-

mates a reasonable scenario, where the network manager operates on a slower time scale than that

of the users. In this section we have obviously ignored transient conditions, such as changes in the

user population and their flow requirements. Hence, the above results should not be considered

as ensuring the convergence of the suggested iterative algorithms under general conditions, but

rather as an indication for their viability within a more stable environment.
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4.5 Discussion

We pause here to discuss some consequences of the previous results, as well as some aspects of

our modeling assumptions. Our central result is Theorem 7 (existence of a Nash equilibrium

point), which implies that the ratio objective is feasible for any congestion level. This suggests

that the network has a stable operating point which satisfies the ratio objective even when users

are reactive and modify the flow and service class selection according to perceived congestion.

Theorem 8 (uniqueness of a Nash equilibrium point) implies that there exists only one such

operating point which is stable under unilateral deviations of self-optimizing users. We note that

the uniqueness property requires the additional Assumption B6, which is not needed for existence

of the equilibrium. Generally, when the equilibrium is not unique, the network behavior becomes

less predictable. Simulation results or computation of the equilibrium cannot be relied on to give

a complete picture of the network operation. However, the possible existence of multiple equilibria

in our case can be tolerated, at least with respect to the network manager’s objective, since the

required ratios are met in every equilibrium point.

From an analytical perspective, the computation of the equilibrium point (Lemma 1 and

Proposition 9) scales well (linearly) with number of users, unlike general non-cooperative games,

in which computation is hard from three players and above (see [30] for a recent survey). From

the operational perspective, the ability to compute the equilibrium capacities suggests that the

manager can set the equilibrium capacities just once, and wait for the users to reach the equi-

librium flows. In terms of game theory, this approach is related to a Stackelberg game [31],

where the leading player (in our case the network manager) announces its strategy first, and the

other players react to this strategy. Proposition 6 ensures that the resulting equilibrium flows are

unique, thus the ones expected by the manager. Note that in our specific game the Stackelberg

strategy leads to an equilibrium point which coincides with the (unique) NEP desired by the

network manager. This property essentially follows from the structure of the manager’s cost (2.3)

which assumes only two values (zero or infinity): indeed, in every NEP the manager’s cost must

be zero, and this cannot be improved upon even when the manager acts as a leader.

We emphasize that the explicit computation of the equilibrium capacities requires the man-

ager to possess considerable per-user information, including user preferences, which can only be

estimated. Accordingly, the use of adaptive algorithms seems more practical in our case. Still,

rough estimates of the user preferences can be used for estimating the equilibrium capacities,

which in turn may serve as a good starting point for an adaptive algorithm.
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5 Pricing and Congestion Control

In the previous sections we have established that, under our assumptions on the latency functions,

proportional QoS can be maintained at any congestion level. Still, excessive congestion should

obviously be avoided. We briefly consider in this section two alternatives for regulating the flow

level of the network, namely pricing and congestion control. The underlying objective in either

case is to guarantee an upper-bound Dmax
a on the average delay at each service class a, while still

keeping the ratio objective, thus

Dmax
a = ρaD

max
1 , a ∈ A. (5.12)

Accordingly, both pricing and congestion control are assumed to take place alongside capacity

management, which is still responsible for keeping the delay ratios. Furthermore, in the differen-

tiated services context, pricing and congestion control can be considered as complementary, in the

sense that pricing operates on a slower time scale than congestion control. Prices are expected

to vary slowly (see, e.g., [6] p. 256), to give the users enough time to evaluate their price-quality

tradeoff and decide which service class to join. Thus, price regulation is carried out by taking into

account average network conditions. Congestion control mechanisms, on the other hand, should

discard excess flow (or block user access) when momentary performance is not adequate. We will

demonstrate here that the ratio objective, which is enforced by capacity management, fits well

with both pricing and congestion control. In a sense, their implementation in a shared-resources

multi-class network can become easier, when performed in concert with the ratio maintenance.

The user cost model (4.9) of the previous sections already includes pricing at linear tariffs. We

will not fully address here the price setting issue, which is a broad research area in communication

networks (e.g., [6, 26, 32] and references therein). We do provide a qualitative monotonicity

result regarding the effect of prices on equilibrium delays, which should be significant to the

implementation of any pricing scheme. Our focus is on the dynamic SLAs framework (see Section

2), where price is identical for all users, i.e., pi
a = pa.

Theorem 10 Consider the single-hop model, where the delay functions obey Assumptions B1-B6,

and two pricing vectors p = (p1, . . . , pA) and p̃ = (p̃1, . . . , p̃A). If p̃ ≥ p (i.e., p̃a ≥ pa for all

a ∈ A) then (i) D̃a ≤ Da at equilibrium for every service class a ∈ A. (ii) If, moreover, p̃a > pa

and 0 < f i
a < si

a for some i ∈ I and a ∈ A, then D̃a < Da at equilibrium for every a ∈ A.

Proof: See Appendix C.

The result above indicates that increasing the prices for any subset of service classes results

in reduced delays at all service classes. This is of course a consequence of capacity re-allocation

that takes place to maintain the delay ratios. The theorem above leaves a degree of freedom as
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to which of the prices should be modified in order to satisfy the required upper bounds (5.12) on

{Da}. This should be determined by other (economic) pricing objectives along with the required

delay ratios.

We now turn our attention to active congestion control. In a shared-resource multi-class

environment, the question of congestion control becomes multidimensional, as removing traffic

from one service class also affects the others. Our goal here is to provide guidelines for determining

the target flow levels in each service class at congestion periods. We emphasize that the short

time scale on which congestion control must operate and react, necessarily leads us to consider

its effect relative to the current flow demands. This stands in contrast to the above analysis of

pricing, which considers its effect on equilibrium flows.

The next central result fully characterizes the admissible region of service-class flows, which

allow to maintain the required delay bounds.

Theorem 11 Consider the single-hop model, where the delay functions obey Assumptions B1-B6.

Assuming that capacities are set according to (3.4), there exists a critical flow level fmax so that

Da ≤ Dmax
a holds for every class if and only if

∑

a∈A fa ≤ fmax.

Proof: The claim immediately follows from the following fact: Let f and f̂ be two fixed flow

vectors. If
∑

a fa ≤
∑

a f̂a, then the respective best response capacity allocations yield class delays

which satisfy Da ≤ D̂a for every a ∈ A. To prove this, Assume by contradiction that Da > D̂a for

some a (hence for every a). Then by Assumption B6, ca − fa < ĉa − f̂a. Summing this inequality

over all service classes, and noting that the total capacity is fixed, we obtain that
∑

a fa >
∑

a f̂a,

which is a contradiction. ¤

The significance of this result is threefold. First, as a consequence of the underlying capacity

management, the admissible set of flows
∑

a∈A fa ≤ fmax is simple and requires to regulate

the total flow only. Second, the set of feasible flows is naturally expanded (as compared with

maintaining the required delay bound at each service class without capacity sharing). Third, the

network faces a degree of freedom in setting the target flow levels in each class, which could be

exploited to promote diverse objectives. We outline here two such options:

1. Profit maximization. Assume that users pay for their good-put only (i.e., they do not pay for

their discarded flow). Keeping that in mind, the network could be interested in maximizing its

profits by discarding the excess flow from cheaper service classes (recall that class prices are fixed

during short time scales which are considered here). However, the network should usually keep an

adequate flow rate at each service class (e.g., due to static SLA commitments). To formalize this

tradeoff, denote by fd
a the current total user demand for class a (without congestion control) and

by f0
a the rate for class a which the network must allow. Whenever congestion control is called
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upon, the allowed input rates can be obtained from the following optimization problem.

max
f1,...,fA

{

∑

a

fapa

}

(5.13)

s.t.
∑

a

fa = fmax, min{fd
a , f0

a} ≤ fa ≤ fd
a ∀a ∈ A.

The solution to this optimization problem follows easily by ordering the service classes in increasing

price order, and discarding flow according to this order (while obeying the f0
a constraint) until

the total flow reaches fmax.

2. Fairness. Consider the following network-wide performance criterion
∏

a
fa

Da
, which is known as

the product form of the user’s powers (rate over delay) [33]. Maximizing this criterion captures a

natural tradeoff between class utilization and delay. Noting that the target delays are known under

congestion, the target flow levels could be chosen as the solution to the following optimization

problem

max
f1,...,fA

{

∏

a

fa

Dmax
a

}

, (5.14)

subject to the same constraints as in (5.13). This is in fact a geometric program ([34], p.160), which

can be easily converted into a convex optimization problem, and consequently solved efficiently.

The maximizer of (5.14) is known to obey certain fairness properties among the service classes,

which coincide with the Nash bargaining solution. The properties of the bargaining solution and

their association with fairness are summarized in [35, 33].

