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Abstract

The performance of maximum-likelihood (ML) decoded binary linear block codes over the AWGN channel
is addressed via the tangential-sphere bound (TSB) and some of its improved variations. The paper focuses
on the derivation of the error exponents of these bounds. Although it was previously exemplified that some
variations of the TSB suggest an improvement over the TSB for finite-length codes, it is demonstrated in
this paper that all of these bounds possess the same error exponent. Their common value is equal to the
error exponent of the TSB, where the latter error exponent was previously derived by Poltyrev and Divsalar.

1 Introduction

In recent years, much effort has been put into the derivation of tight performance bounds on
the error probability of linear block codes under soft-decision maximum-likelihood (ML) decoding.
During the last decade, this research was stimulated by the introduction of various codes defined
on graphs and iterative decoding algorithms, achieving reliable communication at rates close to
capacity with feasible complexity. The remarkable performance of these codes at a portion of the
rate region between the channel capacity and cut-off rate, makes the union bound useless for their
performance evaluation. Hence, tighter performance bounds are required to gain some insight on
the performance of these efficient codes at rates remarkably above the cut-off rate. Duman and
Salehi pioneered this research work by adapting the Gallager bounding technique in [7] and making
it suitable for the performance analysis of ensembles, based on their average distance spectrum.
They have also applied their bound to ensembles of turbo codes and exemplified its superiority over
the union bound [4, 5]. Other performance bounds under ML decoding or ’typical pairs decoding’
are derived and applied to ensembles of turbo-like codes by Divsalar [2], Divsalar and Biglieri [3],
Jin and McEliece [10, 11], Miller and Burshtein [12], Sason and Shamai [14, 15, 16] and Viterbi
[22, 23].

The tangential-sphere bound of Poltyrev [13] forms one of the tightest performance bounds for
ML decoded linear block codes transmitted over the binary-input additive white Gaussian noise
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(BIAWGN) channel. The TSB was modified by Sason and Shamai [14] for the analysis of the bit
error probability of linear block codes, and was slightly refined by Zangl and Herzog [24]. This
bound only depends on the distance spectrum of the code (or the input-output weight enumerating
function (IOWEF) of the code for the bit-error analysis [14]), and hence, it can be applied to various
codes or ensembles. The TSB falls within the class of upper bounds whose derivation relies on the
basic inequality

Pr(word error | c0) ≤ Pr(word error, y ∈ R | c0) + Pr(y /∈ R | c0) (1)

where c0 is the transmitted codeword, y denotes the received vector at the output of the channel,
and R designates an arbitrary geometrical region which can be interpreted as a subset of the
observation space. The basic idea of this bounding technique is to reduce the number of overlaps
between the decision regions associated with the pairwise error probabilities used for the calculation
of union bounds. This is done by separately bounding the error events for which the noise resides
in a region R. The TSB, for example, uses a circular hyper-cone as the region R. Other important
upper bounds from this family include the simple bound of Divsalar [2], the tangential bound of
Berlekamp [1], and the sphere bound of Herzberg and Poltyrev [8]. In [19], Yousefi and Khandani
prove that among all the volumes R which posses some symmetry properties, the circular hyper-
cone yields the tightest bound. This finding demonstrates the optimality of the TSB among a
family of bounds associated with geometrical regions which possess some symmetry properties, and
which are obtained by applying the union bound on the first term in the RHS of (1). In [20], Yousefi
and Khandani suggest to use the Hunter bound [9] (an upper bound which belongs to the family
of second-order Bonferroni-type inequalities) instead of the union bound. This modification should
result in a tighter upper bound, and they refer to the resulting upper bound as the added hyper
plane (AHP) bound. Yousefi and Mehrabian also apply the Hunter bound, but implement it in a
quite different way in order to obtain an improved tangential-sphere bound (ITSB) which solely
depends on the distance spectrum of the code. The tightness of the ITSB and the AHP bound is
exemplified in [20, 21] for some short linear block codes, where these bounds slightly outperform
the TSB at the low SNR range.

An issue which is not addressed analytically in [20, 21] is whether the new upper bounds (namely,
the AHP and the ITSB) provide an improved lower bound on the error exponent as compared to
the error exponent of the TSB. In this paper, we address this question, and prove that the error
exponents of these improved tangential-sphere bounds coincide with the error exponent of the TSB.
We note however that the TSB fails to reproduce the random coding error exponent, especially for
high-rate linear block codes [13].

This paper is organized as follows: The TSB ([13], [14]), the AHP bound [20] and the ITSB [21]
are presented as a preliminary material in Section 2. In Section 3, we derive the error exponents
of the ITSB and the AHP, respectively and state our main result. We conclude our discussion in
Section 4. An Appendix provides supplementary details related to the proof of our main result.

2 Preliminaries

We introduce in this section some preliminary material which serves as a preparatory step towards
the presentation of the material in the following section. We also present notation from [2] which
is useful for our analysis.
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2.1 Assumption

Throughout this paper, we assume a binary-input additive white Gaussian noise (AWGN) channel
with double-sided spectral power density of N0

2 . The modulation of the transmitted signals is
antipodal, and the modulated signals are coherently detected and ML decoded (with soft decision).

