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Abstract— We consider the problem of rate–R channel cod-
ing with causal/non–causal side information at the transmitter,
under an additional requirement of minimizing the amount of
information that can be learned from the channel output about
the state sequence, which is defined in terms of the equivocation
E (i.e., the mutual information between the state sequence and
the channel output sequence). A single–letter characterization is
provided for the achievable region of pairs {(R, E)}. Explicit
results for the Gaussian case (Costa’s dirty–paper channel) are
derived in full detail.

I. INTRODUCTION

The problem of information transfer via state–dependent

channels is classical (see [9] for a partial review). One of

the most interesting models is the case where the channel

states are available at the transmitter either causally or non–

causally. This framework has been fully characterized for i.i.d.

states in famous studies by Shannon [14] and by Gel’fand and

Pinsker (G–P) [7], repectively. These models, and in particular

the G–P setting, have gained much interest in the last few

years, mainly due to the wide scope application areas, such as

watermarking, [3], [10], [12], [15], [11], multi–input–multi–

output (MIMO) broadcast channels, [1], [2], network [8] and

cooperative networks, [6], just to name a few applications.

One of the most interesting and well known examples the

the G–P channel is the Gaussian setting where the states

impact the channel additively. The surprising result by Costa

[4] demonstrates that no loss in capacity is suffered no

matter how strong that independent interfering state sequence

is. Evidently, the many applications and the challenge here

motivated much work in terms of actual coding strategies that

come close to the optimum. These coding strategies (see, e.g.,

[21] and references therein), build on the insight of random

binning which is the central mechanism in showing achiev-

ability in this problem [7], and can, in fact, be interpreted

as practical binning strategies. In the Gaussian channel, nick–

named ‘’dirty-paper” [4], efficient techniques based on modern

codes were recently reported as well (see [16] and references

therein). Source–channel coding aspects in the framework

of state–dependent channel of this type are also considered

[13], and the source–channel separation principle has been

shown valid in various scenarios, in which the model itself

is intimately related to the Wyner–Ziv (W–Z) source coding

problem with side information at the decoder [20], and the

G–P channel [7].

While in models addressed in [13], the source and channel

states are assumed independent, this is not always the case.

In some applications, the channel–state process is not inher-

ently channel–related (like in fading), but may rather be an

information–bearing signal on its own. The MIMO broadcast

channel serves as a typical example, where a state sequence for

one user is just the information–carrying sequence for another,

and all produced at the same transmitter who addresses both

users simultaneously [1]. In fact, these are exactly the cases

where the justification to the non–causality is self–evident, as

the transmitter controls the state sequence. The state sequence

is often modelled as i.i.d. whether it is a specific codeword of

a good codebook operating on a memoryless channel, which

essentially mimics an i.i.d., or it is i.i.d., and it represents

raw data, as say a systematic part of the information [13].

Furthermore, the state sequence may model also analogue

information which is conveyed over the same channel with

an overlayed digital part. This sort of applications gave rise

to an interesting problem addressed by Sutivong et. al. [17],

[18], where the role of the transmitter is two–fold: to transmit

independent reliable information on the one hand, and to boost

the quality of the state estimator at the receiver, which adopts

a prescribed distortion measure, on the other. A coding scheme

has been suggested in [18], which combines W–Z coding,

based on the side information about the state available at

the receiver side, and G–P coding which is used to convey

the independent reliable rate, as well as the W–Z coded

information. In the Gaussian case, it has been verified that this

achievable tradeoff is in fact optimal [19]. In this specific case,

a simple technique where the transmitter optimally power–

shares between pure information transmission via the Costa

strategy and simple state amplification achieves the optimal

tradeoff.

In this paper, we focus on another aspect of the problem.

The state sequence is referred to as undesired information

that leaks to the receiver. It indeed could model a leakage

in the system of, say, secret analogue (sampled) information,

or stand for a codeword which is not intended to that receiver

and is therefore to be concealed from the receiver side. Thus,

the goal of the transmitter now is to try and mask this

undesired information as much as possible on the one hand,

and to transmit reliable independent data rate on the other.

The amount of information that the receiver retrieves about the

state sequence is measured by the blockwise mutual informa-

tion (equivocation), as is customary in measuring the security

of the cipher systems, in the literature of the Shannon theory.

This measure guarantees that even if there is coding involved,

only a small value of the associated mutual information limits

the reliable information that the non–intended receiver can

retrieve about the state sequence.