We emphasize that as long as the admitted flow does not exceed fmax, any other alternative

for excess flow removal would ensure compliance with the upper bound delays. We conclude this

section with a brief summary of implementation issues related to the removal of excess flow from

overloaded service classes. Perhaps the simplest way to attain the required flow levels in each

service class is through call admission control (CAC), i.e., denying service from some users which

access an overloaded service class. In this context, denying service from dynamic SLA users (who

contract with the network through short term agreements) seems more natural; static SLA users,

on the other hand, usually cannot be denied, unless their contracts explicitly allow that. The

important issue of determining which specific users to reject is beyond the scope of this discussion.

Note that the total user demand fd
a in each class, which is required in (5.13) and (5.14), is

comprised of the currently admitted flow fa, and the sum of user requests for obtaining class

a’s service (e.g., through dynamic SLAs). In practice, the first quantity can be assessed through

edge router measurements of the actual flow-rates at each service class. The latter quantity is

available, for example, at the Bandwidth Broker (BB) entity, part of the Diffserv architecture [3].
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Figure 2: An example of a general topology network. This network has a source S, an intermediate

node B and a destination T. There are two links, l1 = SB and l2 = BT . In this network A = 2,

thus each link contains two parallel arcs. We emphasize in the drawing that flows do not switch

from one service class to the other within a path.

6 General Network Topologies

In this section we extend our results to the general network case, in which every user has its own

source and destination, and a given unique route which leads from that source to the destination2.

We assume that the route is predetermined by some routing protocol, and is not a part of the

user decisions. Note that since users choose and maintain a service class on an end-to-end basis,

we cannot reduce the network case to an independent game over each link. Thus, those results

obtained for the single hop model which involve user choice of service class need not carry over

to general network topologies.

6.1 Model Definition

We consider a network of general topology which consists of a set of links L = {1, . . . , L}. As

before, let I = {1, 2, . . . , I} be the set of users, which share the network. We associate with each

user i a route Ri = (li,1, . . . , li,N
i

), where N i is the length of the route and li,k is the kth link

traversed by user i. Let Il ⊂ {1, 2, . . . , I} be the set of users for which l ∈ Ri. Each link l carries

the set of service classes A = {1, 2, . . . , A}. As before, each link is thus represented by a set of

A parallel arcs (see Figure 2). Additionally, each link l has a total capacity Cl, which is to be

divided between its service classes. Denoting by cla the capacity assigned to class a in link l, a

capacity assignment is feasible as long as (i) cla ≥ 0 ∀l, a and (ii)
∑

a∈A cla = Cl. Denote by

cl = (cl1, . . . , clA) the capacity allocation vector for link l. Let Γl denote the set of all feasible

capacity allocations for link l, and let Γ = Γ1 × . . .×ΓL be the set of all feasible network capacity

allocations c = (c1, . . . , cL) (where c can be viewed as matrix of dimension L × A).

As user routes are fixed, the user’s only decision is how to set its flow rate in each of the service

2An extension to this model, where each user has multiple destinations, will not affect the results of this section

(excluding Theorem 16). For simplicity of exposition, we focus here on the single user-path case.
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classes. Denoting by f i,k
a the flow assigned to the kth link of user i in service class a, we have

f i
a = f i,1

a = . . . = f i,N i

a ; namely, once the user has determined the inter-class flow distribution, it

remains fixed along the entire path. We emphasize that each user i can adjust only the flow rates

f i
a on its entire path, but cannot adjust the flow rates separately on each individual link thereof.

Using the same notations as in the single hop case, a feasible flow configuration f i further obeys

0 ≤ f i
a ≤ si

a for every a ∈ A. We adopt some additional notations from the single hop case,

namely Fi, f and F, the definition of which is given in Section 4.1. Finally, a system configuration

is feasible if it is composed of feasible flow configurations and feasible capacity allocations.

Turning our attention to some link l ∈ L, let fla be the total flow in link l which is assigned

to service class a, i.e., fla =
∑

i∈Il
f i

a. The delay of service class a at link l is denoted by Dla.

We adopt the same assumptions as in Section 2 regarding the delay functions; thus Dla is a

function of cla and fla only. Let Di
a be the end-to-end delay of user i in service class a, namely

Di
a =

∑

l∈Ri Dla(cla, fla). The cost function of each user i ∈ I is then given by

J i(c, f) = βi
A

∑

a=1

f i
aD

i
a +

A
∑

a=1

f i
ap

i
a − U i(f i). (6.15)

The objective of the network remains to impose predetermined ratios between the delays of the

service classes. Formally, given a ratio vector ρ, the network’s goal is to have the delays Di
a,

a ∈ A, i ∈ I obey

Di
a = ρaD

i
1. (6.16)

As in the single-hop case, we could now proceed to define the Nash equilibrium of the users-

manager game, based on the above ratio objective. However, in the network context the relation

(6.16) can in general be realized in many different ways, as it only specifies a requirement on the

end-to-end delay, but not on specific link delays. Indeed, the following example demonstrates that

there could be more than a single capacity allocation which meets the required delay ratios for a

fixed flow configuration, using a simple scenario.

Example 1 Consider the network in Figure 2, where the delay in each arc is given by the M/M/1

formula (2.1). Assume that the network’s objective is that the end-to-end delay in service class

a2 would be twice larger than that of service class a1. The link capacities are Cl1 = Cl2 = 11.

Further assume a fixed flow configuration fla1
= fla2

= 4, l = {l1, l2}. The capacity allocation

cl1a1
= cl2a1

= 6, cl1a2
= cl2a2

= 5 maintains the required ratios in every link, and thus end-to-end.

A different capacity allocation which will comply with the same delay ratio is cl1a1
= cl1a2

= 5.5,

cl2a1
= 6.342, cl2a2

= 4.658. Essentially, infinitely many capacity allocation which meet the

required ratio of 1 : 2 may be suggested, by inducing an arbitrary finite ratio at the first link, and

then compensating for it on the second link.

21



We advocate here a natural link-level scheme, in which capacity adaptation is performed

independently at each link with the objective of locally preserving the delay ratios. Formally, this

objective is given by

Dla(cla, fla) = ρaDl1(cl1, fl1), (6.17)

for every l and a. Obviously, (6.17) is sufficient for maintaining the network’s objective (6.16).

This link-level approach is attractive from a practical point of view, as capacity assignment can be

implemented in a distributed manner, and it does not require links to communicate their current

status. For a game-theoretic formulation we assign to each link l its own capacity manager Ml,

equipped with capacity Cl. Accordingly, a feasible system configuration (c̃, f̃) is a NEP if the

following conditions hold:

JMl(c̃l, c̃−l, f̃) = min
cl∈Γl

JMl(cl, c̃−l, f̃), l ∈ L, (6.18)

J i(c̃, f̃ i, f̃−i) = min
f i∈Fi

J i(c̃, f i, f̃−i), i ∈ I,

where

JMl(c, f) =







0 if Dla = ρaDl1,

∞ otherwise.
(6.19)

Note that if each manager’s cost is finite, then the ratio objective (6.16) is maintained. We will

refer to this model as the (link-based) users-managers game.

6.2 Main Results

We next present our main results for general topology networks. The longer proofs are deferred

to Appendix C. Our focus in this section is on the link-level approach which maintains the delay

ratios on a link basis. A specific benefit of this approach is that each link manager can apply its

local best response map, based on the same methods that were applied for the single hop case.

This is formalized in the following proposition.

Proposition 12 Consider the general network model with latency functions obeying Assumptions

B1-B5. Let f be a fixed flow configuration with
∑

a∈A fla < Cl, l ∈ L. Then there exists a unique

capacity allocation c ∈ Γ such that the delay ratios are met locally in every link. This capacity

allocation can be obtained for each link independently using the results of Propositions 1–2.

Proof: The proof follows directly from the proofs of Propositions 1–2. Since the best response

in each link is unique, it follows that there is a unique best response at the network level, where

the capacity assignment is separately calculated in every link. ¤

Similarly, the iterative capacity assignment (3.5) can be applied separately in each link for

obtaining the required network capacity allocation. The convergence of this scheme (for small ǫ)
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follows directly from Proposition 3. Focusing on the M/M/1 delay model, we may still interpret

the fixed ratio objective as a social objective as in Proposition 5.

Proposition 13 Consider a general topology network with M/M/1 latency functions (2.1) and

a desired ratio vector ρ. Let

J̄Ri

(c, f)
△
=

∑

a∈A
waD

i
a, (6.20)

where wa = 1
ρ2

a

. Then the (unique) feasible capacity allocation which minimizes (6.20) for every

i ∈ I is also the best response capacity allocation.

Proof: Immediate from Proposition 5 by noting that min
∑

a∈A waD
i
a =

∑

l∈Ri minwaDla(cla, fla).