2.2 Tangential-Sphere Bound (TSB)

The tangential-sphere bound (TSB) forms an upper bound on the decoding error probability of ML
decoding of linear block code whose transmission takes place over a binary-input AWGN channel
[13, 14]. Consider an (n, k) linear block code C of rate R , k

n
bits per channel use. Let us

designate the codewords of C by {ci}, where i = 0, 1, . . . , 2k − 1. Assume a BPSK modulation
and let si ∈ {+

√
Es,−

√
Es}n designate the corresponding equi-energy, modulated vectors, where

Es designates the transmitted symbol energy. The transmitted vectors {si} are obtained from the
codewords {ci} by applying the mapping si = (2ci − 1)

√
Es, so their energy is nEs. Since the

channel is memoryless, the received vector y = (y1, y2, . . . , yn), given that si is transmitted, can be
expressed as

yj = si,j + zj , j = 1, 2, . . . , n (2)

where si,j is the jth component of the transmitted vector si, and z = (z1, z2, . . . , zn) designates an
n-dimensional Gaussian noise vector which corresponds to n orthogonal projections of the AWGN.
Since z is a Gaussian vector and all its components are un-correlated, then the n components of z
are i.i.d., and each component has a zero mean and variance σ2 = N0

2 .
Let E be the event of deciding erroneously (under ML decoding) on a codeword other than the

transmitted codeword. The TSB is based on the central inequality

Pr(E|c0) ≤ Pr(E,y ∈ R|c0) + Pr(y /∈ R|c0) (3)

where R is an n-dimensional circular cone with a half angle θ and a radius r, whose vertex is
located at the origin and whose main axis passes through the origin and the point corresponding
to the transmitted vector (see Fig.1). The optimization is carried over r (r and θ are related as
shown in Fig. 1). Let us designate this circular cone by Cn(θ). Since we deal with linear codes,
the conditional error probability under ML decoding does not depend on the transmitted codeword
of the code C, so without any loss of generality, one can assume that the all-zero codeword, s0, is
transmitted. Let z1 be the radial component of the noise vector z (see Fig. 1) so the other n − 1
components of z are orthogonal to the radial component z1. From Fig. 1, we obtain that

r =
√

nEs tan θ

rz1 =
(

√

nEs − z1

)

tan θ

βk(z1) =
(

√

nEs − z1

)

tan ζ =

√
nEs − z1

√

nEs − δ2
k

4

δk

2
(4)

The random variable Y ,
∑n

i=2 z2
i is χ2 distributed with n − 1 degrees of freedom, so its pdf is

given by

fY (y) =
y

n−2
2 e−

y

2σ2 U(y)

2
n−1

2 σn−1Γ
(

n−1
2

)

, y ≥ 0 (5)
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Figure 1: The geometric interpretation of the TSB.

where U designates the unit step function. The function Γ is the complete Gamma function

Γ(x) =

∫ ∞

0
tx−1e−tdt, Real(x) > 0. (6)

Conditioned on the value of the radial component of the noise, z1, let E(z1) designate the
decoding error event. The conditional error probability satisfies the inequality

Pr(E(z1) | z1) ≤ Pr (E(z1),y ∈ Cn(θ) | z1) + Pr (y /∈ Cn(θ) | z1) (7)

The conditional error event E(z1) can be expressed as a union of pairwise error events, so

Pr(E(z1),y ∈ Cn(θ) | z1) = Pr

(

M−1
⋃

i=1

E0→i(z1),y ∈ Cn(θ) | z1

)

, M , 2k (8)
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where E0→i(z1) designates the event of error had the only codewords were c0 and ci, given the
value z1 of the radial component noise in Fig. 1, and M , 2k denotes the number of codewords of
the code C. We note that for BPSK modulation, the Euclidean distance between the two signals si

and s0 is directly linked to the Hamming weight of the codeword ci. Let the Hamming weight of
ci be h, then the Euclidean distance between s0 and si is equal to δh = 2

√
hEs. Let {Ah} be the

distance spectrum of the linear code C, and let Eh(z1) be the event of deciding under ML decoding
in favor of other codeword ci whose Hamming weight is h, given the value of z1. By applying the
union bound on the RHS of (8), we get

Pr(E(z1),y ∈ Cn(θ) | z1) ≤
k

∑

h=1

Ah Pr(Eh(z1),y ∈ Cn(θ) | z1). (9)

Combining (7) and (9) gives

Pr (E(z1) | z1) ≤
∑

h

{

Ah Pr (Eh(z1),y ∈ Cn(θ) | z1)
}

+ Pr (y /∈ Cn(θ) | z1) . (10)

The second term in the RHS of (10) is evaluated from (5)

Pr(y /∈ Cn(θ) | z1) = Pr
(

Y ≥ r2
z1

| z1

)

=

∫ ∞

r2
z1

fY (y)dy

=

∫ ∞

r2
z1

y
n−2

2 e−
y

2σ2 U(y)

2
n−1

2 σn−1Γ
(

n−1
2

)

dy. (11)

This integral can be expressed in terms of the incomplete Gamma function

γ(a, x) ,
1

Γ(a)

∫ x

0
tx−1e−tdt, a > 0, x ≥ 0 (12)

and it is transformed to

Pr(y /∈ Cn(θ) | z1) = 1 − γ

(

n − 1

2
,

r2
z1

2σ2

)

. (13)

Let z2 designate the tangential component of the noise vector z, which is on the plane that contains
the signals s0, si and the origin of the space, and orthogonal to z1 (see Fig. 1). Referring to the
first term in the RHS of (10), it follows from the geometry in Fig. 1 that

Pr(Eh(z1),y ∈ Cn(θ) | z1) = Pr(Eh(z1), Y ≤ r2
z1

| z1)

= Pr
(

βh(z1) ≤ z2 ≤ rz1 , Y ≤ r2
z1

| z1

)

. (14)