We characterize the tradeoff between the reliably transmit-
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ted rate and the masking ability of the state information, and

that is in both the G–P and Shannon models, namely, where

the state sequence is either available non–causally or causally

respectively. We characterize, explicitly and completely, the

tradeoff for the additive Gaussian example, and notice that

also in this setting, an element of state cancellation (de–

amplification) is optimal. In some cases, excess reliable rate

can be transmitted at no cost to the masking ability.

II. NOTATION AND PROBLEM FORMULATION

Throughout this paper, scalar RVs will be denoted by capital

letters, their sample values will be denoted by the respective

lower case letters, and their alphabets will be denoted by

the respective calligraphic letters. A similar convention will

apply to random vectors and their sample values, which will

be denoted with same symbols superscripted by the dimen-

sion. Thus, for example, Xn will denote a random n-vector

(X1, ..., Xn), and xn = (x1, ..., xn) is a specific vector value

in Xn, the n-th Cartesian power of X . The notations xj
i and

Xj
i , where i and j are integers and i ≤ j, will designate

segments (xi, . . . , xj) and (Xi, . . . , Xj), respectively, where

for i = 1, the subscript will be omitted (as above). For i > j,

xj
i (or Xj

i ) will be understood as the null string. Sequences

without specifying indices are denoted by {·}. Sources and

channels will be denoted generically by the letter P or Q.

Information theoretic quantities like entropies, and mutual

informations will be denoted following the usual conventions

of the information theory literature, e.g., H(Xn), I(Sn;Y n),
etc. Differential entropy will be denoted by h, e.g., h(Sn).

Consider the Gel’fand–Pinsker (G–P) discrete memoryless

channel (DMC) G–P channel

P (yn|xn, sn) =
n
∏

i=1

P (yi|xi, si),

where {xi} are the transmitted symbols, taking on values in a

finite alphabet X , {si} are the corresponding channel states,

taking values in a finite state set S, and drawn from a discrete

memoryless source (DMS),

Q(sn) =
n
∏

i=1

Q(si),

and {yi} are the corresponding channel outputs, taking on

values in a finite output alphabet Y . The channel input signal

is subjected to a limitation

1

n

n
∑

i=1

E{φ(Xi)} ≤ Γ, (1)

where φ : X → IR+ is the transmission cost function and Γ >
0 is a given constant. Let w ∈ W = {0, 1, . . . , 2nR−1} denote

(the index of) an nR–bit digital message, R being the coding

rate, to be conveyed via the channel. The random variable

W that designates the message is uniformly distributed across

W independently of Sn. We assume that the encoder (also

referred to as the transmitter) is non–causally aware of the

state sequence sn, and it transmits an input vector xn, which is

a (possibly stochastic) function of w and sn. A rate–R encoder

for n-blocks is therefore characterized by a conditional prob-

ability distribution P (xn|sn, w), which maintains the channel

input limitation (1), w.r.t. the randomness of Sn and W as

well as the possible randomness of the transmitter itself. The

corresponding decoder maps the channel output yn to ŵ ∈ W ,

and the probability of error Pe is defined as Pr{Ŵ 6= W}.

We are interested in the interplay between reliable coding

at rate R, which would like to keep as large as possible, and

an equivocation level, I(Sn;Y n)/n, which we would like to

make as small as possile. For a given Γ > 0, a pair (R,E)
is called achievable if for every ǫ > 0 and sufficiently large

n, there exist a rate–R encoder–decoder for n-blocks such the

following conditions are simultaneously satisfied:

1) 1
n

∑n

i=1 E{φ(Xi)} ≤ Γ
2) Pe ≤ ǫ
3) 1

n
I(Sn;Y n) ≤ E + ǫ.

The achievable region A is the set of all achievable pairs

{(R,E)}.

Our main goal is to provide a single–letter characterization

of A as well as some insights on good coding schemes. We

also show how our coding theorem should be modified to the

case where the transmitter has causal, rather than non–causal,

access to the side informaton.

III. THE ZERO–RATE CASE

For the sake of simplicity of the exposition, we begin with

zero–rate case, i.e., R = 0, and then our only goal is to

minimize I(Sn;Y n)/n subject to (1).

Let F(Γ) denote the minimum of I(Sn;Y n)/n over all

channels {P (xn|sn)} that satisfy (1). Define also the single–

letter function F (Γ) = min I(S;Y ), where the minimum is

over all {P (x|s)} s.t. Eφ(X) ≤ Γ. Our first theorem is the

following:

Theorem 1: F(Γ) = F (Γ).