¤

The significance of the last result is that under the best response capacity allocation, the

weighted sum of the end-to-end delays is minimized for each user path.

Returning to the reactive user model, we show next that an equilibrium which maintains the

delay ratios on a per-link basis (as defined in (6.18)) always exists.

Theorem 14 Consider a general network with latency functions obeying Assumptions B1-B5.

Then there exists an equilibrium point for the link-based users-managers game at which the delay

ratios are met.

The existence of this Nash equilibrium is a basic indication for the viability of the proportional

QoS approach in general network topologies. We next consider a special case, where all users are

strictly plastic (i.e., users whose total demand f i is fixed, see Remark 1). As we show in the next

theorem, the equilibrium point of the users-managers game in this case is unique, and further

computable via quadratic optimization problems, whose complexity remains the same as in the

single-hop case.

Theorem 15 Consider a general network with latency functions obeying Assumptions B1-B6.

Assume that all users are strictly plastic, i.e., the total demand f i is constant for every i ∈ I.

In addition, assume that the users’ flow can be accommodated by the network, i.e.,
∑

i∈Il
f i < Cl

for every l ∈ L. Then (i) there exists a unique equilibrium point of the link-based users-managers

game. (ii) the equilibrium can then be efficiently calculated by solving I quadratic problems with

A variables each.

Similar results to Theorem 15 regarding uniqueness of the equilibrium are not currently avail-

able for general elastic users. That is, we cannot rule out the existence of two equilibrium points,

each with a different set of capacity allocations and user flow demands. Nonetheless, in the fol-

lowing theorem we provide sufficient conditions, under which uniqueness of the equilibrium does

hold for general users.
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Theorem 16 Consider a general network with latency functions obeying Assumptions B1-B6.

Uniqueness of the equilibrium point for the users-managers game holds when the user paths satisfy

either one of the following: (a) Every link is shared by either all users, or by one user at most.

(b) Every link is shared by at most two users.

The incorporation of pricing and congestion control mechanisms for general network topologies

is naturally more involved than in the single hop case. For instance, maintaining end-to-end

performance guarantees for each user (which are fair in some sense) becomes a considerable issue.

In this context, possible solution concepts may combine complementary routing mechanisms (e.g.,

constraint based routing [3]) alongside pricing and congestion control mechanisms, which could

reduce congestion at overloaded links.

7 Conclusion

This paper considered an approach for capacity allocation in differentiated services networks which

focuses on maintaining a fixed proportion of certain congestion measures across the different ser-

vice classes. The congestion model we consider incorporates fairly general delay functions at each

service class, and furthermore takes into account a reactive and heterogenous user environment.

An attractive feature of the suggested capacity allocation schemes is the ability to implement per-

link distributed algorithms, alongside an efficient computation procedure for the required capacity

assignment. We have also shown how the proposed ratio objective fits seamlessly with congestion

control and pricing mechanisms, which may be invoked to ensure delay bounds at each service

class.

We have presented a comprehensive analysis of the single-hop case, and partially extended

these results to a general network topology. Some specific issues that remain for further study

within the general network model include: (1) more general conditions for the uniqueness of the

equilibrium, (2) convergence properties of distributed capacity management schemes with reactive

users, and (3) the incorporation of pricing and congestion control mechanisms on an end-to-end

basis.

The scope of our model may be enhanced in several respects. We purpose to examine coupled

latency functions, which allow some dependence in performance of each service class on the

congestion level at other classes. These latency functions may provide more accurate models for

common scheduling schemes such as WFQ and WRR. The simultaneous consideration of several

QoS measures is of obvious interest. Finally, an important future direction would be to consider

routing alongside capacity assignment as a complementary mechanism which balances the traffic

in the network.
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APPENDIX

A Proofs for Section 3

Proof of Proposition 1: The proof of existence and uniqueness of the manager’s best response

rests on monotonicity properties of the best-response capacities.

Define the mapping c1 7→ T (c1) ∈ ℜ+ as follows: for each c1 > f1 (which induces a unique delay

D1(c1, f1)), set the remaining service class capacities c2, . . . , cA so that the required delay ratios

Da(ca, fa) = ρaD1(c1, f1) are met for every a = 2, . . . , A. Note that ca is uniquely determined

due to the monotonicity of Da in ca (Assumption B5). We define T (c1) as the sum of these

capacities (including c1), i.e., T (c1) =
∑

a∈A ca. Note that T (c1) need not be equal to C, as the

total capacity constraint is not enforced here. It follows that (c1, . . . , cA) is a best response to

(f1, . . . , fA) if and only if f1 ≤ c1 ≤ C and T (c1) = C. To establish uniqueness, it remains to

show that there is a unique c1 with these properties. For that purpose, the following observation

is required.

Lemma 2 The mapping c1 7→ T (c1) is strictly increasing and continuous in c1.

Proof: Immediate by the continuity and strict monotonicity of each delay function Da in ca. ¤

The existence and uniqueness of the manager’s best response now follows easily. Note first that

if we set c1 = f1 then T (c1) =
∑

fa < C (as assumed in the proposition’s conditions). Setting

c1 = C obviously yields T (c1) ≥ C. Then by Lemma 2, it follows that there exists a unique value

of c1 ∈ [f1, C] such that T (c1) = C. This value of c1 induces a unique feasible capacity allocation

over the remaining service classes, such that the ratios are satisfied. This establishes part (i) of

the proposition.

We next consider the proof of part (ii). A straightforward conclusion from Lemma 2 is that

the required capacity allocation can be obtained by a simple search over the scalar c1, that will

induce the required delay ratios. Based on the mapping T (c1) defined above, we search for c1 so

that T (c1) = C. Since T (c1) is monotonous in c1, several well-known techniques could be applied

for an efficient search, such as the bisection method [34]. ¤

Proof of Proposition 2: The key idea in the proof is to use Lagrangian techniques to establish

that optimality conditions for (3.4) are equivalent to the ratio objective equations (2.2). Thus,

by solving (3.4), the capacity allocation which meets the required delay ratios is obtained.

Observe that the optimization problem defined in (3.4) is a convex optimization problem.

The feasible region is obviously convex. Moreover, the objective function is strictly convex due to
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Assumption B5 and our requirements on g(·). We first show that the (unique) minimizer of (3.4)

is such that ca > fa for every a ∈ A.

Lemma 3 The minimizer c of (3.4) is such that ca > fa for every a ∈ A.

Proof: Assume by contradiction that ca = fa for some a. Define

Ia(ca, fa)
△
=

∫ ca

fa+ǫa

g
(

ρ−1
a Da(xa, fa)

)

dxa. (A.21)

We distinguish between two cases: (a)
∫ fa+δ

fa
g
(

ρ−1
a Da(xa, fa)

)

dxa = ∞ for every δ > 0. Note

first that by the condition
∑

a fa < C and Assumption B2, a finite solution of (3.4) can al-

ways be obtained. However, by setting ca = fa we get for the corresponding term in (3.4):

−Ia(fa, fa) =
∫ fa+ǫa

fa
g
(

ρ−1
a Da(xa, fa)

)

dxa = ∞, which means that such capacity allocation can-

not be the minimizer of (3.4). (b)
∫ fa+δ

fa
g
(

ρ−1
a Da(xa, fa)

)

dxa < ∞ for some δ > 0. In this case,
∂

∂ca
(−Ia(ca, fa)|ca=fa

) = −g
(

ρ−1
a Da(fa, fa)

)

= −∞ by Assumption B3, while (−Ia(ca, fa)|ca=fa
) >

−∞. Let c̃ be the current capacity allocation. Then, there obviously exists a service class

k 6= a with an allocation of c̃k > fk. For that class we have ∂
dck

(−Ik(ck, fk)|ck=c̃k
) > −∞ and

(−Ik(ck, fk)|ck=c̃k
) > −∞ (by Assumption B2). Thus, a capacity allocation ĉ, with ĉα = c̃α

∀α 6= {a, k}, ĉa = c̃a + ∆, ĉk = c̃k − ∆, where ∆ > 0 is a small positive constant, would decrease

the value of the objective function. Hence, c̃ is not the minimizer of (3.4). ¤

We are now ready to characterize the minimizer of (3.4). Note first that the objective function

in (3.4) is continuously differentiable in each ca for every feasible capacity allocation, due to

Assumption B2 and the continuity of g. Hence we may consider the KKT optimality conditions

[34] for characterizing the (global) solution of (3.4). The Lagrangian that corresponds to (3.4) is

given by

L(c, λ, µ) =
A

∑

a=1

[−Ia(ca, fa) + µa(fa − ca)] + λ(C −
∑

a

ca),

where λ and µ (a vector of size A) are Lagrange multipliers. It follows from Lemma 3 together

with the complementary slackness property that µa = 0 for every a. Thus, the KKT optimality

conditions for (3.4) (which require that the gradient of the Lagrangian vanishes at an extreme

point [34]) yield −g
(

ρ−1
a Da(ca, fa)

)

= λ = −g
(

ρ−1
k Dk(ck, fk)

)

for every a, k ∈ A. Since g is a

strictly monotone function, we conclude from the last assertion that the minimizer of (3.4) is

a capacity allocation which meets the ratio objective (2.2), i.e., ρ−1
a Da(ca, fa) = ρ−1

k Dk(ck, fk).