Let V ,
∑n

i=3 z2
i , then V = Y − z2

2 , and

Pr (Eh(z1),y ∈ Cn(θ) | z1) = Pr
(

βh(z1) ≤ z2 ≤ rz1 , V ≤ r2
z1

− z2
2 | z1

)

. (15)

The random variable V is χ2 distributed with n − 2 degrees of freedom, so its pdf is

fV (v) =
y

n−4
2 e−

y

2σ2 U(y)

2
n−2

2 σn−2Γ
(

n−2
2

)

, v ≥ 0 (16)
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and since the random variables V and Z2 are statistically independent, then

Pr (Eh(z1),y ∈ Cn(θ) | z1) =

∫ rz1

βh(z1)

e−
z2
2

2σ2

√
2πσ

∫ r2
z1

−z2
2

0
fV (v)dv dz2. (17)

In order to obtain an expression for the decoding error probability, Pr(E), one should apply the
statistical expectation operator on the RHS of (10) w.r.t. the radial noise component z1, which
results in

Pr(E) =

∫ ∞

∞

e−
z2
2

2σ2

√
2πσ

{

∑

h:
δh
2

<αh

{

Ah

∫ rz1

βh(z1)
e
−

z2
2

2σ2√
2πσ

∫ r2
z1

−z2
2

0 fV (v)dv dz2

}

+1 − γ

(

n−1
2 ,

r2
z1

2σ2

)

}

dz1. (18)

The determination of the indices h which are taken into account in the summation in the RHS of
(18) relies on the equivalence between the inequalities βh(z1) < rz1 and δh

2 < αh where

αh , r

√

1 − δ2
h

4nEs
(19)

The upper bound (18) is valid for all positive values of r. Hence, in order to achieve the tightest
upper bound of the form (18) one should set to zero the partial derivative of the RHS of (18) w.r.t.
rz1 . After straightforward algebra the following optimization equation for the optimal value of r is
obtained [13]:



































∑

h:
δh
2

<αh

Ah

∫ θh

0
sinn−3 φ dφ =

√
π Γ(n−2

2 )

Γ(n−1
2 )

θh = cos−1





δh

2r
1

√

1− δ2
h

4nEs



 .

(20)

where αh is given in (19). A proof for the existence and uniqueness of a solution r to the optimization
equation (20) was provided in [15, Appendix B], together with an efficient algorithm to solve
numerically this equation. In order to derive an upper bound on the bit error probability, let Aw,h

designate the corresponding coefficient in the IOWEF which is the number of codewords which are
encoded by information bits whose number of ones is equal to w (where 0 ≤ w ≤ nR) and whose
Hamming weights (after encoding) are equal to h, and define

A′
h ,

nR
∑

w=1

( w

nR

)

Aw,h, h = 0, . . . , n. (21)

In [15, Appendix C], Sason and Shamai derive an upper bound on the bit error probability by
replacing the distance spectrum {Ah} in (18) and (20) with the sequence {A′

h}, and show some
properties on the resulting bound on the bit error probability.
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2.3 Improved Tangential-Sphere Bound (ITSB)

In [21], Yousefi and Mehrabian derive a new upper bound on the block error probability of binary
linear block codes whose transmission takes place over a binary-input AWGN channel, and which
are coherently detected and ML decoded. This upper bound, which is called improved tangential-
sphere bound (ITSB) is based on inequality (3), where the region R is the same as of the TSB (i.e.,
an n-dimensional circular cone). To this end, the ITSB is obtained by applying a Bonferroni-type
inequality of the second order [6, 9] (instead of the union bound) to get an upper bound on the joint
probability of decoding error and the event that the received vector falls within the corresponding
conical region around the transmitted signal vector. The basic idea in [21] relies on Hunter’s bound
which states that if {Ei}M

i=1 designates a set of M events, and Ec
i designates the complementary

event of Ei, then

Pr

(

M
⋃

i=1

Ei

)

= Pr(E1) + Pr(E2 ∩ Ec
1) + . . . + Pr(EM ∩ Ec

M−1 . . . ∩ Ec
1)

≤ Pr(E1) +
M
∑

i=2

Pr(Ei ∩ Ec
î
). (22)

where the indices î ∈ {1, 2, . . . i − 1} are chosen arbitrarily for i ∈ {2, . . . , M}. Clearly, the upper
bound (22) is tighter than the union bound. The LHS of (22) is invariant to the ordering of the
events (since it only depends on the union of these events), while the RHS of (22) depends on this or-
dering. Hence, the tightest bound of the form (22) is obtained by choosing the optimal indices order-
ing i ∈ {1, 2, . . . , M} and î ∈ {1, 2, . . . , i−1}. Let us designate by Π(1, 2, . . . , M) = {π1, π2, . . . , πM}
an arbitrary permutation among the M ! possible permutations of the set {1, 2, . . . , M} (i.e., a per-
mutation of the indices of the events E1 to EM ), and let Λ = (λ2, λ3, . . . λM ) designate an arbitrary
sequence of integers where λi ∈ {π1, π2, . . . πi−1}. Then, the tightest form of of the bound in (22)
is given by

Pr

(

M
⋃

i=1

Ei

)

≤ min
Π,Λ

{

Pr(Eπ1) +
M
∑

i=2

Pr(Eπi
∩ Ec

λi
)

}

. (23)

Similarly to the TSB, the ITSB originates from the upper bound (7) on the conditional decoding
error probability, given the radial component of the noise z1 (see Fig. 1). In [21], it is proposed to
apply the upper bound (23) on the RHS of (8) which for an arbitrary permutation {π1, π2, . . . , πM}
and a corresponding sequence of integers (λ1, λ2, . . . λM−1) as above, gives