Proof. As for the direct part, apply the DMC

P ∗(xn|sn) =
n
∏

i=1

P ∗(xi|si),

where the single–letter channel P ∗(x|s) achieves F (Γ). Since

the induced channel P (yn|sn) will be a DMC as well, and

I(Si, Yi) = F (Γ) for all i, then so will be I(Sn;Y n)/n =
1
n

∑n

i=1 I(Si;Yi).

Turning now to the converse part, we first observe that

F (Γ) is convex. This is very easy to see in the very same

manner as the classical informational rate–distortion is shown

to be convex [5]: The mutual information I(Sn;Y n) is a

convex functional of {P (yn|sn)}, which is a linear functional

of {P (xn|sn)}, which in turn is subjected to the power



constraint, which is linear. Thus,

I(Sn;Y n) ≥
n
∑

i=1

I(Si;Yi)

≥
n
∑

i=1

F (Eφ(Xi))

≥ nF

(

1

n

n
∑

i=1

Eφ(Xi)

)

≥ nF (Γ), (2)

where the first inequality is by the memorylessness of Sn, the

second is by definition of F , the third by convexity, and the

fourth by monotonicity. This completes the proof of Theorem

1. •
It is interesting to observe that in the zero–rate case con-

sidered here, the optimum transmitter works in a single–

letter (scalar) fashion, i.e., no long blocks are needed. This

means that the solutions to the causal and non-causal problems

coincide in the zero–rate case. It also means that the solution

is strictly optimum and not only asymptotically so. As we

shall see, this will no longer be true for positive rates. We

next study the example of the Gaussian inteference channel in

some detail.

Example. Consider the Gaussian inteference channel

Y = X + S + Z, (3)

where S and Z are zero–mean independent Gaussian RV’s

with variances σ2
s and σ2

z , respectively. We would like to

characterize the optimum conditional distribution P ∗(x|s).
Since

I(S;Y ) = h(S) − h(S|Y ), (4)

and h(S) is given, minimization of I(S;Y ) is equivalent to

maximization of h(S|Y ). Now, for a given σ2
x ≤ Γ, and ρ =

E(XS)/(σxσs), we have:

h(S|Y ) = h(S − E(S|Y )|Y )

≤ h(S − E(S|Y ))

≤ 1

2
log
[

2πe · E(S − E(S|Y ))2
]

≤ 1

2
log
[

2πe · min
a

E(S − aY )2
]

=
1

2
log
[

2πe(σ2
s − σ2

ŝ)
]

(5)

with

σ2
ŝ =

(σ2
s + ρσxσs)

2

σ2
s + 2ρσxσs + σ2

x + σ2
z

, (6)

which is the variance of the optimum linear estimator of S
based on Y . The last inequality is due to the fact the MSE of

the optimum linear estimator of S is never smaller than the

MSE of the optimum estimator, which is the conditional mean.

As is easily see, all inequalities become equalities if (X, S)
are jointly Gaussian. It remains then to minimize σ2

ŝ w.r.t.

(σ2
x, ρ) over the rectangle [0,Γ] × [−1, 1]. First observe that

whenever Γ ≥ σ2
s , the solution is trivially X = −S. Assume

then that Γ < σ2
s . Minimizing σ2

ŝ is equivalent to maximizing

G
∆
= 1/σ2

ŝ , which is given by

G =
σ2

s + 2ρσxσs + σ2
x + σ2

z

(σ2
s + ρσxσs)2

=
2(σ2

s + ρσxσs) + σ2
x + σ2

z − σ2
s

(σ2
s + ρσxσs)2

=
2

σ2
s + ρσxσs

+
σ2

x + σ2
z − σ2

s

(σ2
s + ρσxσs)2

∆
=

2

t
+

σ2
x + σ2

z − σ2
s

t2
, (7)

where for a given σ2
x, we have the freedom to maximize A

over t in the range [σs(σs − σx), σs(σs + σx)]. First, observe

that σ2
x = Γ is always the optimum choice – this choice both

maximizes the numerator of the second term, and broadens

the range of allowable values of u as much as possible. Let

us set then σ2
x = Γ. Moving on to the maximization w.r.t. t,

the derivative ∂G/∂t, is given by

∂G

∂t
= −2(t + σ2

x + σ2
z − σ2

s)

t3
, (8)

which vanishes at

t = σ2
s − σ2

x − σ2
z . (9)

This means that

ρ = −Γ + σ2
z√

Γσs

, (10)

which can be the case only if

σs ≥
√

Γ +
σ2

z√
Γ

, (11)

otherwise, ρ = −1. To summarize then, the solution divides

into three cases, according to the intensity of the interference,

S:

• Weak interference: If σ2
s/Γ ≤ 1, then take X = −S, and

then F (Γ) = 0.

