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Abstract

This paper focuses on local computations of distributed aggregation problems on fixed graphs. We
define a new metric on problem instances, Veracity Radius (VR), which captures the inherent possibility
to compute them locally. We prove that VR yields a tight lower bound on output-stabilization time,
i.e., the time until all nodes fix their outputs, as well as a lower bound on quiescence time. We present
an efficient aggregation algorithm, I-LEAG, which reaches both output stabilization and quiescence
within a time that is proportional to the VR of the problem instance, and is also efficient in terms
of per-node communication and memory. We empirically show that the VR metric also effectively
captures the performance of previously suggested efficient aggregation protocols, and that I-LEAG
significantly outperforms these protocols in several respects.

Keywords: aggregation, locality, distributed computation.

1 Introduction

Background We consider distributed computation by a large set of network nodes, which must collab-
oratively compute and come to know the value of a global aggregation function [23, 15] of their individual
inputs. For example, testing whether the number of sensors reporting a problem exceeds a certain thresh-
old (majority vote with threshold), determining the average processor load in a computing grid, etc. Such
networks may comprise millions of nodes, and communication bandwidth as well as energy resources may
be limited, requiring good scalability. An appealing approach for achieving scalability is using local com-
putations, whereby the computation time and the amount of per-node communication are independent
of the size of the network.

Unfortunately, virtually all interesting aggregation functions, e.g., majority, AND/OR, average, and
minimum, cannot always be computed locally – they have instances that require some nodes to indirectly
communicate with a fixed fraction of the graph nodes in order to deduce the correct result. Yet, they
also have instances that intuitively should require little if any computation (e.g., when no sensor reports
a problem). Indeed, recent work presents efficient solutions to interesting aggregation problems, and
empirically shows that these solutions usually perform local computations [3, 22].
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Contributions We strive to formally quantify the efficiency, or achieved locality, of a distributed
aggregation algorithm. We rule out the use of average-case analysis, as such analysis must assume a
concrete distribution of the inputs, and we do not believe that it is possible to characterize the “typical”
input distribution in a general sensor or peer-to-peer network. Instead, we seek a metric for the inherent
amenability of a given problem instance to local computation, relative to which proposed algorithms can
be evaluated.

The main contribution of this paper is such a new formal metric, the Veracity Radius (VR). It is
defined using the notion of an r-neighborhood of a node v, which is the set of all nodes within a radius r
from v. Intuitively, if for all r-neighborhoods with r ≥ r0 the aggregation function yields the same value
as for the entire graph, then there is apparently no need for a node to ever communicate with nodes that
are farther than r0 hops away from it, irrespective of graph size.

The formal VR metric (see Section 3) captures the notion of a minimal such radius r0, but allows
some slack in the subgraphs over which the values of the aggregation function are examined. Specifically,
it is parameterized by some slack function 0 ≤ α(r) ≤ r, and is defined based on node environments that
include an α(r)-neighborhood and are included in an r-neighborhood.

VR provides a fine-grained classification of problem instances, which yields an intuitive tight lower
bound on computation time. Specifically, for any given aggregation function F , communication graph
G, d ≥ 0, and algorithm solving F on G, there is an instance with VRα ≤ d for which at least
min{⌊α(d)⌋,Radius(G)} steps are required before all nodes decide on the correct result. This bound
is tight for every d such that α(d) ≤ Radius(G): it is achieved by a simple Full Information (FI) algo-
rithm. Unfortunately, while FI attains optimal output stabilization, nodes send messages for a number
of steps equal to graph diameter. In certain systems, such as sensor networks, wherein energy-efficiency
is critical and/or communication resources are limited, such a solution is inadequate. The challenge is
thus to determine when it is safe to stop sending messages, i.e., achieve local quiescence.

We present an efficient aggregation algorithm (see Section 4), I-LEAG (Instance-Local Efficient Ag-
gregation on Graphs), that addresses this challenge: both I-LEAG’s computation and quiescence times
are within a constant factor of the above lower bound. Moreover, I-LEAG is communication efficient
and has low memory requirements. I-LEAG runs on a precomputed hierarchy of partitions of the graph
with special locality properties, which may also be applicable elsewhere. This hierarchy only depends on
the graph and not on the aggregation function or its inputs, so it only needs to be computed once. One
salient feature of I-LEAG is that explicit communication (sending of messages) ceases once the output
stabilizes, thereby reducing both quiescence time and communication.

Finally, we complement the aforementioned theoretical results with a simulation study (see Section
5), which (i) demonstrates that VR adequately predicts the performance of previous algorithms that
were shown to be efficient in common instances [3, 22] (as well as I-LEAG’s), and (ii) compares these
algorithms with I-LEAG. We find that I-LEAG has superior performance by all tested measures.

Related Work Recently, there is large interest in applications of large-scale distributed systems such
as sensor networks [15, 16], peer-to-peer systems [21], and computational grids [19]. Consequently, many
methods for collecting and aggregating the vast amount of data contained (or generated) by these networks
have been proposed, e.g., [6, 7, 2, 4]. Often, the aggregation result needs to be diffused throughout the
entire network, [23]. However, this body of work has seldom focused on locality.

Locality has been considered in the context of distributed graph constructions, e.g., coloring [14, 17]
and minimum vertex cover [8], which are significantly different than aggregation. In this paper, we assume
a fixed graph, for which any such construction can be computed off line; specific problem instances are
then specified only by the inputs at each node. Moreover, such work has primarily focused on worst-case
analysis. This restrictive view of locality often limits the applicability of local computation to simplistic
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problems or to restricted graph models (e.g., [9]).
The notion of an “instance-based” locality was first mentioned by the seminal work of Kutten and

Peleg on Fault-local Mending [11], and was later refined by subsequent work on fault tolerance such as
Tight Fault Locality [12], Time-adaptive Self-Stabilization [10], Distributed Error Confinement [1], and
more. Harnessing local computation whenever possible has also been suggested for location services [13].
None of this work, however, deals with aggregation. The only previous work that addresses instance-local
aggregation deals with majority voting [3, 22]. It empirically shows that even a problem that trivially
requires global communication for many instances can still be computed locally in the common case, but
provides no formal metric or analysis to justify this.

Finally, there are several works that attempt to find meaningful alternatives to the over-restrictive
worst-case analysis as well as the often impractical average-case analysis, e.g., [5] and [20]. However,
these consider neither a distributed setting nor locality.

2 Preliminaries

2.1 Model and Problem Definition

We model a distributed system as a graph, in which nodes and edges correspond to computing nodes
and communication links, respectively. Nodes can exchange information only by sending messages. We
assume a fixed, unweighted, undirected communication graph and synchronous operation. Given a set
D, we denote a multi-set over D by {dn1

1 ...dnm

m }, where ni ∈ N indicates the multiplicity of di ∈ D, and
the absence of di represents ni = 0. We denote the set of multi-sets over D by N

D. Given a graph
G = G(V,E) and an aggregation function F :ND → R, the aggregation problem PG,F is to compute F for
every input assignment I:V → D, and to distribute the result r ∈ R to all nodes.

More formally, every node v has an input value Iv ∈ D and an output register Ov. Initially, Ov = ⊥
and v only knows its own input. An algorithm solves PG,F if ∀v ∈ V : Ov = F (IV ) after finite time,
where IX denotes the multi-set induced by the projection of I on a set of nodes X ⊆ V . Note that since
F is defined over multisets, the identity of the nodes does not play a role. For brevity, we also use I to
denote IV when clear from the context.