Pr

(

M−1
⋃

i=1

E0→i,y ∈ Cn(θ) | z1

)

≤ min
Π,Λ

{

Pr(E0→π1 ,y ∈ Cn(θ) | z1)

+
M−1
∑

i=2

Pr(E0→πi
, Ec

0→λi
,y ∈ Cn(θ) | z1)

}

(24)

where E0→j designates the pairwise error event where the decoder decides on codeword cj rather
than the transmitted codeword c0. As indicated in [19, 21], the optimization problem of (24)
is prohibitively complex. In order to simplify it, Yousefi and Mehrabian suggest to choose π1 =
λi = imin for all i = 2, . . . , M , where imin designates the index of a codeword which is closest
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(in terms of Euclidian distance) to the transmitted signal vector s0. Since the code is linear and
the channel is memoryless and symmetric, one can assume without any loss of generality that
the all-zero codeword is transmitted. Moreover, since we deal with antipodal modulation, then
wH(cimin) = dmin where dmin is the minimum distance of the code. Hence, by this specific choice
of π1 and Λ (which in general loosen the tightness of the bound in (24)), the ordering of the
indices {π2, . . . , πM} is irrelevant, and one can omit the optimization over Π and Λ. The above
simplification results in the following inequality:

Pr(E|z1) ≤Pr (E0→imin ,y ∈ Cn(θ) | z1)

+
M−1
∑

i=2

Pr(E0→i, E
c
0→imin

,y ∈ Cn(θ) | z1) + Pr (y /∈ Cn(θ) | z1) . (25)

Based on Fig. 1, the first and the third terms in the RHS of (25) can be evaluated in similarity
with the TSB, and we get

Pr (E0→imin ,y ∈ Cn(θ) | z1) = Pr(βmin(z1) ≤ z2 ≤ rz1 , V < r2
z1

− z2
2 | z1) (26)

Pr(y /∈ Cn(θ) | z1) = 1 − γ

(

n − 1

2
,

r2
z1

2σ2

)

(27)

where

βmin(z1) =

(

√

2nEs

N0
− z1

)

√

dmin

n − dmin
, (28)

z2 is the tangential component of the noise vector z, which is on the plane that contains the signals
s0, simin and the origin (see Fig. 1), and the other parameters are introduced in (4).

For expressing the probabilities of the form Pr(E0→i, E
c
0→imin

,y ∈ Cn(θ) | z1) encountered in
the RHS of (25), we use the three-dimensional geometry in Fig. 2-(a) (see p. 25). The BPSK
modulated signals s0, si and sj are all on the surface of a hyper-sphere centered at the origin and
with radius

√
nEs. The planes P1 and P2 are constructed by the points (o, s0, si) and (o, s0, sj),

respectively. In the derivation of the ITSB, Yousefi and Mehrabian choose sj to correspond to
codeword cj with Hamming weight dmin. Let z′3 be the noise component which is orthogonal to z1

and which lies on the plane P2 (see Fig 2-a). Based on the geometry in Fig. 2-a (the probability of
the event Ec

0→j is the probability that y falls in the dashed area) we get the equality

Pr(E0→i, E
c
0→imin

,y ∈ Cn(θ) | z1)

= Pr
(

βi(z1) ≤ z2 ≤ rz1 , −rz1 ≤ z′3 ≤ βmin(z1), Y < r2
z1

| z1

)

. (29)

Furthermore, from the geometry in Fig. 2-b (see p. 25), it follows that

z′3 = z3 sin(φ) + z2 cos(φ). (30)

where z3 is noise component which is orthogonal to both z1 and z2, and which resides in the three-
dimensional space that contains the signal vectors s0, si, simin and the origin. Plugging (30) into
the condition −rz1 ≤ z′3 ≤ βmin(z1) in (29) yields the condition −rz1 ≤ z3 ≤ min{l(z1, z2), rz1}
where

l(z1, z2) =
βmin(z1) − ρz2

√

1 − ρ2
(31)
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and ρ = cos φ is the correlation coefficient between planes P1 and P2. Let W =
n

∑

i=4

z2
i , then

Pr(E0→i, E
c
0→imin

,y ∈ Cn(θ) | z1)

= Pr
(

βi(z1) ≤ z2 ≤ rz1 , −rz1 ≤ z3 ≤ min{l(z1, z2), rz1}, W < r2
z1

− z2
2 − z2

3 | z1

)

. (32)

The random variable W is Chi-squared distributed with n−3 degrees of freedom, so its pdf is given
by

fW (w) =
w

n−5
2 e−

w

2σ2 U(w)

2
n−3

2 σn−3Γ
(

n−3
2

)

, w ≥ 0. (33)

Since the probabilities of the form Pr(E0→i, E
c
0→imin

,y ∈ Cn(θ) | z1) depend on the correlation
coefficients between the planes (o, s0, simin) and (o, s0, si), the overall upper bound requires the
characterization of the global geometrical properties of the code and not only the distance spectrum.
To circumvent this problem and obtain an upper bound which is solely depends on the distance
spectrum of the code, it is suggested in [21] to loosen the bound as follows. It is shown [20,
Appendix B] that the correlation coefficient ρ, corresponding to codewords with Hamming weights
di and dj satisfies

−min

{√

didj

(n − di)(n − dj)
,

√

(n − di)(n − dj)

didj

}

≤ ρ ≤ min(di, dj)[n − max(di, dj)]
√

didj(n − di)(n − dj)
. (34)