• Moderate interference: If

1 <
σ2

s

Γ
≤
(

1 +
σ2

z

Γ

)2

, (12)

then

X = −
√

Γ

σ2
s

· S, (13)

and then

F (Γ) =
1

2
log



1 +

(

σs

σz

−
√

Γ

σz

)2


 . (14)

• Strong interference: If

σ2
s

Γ
>

(

1 +
σ2

z

Γ

)2

, (15)



then

X = −S ·
(

Γ

σ2
s

+
σ2

z

σ2
s

)

+ V, (16)

where V is a zero–mean Gaussian RV, independent of S,

with variance

Γ



1 −
(√

Γ

σs

+
σz√
Γ
· σz

σs

)2


 , (17)

and in this case,

F (Γ) =
1

2
log

(

1 +
A

B

)

, (18)

where

A = σ2
s

[

1 − Γ

σ2
s

(

1 +
σ2

z

Γ

)]2

(19)

and

B = σ2
z + Γ

[

1 −
√

Γ

σs

(

1 +
σ2

z

Γ

)

]2

. (20)

IV. THE POSITIVE RATE CASE

Turning now to the more general positive rate case, our main

result is the following:

Theorem 2: A is the set of pairs {(R,E)} for which

there exists a random variable U that satisfies the following

conditions at the same time:

1) U → (X, S) → Y is a Markov chain.

2) Eφ(X) ≤ Γ.

3) R ≤ I(U ;Y ) − I(U ;S).
4) E ≥ I(S;U, Y ).

Proof. We begin with the converse part. The channel–coding

part is exactly as in [7], except that here, we present it

slightly differently in order to establish the fact the same

random variable U that meets the rate requirement, also meets

the equivocation requirement and the power constraint. For

i = 1, . . . , n, let Ui = (W,Y i−1, Sn
i+1). Define a RV T ,

uniformly distributed over {1, 2, . . . , n} (independently of the

other RV’s), and let U
∆
= (UT , T ). We also define the RV’s

Y = YT , S = ST , and

δ(ǫ) = ǫ log ǫ − (1 − ǫ) log(1 − ǫ) + ǫR,

for ǫ ∈ [0, 1]. Now,

R − δ(ǫ) ≤ R − δ(Pe)

≤ 1

n

n
∑

i=1

[I(Ui;Yi) − I(Ui;Si)]

= I(UT ;YT |T ) − I(UT ;ST |T )

= I(UT , T ;YT ) − I(T ;YT ) −
I(UT , T ;ST ) + I(T ;ST )

≤ I(UT , T ;YT ) − I(UT , T ;ST ) + I(T ;ST )

= I(UT , T ;YT ) − I(UT , T ;ST )

= I(U ;Y ) − I(U ;S), (21)

where the first inequality is by the requirement that Pe ≤ ǫ,

the second is as in [7, Proposition 3, Lemma 4], and in the

second to the last equality we have used the fact that S = ST is

independent of T (due to stationarity). As for the equivocation,

we have the following:

I(Sn;Y n) = I(Sn;Y n,W ) − I(Sn;W |Y n)

≥ H(Sn) − H(Sn|Y n,W ) − H(W |Y n)

≥
n
∑

i=1

[H(Si) − H(Si|Sn
i+1, Y

n,W )] − nδ(Pe)

≥
n
∑

i=1

[H(Si) − H(Si|Yi, S
n
i+1, Y

i−1,W )]

−nδ(Pe)

≥
n
∑

i=1

[H(Si) − H(Si|Yi, Ui)] − nδ(ǫ)

= n[H(ST |T ) − H(ST |YT , UT , T )] − nδ(ǫ)

= n[H(S) − H(S|Y,U) − δ(ǫ)]

= n[I(S;Y, U) − δ(ǫ)], (22)

where the second inequality is by Fano’s inequality, and where

we have used again the fact that ST is independent of T . The

channel input constraint is maintained by definition of XT .