Let MA(I) denote the performance of an algorithm A on input I under measure M, and consider
such an execution of A. We focus on the following three known performance measures: (1) Quiescence
time, QA(I), is the time after which no more messages are sent; (2) Output-stabilization time, OSA(I), is
the earliest time after which no node changes its output; and (3) Message Load, MLA(I), is the average
number of messages per node sent during the execution.

In this paper, we only consider aggregation functions F :ND → R where R is a discrete totally-
ordered set with at least two values and F satisfies the following properties: Convexity – ∀X, Y ∈ N

D:

F (X ∪ Y ) ∈
[
F (X), F (Y )

]
; and Onto (in singletons) – ∀r ∈ R, ∃x ∈ D: F (x) = r. Convexity ensures

that if the graph is partitioned such that the results of computing the aggregation function over every
component (in isolation) are all the same, then these results also equal the correct (global) result. This
suggests opportunities for locally computing F , based on the following intuition:

If the (global) correct result of an aggregation function is also evident in every local environ-
ment, then it is likely that every node can arrive at this result based solely on the inputs of
nodes in its vicinity.

Many interesting functions have these properties. Examples include: Min, Max, Majority, Median, and
Consensus (e.g., by using AND/OR functions). However, some important ones such as computing an
average (violates discreteness) and counting the number of nodes that satisfy a certain predicate (violates
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convexity), do not fall into this category. Nevertheless, even these two functions can practically be
included in our framework: an average can be computed by rounding the result to the desired precision
(regaining discreteness1), and given an estimate of the graph size, any counting problem can be expressed
as a rounded average problem (regaining convexity) by computing the fraction of the nodes (up to a fixed
precision) that satisfy the desired predicate and then multiplying the result by the graph size. The term
“aggregation functions” will henceforth be used to refer to functions that possess these two properties.

2.2 Graph Notions

Let G = G(V, E) be a graph. Denote G’s diameter and radius by Diam(G) and Rad(G), respectively.
We use the following graph-theoretic notation:

Definition 2.1 (Cluster) A cluster is a subset S ⊆ V of vertices whose induced subgraph G(S) is
connected. A weak cluster is a subset S ⊆ V that is connected in G but not necessarily in G(S). (If G is
connected, any set of nodes is a weak cluster.)

Definition 2.2 (Distance) For every two nodes v1, v2 ∈ V , the distance between v1 and v2 in G,
dist(v1, v2), is the length of the shortest path connecting them.

Definition 2.3 (Neighborhood) The r−neighborhood (r ∈ R
+) of a node v, Γr(v), is the set of nodes

{v′ | dist(v, v′) ≤ r}. Γ̂(v) = Γ1(v) − {v} denotes the neighbors of a node v. For a cluster S: Γr(S) =⋃
v∈S Γr(v) and Γ̂(S) = Γ1(S) − S.

3 Veracity Radius: an Inherent Metric for Locality

We now introduce the Veracity Radius (VR) metric for quantifying the “attainable locality” of an instance
(input) of an aggregation problem. We first give formal definitions of VR and the related notion of local
complexity. We then establish a tight lower bound on output-stabilization and quiescence times using
VR, thereby proving that VR is inherent to local computation.

3.1 The Veracity Radius and Local Complexity

Let α:R+ → R
+ be a continuous, non-decreasing function such that α(r) ∈ [ r

K
, r], for some K ≥ 1. We

call such a function a K-bounded slack function.

Definition 3.1 (α-Veracity Radius) Let PG,F an aggregation problem. For every K-bounded slack
function α and input I, the α-veracity radius of I is:

VRα(I) , min{r ∈ R
+ | ∀r′ ≥ r, v ∈ V, S ⊆ V s.t. Γα(r′)(v) ⊆ S ⊆ Γr′(v): F (IS) = F (I)}.

If F (Iv) = F (I) for every v ∈ V , then VRα(I) = 0. We refer to such I as a trivial input assignment.
It is important to note that this metric is general enough to cover any aggregation function and graph;
yet, it enables reasoning about algorithms that do not always compute their results based on exact
neighborhoods. Also, it would seem that Γα(r′)(v) ⊆ S should be a sufficient requirement for selecting
S. However, this would allow adding arbitrary nodes to Γα(r′)(v) from anywhere in the graph, causing
F (IS) to be any value. The terms VR and VRα are used synonymously throughout the paper.

Given a graph, VR represents a property of the input rather of the graph size, so it can be used as
a “locality metric”. Any algorithm whose performance depends solely on VR for any graph is infinitely
scalable (in the graph’s size) for all problem instances with a similar VR. We say that such algorithms
have local complexity.

1Note that an exact average over R can seldom be computed locally.
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Definition 3.2 (Local Complexity) Let G be an infinite family of graphs, and M a performance mea-
sure. An algorithm A on G has local complexity with respect to M if there exists a slack function α and
a function g such that for every G ∈ G and non-trivial input I: MA(I) ≤ g(V Rα(I)). In case g(x) = cx
for some c ≥ 1, we say that A is (c, α)-M local.

In the next section, we derive lower bounds of LBd , min{⌊α(d)⌋,Rad(G)} on output stabilization
and quiescence times for instances with VRα ≤ d of any aggregation problem. As proven below, both
(c, α)-OS and (c, α)-Q local algorithms thus attain the lower bound to within a constant factor.

Theorem 3.3 Given a K-bounded slack function α, for every (c, α)-OS local algorithm A and every
non-trivial input instance I: OSA(I) ≤ 2cK · LBVRα(I). The same holds for quiescence.

Proof. Let PF,G be an aggregation problem. For v ∈ V and r′ ≥ 2KRad(G), it holds that Γα(r′)(v) = V
because α(r′) ≥ r′/K ≥ 2Rad(G) ≥ Diam(G). So, for every input instance I, VRα(I) ≤ 2KRad(G)
by definition. As a result, for α(VRα(I)) > Rad(G), it holds that VRα(I) ≤ 2K · LBVRα(I). For
α(VRα(I)) ≤ Rad(G):

VRα(I) ≤ K · α(VRα(I)) ≤ K(1 + ⌊α(VRα(I))⌋) = K(1 + LBVRα(I)).

If in addition I is non-trivial, α(VRα(I)) ≥ 1 and thus LBVRα(I) ≥ 1. Therefore, for every non-trivial
input I we obtain that VRα(I) ≤ 2K · LBVRα(I). Since OSA(I) ≤ cVRα(I) and QA(I) ≤ cVRα(I) for
(c, α)-OS and (c, α)-Q local algorithms, respectively, we have the result.

We conclude that algorithms satisfying our new notion of locality are optimal within a constant
factor in all cases, and are extremely appealing for problems that have many instances for which c · VR
is substantially smaller than the graph diameter.

3.2 Lower Bound

We now show that VR provides lower bounds for both quiescence and output stabilization times. The
proof is based on the renowned indistinguishability argument and builds upon the next two lemmas.

Lemma 3.4 Let F be an aggregation function. For every c ∈ N, there exist a, b ∈ D and n1, n2 ∈ N

such that n1 + n2 = c and F (a) = F (an1bn2) 6= F (an1bn2+1) = F (b).

Proof. We choose x, y ∈ D such that F (x) < F (y) are consecutive values in R. By convexity:

∀k ∈ [0, c]: F (xc−kyk) = F (xc−(k+1) ∪ yk ∪ x) ≤ F (xc−(k+1) ∪ yk ∪ y) = F (xc−(k+1)yk+1).