Moreover, the RHS of (32) is shown to be a monotonic decreasing function of ρ (see [21, Ap-
pendix 1]). Hence, one can omit the dependency in the geometry of the code (and loosen the
upper bound) by replacing the correlation coefficients in (32) with their lower bounds which solely
depend on the weights of the codewords. In the derivation of the ITSB, we consider the cor-
relation coefficients between two planes which correspond to codewords with Hamming weights
di = h ∈ {dmin, . . . , dmax} and dj = dmin. Defining

ρh , −min







√

hdmin

(n − h)(n − dmin)
,

√

(n − h)(n − dmin)

hdmin







= −
√

hdmin

(n − h)(n − dmin)
, (35)

where the last equality follows directly from the basic property of dmin as the minimum distance of
the code. From (25)–(26) and using the smoothing theorem w.r.t. Z1, one gets the following upper
bound on the decoding error probability:

Pr(E) ≤ Pr
(

βmin(z1) ≤ z2 ≤ rz1 , V ≤ r2
z1

− z2
2

)

+

dmax
∑

h=dmin

Ah Pr
(

βh(z1) ≤ z2 ≤ rz1 ,−rz1 ≤ z3 ≤ min{lh(z1, z2), rz1}, W ≤ r2
z1

− z2
2 − z2

3

)

+ Pr
(

Y ≥ r2
z1

)

(36)
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where the parameter lh(z1, z2) is simply l(z1, z2) in (31) with ρ replaced by ρh, i.e.,

lh ,
βmin(z1) − ρhz2

√

1 − ρ2
h

. (37)

Using the probability density functions of the random variables in the RHS of (36), and since the
random variables Z1, Z2, Z3 and W are statistically independent, the final form of the ITSB is given
by

Pe ≤
∫ ∞

−∞

[

∫ rz1

βmin

fZ2(z2)

∫ r2
z1

−z2
2

0
fV (v)dv · dz2

+
∑

h:βh(z1)<rz1

(

Ah

∫ rz1

βh(z1)

∫ min{lh(z1,z2),rz1}

−rz1

fZ2,Z3(z2, z3)

∫ r2
z1

−z2
2−z2

3

0
fW (w)dw · dz2 · dz3

)

+ 1 − γ

(

n − 1

2
,

r2
z1

2σ2

)]

fZ1(z1)dz1. (38)

Note that V ,
∑n

i=3 z2
i and W ,

∑n
i=4 z2

i are Chi-squared distributed with n−2 and n−3 degrees
of freedom, respectively.

2.4 Added-Hyper-Plane (AHP) Bound

In [20], Yousefi and Khandani introduce a new upper bound on the ML decoding block error
probability, called the added hyper plane (AHP) bound. In similarity with the ITSB, the AHP
is based on using the Hunter bound (22) as an upper bound on the LHS of (9), which results in
the inequality (24). The complex optimization problem in (24), however, is treated differently.
Let us denote by Iw the set of the indices of the codewords of C with Hamming weight w. For
i ∈ {1, 2, . . . , M}\Iw, let {ji} be a sequence of integers chosen from the set Iw. Then the following
upper bound holds

Pr (E(z1),y ∈ Cn(θ) | z1)

≤ min
w,Jw







Pr





⋃

j∈Iw

{

E0→j

}

,y ∈ Cn(θ) | z1



 +
∑

i∈{1,...,M−1}\Iw

Pr
(

E0→i, E
c
0→ji

,y ∈ Cn(θ) | z1

)







.

(39)

The probabilities inside the summation in the RHS of (39) are evaluated in a similar manner to the
probabilities in the LHS of (29). From the analysis in Section 2.3 and the geometry in Fig. 2-(b),
it is clear that the aforementioned probabilities depend on the correlation coefficients between the
planes (o, s0, si) and (o, s0, sji

). Hence, in order to compute the upper bound (39), one has to
know the geometrical characterization of the Voronoi regions of the codewords. To obtain an upper
bound requiring only the distance spectrum of the code, Yousefi and Khandani suggest to extend
the codebook by adding all the

(

n
w

)

−Aw n-tuples with Hamming weight w (i.e., the extended code
contains all the binary vectors of length n and Hamming weight w). Let us designate the new code
by Cw and denote its codewords by

cw
i , i ∈

{

0, 1, . . . , M +

(

n

w

)

− Aw − 1

}

.
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The new codebook is not necessarily linear, and all possible correlation coefficients between two
codewords with Hamming weight i, where i ∈ {dmin, . . . dmax}, and w are available. Thus, for
each layer of the codebook, one can choose the largest available correlation1 ρ with respect to any
possible n-tuple binary vector of Hamming weight w. Now one may find the optimum layer at
which the codebook extension is done, i.e., finding the optimum w ∈ {1, 2, . . . n} which yields the
tightest upper bound within this form. We note that the resulting upper bound is not proved to
be uniformly tighter than the TSB, due to the extension of the code. The maximum correlation
coefficient between two codewords of Hamming weight di and dj is introduced in the RHS of (34)
(see [20]). Let us designate the maximal possible correlation coefficient between two n-tuples with
Hamming weights w and h by ρw,h , i.e.,

ρw,h =
min(h, w)[n − max(h, w)]

√

hw(n − h)(n − w)
, w 6= h. (40)

By using the same bounding technique of the ITSB, and replacing the correlation coefficients with
their respective upper bounds, ρw,h, (39) gets the form