Since (3.4) is a convex problem, the minimizer always exists. ¤

Proof of Proposition 3: The update rule (3.6) can be written as

dcb

dt
= ρ−1

b Db(cb) −
1

A

∑

a

ρ−1
a Da(ca), b ∈ A. (A.22)
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Denote the (unique) capacity allocation which induces the required ratios by c∗ = (c∗1, . . . c
∗
A).

Further denote by D∗
1, . . . D

∗
A the delays under the above allocation, i.e., D∗

1 = ρ−1
b D∗

b for every

b ∈ A. Define the following potential function:

V (c) =
1

2

∑

b

(cb − c∗b)
2. (A.23)

Obviously, V (c) > 0 for c 6= c∗. We next show that (A.23) is a Lyapunov function for the system

(3.6) implying its global stability. Applying the chain rule we obtain

V ′(c) =
∑

b

(

cb − c∗b
)(

ρ−1
b Db(cb) −

1

A

∑

a

ρ−1
a Da(ca)

)

=
∑

b

(

cb − c∗b
)(

ρ−1
b Db(cb)

)

, (A.24)

where the second equality follows from the fixed capacity constraint. It follows from Assumption

B5 that if (cb − c∗b) > 0 then ρ−1
b Db(cb) < ρ−1

b D∗
b = D∗

1. Similarly, if (cb − c∗b) < 0 then

ρ−1
b Db(cb) > ρ−1

b D∗
b = D∗

1. Thus, V ′(c) =
∑

b

(

cb − c∗b
)(

ρ−1
b Db(cb)

)

≤
∑

b

(

cb − c∗b
)

D∗
1 = 0, and

V ′(c) = 0 if and only if cb = c∗b for every b ∈ A. It follows that V (c) is a Lyapunov function

which implies the global asymptotic stability of (3.6) with respect to c = c∗. ¤

Proof of Proposition 4: Noting (2.1) and (2.2), the best response capacity allocation is derived

by solving the following set of linear equations:

A
∑

a=1

ca = C; ρa(ca − fa) = (c1 − f1), a = 2, . . . , A. (A.25)

The unique solution of these equations is easily seen to be given by (3.7). ¤

B Proofs for Section 4

Proof of Proposition 6. We abide with the terminology and notations that were used in [20].

Let us first restate the type-A user cost functions properties that were used there:

A1 J i is the sum of arc cost functions i.e., J i(f) =
∑

a∈A J i
a(fa). Each J i

a satisfies:

A2 J i
a : [0,∞)I → [0,∞], a continuous function.

A3 J i is convex in f i
a.

A4 Wherever finite, J i
a is continuously differentiable in f i

a. We denote Ki
a = ∂Ji

a

∂f i
a

.

A5 For every flow configuration f , if not all user costs are finite then at least one user with

infinite cost (J i(f) = ∞) can change its own flow configuration to make its cost finite.
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A6 J i
a is a function of two arguments, namely user i’s flow on arc a and the total flow on that

arc. Namely, J i
a(fa) = J̄ i

a(f
i
a, fa)

A7 J̄ i
a is increasing in each of its two arguments. By some abuse of notation, we shall denote

the cost function as J i
a(f

i
a, fa) (instead of J̄ i

a(f
i
a, fa)).

A8 Note that Ki
a = Ki

a(f
i
a, fa) is now a function of two arguments. We assume that whenever

J i
a is finite, Ki

a is strictly increasing in f i
a and non-decreasing in fa

3.

We prove the proposition for the type-A cost functions defined above, since the user’s cost

function (4.9) are of type-A, as will be shown next. In order to use the techniques in [20], we

transform the users to completely plastic users (i.e., users with a fixed total rate) using the

following reduction:

1. Each user is assumed to have an (arbitrary) constant rate of ri = M > C

2. The cost at each arc is βif i
aDa(ca, fa)+f i

ap
i
a. Note that this cost function obeys the convexity

and monotonicity properties required by type-A cost functions, due to Assumption B4.

3. Define f i
0 = ri −

∑A
a=1 f i

a. An additional artificial arc is added to for each user i with a cost

of Ũ i(f i
0) = −U(ri − f i

0). Observe that Ũ i(·) is convex increasing in f i
0. This artificial arc

would be used by user i only, e.g., by imposing a large marginal cost on the same arc for all

other users. It is now readily seen that the cost function (4.9) of every user is of type-A

4. Set si
0 = ri for every i ∈ I.

Let us restate the proposition for the general setting.

Proposition 17 Consider a network of parallel arcs where the cost function of each user is of

type-A. In addition, the flow of each user in every arc is limited to a constant si
a ≥ 0, i.e.,

0 ≤ f i
a ≤ si

a ∀i, a. In such a network the Nash equilibrium point is unique.

Proof: Let f ∈ F and f̂ ∈ F be two NEPs. f (and f̂) satisfy the KKT conditions, which may be

written as

Ki
a(f

i
a, fa) ≥ λi if f i

a = 0, (B.26)

Ki
a(f

i
a, fa) = λi if 0 < f i

a < si
a, (B.27)

Ki
a(f

i
a, fa) ≤ λi if f i

a = si
a. (B.28)

3Note that this property is a relaxation of the original one in [20], in which K
i
a is required to be strictly increasing

in both its arguments.
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The first step is to establish that fa = f̂a ∀a ∈ A. To this end, we prove that for each a and i,

the following relations hold:

{

λ̂i ≤ λi, f̂a ≥ fa

}

→ f̂ i
a ≤ f i

a, (B.29)
{

λ̂i ≥ λi, f̂a ≤ fa

}

→ f̂ i
a ≥ f i

a. (B.30)

We shall only prove (B.29), since (B.30) is symmetric. Assume that λ̂i ≤ λi and f̂a ≥ fa for some

a and i. Note that (B.29) holds trivially if f̂ i
a = 0 or if f i

a = si
a, thus we only have to consider

the case where f̂ i
a > 0 and f i

a < si
a. In that case, the KKT conditions (B.26) along with our

assumptions imply that

Ki
a(f̂

i
a, f̂a) ≤ λ̂i ≤ λi ≤ Ki

a(f
i
a, fa) ≤ Ki

a(f
i
a, f̂a), (B.31)

where the first and third inequalities follow from the KKT conditions, and the last inequality

follows from the monotonicity of Ki
a in its second argument. Now, since Ki

a is strictly increasing

in its first argument, this implies that f̂ i
a ≤ f i

a, and (B.29) is established. Having (B.29) and

(B.30) at hand, the exact arguments of Theorem 2.1 in [20] may be applied to show that

f̂a = fa for every a ∈ A. (B.32)

We shall repeat these arguments for the sake of completeness of the proof. Let A1 =
{

a : f̂a > fa

}

,

also denote Ia =
{

i : λ̂i > λi
}

, A2 = A − A1 =
{

a : f̂a ≤ fa

}

. Assume that A1 is not empty.

Recalling that
∑

a∈A f̂ i
a =

∑

a∈A f i
a = f i, it follows from (B.30) that for every i ∈ Ia

∑

a∈A1

f̂ i
a = f i −

∑

a∈A2

f̂ i
a ≤ f i −

∑

a∈A2

f i
a =

∑

a∈A1

f i
a. (B.33)

Noting that (B.29) implies that f̂ i
a ≤ f i

a for a ∈ A1 and i /∈ Ia, it follows that

∑

a∈A1

f̂a =
∑

a∈A1

∑

i∈I
f̂ i

a ≤
∑

a∈A1

∑

i∈I
f i

a =
∑

a∈A1

fa. (B.34)

This inequality contradicts the definition of A1, which implies that A1 is an empty set. By

symmetry it may also be concluded that the set
{

a : f̂a > fa

}

is empty. Thus, f̂a = fa, ∀a ∈ A.

We now proceed to show that f̂ i
a = f i

a ∀i, a. To this end, note that (B.29) may be strengthened

as follows:

{

λ̂i < λi, f̂a = fa

}

⇒ (B.35)

f̂ i
a < f i

a or f̂ i
a = f i

a = 0 or f̂ i
a = f i

a = si
a.

Indeed, if f̂ i
a = 0 the implication is trivial. So is the case where f i

a = si
a. Otherwise, if f̂ i

a > 0 and

f i
a < si

a it follows similarly to (B.31) that Ki
a(f̂

i
a, f̂a) < Ki

a(f
i
a, f̂a), so that f̂ i

a < f i
a as required.