Moreover, because F (xc) = F (x) < F (y) = F (yc), we conclude that there exists k for which the inequality

is strict, i.e., F (x) = F (xc−kyk) < F (xc−(k+1)yk+1) = F (y). Convexity ensures that F (xc−kyk+1) is either
F (x) or F (y). If it is F (y), let a = x and b = y, and n1 = k and n2 = c − k. Otherwise, let a = y and
b = x, and n1 = k + 1 and n2 = c − (k + 1).

Lemma 3.5 Let PG,F be an aggregation problem. For every slack function α and every d ≥ 1 such that
1 ≤ α(d) ≤ Rad(G), there exist two inputs I and I ′, such that VRα(I),VRα(I ′) ≤ d, F (I) 6= F (I ′), and
at least one node v0 ∈ G cannot distinguish between I and I ′ in fewer than ⌊α(d)⌋ steps.

Proof. Choose v0 ∈ V such that |Γ⌊α(d)⌋−1(v0)| = minv∈V |Γ⌊α(d)⌋−1(v)|. Let S = Γ⌊α(d)⌋−1(v0). Following
Lemma 3.4, we can choose a, b ∈ D and n1, n2 ∈ N such that n1 + n2 = |S| and F (a) = F (an1bn2) 6=
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F (an1bn2+1) = F (b). Partition S into two sets of nodes, S1 and S2, such that |S1| = n1 and |S2| = n2.
We next construct two input assignments, I and I ′, as follows:

Iv =





a, v ∈ S1

b, v ∈ S2

b, v 6∈ S
I ′v =





a, v ∈ S1

b, v ∈ S2

a, v 6∈ S

Note that IS = I ′S and F (IS) = F (I ′S) = F (a).
We first claim that for every v ∈ V , r ≥ d and T ⊆ V such that Γα(r)(v) ⊆ T ⊆ Γr(v), it holds that

F (IT ) = F (b). Clearly, the number of a values in IT is at most n1. From the choice of S and the fact
that S does not cover the entire graph, it holds that |T | ≥ |S| + 1. As a consequence, the number of b
values in IT is at least n2 + 1. Since F (an1bn2+1) = F (b), it follows from convexity that F (IT ) = F (b).

As a result, we obtain that F (I) = F (b) and VRα(I) ≤ d by definition. Similarly, we have F (I ′) =
F (a) and VRα(I ′) ≤ d. Since all nodes in S have exactly the same input in both assignments, it is obvious
that v0 cannot distinguish between I and I ′ before ⌊α(d)⌋ steps take place.

Theorem 3.6 (Lower Bound) Let PG,F be an aggregation problem. For every d ≥ 0, every slack
function α and every deterministic algorithm A that solves P , there exists an input I with VRα(I) ≤ d
for which OSA(I) ≥ min{⌊α(d)⌋,Rad(G)}. The same holds for quiescence.

Proof. If α(d) < 1 the claim holds trivially, so assume that α(d) ≥ 1. If α(d) ≤ Rad(G), let I and I ′

be the inputs, and v0 ∈ V the node from the construction in Lemma 3.5. We initially focus on output
stabilization. Consider the input I. If OSA(I) ≥ ⌊α(d)⌋ we are done. Otherwise, there exists a time
t′ < ⌊α(d)⌋ such that for every t ≥ t′, it holds that Ov0 = F (I). Since v0 cannot distinguish between I
and I ′ before ⌊α(d)⌋, for every t such that t′ ≤ t < ⌊α(d)⌋, Ov0 = F (I) for I ′ as well. Therefore, in I ′,
Ov0 must change from F (I) to F (I ′) at ⌊α(d)⌋ or later because A correctly solves P .

For quiescence, assume by contradiction that both QA(I) and QA(I ′) are less than ⌊α(r)⌋. Therefore,
v0 cannot distinguish between I and I ′ at all times. As a consequence, Ov must be identical upon reaching
output-stabilization (as A solves PG,F , it must do so in finite time) for both inputs, contradicting the
correctness of A.

If α(d) > Rad(G), consider an input I that satisfies the lemma with respect to output stabilization
(quiescence) for a value of d′ such that α(d′) = Rad(G). Since α is a monotone non-decreasing function,
the fact that α(d′) < α(d) implies that d′ < d. Therefore, I also satisfies the lemma for d because
VRα(I) < d, and A requires at least Rad(G) = min{⌊α(d)⌋,Rad(G)} steps to reach output stabilization
(quiescence).

Clearly, prior knowledge of VR would enable every node to obtain the correct result by collecting only
the input values in its VR-neighborhood. Unfortunately, such knowledge is not available and is impossible
to obtain without communication. Nevertheless, a simple Full Information protocol (FI), in which every
node broadcasts its input to all other nodes and outputs the result of the aggregation function over the
inputs it heard so far, achieves the output-stabilization lower bound for every d such that α(d) ≤ Rad(G),
thereby showing that the lower bound is tight. (For a formal description of FI and a proof of its output-
stabilization time, see Appendix A.) However, FI does not achieve the quiescence bound: its quiescence
time is Diam(G) for every input I, irrespective of OSFI(I). FI also sends O(|E| · Diam(G)) messages,
and has a high memory consumption of O(|V |) per node.

4 Efficient Local Aggregation

Can we do better than FI in terms of memory consumption, communication cost, and quiescence time
while still maintaining nearly optimal output stabilization? We now present I-LEAG, an efficient algo-
rithm for solving any aggregation problem, which achieves (c, α)-local output-stabilization and quiescence
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times. In addition, I-LEAG is communication efficient, achieving a local message load in many cases, and
has a low memory usage.

We begin by describing a locality-preserving partition hierarchy required by I-LEAG (in Section
4.1), followed by a formal statement of the algorithm itself (in Section 4.2). Next, we prove I-LEAG’s
correctness (in Section 4.3) and analyze its output-stabilization and quiescence times, message load, and
memory usage (in Section 4.4).

4.1 Local Partition Hierarchy (LPH) Construction

Let G = G(V, E) be a graph, and let Λθ = ⌈logθ(Diam(G))⌉. I-LEAG can solve any aggregation function
F on G, given a certain pre-construction of partitions, pivot nodes, and some additional information on
G. This information can be pre-computed once for G and subsequently used to solve any instance of
PG,F . Moreover, the pre-construction does not depend on F , so it can be used for other aggregation
functions (on the same graph). The pre-construction must form a partition hierarchy:

Definition 4.1 (Partition Hierarchy) An m-level partition hierarchy is a triplet
〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ m, where:

• {Si} is a set of partitions, in which for every cluster S′ ∈ Si−1 there exists a cluster S ∈ Si such
that S′ ⊆ S. The topmost level, Sm, contains a single cluster equal to V .

• {Pi} is a set of pivot sets. Pi includes a single pivot for every cluster S ∈ Si. Si(p) ∈ Si denotes
the cluster S for which p ∈ S.

• {Ti} is a set of forests. For every p ∈ Pi, Ti contains a directed tree Ti(p) whose root is p and whose
leaves are either the nodes {p′ ∈ Pi−1 | Si−1(p

′) ⊆ Si(p)} or the nodes in S0(p) if i = 0.

Definition 4.2 (Logical Tree) For every i > 0 and every p ∈ Pi, denote by T̃i(p) the logical tree formed
recursively by concatenating Ti(p) and T̃i−1(p

′) at every leaf p′ of Ti(p), where ∀p′ ∈ P0: T̃0(p
′) , T0(p

′).