Pr (E(z1),y ∈ Cn(θ) | z1) ≤ min
w

{

Pr





⋃

j:wH(cw
j )=w

{E0→j},y ∈ Cn(θ) | z1





+
∑

h6=w

Ah Pr
(

Y ≤ r2
z1

, βh(z1) ≤ z2, z3 ≤ lw,h(z1, z2) | z1

)

}

(41)

where

lw,h(z1, z2) =
βw(z1) − ρw,hz2

√

1 − ρ2
w,h

. (42)

Now, applying Hunter bound on the first term in the RHS of (41) yields

Pr





⋃

j:wH(cw
j )=w

{

E0→j

}

, y ∈ Cn(θ) | z1





≤ Pr(E0→l0 ,y ∈ Cn(θ) | z1) +

(n
w)−1
∑

i=1

Pr(E0→li , E
c

0→l̂i
y ∈ Cn(θ) | z1) (43)

where {li}, i ∈
{

0, 1, . . . ,
(

n
w

)

− 1
}

is a sequence which designates the indices of the codewords of

Cw with Hamming weight w with an arbitrary order, and l̂i ∈ (l0, l1, . . . , li−1). In order to obtain
the tightest bound on the LHS of (43) in this approach, one has to order the error events such that
the correlation coefficients which correspond to codewords cli and c

l̂i
get their maximum available

value, which is 1 − n
w(n−w) [20, Appendix D]. Let us designate this value by ρw,w ,i.e.,

ρw,w = 1 − n

w(n − w)
, w 6= {0, n}.

1The RHS of (39) is a monotonically decreasing function of ρ, as noted in [21]
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Hence, based on the geometry in Fig. 2 (see p. 25), we can write (43) as

Pr





⋃

j:wH(cw
j )=w

E0→j ,y ∈ Cn(θ) | z1





≤ Pr
(

βw(z1) ≤ z2 ≤ rz1 , V ≤ r2
z1

− z2
2 | z1

)

+

[(

n

w

)

− 1

]

Pr
(

βw(z1) ≤ z2 ≤ rz1 ,−rz1 ≤ z3 ≤ min{lw,w(z1, z2), rz1}, W ≤ r2
z1

− z2
2 − z2

3 | z1

)

(44)

where

lw,w(z1, z2) =
βw(z1) − ρw,wz2

√

1 − ρ2
w,w

. (45)

By replacing the first term in the RHS of (41) with the RHS of (44), plugging the result in (7) and
using the smoothing theorem w.r.t. Z1 finally gives the following upper bound on the block error
probability:

Pr(E) ≤ min
w

{

Pr
(

βw(z1) ≤ z2 ≤ rz1 , V ≤ r2
z1

− z2
2

)

+

(

n

w

)

Pr
(

βw(z1) ≤ z2 ≤ rz1 ,−rz1 ≤ z3 ≤ min{lw,w(z1, z2), rz1}, W ≤ r2
z1

− z2
2 − z2

3

)

+
∑

h 6=w

Ah Pr
(

βh(z1) ≤ z2 ≤ rz1 ,−rz1 ≤ z3 ≤ min{lw,h(z1, z2), rz1}, W ≤ r2
z1

− z2
2 − z2

3

)

}

+ Pr
(

Y ≥ r2
z1

)

}

. (46)

Rewriting the RHS of (46) in terms of probability density functions, the AHP bound gets the form

Pe ≤ min
w

{

∫ ∞

−∞

[

∫ rz1

βw(z1)
fZ2(z2)

∫ r2
z1

−z2
2

0
fV (v)dv · dz2

+

(

n

w

) ∫ rz1

βw(z1)

∫ min{lw,w(z1,z2),rz1}

−rz1

fZ2,Z3(z2, z3)

∫ r2
z1

−z2
2−z2

3

0
fW (w)dw · dz2 · dz3

+
∑

h : βh(z1) < rz1

h 6= w

(

Ah

∫ rz1

βh(z1)

∫ min{lw,h(z1,z2),rz1}

−rz1

fZ2,Z3(z2, z3)

∫ r2
z1

−z2
2−z2

3

0
fW (w)dw · dz2 · dz3

)

+ 1 − γ

(

n − 1

2
,

r2
z1

2σ2

)]

fZ1(z1)dz1

}

(47)

where V and W are introduced at the end of Section 2.3 (after Eq. (38)), and the last term in (47)
follows from (13).
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3 The Error Exponents of the ITSB and AHP Bounds

The ITSB and the AHP bound were originally derived in [20, 21] as upper bounds on the ML
decoding error probability of specific binary linear block codes. In the following, we discuss the
tightness of the new upper bounds for ensemble of codes, as compared to the TSB. The following
lemma is also noted in [21].

Lemma 1. Let C be a binary linear block code, and let us denote by ITSB(C) and TSB(C) the
ITSB and TSB, respectively, on the decoding error probability of C. Then

ITSB(C) ≤ TSB(C).

Proof. Since Pr(A, B) ≤ Pr(A) for arbitrary events A and B, the lemma follows immediately by
comparing the bounds in the RHS of (10) and (25), reffering to the TSB and the ITSB, respectively.

Corollary 1. The ITSB can not exceed the value of the TSB referring to the average error prob-
ability of an arbitrary ensemble of binary linear block codes.

Lemma 2. The AHP bound is asymptotically (as we let the block length tend to infinity) at least
as tight as the TSB.