Finally, note that due to the stationarity of the memoryless

channel P (y|x, s), the Markov relation U → (X, S) → Y is

maintained (and is not violated by the presence of the RV T ).

Regarding the direct part, consider the ordinary construction

of the G–P code using binning. Reliable decoding is proved

exactly as in [7]. The power constraint is maintained by joint

typicality considerations. As for the equivocation, first, we

have the following:

I(Sn;Y n) ≤ I(Sn;Un, Y n)

= I(Sn;Un) + I(Sn;Y n|Un)

= I(Sn;Un) + H(Y n|Un) − H(Y n|Sn, Un) (23)

The first term is bounded as follows:

I(Sn;Un) ≤ I(Sn;W,Un)

= I(Sn;Un|W )

≤ H(Un|W )

≤ n[I(U ;S) + ǫ], (24)

where the equality is due to the independence between Sn and

W , and the last inequality is due to the fact that the size of

each bin is less than 2n[I(U ;S)+ǫ]. As for the second term on

the right–most side of (23), we have:

H(Y n|Un) ≤
n
∑

i=1

H(Yi|Ui) = nH(Y |U), (25)

where we have used the fact that the empirical distribution

of each codeword Un is according to the desired choice of

the distribution of U and that each Yi is generated from Ui

according to

P (y|u) =
∑

s,x

P (s|u)P (x|u, s)P (y|x, s). (26)



As for the third term on the right–most side of (23):

H(Y n|Sn, Un) =
n
∑

i=1

H(Yi|Si, Ui) = nH(Y |S, U), (27)

where the first equality is due to the memorylessness of the

channel P (y|u, s) (which is the cascade of the memoryless

channel P (x|u, s) and the memoryless channel P (y|x, s)), and

the second equality is explained similarly as before. Thus, we

obtain:

I(Sn;Y n) ≤ n[I(U ;S) + ǫ] + nH(Y |U) − nH(Y |S, U)

= n[I(S;Y, U) + ǫ]. (28)

The power constraint is maintained by joint typicality consid-

erations. This completes the proof of Theorem 2. •
A few comment are in order: First, as the auxilary RV U ,

includes the time variable T , the achievable region is convex.

Second, the cardinality of the alphabet of U is by two letters

larger than in ordinary G–P coding because of the additional

equivocation and power constraints. Finally, note that here,

unlike the pure G-P coding, the channel P (x|u, s) is not

necssarily deterministic: For example, in the Gaussian case

with R = 0 that was studied earlier, U is degenerate, but

P (x|u, s) = P (x|s) is non–deterministic in the case of very

strong interference.

We next revisit the Gaussian example, this time, for positive

rates. One of the interesting points in this example is that it

turns out that the same RV U that maximizes the information

rate, I(U ;Y ) − I(U ;S) (as in Costa’s channel) turns out

to minimize the equivocation I(S;Y, U) and bring it to the

level of I(S;Y ). In other words, U does not improve on the

estimation of S once Y is observed (even in the single–letter

level).

Example – Gaussian channel revisited. First, it should be

noted, that similarly as in [4], here too, Theorem 2 extends to

continuous alphabets by taking limits of I(U ;Y )−I(U ;S) and

I(S;Y, U) over sequences of successively refined partitions

of the alphabets U , S and Y . As before, the actual input

power σ2
x

∆
= E(X2) will be assumed less than or equal to

Γ. However, observe that in case of R > 0, the best choice

of σ2
x is always σ2

x = Γ, because the part of the power of X
that may not be needed to cancel S (when σ2

s < Γ), is always

fully utilized to convey digital information. Thus, σ2
x and Γ

are two notations for the same entity, in this example.

Proposition 1: Let Y = X +S +Z, where S is zero–mean

with variance σ2
s , Z ∼ N (0, σ2

z) is independent of X and S,

E(X2) = σ2
x, and E(XS) = ρσsσx. Further, let U be an RV

that satisfies the Markov relation U → (X, S) → Y . Then,

I(U ;Y ) − I(U ;S) ≤ 1

2
log

[

1 +
σ2

x(1 − ρ2)

σ2
z

]

. (29)

Proof. Let X̃ = X − aS, where aS stands for the best linear

estimator of X given S, that is, a = ρσx/σs. Thus, Y can be

represented as

Y = X̃ + (1 + a)S + Z, (30)

where X̃ is uncorrelated with S, and E(X̃2) = σ2
x(1 − ρ2).