Note that a logical tree T̃i(p) spans all nodes in Si(p), and its underlying physical graph may contain
cycles due to multiple roles of the same node in different levels of the hierarchy.

In addition, the partition hierarchy used by I-LEAG must be (θ, α)-local for some θ, α:

Definition 4.3 ((θ, α)-Local Partition Hierarchy (LPH)) Let θ ≥ 2 and let α be a slack function.
A Λθ-level partition hierarchy 〈{Si}, {Pi}, {Ti}〉 is called (θ, α)-local if for every p ∈ Pi, it holds that
Γα(θi)(p) ⊆ Si(p) ⊆ Γθi(p), and T̃i(p)’s height is at most θi.

Thus, in contrast to other known partition hierarchies [18], which impose upper bounds on cluster radii,
an LPH also enforces lower bounds.

As an example, we present a centralized algorithm, MESH-P, for constructing a (2, α)-LPH with
minimal slack for mesh neighborhoods, where α(r) = max{r − 1, r/2} is a 2-bounded slack function.
MESH-P is detailed in Algorithm 1. For comparison, the “natural” partition hierarchy for meshes (based
on squares) results in a larger slack of α(r) = r/2. Given a positive integer L and an arbitrary node
p0 ∈ N

2 of an infinite mesh G∞ (node labels are cartesian coordinates), MESH-P constructs recursively
an (L + 1)-level hierarchy, 〈{Si}, {Pi}, {Ti}〉 for i ∈ [0, L], which covers 22L+1 nodes of G∞ around p0.
More specifically, the graph G covered by this hierarchy is the induced subgraph:

G = G∞

(
Γ2L−1(p0) ∪ Γ2L−1(p0 + 〈0, 1〉)

)
,
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Algorithm 1 (MESH-P)

Input: L ∈ N, p0 ∈ N
2

Output: a (2, α)-LPH 〈{Si}, {Pi}, {Ti}〉, i ∈ [0, L], for α(r) = max{r − 1, r/2}
Variables: partition set {Si}, set of pivot sets {Pi} and forest set {Ti}, all initially ∅

1: mesh-part(L, p0)
2: return 〈{Si}, {Pi}, {Ti}〉, i ∈ [0, L]

Function mesh-part:(i ∈ N, p ∈ N
2)

Si ← Si ∪ { Γ2i−1(p) ∪ Γ2i−1(p + 〈0, 1〉) }
Pi ← Pi ∪ {p}
if i = 0 then

T ← { 〈p + 〈0, 1〉, p〉 }
else

T ← ∅
for all ∆ ∈ {〈0, 2i−1〉, 〈0,−2i−1〉, 〈2i−1, 0〉, 〈−2i−1, 0〉} do

mesh-part(i − 1, p + ∆)
T ← T ∪ {−→e ∈ N

2 ×N
2 | −→e is an edge in the direct path from p + ∆ to p}

Ti ← Ti ∪ {T}

which has a diameter of 2L+1 − 1 and resembles a neighborhood of radius of 2L on a mesh (some of the
border nodes are left out to enable tiling).

Figure 1 shows the resulting construction for L = 2 and p0 = 〈0, 0〉. The level 2 pivot, which serves
as the root of the logical tree that spans the whole graph, is located at 〈0, 0〉. The x and y coordinates
of G increase to the right and up, respectively. As can be seen from the figure, the clusters at every level
form a partition: level-0 clusters include a pivot and its neighbor to the right; level-1 clusters are marked
by ellipses; and the (single) cluster at level 2 comprises the whole graph. In addition, every cluster of
level 0 or 1 is fully contained in some cluster of the next (higher) level. Note that ∀i ∈ [0, 2], p ∈ Pi:
Γ2i−1(p) ⊆ Si(p) ⊆ Γ2i(p) and the height of T̃i(p) is at most 2i as required. It is easy to verify that
MESH-P generates an LPH for any L ≥ 0.

Finally, we refer to a hierarchy whose clusters may be weak as a weak partition hierarchy. I-LEAG
works even with a weak LPH. In Appendix B, we show how to construct a weak (5, α)-LPH for any
graph, for α(r) = r/5.

4.2 I-LEAG

I-LEAG is given in Algorithm 2. Ov[u] holds the value of Ou as known to v. Tree+ is the edge set
comprising the (underlying, undirected) edges of the graph induced by the logical tree. I-LEAG executes
Λθ sequential phases. Each phase i corresponds to partition Si in the hierarchy and consists of three
sequential operations, which are executed concurrently in every cluster Si(p) ∈ Si, where p ∈ Pi:

• Lines 3-5: Check for conflicts among the clusters of Si−1 that constitute Si(p) by comparing outputs
of neighboring nodes along Ti(p)2. We prove by induction that upon commencing phase i, all nodes
within a cluster of level i − 1 have the same result. Thus, the absence of conflicts indicates that
the aggregate value of every Si−1 ⊆ Si(p) is the same, and convexity ensures that this value equals
the global result. Detected conflicts are reported to p over the edges of Ti(p). Clearly, nodes in the
tree only need forward to p the first notification they receive.

• 〈conflict〉 message handler: If a conflict is detected, calculate F (ISi(p)) using a simple converge-cast

2If Ti(p) also connects nodes outside Si(p), conflicts with them will be reported as well.
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Figure 1: MESH-P partition hierarchy for L=2.

procedure based on the logical tree of p, T̃i(p). (See detailed description below.) The result is
multicast to Si(p) over the same tree. In addition, every node in Si(p) forwards the result to its
neighbors in Tree+ (excluding nodes in Si(p)).

• 〈p, val〉 message handler: Finally, if F (ISi(p)) was explicitly calculated, every v ∈ Si(p) updates Ov.
In addition, every neighbor u of v such that u ∈ Si(p) or (u, v) ∈ Tree+ updates Ou[v] accordingly.
This information exchange enables conflict detection in subsequent phases without communication.

The timer in line 2 and the ’wait’ instruction in line 6 ensure that the next phase is not started before all
messages of the current phase subside (see Lemma 4.5). If there are no conflicts starting from a certain
phase i, then I-LEAG reaches output stabilization at phase i. Moreover, it reaches quiescence at the
same time because subsequent conflict checks are done without communication.

The converge-cast procedure assumes that the aggregation function F :ND → R can be represented
as a tuple 〈R̂, FI , Fagg, FO〉, where: R̂ is some internal representation, and FI :D → R̂, Fagg:R̂

n → R̂ and

FO:R̂ → R are functions such that for every set of nodes V = {v1, ..., vn} and an input I:

F (IV ) = FO

(
Fagg(FI(Iv1), ..., FI(Ivn

))
)
.

For example, a simple majority vote can be represented as follows: D = R = {0, 1}; R̂ is an ordered
pair N×N; FI(bit) returns {1, 0} if bit is 1 and {0, 1} otherwise; Fagg returns the sum of its inputs; and

given {x, y} ∈ R̂, FO returns 1 if x ≥ y and 0 otherwise. When invoked at a pivot p, the converge-cast
procedure computes F recursively over the inputs of Si(p) based on the logical tree of p, as described in
Algorithm 3 using remote procedure call (RPC) semantics.

4.3 Correctness

Theorem 4.4 I-LEAG correctly solves every aggregation problem PG,F , given a (θ, α)-LPH of G.