Using (B.35) we will contradict the event
{

λ̂i < λi, f̂ i
a 6= f i

a for some a ∈ A
}

. Following (B.32)
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and (B.35) this event is possible only if f̂ i
k < f i

k for some k ∈ A. But since by (B.35) f̂ i
a ≤ f i

a,

we will get a demand constraint violation, i.e.,
∑

a∈A f̂ i
a <

∑

a∈A f i
a. Thus the only possibility to

have λ̂i < λi for some user i ∈ I is when f̂ i
a = f i

a = si
a or f̂ i

a = f i
a = si

a = 0 for every a ∈ A, i.e.

f̂ i
a = f i

a for every a ∈ A. A symmetrical argument may be obtained for the case where λ̂i > λi.

In other words, we showed that f̂ i
a = f i

a ∀a ∈ A for every user i such that λ̂i 6= λi. We conclude

the proof by observing that for the remaining users with λ̂i = λi, a straightforward use of (B.29),

(B.30) and (B.32) implies that f̂ i
a = f i

a ∀a ∈ A. ¤

Proof of Theorem 7: We established in Proposition 2 that the manager’s best-response capacity

allocation is also a solution to a convex optimization problem (3.4). Since each user i’s cost

function is convex in its decision vector f i, then the existence of a NEP in our model essentially

follows from a well known result regarding the existence of a NEP in convex games [36, 37].

Nonetheless, since some technical points related to infinite costs in our model impede a direct

application of this result, we provide a proof which is a direct application of the Kakutani fixed

point theorem (see, e.g., [38]).

Let us first precisely state the Kakutani’s fixed point theorem, along with the necessary math-

ematical definitions. These are taken from [38].

Theorem 18 (Kakutani) Let S be a compact and convex subset of R
n, and let Λ be an upper

semicontinuous function which assigns to each x ∈ S a closed and convex subset of S. Then there

exists some x ∈ S such that x ∈ Λ(x).

Recall that Λ is said to be upper semicontinuous (usc) at a point x0 ∈ S, if for any sequence

(xi) converging to x0 and any sequence (yi ∈ Λ(xi)) converging to y0, we have y0 ∈ Λ(x0). The

function Λ is upper semicontinuous if it is usc at each point of S.

Let S
△
= F×Γ. Note that any NEP belongs to S, as a point outside S is not a feasible system

configuration. We further define the point-to-set mapping (c, f) ∈ S 7→ Λ(c, f), as follows.

Λ(c, f) =
{

(ĉ, f̂) ∈ S : ĉ ∈ argmin
c̃∈Γ

JM (c̃, f) (B.36)

f̂ i ∈ argmin
f̃ i∈Fi

J i(c, f̃ i, f−i) ∀i ∈ I
}

.

Note that Λ(c, f) is comprised of the best response correspondences of each player (user or man-

ager). It is readily seen that Λ is usc for the points (c, f) ∈ S such that
∑

a fa < C. Indeed, J i is

continuous in (c, f) and convex in f i, guaranteeing the usc of the user’s best response (see, e.g.,

[37]). Further, we may replace JM in the definition of Λ above by ĴM (the objective function in

(3.4)), since the best responses of the two coincide (see the proof of Proposition 2). Note that

ĴM is continuous in (c, f) and convex in c in the neighborhood of the best response allocation

(due to Lemma 3). Thus overall Λ is usc (note that by the strict convexity property of the cost
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functions in their respective decision variables, Λ is in fact a point-to-point mapping). For the case

where
∑

a fa ≥ C, the user’s best response still maintains the continuity, finiteness and convexity

properties, as users can always “ignore” infinite delay arcs by shipping a zero flow into them. The

manager is indifferent as to its “best response” to f (since the manager will obtain an infinite cost

regardless of the chosen capacity allocation), thus
{

ĉ|(ĉ, f̂) ∈ Λ(c, f)
}

= Γ. This implies that for

any sequence
{

Λ(ck, fk)
}

converging to some (c0, f0), we have that (c0, f0) ∈ Λ(c, f). For both

the cases above, it is readily seen that Λ(c, f) is a closed and convex set.

Note that the finiteness of the NEP is guaranteed, since if not all costs are finite, then at least

one player with infinite cost can change its own flow configuration to make its cost finite. This

argument is valid, since for the case where
∑

a fa ≥ C there exists a user who ships flow to at

least a single arc with an infinite delay. This user can make its cost finite by unilaterally reducing

(possibly nullifying) its flow in the infinite delay arcs. For the case where
∑

a fa < C all players

can employ their best response to obtain a finite cost. Applying the Kakutani fixed point theorem

with the above definitions of S and Λ, we conclude that there exists a NEP. This NEP is finite

as shown above, and it is also a NEP where the delay ratios are met. ¤

Proof of Theorem 8: The idea of this proof is to establish uniqueness of the user best response

for the case where the class delays are given, and then argue that the delay values are identical

in every equilibrium point. The proof proceeds through the next three lemmas.

Lemma 4 Let D1, . . . , DA be the class delays at some NEP, and let D′
a

△
= ∂Da

∂fa
. Then the following

equations are met at the equilibrium for every i ∈ I and every a ∈ A

βi
(

Da + f i
aD

′
a

)

+ pi
a ≤ U i(f i)′ if f i

a = si
a,

βi
(

Da + f i
aD

′
a

)

+ pi
a = U i(f i)′ if 0 < f i

a < si
a,

βi
(

Da + f i
aD

′
a

)

+ pi
a ≥ U i(f i)′ if f i

a = 0, (B.37)

where U i(f i)′
△
= dU i(f i)

df i .

Proof: Let i ∈ I. Observe that ∂Ji(c,f)
∂f i

a

= βi
(

Da(ca, fa) + f i
aD

′
a(ca, fa)

)

+ pi
a − U i(f i)′. Then

(B.37) is readily seen to be the KKT optimality conditions [34] for minimizing the cost function

(4.9) of user i subject to the flow constraint 0 ≤ f i
a ≤ si

a. These conditions are necessary and

sufficient by the convexity of J i in (4.9) in f i. ¤

Lemma 5 Consider a NEP with given class delays D1, . . . , DA. Then the respective equilibrium

flows f i
a are uniquely determined.

Proof: Assume fixed delays Da, a ∈ A. As mentioned, D′
a is uniquely determined by Da by

Assumptions B4 and B6. For every i ∈ I, consider the optimization problem given in (4.11).
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Note that (4.11) is a strictly convex optimization problem, since the objective function is the

sum of a diagonal quadratic term (with βiD′
a > 0 for every a) and the negation of U i, where

U i is concave. Thus, this problem has a unique minimum, which is characterized by the KKT

optimality conditions. It is now readily seen that the KKT conditions for (4.11) coincide with

the conditions in (B.37). Thus, by Lemma 4, any set of equilibrium flows (f i
a)a∈A is a solution

of (4.11). But since this solution is unique, the equilibrium flows for every i ∈ I are uniquely

determined. ¤

Lemma 6 Consider two Nash equilibrium points (c, f) and (c̃, f̃). Then Da(ca, fa) = Da(c̃a, f̃a)

for every a ∈ A.

Proof: Denote Da
△
= Da(ca, fa) and D̃a

△
= Da(c̃a, f̃a). Assume that D̃a > Da for some a ∈ A.

Then D̃a > Da for every a ∈ A since the ratios are met in both equilibria. It follows by Assumption

B6 that c̃a − f̃a < ca − fa for every a. Since the total capacity C is fixed in both equilibria, then

summing the last inequality over all service classes yields that
∑

a∈A f̃a >
∑

a∈A fa. This implies

that there exists some user j ∈ I for which

f̃ j =
∑

a∈A
f̃ j

a >
∑

a∈A
f j

a = f j . (B.38)

We next contradict (B.38) by invoking the next two implications:

(a) f j
a = 0 ⇒ f̃ j

a = 0; (b) f j
a > 0 ⇒ f j

a > f̃ j
a . (B.39)

Their proof is based on the KKT conditions (B.37). Since the utility U j is concave, then by (B.38)

we have λj △
= U j(f j)′ ≥ U j(f̃ j)′

△
= λ̃j . If f j

a = 0, then βjDa + pj
a ≥ λj ≥ λ̃j . Since D̃a > Da, then

βjD̃a + pj
a > λ̃j , hence f̃ j

a = 0. To prove (B.39)(b) note first that it holds trivially if f̃ j
a = 0 or

f j
a = sj

a. Next assume f̃ j
a > 0 and f j

a < sj
a. Then by (B.37)

βj(Da + D′
af

j
a) + pj

a ≥ λj ≥ λ̃j ≥ βj(D̃a + D̃′
af̃

j
a) + pj

a. (B.40)

Since D̃a > Da (hence D̃′
a > D′

a by assumptions B4 and B6), and each βj is positive, we must have

f j
a > f̃ j

a in order for (B.40) to hold, which establishes (B.39)(b). Summing user j’s flows according

to (B.39) yields
∑

a∈A f̃ j
a ≤

∑

a∈A f j
a , which contradicts (B.38). Thus D̃a ≤ Da. Symmetrical

arguments will lead to D̃a ≥ Da, hence D̃a = Da for every a ∈ A. ¤

The last two lemmas imply that the user flows and the class delays in equilibrium are unique.