Now,

I(U ;Y ) − I(U ;S)

≤ I(U ;Y, S) − I(U ;S)

= I(U ;Y |S)

≤ I(X, S;Y |S)

= I(X̃, S;Y |S)

= I(X̃; X̃ + Z|S)

= h(X̃ + Z|S) − h(X̃ + Z|S, X̃)

≤ h(X̃ + Z) − h(X̃ + Z|X̃)

≤ 1

2
log
[

2πe
(

σ2
x(1 − ρ2) + σ2

z

)]

− 1

2
log(2πeσ2

z)

=
1

2
log

[

1 +
σ2

x(1 − ρ2)

σ2
z

]

, (31)

where the second inequality is due to the Markov relation U →
(X, S) → Y and the data processing theorem, the following

equality is due to the fact that the transformation from (X, S)
to (X̃, S) is one–to–one, and the following inequality is due

to the fact the conditioning reduces entropy and the fact that

X̃ + Z is independent of S given X̃ (since Z is independent

of both X̃ and S). This completes the proof.•
Proposition 2: Let Y = X + S + Z, where S ∼ N (0, σ2

s),
Z ∼ N (0, σ2

z) is independent of X and S, E(X2) = σ2
x, and

E(XS) = ρσsσx. Further, let U be an RV that satisfies the

Markov relation U → (X, S) → Y . Then,

I(S;Y, U) ≥ 1

2
log

σ2
s

σ2
s − σ2

ŝ

, (32)

where σ2
ŝ is as in eq. (6).

Proof. I(S;Y, U) ≥ I(S;Y ) and the rest is like in the

Gaussian example for R = 0.•

Corollary 1: Let

R <
1

2
log

(

1 +
σ2

x

σ2
z

)

,

̺(R) =

√

1 − (22R − 1)
σ2

z

σ2
x

,

and let E(̺), ̺ ≥ 0, denote the minimum of

1

2
log

σ2
s

σ2
s − σ2

ŝ

with σ2
ŝ as in eq. (6), as a function of ρ across the interval

[−̺,+̺]. Then, for the channel Y = X + S + Z, and a

given coding rate R for reliable communication, the minimum

achievable per–symbol masking mutual information is lower

bounded by E(̺(R)).
Comment: Referring to the discussion after eq. (7), the in-

terval of t where optimum is sought, shrinks to [σs(σs −
̺σx), σs(σs + ̺σx)].

Proposition 3: E(̺(R)) is achievable.



Proof. Given R, let ρ be the achiever of E(̺(R)). Now, apply

dirty–paper coding to the (modified) Costa channel

Y = X̃ + (1 + a)S + Z,

where X̃ is, as was shown above, Gaussian and independent

of S, and where U = X̃ + c(1 + a)S, with

c =
σ2

x(1 − ρ2)

σ2
x(1 − ρ2) + σ2

z

.

This means that

U = X̃ + c(1 + a)S = X − aS + c(1 + a)S = X + bS,

where

b = c(1 + a) − a =
σ2

x(1 − ρ2) − ρσ2
zσx/σs

σ2
x(1 − ρ2) + σ2

z

.

Since the power of X̃ is σ2
x(1 − ρ2), any coding rate up to

1

2
log

[

1 +
σ2

x(1 − ρ2)

σ2
z

]

is achievable as in [4].

Regarding the equivocation, we now show that with this

choice of U , we have I(S;U, Y ) = I(S;Y ), i.e., in the

presence of Y , the observation of U , defined as in Costa [4],

does not improve the MSE of linear estimation of S, and so

the lower bound to the equivocation is met. In other words,

the above choice of U simultaneously maximizes I(U ;Y ) −
I(U ;S) and minimizes I(S;Y,U). To show this, consider the

minimum mean square error associated with optimum (linear)

estimation of S given Y = X̃+(1+a)S+Z and U = X̃+bS,

i.e., E(S−αY −βU)2. We have to show that for the optimum

coefficients (α∗, β∗), we have β∗ = 0. Now, by solving the

linear equations associated with (α∗, β∗), it is readily seen that

β∗ is given by a ratio of two expressions whose numerator is

given by

E(Y 2) · E(SU) − E(UY ) · E(SY ). (33)

Thus, proving that β∗ = 0 is equivalent to proving that

E(Y 2) · E(SU) = E(UY ) · E(SY ). (34)

Now, the left–hand side of the last equation is given by

E(Y 2) · E(SU) = [E(X̃2) + (1 + a)2σ2
s + σ2

z ] · bσ2
s (35)

whereas the right–hand side is given by

E(UY ) ·E(SY ) = [E(X̃2) + b(1 + a)σ2
s ] · (1 + a)σ2

s . (36)

By using the above defined expressions of E(X̃2), a, b, and

c, the equality between the two expressions is readily verified.