9



Algorithm 2 (I-LEAG) for node v ∈ V

Parameters: F :ND → R, (θ, α)-local hierarchy 〈{Si}, {Pi}, {Ti}〉, 0 ≤ i ≤ Λθ of G(V, E)
Input: Iv ∈ D
Output: Ov ∈ R, initially F (Iv)

Variables: ∀u ∈ Γ̂(v): Ov[u] ∈ R ∪ {⊥}, initially ⊥; i ∈ N

Definitions: Tree+
,

⋃
i,p∈Pi

Ti(p) ignoring edge directions (i.e., Tree+ ⊆ E)

Synchronous phases:

1: for phase i = 0 to Λθ do /* phase i corresponds to 〈Si,Pi, Ti〉 */
2: set timer to 4 · θi + 1
3: for every p ∈ Pi s.t. v ∈ Ti(p) do

4: if ∃u ∈ Γ̂(v) s.t. u is v’s parent in Ti(p) and Ov[u] 6= Ov then
5: send 〈p, conflict〉 to u
6: wait until timer expires

Message handlers:

upon receiving the first 〈p, conflict〉 message during phase i:

if v = p then
val ← converge-cast(F, T̃i(p)) /* see Algorithm 3 */

multicast 〈p, val〉 to Si(p) ∪ {w ∈ Γ̂(Si(p)) | ∃u ∈ Si(p): (u,w) ∈ Tree+}
else

forward 〈p, conflict〉 to v’s parent in Ti(p)

upon receiving 〈p, val〉 during phase i:

if v ∈ Si(p) then Ov ← val

∀u ∈ Γ̂(v): if u ∈ Si(p) then Ov[u] ← val

The proof follows immediately from the following three lemmas; the first two are technical, and are
deferred to Appendix C.

Lemma 4.5 If a conflict is detected at the beginning of some phase i (line 4), then all messages sent
during the phase reach their destination by the end of the phase (line 6). Otherwise, no messages are
sent during phase i.

Lemma 4.6 At the end of every phase i, for every node v ∈ V and every neighbor u of v such that
(u, v) ∈ Tree+: Ou[v] = Ov.

Lemma 4.7 At the end of every phase i, for every p ∈ Pi and every node v ∈ V : Ov = F (ISi(p)).

Proof. By induction on i. We distinguish between two cases. Let p ∈ Pi. If a conflict was detected in
line 4 for p, then F (ISi(p)) is calculated explicitly and assigned to the output register of every v ∈ Si(p)
by the end of the phase (Lemma 4.5). Since all clusters experience a conflict in phase 0, this observation
also establishes the induction base.

Otherwise, the connectivity of Ti(p) and Lemma 4.6 ensure that for every u, v ∈ Ti(p): Ou = Ov.
According to our assumption on phase i−1, for every S ∈ Si−1 and every v ∈ S it holds that Ov = F (IS).
We thus also have that for every S′, S′′ ∈ Si−1 such that S′, S′′ ⊆ Si(p) : F (IS′) = F (IS′′) because Ti(p)
contains at least one representative from every such cluster. Therefore, the lemma holds by convexity.

4.4 Complexity

We begin by analyzing I-LEAG’s output stabilization and quiescence times. Given an input I, denote
I-LEAG’s veracity phase, i.e., the last phase in which I-LEAG detects a conflict, by VP(I).
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Algorithm 3 (Converge-cast RPC) given F , 〈R̂, FI , Fagg, FO〉

Function converge-cast:(F,Tree) → R

return FO(v.converge-cast-internal(F,Tree))

Function converge-cast-internal:(F,Tree) → R̂

if v is a leaf in Tree then return FI(Iv)
for k = 1, ...,Kv parallel do /* {u1, ..., uKv

} are v’s children in Tree */
tmp[k] ← uk.converge-cast-internal(F,Tree)

return Fagg(tmp[1], ..., tmp[K])

Lemma 4.8 Let PG,F be an aggregation problem. Given a (θ, α)-LPH of G, it holds for every non-trivial
input I that: VP(I) < logθ(VRα(I)) + 1.

Proof. Let I be a non-trivial input assignment with VRα(I) = d. Denote VP(I) by n and assume in
contradiction that n ≥ logθ d + 1. Lemma 4.7 ensures that when conflict detection is performed at the
beginning of phase n, every node holds the aggregate value of its cluster at level n − 1 (note that n ≥ 1
for non-trivial inputs). In addition, every two neighboring nodes u, v in Tree+ hold the aggregate value
of each other according to Lemma 4.6.

Since conflicts are only detected between neighboring nodes in Tree+, for any such pair of nodes
u, v that detect a conflict during phase n, it follows that u and v belong to different clusters at level
n − 1 with different aggregate values. Thus, there exists p ∈ Pn−1 such that F (ISn−1(p)) 6= F (I). Since

Γα(θn−1)(p) ⊆ Sn−1(p) ⊆ Γθn−1(p), we obtain that VRα(I) > θn−1 ≥ θlogθ d+1−1 = d. A contradiction.

Theorem 4.9 Let PG,F be an aggregation problem. Given a (θ, α)-LPH of G, for every non-trivial input

I, I-LEAG’s output stabilization and quiescence times are at most:
(

4θ2

θ−1

)
·VRα(I) + logθ(VRα(I)) + 2.

Proof. Let I be a non-trivial input assignment with VRα(I) = d. According to Lemma 4.5, I-LEAG is
quiescent once no more conflicts are detected. Since every phase i takes 4θi + 1 time, we obtain from
lemma 4.8 that:

QI−LEAG(I) =

VP(I)∑

i=0

(4θi + 1) = 4
(θVP(I)+1 − 1

θ − 1

)
+ VP(I) + 1 <

(4θlogθ d+2 − 1

θ − 1

)
+ logθ d + 2 <

( 4θ2

θ − 1

)
d + logθ d + 2.

As nodes change their outputs only in response to multicasts, OS I−LEAG(I) ≤ QI−LEAG(I).

Corollary 4.10 Let G be a family of graphs. Given a (θ, α)-LPH for every Gi ∈ G, I-LEAG is a

( 5θ2

θ−1 , α)-OS/Q local algorithm for computing any aggregation function F on G.

Proof. For every d ≥ 1 and θ ≥ 2, it holds that
(

4θ2

θ−1

)
d + logθ d + 2 <

(
5θ2

θ−1

)
d. Therefore, the proof is

immediate from Theorem 4.9.

For any aggregation problem PG,F , the number of bits required to represent a single value from the

input domain (log |D|), output range (log |R|) or an internal representation (log |R̂|) obviously depends on
the aggregation function F , and in certain cases also on the graph size. However, F is a parameter rather
than a property of the algorithm. For brevity, we therefore use the so called “word model” for evaluating
both communication (in the form of the average per-node message load ML) and memory usage, and
assume that these values practically fit in O(1) memory words. We also make the same assumption for
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pivot identifiers. Consequently, all of I-LEAG’s messages have a size of O(1) memory words. (Results in
the “bit model” can be obtained by multiplying by max{log |D|, log |R|, log |R̂|, log |V |}.) Due to lack of
space, we defer the proofs to Appendix D.

Theorem 4.11 Let PG,F be an aggregation problem. Given a (θ, α)-LPH for G, for every input I, it holds
that MLI−LEAG(I) = O(log2(VRα(I))) if Tree+ is a tree in G, and MLI−LEAG(I) = O(log(VRα(I)) ·Λθ)
otherwise.