Proof. To show this, we refer to (46), where we choose the layer w at which the extension of the
code is done to be n. Hence, the extended code contains at most one codeword with Hamming
weight n more than the original code, which has no impact on the error probability for infinitely
long codes. The resulting upper bound is evidently not tighter than the AHP (which carries an
optimization over w), and it is at least as tight as the TSB (since the joint probability of two events
cannot exceed the probabilities of these individual events).

The extension of Lemma 2 to ensembles of codes is straightforward (by taking the expectation
over the codes in an ensemble, the same conclusion in Lemma 2 holds also for ensembles). From
the above, it is evident that the error exponents of both the AHP and the ITSB cannot be below
the error exponent of the TSB. In the following lemma, we introduce a function which forms a
lower bound on both the ITSB and the AHP bound. This serves as an intermediate stage to get
our main result.

Lemma 3. Let C designate an ensemble of linear codes of length n, whose transmission takes place
over an AWGN channel. Let Ah denotes the average number of codewords over the codebooks in
C with Hamming weight h. Then both the ITSB and the AHP upper bounds on the average ML
decoding error probability of C are lower bounded by the function ψ(C) where

ψ(C) , min
w

{

Pr
(

βw(z1) ≤ z2 ≤ rz1 , V ≤ r2
z1

− z2
2

)

+
∑

h

Ah Pr
(

βh(z1) ≤ z2 ≤ rz1 , −rz1 ≤ z3 ≤ min{lw,h(z1, z2), rz1}, W ≤ r2
z1

− z2
2 − z2

3

)

+ Pr
(

Y ≥ r2
z1

)

}

(48)

where lw,h(z1, z2) is defined in (42).
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Proof. By comparing (46) with (48), it is easily verified that the RHS of (48) is not larger than
the RHS of (46) (actually, the RHS of (48) is just the AHP without any extension of the code).
Referring to the ITSB, we get

ITSB(C) = EC
[

Pr
(

βmin(z1) ≤ z2 ≤ rz1 , V ≤ r2
z1

− z2
2

)

+
∑

h

Ah Pr
(

βh(z1) ≤ z2 ≤ rz1 ,−rz1 ≤ z3 ≤ min{lh(z1, z2), rz1}, W ≤ r2
z1

− z2
2 − z2

3

)

+ Pr
(

Y ≥ r2
z1

)]

≥min
w

{

EC
[

Pr
(

βw(z1) ≤ z2 ≤ rz1 , V ≤ r2
z1

− z2
2

)

+
∑

h

Ah Pr
(

βh(z1) ≤ z2 ≤ rz1 ,−rz1 ≤ z3 ≤ min{lw,h(z1, z2), rz1}, W ≤ r2
z1

− z2
2 − z2

3

)

+ Pr
(

Y ≥ r2
z1

)]

}

= ψ(C). (49)

The above inequality holds since the ITSB is a monotonically decreasing function w.r.t. the corre-
lation coefficients (see Appendix A.3). The equality in (49) is due to the linearity of the function
in (49) w.r.t. the distance spectrum, on which the expectation operator is applied.

In [20] and [21], the RHS of (46) and (36), respectively, were evaluated by integrals, which results
in the upper bounds (47) and (38). In [2, Section D], Divsalar introduced an alternative way to
obtain a simple, yet asymptotically identical, version of the TSB by using the Chernoff bounding
technique. Using this technique we obtain the exponential version of ψ(C). In the following, We
use the following notation [2]:

c ,
Es

N0
, δ ,

h

n
, ∆ ,

√

δ

1 − δ
, r(δ) ,

ln(Ah)

n

where for the sake of clear writing we denote the average spectrum of the ensemble by Ah. We now
state the main result of this paper.

Theorem 1. (The error exponent of the AHP and the ITSB bounds coincide with the
error exponent of the TSB) The upper bounds ITSB, AHP and the TSB have the same error
exponent, which is

E(c) = min
0<δ≤1

{

1

2
ln

(

1 − γ + γe−2r(δ)
)

+
γ∆2c

1 + γ∆2

}

(50)

where

γ = γ(δ) ,
1 − δ

δ

[
√

c

c0(δ)
+ (1 + c)2 − 1 − (1 + c)

]

(51)

and

c0(δ) ,

(

1 − e−2r(δ)
) 1 − δ

2δ
. (52)

Proof. The exponential version of ψ(C) in (48) is identical to the error exponent of the TSB (see
Appendices A.1 and A.2). Since ψ(C) does not exceed the AHP and the ITSB, this implies that the
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error exponents of the AHP and the ITSB are not larger than the error exponent of the TSB. On
the other hand, from Lemmas 1 and 2 it follows that asymptotically, both the AHP and the ITSB
are at least as tight as the TSB, so their error exponents are at least as large as the error exponent
of the TSB. Combining these results we obtain that the error exponent of the ITSB, AHP and the
TSB are all identical. In [2], Divsalar shows that the error exponent of the TSB is determined by
(50)–(52), which concludes the proof of the theorem.

Remark 1. The bound on the bit error probability in [15] is exactly the same as the TSB on the
block error probability by Poltyrev [13], except that the average distance spectrum {Ah} of the
ensemble is now replaced by the sequence {A′

h} where

A′
h =

nR
∑

w=0

( w

nR

)

Aw,h , h ∈ {0, . . . , n}

and Aw,h denotes the average number of codewords encoded by information bits of Hamming weight

w and having a Hamming weight (after encoding) which is equal to h. Since Ah =
∑nR

w=0 Aw,h,
then

Ah

nR
≤ A′

h ≤ Ah , h ∈ {0, . . . , n}.