This completes the proof.•

Note that as long as the achiever ρ of E(1) has absolute

value striclty less than unity (which is the case of strong

interference, cf. the Gaussian example at rate R = 0), then

it is possible to transmit at a positive rate, without any loss in

equivocation. In other words, the random variable V , in the

earlier Gaussian example pertaining to R = 0, could be used

for dirty–paper coding a la Costa, at rate up to

R =
1

2
log

B

σ2
z

,

where B is defined as in eq. (20). A similar comment applies

to weak interference, where the remainder power, not used to

cancel S, can be harnessed to convey information at any rate

up to

R =
1

2
log

(

1 +
Γ − σ2

s

σ2
z

)

.

Another observation is that while in general, the channel

P (x|s, u) might be stochastic (in contrast to the ordinary G-P

problem), in the Gaussian case, it remains always deterministic

when R > 0 (U = X + bS is equivalent to X = U − bS).

Recall that for the case R = 0, it is not necessarily true.

V. CAUSAL SIDE INFORMATION

In analogy to the Shannon model of causal side information

[14], the question of trading off coding rate and equivocation is

applicable also when the channel input is a causal (stochastic)

function of sn and the message w, i.e.,

P (xn|sn, w) =
n
∏

i=1

P (xi|si, xi−1, w). (37)

We argue that the characterization of the achievable region

of pairs {(R,E)} is the same as before, with the additional

constraint that U is independent of S, and so, I(U ;S) = 0
in the rate inequality, and I(S;Y,U) = I(S;Y |U) in the

equivocation inequality.

As for the converse part, we first note that the auxilary RV

Ui = (W,Y i−1, Sn
i+1) is independent of Si whenever the the

encoder is as in eq. (37). In particular,

P (ui, si) = P (w, yi−1, sn
i+1, si)

= P (w)
∑

xi−1,si−1

i−1
∏

j=1

[P (sj)P (xj |xj−1, sj , w) ×

P (yj |xj , sj)]P (sn
i+1)P (si)

= P (ui)P (si). (38)

In other words, given T , the RV’s U = (UT , T ) and S = ST

are independent, i.e.,

P (u, s|t) = P (u|t)P (s|t) = P (u|t)P (s),

where the second equality follows again from the fact that S
ans T are independent. Thus,

P (u, s) =
1

n

n
∑

t=1

P (u, s|t)

=

[

1

n

n
∑

t=1

P (u|t)
]

P (s) = P (u)P (s). (39)

This means that I(U ;S) = 0 in the rate inequality, and

I(S;Y, U) = I(S;Y |U) in the equivocation inequality.



As for the direct part, let U and X be random variables,

where U independent of S, the Markov relation U →
(X, S) → Y is met, and the power constraint

∑

x,u,s

P (s)P (u)P (x|u, s)φ(x) ≤ Γ,

the rate constraint, R < I(U ;Y ), and the equivocation

constraint, E ≥ I(S;Y |U), are all met. Randomly select 2nR

independent codewords {un(1), . . . , un(2nR)} with uniform

distribution within the type class corresponding to PU . Given

a message w and a state sequence sn, xn is generated by the

product channel (37), where

P (xi|xi−1, si, w) = P (xi|si, ui(w)). (40)

First, observe that this induces a memoryless channel from

Un to Y n, given by P (yn|un) =
∏n

i=1 P (yi|ui), thus,

Un(W ) is communicated reliably for R < I(U ;Y ), by the

ordinary coding theorem for DMC’s. Regarding the equivo-

cation, consider again the inequality (10). Now, I(Sn, Un) =
I(Sn;Un(W )) = 0, as Sn and W are independent. The sec-

ond term, H(Y n|Un) is upper bounded by
∑n

i=1 H(Yi|Ui),
as before, and

H(Y n|Un, Sn) =
n
∑

i=1

H(Yi|Ui, Si) = nH(Y |U, S),

since P (yn|un, sn) is a DMC and the joint statistics of U and

S are according to P (u, s) = P (u)P (s) (again, due to the

independence between Sn and W ).
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