Note that when the (undirected) edge set induced by the LPH’s logical tree, Tree+, forms a tree in G,
I-LEAG achieves a local message load, as the number of messages that a node sends (on average) depends
only on VR. Many simple partitions can be constructed with this property, especially for regular graphs
(e.g., our mesh construction in Section 4.1).

Theorem 4.12 Let PG,F be an aggregation problem. Given a (θ, α)-LPH for G, I-LEAG requires
O(Λθ|V |) total memory, and O(Deg(v)) memory per node v, where Deg(v) is the number of edges incident
to v in the logical tree induced by the hierarchy.

5 Veracity Radius vs. Practical Performance

In this section, we illustrate that VR explains why previously-suggested algorithms are efficient in “com-
mon” instances by linking VR with these instances. To this end, we conducted an empirical study. We
considered binary majority voting (with a threshold of 50%) on a mesh topology, which is typical of
sensor networks. We used the construction of Section 4.1 to generate a (2, α)-LPH for a graph G of 128K
nodes, 255K edges, and a diameter of 511. (α(r) = max{r − 1, r/2}.)

We compared the performance of I-LEAG with that of two previously-suggested algorithms for local
majority-voting: MV [3], and MV-TREE [22]. To achieve good coverage, we experimented with two
radically different input-distribution models with respect to locality: uncorrelated and correlated. An
input assignment was generated as follows. In the uncorrelated model, we first chose a probability for
voting ’1’, P1, and then drew the votes according to P1 in an i.i.d. fashion (i.e., every node votes ’1’ with
probability P1 and ’0’ with probability 1−P1). Thus, votes of neighboring nodes are uncorrelated. In the
correlated model, we fixed P1 = 0.9, and chose a radius R ∈ [0,Rad(G)] and a node v0 ∈ V uniformly at
random. Subsequently, every node v ∈ V drew its vote according to P1 if dist(v, v0) ≤ R and according
to 1 − P1 otherwise. By biasing P1, this model simulates a scenario in which v0 is the focal point of an
event that arouses every node at distance R away from it, which otherwise would be idle. We ran all
algorithms over numerous input assignments that ensured a wide range of VR values.

Output stabilization times are depicted in Fig. 2(a-b). (For all algorithms, quiescence times were
practically the same as output stabilization times.) We observe an apparent correlation between output
stabilization and VR in all simulations. I-LEAG’s operational phases are also evident from the graphs.
Clearly, I-LEAG outperforms the other algorithms in both models. Notice that MV, which was designed
for i.i.d inputs, achieves good output stabilization times in the uncorrelated model, but performs badly
in the correlated model.

Message load is presented in Fig. 2(c-d). In general, for every given VR, all algorithms demonstrate
a higher ML in the uncorrelated model, which has considerably more nodes with minority votes than the
correlated model. In addition, ML basically increases monotonically with VR. Except for small VRs, in
which I-LEAG and MV-TREE have a similar ML, I-LEAG outperforms the other algorithms.

We conclude that VR succeeds in identifying the instances for which the algorithms perform well in
practice. Moreover, although the output-stabilization (or quiescence) lower bound presented in Section
3.2 is a worst case over over all instances with a certain VR or less, practically none of the algorithms
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Figure 2: Output stabilization times and message load of I-LEAG, MV, and MV-TREE as a function of
VR. All experiments were conducted on a mesh of 128K nodes and a diameter of 511.

performed better on any instance. Intuitively, this can be attributed to the fact that none of the algo-
rithms are biased towards a specific set of instances, which might enable them to perform better than
VR for these instances at the expense of others.

6 Conclusions

This work was motivated by the observed gap between the de facto good performance of efficient local-
aggregation algorithms and the theoretical “worst-case” impossibility of local aggregation. We have
provided a theoretical instance-based metric, Veracity Radius (VR), which serves as a lower bound on
computation time. We have shown the bound to be tight, and provided an efficient algorithm, I-LEAG,
whose quiescence and output stabilization times are both within a constant factor of the lower bound.
(The exact factor depends on the LPH pre-construction used by I-LEAG.)

Our notion of local algorithms, namely algorithms whose performance provably depends on an inherent
metric of the input instance rather than on the graph size, has implications that go beyond aggregation
algorithms. Topology maintenance in wireless mesh networks, load balancing in global computational
grids, and cache management in wide-area application services, are all problems that have global instances,
but must operate locally whenever possible to achieve good performance. In such systems, VR (or an
equivalent metric) can prove invaluable for designing and evaluating efficient algorithms.
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Algorithm 4 Full Information (FI) protocol for F :ND → R for node v ∈ V

Input: Iv ∈ D
Output: Ov ∈ R

Variables: Xv - a set of tuples 〈v, d〉 ∈ V × D, initially {〈v, Iv〉}

1: for step i = 0 to Diam(G) do

2: for every set Xu received from u ∈ Γ̂(v): Xv ← Xv ∪ Xu

3: Ov ← F (Xv ⊥ D) /* Xv ⊥ D is the multiset obtained by projecting Xv on D */

4: send Xv to Γ̂(v)

A The Full Information Protocol

Algorithm 4 describes FI formally. Intuitively, FI is optimal in terms of output-stabilization because it
actually defines VR:

Theorem A.1 For every aggregation problem PG,F , every slack function α and every d > 0 such that
α(d) ≤ Rad(G), FI has an optimal output stabilization time for instances with VR ≤ d.

Proof. Let I be an arbitrary input with VRα(I) = d′ ≤ d. It is straightforward from the algorithm that
at the end of every time step t, every node v knows the inputs of all nodes in Γt(v). For every r ≥ d′ and
every v ∈ V , it follows from the definition of VRα that F (IΓα(r)(v)) = F (I). Since in unweighted graphs

F (IΓ⌊α(r)⌋(v)) = F (IΓα(r)(v)), FI ensures that Ov = F (I) after time step t = ⌊α(d′)⌋. Consequently, for

every input I such that VRα(I) ≤ d:

OSFI (I) ≤ ⌊α(VRα(I))⌋ ≤ ⌊α(d)⌋ = LBd,

where LBd denotes the lower bound.

B LPH Construction for General Graphs

In Algorithm 5, we present our hierarchal partitioning algorithm, HPART, for constructing a weak LPH
on any given graph. HPART is a centralized algorithm that accepts a graph G and a constant θ ≥ 5
and returns a (θ, α)-local weak partition hierarchy of G, where α(r) = r/θ is a θ-bounded slack function.
At level 0, every node is defined as its own cluster (line 1). Subsequently, HPART operates in phases,
constructing a partition level in each phase. The construction itself is done in two loops:

• Lines 4 - 12: Build a group of clusters that fulfill the requirements for the current level. These
clusters do not necessarily cover the whole graph.

• Lines 13 - 18: Expand the clusters until all the entire graph is covered, while maintaining the
partition requirements. The resulting clusters may be weak.