The capacities in the equilibrium must also be unique by uniqueness of the manager’s best response

(Proposition 1). This establishes the uniqueness of the NEP, and completes the proof of Theorem

8. ¤

Proof of Lemma 1: Given the (assumed) equilibrium delay D1, the remaining equilibrium

delays are uniquely determined. Hence, the conditions of Lemma 5 are established, and the result

directly follows. ¤
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Proof of Proposition 9:

1) Formally, we have to prove the following: Let D1 and D̂1 be two estimates of the equilibrium

delay in class 1. Then if D̂1 > D1, it follows that D̃1(D̂1) < D̃1(D1). For the proof, we assume

that the estimate D1 is such that the resulting total flow which is obtained from (4.11) is positive.

This assumption is practically met for any search scheme, since if the network is indeed utilized

in equilibrium (i.e.,
∑

fa > 0), then any plausible search method would tune its estimates of D1

to a range in which the resulting user-equilibrium total flow is positive.

Observe first that the quantity
∑

fa is non-increasing with D1 as the (aggregate) solution to

the user optimization problems (4.11). This fact was established in the proof of Lemma 6. It may

be easily verified that the same quantity strictly decreases in D1 if the respective solutions to the

user optimization problems are such that
∑

a fa > 0 (by showing that (B.39)(b) holds for at least

a single (user, service class) pair). Hence, since D̂1 > D1 it follows that
∑

f̂a <
∑

fa. (B.41)

Assume by contradiction that D̃1(D̂1) ≥ D̃1(D1). This means that D̃a(D̂1) ≥ D̃a(D1) for every a.

Hence, By Assumption B6 we have that ĉa − f̂a ≤ ca − fa. Summing up on all service classes we

obtain that
∑

f̂a ≥
∑

fa contradicting (B.41). Thus, D̂1 > D1 implies that D̃1(D̂1) < D̃1(D1).

2) Observe that D̃1(D1) is obtained through best response map from D1, and therefore D1 =

D̃1(D1) must hold for the equilibrium value of D1 (recall that the equilibrium is unique by Theorem

8). It therefore follows by part 1 of the proposition and by the continuity of the associated cost

functions, that the equilibrium delay is the unique solution to D1 − D̃1(D1) = 0. This is a direct

consequence of the mean value theorem.

3) The results above indicate that search methods with polynomial complexity may be applied for

efficiently calculating the equilibrium delays. The key idea of any iterative search in our context

is to decrease in each step the distance between D1 and D̃1(D1). For example, if the bisection

method [34] is applied, then the new guess in each step is the average of the previous D1 and

D̃1(D1). The number of steps which are required by the method for a precision of ǫ is given by

log2 |D
0
1 − D̃1(D

0
1)| − log2 ǫ, where D0

1 is the initial estimate of D1. ¤

C Proofs for Sections 5–6

Proof of Theorem 10: The proof idea is similar to the proof of Lemma 6. Assume that D̃a > Da

for some a ∈ A. Then D̃a > Da for every a ∈ A since the ratios are met in both equilibria. It

therefore follows from Assumption B6 that
∑

a∈A f̃a >
∑

a∈A fa, which implies that there exists

some user j ∈ I for which

f̃ j =
∑

a∈A
f̃ j

a >
∑

a∈A
f j

a = f j . (C.42)

33



We next contradict (C.42) by invoking the next two implications:

f j
a = 0 ⇒ f̃ j

a = 0 (C.43)

f j
a > 0 ⇒ f j

a > f̃ j
a . (C.44)

Their proof is based on the KKT conditions (B.37). Since the utility U j is concave, then by (C.42)

we have λj △
= U j′(f j) ≥ U j′(f̃ j)

△
= λ̃j . If f j

a = 0, then βjDa + pa ≥ λj ≥ λ̃j . Since D̃a > Da and

p̃a ≥ pa, then βjD̃a + p̃a > λ̃j , hence f̃ j
a = 0. To prove (C.44) note first that it holds trivially if

f̃ j
a = 0 or f j

a = sj
a. Next assume f̃ j

a > 0 and f j
a < sj

a. Then by (B.37)

βjDa + βjD′
af

j
a + pa ≥ λj ≥ λ̃j ≥ βjD̃a + βjD̃′

af̃
j
a + p̃a. (C.45)

Since D̃a > Da (hence D̃′
a > D′

a by Assumptions B4 and B6), p̃a ≥ pa, and βj is positive, we

must have f j
a > f̃ j

a in order for (C.45) to hold, which establishes (C.44). Summing user j’s flows

according to (C.43)-(C.44) yields
∑

a∈A f̃ j
a ≤

∑

a∈A f j
a , which contradicts (C.42). Thus D̃a ≤ Da.

This concludes the proof of part (i) of the theorem.

For part (ii), assume by contradiction that D̃a = Da (we already proved that D̃a ≤ Da). Then

it follows by Assumption B6 and the fixed capacity constraint that

∑

a

f̃a =
∑

a

fa. (C.46)

We contradict (C.46) through the following steps:

Step 1: It was established in part (i) of the proof that all users submit less or equal total flow

when prices are higher, i.e., f̃ i ≤ f i for every i ∈ I. Noting (C.46), this immediately implies that

f̃ i = f i for every i ∈ I. (C.47)

Step 2: We next show that

f̃a ≤ fa, a ∈ A. (C.48)

Assume by contradiction that f̃a > fa for some a ∈ A. Then there exist some user j, for which

f̃ j
a > f j

a . Thus, f̃ j
a > 0 and f j

a < si
a. Then by (B.37) and (C.47) we obtain that

βjDa + βjD′
af

j
a + pa ≥ λj = λ̃j ≥ βjD̃a + βjD̃′

af̃
j
a + p̃a, (C.49)

which implies that f̃ j
a < f j

a , contradicting our assumption. Thus,

f̃ i
a ≤ f i

a, i ∈ I, a ∈ A, (C.50)

which establishes (C.48), by summing the flows of all users.

Step 3: Consider some service class a for which p̃a > pa and 0 < f i
a < si

a for some user i. Assume
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by contradiction that f̃ i
a = f i

a for that user. Then by the KKT optimality conditions (B.37), we

obtain that

βiDa + βiD′
af

i
a + pa = λi = λ̃i = βiD̃a + βiD̃′

af̃
i
a + p̃a, (C.51)

which is a contradiction since p̃a > pa. Thus, f̃ i
a < f i

a, which by (C.50) implies that f̃a < fa.

Recalling (C.48), we obtain that
∑

a f̃a <
∑

a fa which contradicts (C.46). ¤

We now provide the proofs for our results on general topology networks. Theorem 14 follows

similarly to the single-hop case, while Theorems 15 and 16 require specific proofs.

Proof of Theorem 14: (outline) As in the single link case, the existence of a NEP essentially

follows from the existence of a NEP in convex games [36, 37]. Note first that the best response

capacity allocation of each capacity manager Ml, l ∈ L is also a solution to a convex optimization

problem (3.4) (Proposition 2). As to the network users, observe that the delay cost (6.15) of each

user i can be written as βi
∑

l∈Ri

∑A
a=1 f i

aDla(cla, fla). Since
∑A

a=1 f i
aDla(cla, fla) is convex in f i

for every l ∈ Ri, the delay cost is convex in f i as the sum of convex functions. Noting that the

other cost terms in (6.15) remain the same as the single link case, we conclude that each user’s

cost function is convex in its decision vector. Thus, the basic conditions for the existence of a

NEP in our game (as a convex game) are established. Some technical points related to infinite

costs are resolved in a similar manner as in the proof of existence of a NEP for the single hop

case (Theorem 7). ¤

Proof of Theorem 15(i) : The key idea is to show that the delays at equilibrium are unique,

and then establish the uniqueness of the equilibrium flows similarly to Lemma 5. We start by

showing that if the total flow in each link is constant, then the link delays, which correspond to

a best response capacity allocation, are uniquely determined (in particular, they do not depend

on the division of the link flows between the classes).

Lemma 7 Consider a general network with latency functions obeying Assumptions B1-B6. Let

the total flow in each link be given and fixed. Then for every fixed flow allocations f and f̂ , the

respective best response capacity allocations c and ĉ are such that Dla(cla, fla) = Dla(ĉla, f̂la).