During the first loop, V holds uncovered nodes, and P ⊆ V holds only those uncovered nodes that are
pivots of the previous level. In every iteration, a new cluster S is added to the current level i based
on a completely uncovered θi−1-neighborhood of some node p (line 5), which serves as the new cluster’s
pivot. S comprises the nodes of all clusters of level i− 1 that intersect this neighborhood (lines 6-7), and
its spanning tree T is formed by connecting the pivots of these clusters to p using shortest paths while
avoiding cycles (lines 8-10). Finally, S, T and p are added to the current level (line 11), and P and V
are updated.
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Algorithm 5 (HPART)

Input: a connected graph G(V, E) and an integer θ ≥ 5
Output: a (θ, α)-LPH 〈{Si}, {Pi}, {Ti}〉, i ∈ [0, Λθ], for α(r) = r/θ
Variables: partition set {Si}, set of pivot sets {Pi} and forest set {Ti}, all initially ∅

1: S0 ← {{v} | v ∈ V }, P0 ← V , T0 ← ∅
2: for level i = 1 to Λθ) do
3: P ← Pi−1, V ← V

4: while ∃v ∈ V s.t. Γθi−1(v) ⊆ V do /* build initial clusters */
5: let p ∈ {v ∈ V | Γθi−1(v) ⊆ V }
6: P ← {p′ ∈ P | Si−1(p

′) ∩ Γθi−1(p) 6= ∅}
7: S ←

⋃
p′∈P Si−1(p

′)
8: T ← ∅
9: for all p′ ∈ P do

10: T ← T ∪ {e ∈ L | L ⊆ E is some shortest path from p′ to p s.t. T ∪ L has no cycles}
11: Si ← Si ∪ {S}, Pi ← Pi ∪ {p}, Ti ← Ti ∪ {T}
12: P ← P − P , V ← V − S

13: while P 6= ∅ do /* expand clusters to include all clusters of Si−1 */
14: let p′ ∈ P and p ∈ Pi s.t. dist(p, p′) = minp∈Pi

{dist(p, p′)}
15: S ← Si(p), S′ ← S ∪ Si−1(p

′)
16: T ← Ti(p), T ′ ← T ∪ {e ∈ L | L is some shortest path from p′ to p s.t. T ∪ L has no cycles}
17: Si ← (Si − {S}) ∪ {S′}, Ti ← (Ti − {T}) ∪ {T ′}
18: P ← P − {p}

19: return 〈{Si}, {Pi}, {Ti}〉, i ∈ [0, Λθ]

In the second loop, each iteration selects one uncovered cluster (of the previous level) to be covered
by one of the newly created clusters of the current level i. Specifically, HPART selects a yet uncovered
cluster with pivot p′ ∈ Pi−1, and adds its nodes to a cluster S ∈ Si whose pivot p ∈ Pi is closet to p′

(lines 14-15). After updating the corresponding tree T (line 16), HPART adjusts level i’s cluster and tree
sets (line 17), and updates P . (V is not used in this loop.) It is easy to see that HPART has polynomial
execution time. Moreover, devising a corresponding distributed implementation for it is straightforward.

Correcntess The proof is based on the next three lemmas, which establish several properties that hold
after each of the algorithm’s two main loops. Following the conventions of [18], we define the radius
of a (possibly weak) cluster S with respect to a node v ∈ S as WRad(v, S) , maxu∈S(dist(u, v)), the
radius of S as WRad(S) , max v∈S(WRad(v, S)), and the distance between a node v and a cluster S as
dist(v, S) , minu∈S(dist(u, v)). All distances in the definitions above are taken in G.

Lemma B.1 For every level i, Si is a partition.

Proof. By induction on i. S0 is trivially a partition. We next assume that the lemma holds for level
i− 1 and prove for level i. During the first loop, whenever a new cluster S is formed (line 7), every pivot
p′ ∈ Pi−1 whose cluster Si−1(p

′) is added to S is removed from P . We refer to such pivots as covered by
S. As a result, each new cluster covers disjoint sets of pivots. Since Si−1 is a partition, every covered
pivot uniquely identifies a cluster that does not overlap with any other cluster of level i− 1. Hence, upon
completing the first loop, all clusters in Si are disjoint. As the second loop only expands these cluster by
covering any remaining (uncovered, disjoint) clusters from Si−1, we conclude that Si is a partition.

Lemma B.2 For every level i > 0 and every p ∈ Pi, Ti(p) is a tree that connects every p′ ∈ Pi−1 such
that p′ ∈ Si(p) to p by a shortest path.
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Proof. Let i > 0 and p ∈ Pi be a pivot. Because Ti(p) is initialized to ∅ and cycles are avoided at
all times, Ti(p) is always a tree. The algorithm attempts to attach to Ti(p) every p′ ∈ Pi−1 such that
p′ ∈ Si(p) in lines 10 and 16, using shortest paths. Therefore, we only need to show that whenever these
lines are executed, either Ti(p) already includes a path from p′ to p, or there exists a shortest path from
p′ to p that does not create a cycle in Ti(p).

Consider a pivot p′ ∈ Pi−1 that is about to be added to Ti(p). If Ti(p) already includes a path from
p′ to p, we are done. Otherwise, denote by L′ some shortest path from p′ to p. (L′ exists because the
graph is connected.) If L′ does not introduce cycles to Ti(p), we are done. Otherwise, L′ must cross
at least one node that is already spanned by Ti(p). Let v be the first such node (in the direction from
p′ to p). Denote the path in Ti(p) that connects v to p by L′′. Since every part of a shortest path is
also a shortest path, the distance from v to p along L′′ must equal that along L′. Therefore, the path L
formed by concatenating the path from p′ to v (along L′) and L′′ is also a shortest path, which does not
introduce any cycles to Ti(p).

Lemma B.3 For every level i, ∀p ∈ Pi: (1) Γθi−1(p) ⊆ Si(p); (2) Height(Ti(p)) ≤ 4θi−1; and (3),
Si(p) ⊆ Γθi(p).

Proof. By induction on i. The lemma holds trivially for S0. We next assume that the lemma holds for
level i − 1 and prove for level i. It follows immediately from the construction of a new cluster in line 7
and the fact that Si−1 is a partition that ∀p ∈ Pi: Γθi−1(p) ⊆ Si(p) upon completing the first loop. Since
the second loop does not introduce new clusters nor reduce existing ones, (1) holds.

To prove (2) and (3), we initially claim that upon completing the first loop, ∀p ∈ Pi: WRad(p, Si(p)) ≤
3θi−1. To see this, let p be the node specified in line 4, let P be the set of level i − 1 pivots defined
in line 6, and let S be the cluster constructed in line 7. For every p′ ∈ P : dist(p, Si−1(p

′)) ≤ θi−1 by
construction. In addition, WRad(Si−1(p

′)) ≤ θi−1 according to the induction hypothesis. Thus, it holds
that:

WRad(p, S) = max v∈S(dist(p, v)) = max p′∈P

(
max v∈Si−1(p′)(dist(p, v))

)
≤

max p′∈P

(
dist(p, Si−1(p

′)) + 2WRad(Si−1(p
′))

)
≤ 3θi−1.

For every cluster (created in the first loop) that is not expanded in the second loop, both (2) and (3)
follow immediately from the claim and Lemma B.2. For the remaining clusters, we show that the lemma
holds after every iteration of the second loop (which expands some existing cluster S ∈ Si). Let p′ ∈ P
and p ∈ Pi be the pivots chosen in line 14 in some iteration. Observe that upon completing the first
loop, for every v ∈ V : minS∈Si

(dist(v, S)) ≤ θi−1. (If ∃v ∈ V such that ∀S ∈ Si : dist(v, S) > θi−1,
it holds that Γθi−1(v) ⊆ V contradicting the fact that the first loop had terminated.) Specifically, this
observation holds for p′. Therefore, ∃p′′ ∈ Pi such that dist(p′, S̃i(p

′′)) ≤ θi−1, where S̃i(p
′′) denotes p′′’s

cluster just before beginning the second loop. Consequently,

dist(p, p′) ≤ dist(p′′, p′) ≤ dist(p′, S̃i(p
′′)) + WRad(p′′, Si(p

′′)) ≤ θi−1 + 3θi−1 = 4θi−1.

Since p′ is connected to p in Ti(p) by a shortest path (Lemma B.2), this bounds Height(Ti(p)), proving
(2). Noting that θ ≥ 5 and WRad(Si−1(p

′)) ≤ θi−1 , we also have that: ∀v ∈ Si−1(p
′): dist(p, v) ≤

dist(p, p′) + WRad(Si−1(p
′)) ≤ 5θi−1 ≤ θi, which implies (3).

Theorem B.4 For every θ ≥ 5, HPART constructs a weak (θ, α)-LPH hierarchy for α(r) = r/θ.

Proof. We first note that in every level i, both loops terminate in finite time because of their dependence
on the (finite) pivot set P , from which at least one element is removed in every iteration. (In the first
loop, each removal of a pivot from P implies removal of nodes from V , which determines the stopping
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condition.) Lemma B.1 ensures that for every level i, Si is a partition. The fact that the partitions form
a refinement hierarchy, i.e., every cluster of Si−1 is subsumed in some cluster of Si, is immediate from the
construction. Radii guarantees are ensured by Lemma B.3. Finally, we bound the heights of logical trees.
Let Height(i) , max p∈Pi

(Height(T̃i(p))). According to Lemma B.3(2), we have the following recursion
for every level i:

Height(i) ≤ 4θi−1 + Height(i − 1) = 4
∑i−1

n=0 θi + Height(0) = 4
(

θi−1
θ−1

)
.

For θ ≥ 5, we obtain that Height(i) ≤ θi, concluding that the hierarchy is (θ, α)-local.

C Lemmas from I-LEAG’s Correctness Proof

Proof. (Lemma 4.5) For every p ∈ Pi, the height of T̃i(p) is at most θi. Hence, it takes at most θi time for
a conflict message to reach its intended pivot, 2θi time to conduct a converge-cast [18], and θi +1 time for
a multicast to span a cluster in Si and its direct neighbors. Since multicasts are initiated at pivot nodes
upon completion of converge-cast operations, and these are triggered in response to conflict messages
that are sent simultaneously at the beginning of a phase, it takes at most 4θi + 1 time for all messages
to subside. Therefore, if a conflict was detected at the beginning of a phase then the ’wait’ statement in
line 6 ensures that there are no messages in flight when the phase ends. Otherwise, no conflict messages
would be sent, and thus no converge-cast or multicast operations would be initiated either.

Proof. (Lemma 4.6) By induction on i. Let p ∈ Pi such that v ∈ Si(p). If val = F (ISi(p)) is explicitly
calculated in phase i, lemma 4.5 ensures that both u and v receive a message containing a 〈p, val〉 tuple
before the end of the phase. (u receives it either as a member of Si(p) itself or as a neighbor of v because
(u, v) ∈ Tree+). In this case, v sets Ov = val, u sets Ou[v] = val, and the lemma holds. Since F is
calculated explicitly in all clusters at phase 0, this observation also establishes the base of the induction.
Otherwise, both Ov and Ou[v] are left unchanged and the lemma follows from our assumption on i− 1.

D I-LEAG: Message Load and Memory Consumption

We begin with two technical lemmas. For every p ∈ Pi, denote by |Ti(p)| the number of edges in Ti(p).

Lemma D.1 Let G = G(V, E) be a graph. For every (θ, α)-local partition of G, it holds for every
i ∈ [0, Λθ] that

∑
p∈Pi

|Ti(p)| ≤ θ2|V |.

Proof. For facility of exposition, let P−1 = V and let S−1 = {{p′} | p′ ∈ P−1}. For every p′ ∈ Pi−1, the
length of the path connecting p′ to its root p ∈ Pi in some level-i tree is at most θi. Therefore, for every
p ∈ Pi, the fact that Ti(p) is a tree ensures that:

|Ti(p)| ≤ θi ·
∣∣∣{p′ ∈ Pi−1 | Si−1(p

′) ⊆ Si(p)}
∣∣∣.

Consequently,
∑

p∈Pi
|Ti(p)| ≤ θi|Pi−1|. For i = 0, 1, 2, the claim holds because |Pi−1| ≤ |V | (there cannot

be more pivots than nodes in a single partition). Otherwise, for every p ∈ Pi−1, the LPH requirements
guarantee that Γθi−2(p) ⊆ Si−1(p). Since G is connected, it follows that |Si−1(p)| ≥ θi−2, so:

|V | =
∑

p′∈Pi−1

|Si−1(p
′)| ≥ θi−2|Pi−1| ⇒ θi|Pi−1| ≤ θ2|V |.

Thus,
∑

p∈Pi
|Ti(p)| ≤ θi|Pi−1| ≤ θ2|V | as required.

19



Lemma D.2 Given a (θ, α)-local partition hierarchy of a graph G(V, E), for every phase i, I-LEAG
sends at most (4iθ2 + 2)|V | messages if Tree+ is a tree and (4i + 2Λθ)θ

2|V | otherwise.

Proof. Denote by T̃ (Pi) the logical forest comprising the logical trees of every p ∈ Pi. We begin by
inspecting the communication that takes place over T̃ (Pi). According to lemma D.1, every level j ≤ i of
the partition hierarchy introduces at most θ2|V | (logical) edges to T̃ (Pi). Therefore, the number of edges
of T̃ (Pi) is at most iθ2|V |. During phase i, every (logical) edge of T̃ (Pi) is traversed at most 4 times:
once in conflict detection, twice in converge-cast, and once during multicast.

In addition, I-LEAG can send messages over edges of Tree+ that are not part of T̃ (Pi), when nodes
forward output changes to some of their direct neighbors during multicasts. Such edges are traversed at
most twice (once in each direction). If Tree+ is a tree, then obviously |Tree+| = |V | − 1. Otherwise,
Lemma D.1 ensures that |Tree+| ≤ Λθθ

2|V |. Hence, we conclude that in phase i, I-LEAG sends at most
(4iθ2 + 2)|V | messages if Tree+ is a tree, and (4i + 2Λθ)θ

2|V | otherwise.

I-LEAG’s average message load follows directly from lemma D.2:

Proof. (Theorem 4.11) In the general case, we obtain from Lemma D.2 that:

MLI−LEAG(I) =
1

|V |

log(VRα(I))∑

i=0

(4i + 2Λθ)θ
2|V | =

O(log2(VRα(I)) + log(VRα(I)) · Λθ) = log(VRα(I)) · Λθ).

If Tree+ is a tree, it holds that:

MLI−LEAG(I) =
1

|V |

log(VRα(I))∑

i=0

(4iθ2 + 2)|V | = O(log2(VRα(I))).

To evaluate I-LEAG’s memory usage, we assume that the partition hierarchy’s topological information
is fully distributed: every node only needs to know its incident tree edges (per tree root) in every level of
the partition hierarchy:

Proof. (Theorem 4.12) I-LEAG requires O(1) memory per node to hold its input value and output
result. All the other memory requirements can be attributed to the costs incurred by each logical edge:
topological information (whether this edge is a child or parent; the pivot whose tree this edge belongs
to), remembering whether a conflict message has been forwarded during conflict detection, and holding
an internal representation received from a peer node during converge-cast, all require O(1) memory.
According to Lemma D.1, there are at most O(Λθ|V |) logical edges. The proof follows.
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