Proof: Consider two fixed flow allocations f and f̂ such that fl = f̂l for every l. Let Dla and

D̂la denote the delays obtained through the best response capacity allocations against f and f̂ ,

respectively. Assume that Dla > D̂la for some l and a ∈ A. Then Dla > D̂la for every a in that

link. Thus, it follows by Assumption B6 that cla − fla < ĉla − f̂la for every a. Summing the

last inequality over all service classes and noting that the total capacity for each link is fixed, we

obtain that fl > f̂l, which is a contradiction. Symmetrical arguments yield that Dla < D̂la is also

impossible, and the result of the lemma is established. ¤

Since the network accommodates strictly plastic users only, the flow in each link l is fixed.

Thus, by the lemma above we conclude that the equilibrium delays are uniquely determined
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(and so are the derivatives of the delays, by Assumptions B4 and B6). Let D′
la

△
= ∂Dla

∂fla
and

Di
a
′ △

=
∑

l∈Ri D′
la. It is readily seen that we may replace Da with Di

a, and D′
a with Di

a
′

in

(4.11), to conclude that the equilibrium flows are uniquely determined. Consequently, so are the

equilibrium capacities, by the uniqueness of the manager’s best response. This concludes the

proof of part (i) of the Theorem 15. ¤

Proof of Theorem 15(ii): The calculation of the equilibrium flows and capacities is even easier

than in the single-hop case with elastic users. The calculation proceeds through the following

steps:

1. Compute the total flow in each link from the users’ fixed demands and their associated

paths.

2. Arbitrarily divide the total flow in each link between the service classes.

3. Obtain the equilibrium delays by either a monotonous search over cl1 (as indicated in the

proof of Proposition 1) or by solving (3.4) in each link (see Proposition 2). Note that we

solve (3.4) just for obtaining the delays, and still not for the equilibrium capacity allocation.

By Lemma 7, the true flow allocation in each link is not required for obtaining the delays.

4. Calculate Di
a and Di

a
′
for every i ∈ I and a ∈ A.

5. Use the delays and their derivatives in (4.11) (with Di
a replacing Da, and Di

a
′
replacing D′

a)

for obtaining the equilibrium flows.

6. Obtain the equilibrium capacities from the equilibrium delays Dla and flows fla, by solving

the equation Dla(ca, fa) = Dla for every l and a.

Note that unlike Proposition 9, a search procedure for the equilibrium delays is not required, due

to the plasticity of the users. Additionally, step 5 above which calculates the equilibrium flows

scales well to the general network case. Indeed, it requires solving I optimization problems with

A variables each, as in the single link case. ¤

Proof of Theorem 16: The proofs here resemble the proof of Lemma 6. We use the notations

Di
a =

∑

l∈Ri Dla and Di
a
′
=

∑

l∈Ri D′
la. For case (a) assume that there are two equilibria for which

f̂l > fl for a link l which is used by all users. Then f̂l′ > fl′ for all l′ ∈ L which are shared by all

users, since f i
la = f i

l′a for every i and a. Thus, there exists some user i for which f̂ i
l′ > f i

l′ for all

l′ ∈ L which are shared by all users. Recalling that each user is assigned a unique route, we have

that f̂ i > f i together with D̂i
a > Di

a and (D̂i
a)

′ > (Di
a)

′. We showed in the proof of Lemma 6 that

such a scenario is not possible. Similarly, we contradict f̂l < fl, which means that the delays are

unique and therefore the equilibrium is unique.
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For case (b), assume two equilibria f̂ 6= f . Let i ∈ I be a user for which |f̂ i − f i| ≥ |f̂ j − f j |

for every j ∈ I. Without loss of generality, assume that f̂ i − f i > 0. Since at most one other user

shares the links of user i’s path Ri, and |f̂ i − f i| ≥ maxj |f̂
j − f j |, then f̂l > fl for every l ∈ Ri.

Thus D̂la ≥ Dla for all l ∈ Ri and a ∈ A. This establishes a contradiction, since user i ships total

flows f̂ i > f i, although D̂i
a > Di

a and (D̂i
a)

′ > (Di
a)

′. ¤

D Convergence of Adaptive Algorithms for Capacity Assignment

In this appendix we provide the convergence analysis of adaptive capacity assignment algorithms

for the case of two service classes. We start by a precise statement of our assumptions and results.

We then prove our results.

Consider the following set of assumptions:

Assumption 1

1. The latency functions obey Assumptions B1-B6.

2. The system is initialized with a feasible capacity allocation.

3. For every given capacity allocation, the users flow configuration reaches the user-equilibrium

point (unique by Proposition 6).

4. The network manager adapts its capacity allocation after the users flow configuration is at

equilibrium.

Assumption 1.3 assumes the convergence of the users’ flow configuration to the user-equilibrium

point for fixed capacities. Conditions under which this assumption can be theoretically justified

have been studied in [20, 29]. However, the convergence conditions for our case, which incorporates

a parallel arc networks with a general number of users and general latency functions remain an

open problem. We do not address here the mechanism of convergence to the user-equilibrium

flows, but rather assume that such convergence does occur. Furthermore, Assumption 1.3 implies

that the network manager operates on a slower time-scale than that of the users, so that the users

have time to reach their equilibrium flows between subsequent capacity updates. The established

convergence properties of Algorithm 1 are summarized in the next theorem.

Theorem 19 Consider the users-manager game with two service classes (A = 2), where the

manager sets the capacities according to Algorithm 1. Under Assumption 1, the capacity allocation

and user flows converge to the Nash equilibrium point of the users-manager game.
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For the analysis of Algorithm 2, we focus on the continuous version given in (3.6). In accordance

with Assumption 1.3, the flows f = (f1, . . . fA) on the right hand side of this equation are uniquely

determined by the capacities c = (c1, . . . cA).

Theorem 20 Consider the users-manager game with two service classes (A = 2), where the

manager sets the capacities according to (3.6). Under Assumption 1, the capacity allocation and

user flows converge to the Nash equilibrium point of the users-manager game.

D.1 Proofs

Consider a network with two service classes k and m. For the proofs of Theorems 19–20, we require

the next four lemmas, which are particular for A = 2 and characterize the user-equilibrium flows.

Lemma 8 Consider a network with A = 2 and a single user. Let c and ĉ be two feasible capacity

allocations of the manager, and let f and f̂ be the best responses of the user against c and ĉ

respectively. If ĉk ≥ ck then f̂k ≥ fk and f̂m ≤ fm.

Proof: Note that ĉk ≥ ck implies that ĉm ≤ cm. We shall contradict the three complementary

cases:

1. f̂k < fk, f̂m ≤ fm.

2. f̂k ≥ fk, f̂m > fm.

3. f̂k < fk, f̂m > fm.

Case 1 implies that D̂k < Dk. Moreover, denoting the total flows corresponding to f and f̂ by f

and f̂ , we have f̂ < f and thus U ′(f̂) ≥ U ′(f). Further denote λ̂ = U ′(f̂)/β, λ = U ′(f)/β. Note

that f̂k < fk implies that f̂k < sk and fk > 0. Thus by the KKT optimality conditions we obtain

f̂kD̂
′
k + D̂k ≥ λ̂ ≥ λ ≥ fkD

′
k + Dk, (D.52)

where D′
a

△
= ∂Da

∂fa
. Due to Assumptions B4 and B6, D̂′

k < D′
k. Since all variables on the left-hand

side of the inequality are strictly smaller than the respective ones on the right-hand side, (D.52)

is obviously a contradiction.

Case 2 implies that D̂m > Dm. Symmetric arguments to the ones used in case 1 may be applied

here in order to reach a contradiction with respect to the KKT optimality conditions, applied this

time to service class m. The details are omitted.

Case 3 implies that D̂k < Dk and D̂m > Dm. If f̂ < f , we may use the arguments of case 1 for

establishing a contradiction. Otherwise we have f̂mD̂′
m + D̂m ≤ λ̂ ≤ λ ≤ fmD′

m + Dm which is a

contradiction since f̂m > fm, D̂m > Dm and D̂′
m > D′

m (by Assumptions B4 and B6). ¤
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The next lemma extends the result above, by considering any number of users.

Lemma 9 Consider a network with A = 2 shared by I ≥ 1 users. Let c and ĉ be two feasible

capacity allocations of the manager, and let f and f̂ be the users’ equilibrium flows against c and

ĉ respectively. Then if ĉk ≥ ck, it follows that f̂k ≥ fk and f̂m ≤ fm.

Again, we shall contradict the same three cases that were considered in the proof of Lemma 8 for

the single user case. We use similar notations.

Case 1 implies that D̂k < Dk and f̂ < f . Thus there exists a user i for which f̂ i < f i. If for

the same user f̂ i
k < f i

k then we may use the exact arguments that were used in the previous

lemma (with f i replacing f and f i
k replacing fk) to establish a contradiction. Otherwise, we

have f̂ i
k ≥ f i

k, hence f̂ i
m < f i

m. Now the KKT conditions of user i imply that f̂ i
mD̂′

m + D̂m ≥

λ̂i ≥ λi ≥ f i
mD′

m + Dm, from which we conclude that D̂m > Dm (hence D̂′
m > D′

m). Now

there exists at least another user j with f̂ j
k < f j

k (since overall f̂k < fk). For that user we

must have f̂ j ≥ f j (otherwise we repeat the proof of case 1 of the previous lemma to obtain a

contradiction). This means that f̂ j
m > f j

m. But then the KKT optimality conditions of user j

imply that f̂ j
mD̂′

m + D̂m ≤ λ̂j ≤ λj ≤ f i
mD′

m + Dm, which is a contradiction (since D̂m > Dm,

D̂′
m > D′

m and f̂ j
m > f j

m). Symmetrical arguments can be used to contradict case 2.

Case 3 implies that D̂k < Dk and D̂m > Dm. Then there exists a user i so that f̂ i
k < f i

k.

Assume first that f̂ i ≤ f i. Then f̂ i
kD̂

′
k + D̂k ≥ λ̂i ≥ λi ≥ f i

kD
′
k + Dk, which is a contradiction.

Therefore, f̂ i > f i ⇒ f̂ i
m > f i

m. But, again, applying the KKT conditions for that user yields

f̂ i
mD̂′

m + D̂m ≤ λ̂i ≤ λi ≤ f i
mD′

m + Dm and a contradiction is again established. ¤

Lemma 10 Let f be a user-equilibrium flow configuration for a fixed capacity allocation c. If

ρ−1
k Dk(ck, fk) > ρ−1

m Dm(cm, fm), (D.53)

then ck < c∗k and cm > c∗m, where c∗k and c∗m are the capacities at the (unique) NEP of the

users-manager game.

Proof: Note first that if ck = c∗k then the two user-equilibrium flow configurations coincide

(Proposition 6), which is a contradiction to the lemma’s condition (D.53). Assume (by contradic-

tion) that ck > c∗k (hence cm < c∗m). We show in Lemma 11 below that this assumption implies

that Dk(ck, fk) ≤ D∗
k and Dm(cm, fm) ≥ D∗

m, where D∗
k and D∗

m are the unique NEP delays at

service classes k and m respectively. This is obviously a contradiction to the ratio objective (2.2),

since the strict inequality in (D.53) would hold if we substitute Dk with D∗
k and Dm with D∗

m.

The next lemma completes the proof of Lemma 10 and uses the same notations.

Lemma 11 If ck > c∗k then Dk(ck, fk) ≤ D∗
k and Dm(cm, fm) ≥ D∗

m
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Proof: Define Dk
△
= Dk(ck, fk) and D′

k

△
=

∂D′

k
(ck,fk)
∂fa

. Assume by contradiction that Dk > D∗
k.

We have to consider two cases:

1) Dm > D∗
m. This case is easily contradicted by the same arguments as in Lemma 6. We

therefore omit the details here.

2) Dm ≤ D∗
m. Note that Lemma 9 implies that

fk ≥ f∗
k , (D.54)

and

fm ≤ f∗
m. (D.55)

If f i = f i∗ for every i, then it follows immediately from the KKT optimality conditions for each

user i that f i
k < f i∗

k , contradicting (D.54). Thus, consider a user i such that f i > f i∗. Assume

that f i
k > f i∗

k . Then the KKT optimality conditions of that user f i
kD

′
k + Dk ≤ f i∗

k D∗′
k + D∗

k lead

to a contradiction (since Dm > D∗
m and D′

m > D∗′
m). Thus, f i

m > f i∗
m . Consequently, in order for

(D.55) to hold, there must be a user j such that f j < f j∗ and f j
m < f j∗

m . Yet, the KKT optimality

conditions of that user f j
mD′

m + Dm ≥ f j∗
m D∗′

m + D∗
m lead again to an obvious contradiction.

Symmetric arguments can be applied if user i’s total flow obeys f i < f i∗. We therefore conclude

that the case Dk > D∗
k, Dm ≤ D∗

m is also not feasible.

Symmetrical argument may be applied to conclude that Dm(cm, fm) ≥ D∗
m, and thus the

proof of Lemma 11 follows. ¤

For the proof of Theorem 19, we characterize the manager’s best response for A = 2 in the

next lemma.

Lemma 12 Let c and f be feasible flow and capacity vectors, such that

ρ−1
k Dk(ck, fk) ≥ ρ−1

m Dm(cm, fm). (D.56)

Let ĉ be the manager’s best responses of the manager against f . Then ĉk ≥ ck.

Proof: Immediate by Assumption B5 and the fix capacity constraint. ¤

Proof of Theorem 19: The key idea in the proof is to show monotonicity of the sequence of

the best response capacities. Using Lemma 10, we will establish that the sequence of capacities

is bounded by the equilibrium capacities, hence monotonicity implies convergence of the scheme.

We model the dynamics of the system as a sequence of (discrete-time) steps. For every a ∈ A,

we use the notations ca(n), fa(n) and Da(n) to denote the capacity, the user-equilibrium total flow

against ca(n) and the resulting delay at step n, respectively. Assume, without loss of generality,

that the system is initialized with capacities c(1), such that ρ−1
k Dk(1) ≥ ρ−1

m Dm(1). Note that

by Lemma 10 this implies that ck(1) ≤ c∗k and cm(1) ≥ c∗m. Moreover, we conclude from Lemma
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12 that ck(1) ≤ ck(2). It follows from Lemma 9 that fk(1) ≤ fk(2) and fm(1) ≥ fm(2). By the

monotonicity of the delay functions (Assumption B4) we obtain that ρ−1
k Dk(2) ≥ ρ−1

m Dm(2), and

again by Lemma 10, ck(2) ≤ c∗k and cm(2) ≥ c∗m. Using Lemma 12 we obtain that ck(2) ≤ ck(3)

and cm(2) ≥ cm(3). Proceeding iteratively, it follows that ck(n) ≤ ck(n+1) and cm(n) ≥ cm(n+1)

for every n. Since the sequence ck(n) monotonously increases and is bounded above by the NEP

capacity c∗k (and similarly, the sequence cm(n) monotonously decreases and is bounded below by

the NEP capacity c∗m), c(n) converge as n → ∞ to the NEP capacities c∗. Due to the continuity

of the user cost functions and the uniqueness of the user-equilibrium flow configuration for fixed

capacities (Proposition 6), f(n) converges to f∗. ¤

For the proof of Theorem 20, the following lemma is required. We henceforth assume that the

continuous update rule (3.6) is in effect.

Lemma 13 Let f be a user-equilibrium flow configuration for a fixed capacity allocation c. If

ρ−1
k Dk(ck, fk) > ρ−1

m Dm(cm, fm), then dck

dt
> 0.

Proof: The update rule for the capacities is given by (3.5). For the case where A = 2 we have
dck

dt
= ρ−1

k

[

Dk − ρk
1
2(ρ−1

k Dk + ρ−1
m Dm)

]

= 1
2(ρ−1

k Dk − ρ−1
m Dm) > 0. ¤

Proof of Theorem 20: The continuous update rule (3.6) can be viewed as a first-order system

dck

dt
= g(ck), (D.57)

where g(ck)
△
= Dk(ck, fk)−ρkD̂(c, f) = 1

2(ρ−1
k Dk −ρ−1

m Dm). Note that ck uniquely determines cm

as ck + cm = C, and hence the corresponding user-equilibrium flows (Proposition 6). In addition,

g(ck) is continuous in ck, due to the continuity of the user-equilibrium flows as a function of the

capacities (a property that was formally established in [39]).

Due to the uniqueness of the NEP for the users-manager game (Theorem 8), the system (D.57)

possesses a unique stationary point in the range [0, C]. This point is ck = c∗k, where c∗k is the

capacity at the NEP for which, obviously, g(c∗k) = 0 (while for ck 6= c∗k we have g(ck) 6= 0).

Consider the following two cases: (a) ck(t) > c∗k. Applying Lemmas 11 and 13, it follows that
dck

dt
< 0 for this case. (b) ck(t) < c∗k. By symmetry, dck

dt
> 0 for this case. We conclude from

the above that (i) ck is bounded: min{ck(0), c∗k} ≤ ck(t) ≤ max{ck(0), c∗k}. (ii) x∗
k is a (unique)

stable stationary point for (D.57). It follows by standard results for first order systems (e.g. [40],

Chapter 2) that ck(t) converges to the stationary point c∗k, which is the NEP in this case. ¤
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