The last inequality therefore implies that the replacement of the distance spectrum {Ah} by {A′
h}

(for the analysis of the bit error probability) does not affect the asymptotic growth rate of r(δ)
where δ , h

n
, and hence, the error exponents of the TSB on the block and bit error probabilities

coincide.

Remark 2. In [24], Zangl and Herzog suggest a modification of the TSB on the bit error probability.
Their basic idea is tightening the bound on the bit error probability when the received vector y
falls outside the cone R in the RHS of (3) (see Fig. 1). In the derivation of the version of the
TSB on the bit error probability, as suggested by Sason and Shamai [15], the conditional bit error
probability in this case was upper bounded by 1, where Zangl and Herzog [24] refine the bound and
provide a tighter bound on the conditional bit error probability when the vector y falls in the bad
region (i.e., when it is outside the cone in Fig. 1). Though this modification tightens the bound on
the bit error probability at low SNR (as exemplified in [24] for some short linear block codes), it has
no effect on the error exponent. The reason is simply because the conditional bit error probability
in this case cannot be below 1

nR
(i.e., one over the dimension of the code), so the bound should still

possess the same error exponent. This shows that the error exponent of the TSB versions on the
bit error probability, as suggested in [15] and [24], coincide.

Corollary 2. The error exponents of the TSB on the bit error probability coincides with the error
exponent of the TSB on the block error probability. Moreover, the error exponents of the TSB on
the bit error probability, as suggested by Sason and Shamai [15] and refined by Zangl and Herzog
[24], coincide. The common value of these error exponents is explicitly given in Theorem 1.
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4 Summary and Conclusions

The tangential-sphere bound (TSB) of Poltyrev [13] often happens to be the tightest upper bound
on the ML decoding error probability of block codes whose transmission takes place over a binary-
input AWGN channel. However, in the random coding setting, it fails to reproduce the random
coding exponent [7] while the second version of the Duman and Salehi (DS2) bound does [5, 16].
The larger is the code rate, the more significant becomes the gap between the error exponent of
the TSB and the random coding error exponent of Gallager [7] (see Fig. 3 in p. 26, and the plots in
[13, Figs. 2–4]). In this respect, we note that the expression for the error exponent of the TSB, as
derived by Divsalar [2], is significantly easier for numerical calculations than the original expression
of this error exponent which was provided by Poltyrev [13, Theorem 2].

In this paper, we consider some recently introduced performance bounds which suggest an
improvement over the TSB. These bounds rely solely on the distance spectrum of the code (or their
input-output weight enumerators for the analysis of the bit error probability). We study the error
exponents of these recently introduced bounding techniques. This work forms a direct continuation
to the derivation of these bounds by Yousefi et al. [19, 20, 21] who also exemplified their superiority
over the TSB for short binary linear block codes.

Putting the results reported by Divsalar [2] with the main result in this paper (see Theorem 1
in p. 14), we conclude that the error exponents of the simple bound of Divsalar [2], the first version
of Duman and Salehi bounds [4], the tangential-sphere bound of Poltyrev [13] and its improved
versions by Yousefi et al. [19, 20, 21] all coincide. Moreover, the error exponents of the TSB versions
for the bit error probability, as provided in [15, 24], coincide and are equal to the error exponent
of the TSB for the block error probability. The explicit expression of this error exponent is given
in Theorem 1, and is identical to the expression derived by Divsalar [2] for his simple bound.

In a companion paper [18], new upper bounds on the block and bit error probabilities of linear
block codes are derived. These bounds improve the tightness of the Shulman and Feder bound [17]
and therefore also reproduce the random coding error exponent.
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Appendix

A.1 The exponent of ψ(C)

In the following, the exponential behavior of the RHS of (48) is obtained by using the Chernoff
bounding technique. Let us designate the normalized Gaussian noise vector by ν, i.e., (ν1, . . . , νn) =
2

N0
(z1, . . . , zn), and define η , tan2 θ. From (4) and (42), the following equalities hold for BPSK

modulated signals:

r =
√

nηEs

rν1 =
√

η
(√

2nc − ν1

)

βh(ν1) =
(√

2nc − ν1

)

√

h

n − h

lw,h(ν1, ν2) =
βw(ν1) − ρw,h ν2

√

1 − ρ2
w,h

. (A.1)

Hence, we can rewrite (48) as

ψ(C) = min
w

{

Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1)

)

+
n

∑

h=1

Ah Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

+ Pr

(

n
∑

i=2

ν2
i ≥ r2

ν1

) }

. (A.2)

At this point, we upper bound the RHS of (48) by the Chernoff bounds, namely, for three
random variables V, W and Z

Pr (V ≥ 0) ≤ E
[

epV
]

, p ≥ 0 (A.3)

Pr (W ≤ 0, V ≥ 0) ≤ E
[

eqW+uV
]

, q ≤ 0, u ≥ 0 (A.4)

Pr (W ≤ 0, V ≥ 0, Z ≥ 0) ≤ E

[

etW+sV +kZ
]

, t ≤ 0, s ≥ 0, k ≥ 0. (A.5)

The Chernoff versions of the first and last terms in the RHS of (A.2) are introduced in [2,
Eqs.(134)–(137)], and are given by

Pr

(

n
∑

i=2

ν2
i ≥ r2

ν1

)

≤
√

1 − 2p

1 + 2pη
e−nE1(c,p,η), p ≥ 0 (A.6)

Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1)

)

≤
√

1 − 2q

1 + 2qη
e−nE2(c,q, w

n
,η), − 1

2η
≤ q ≤ 0 (A.7)
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where

E1(c, p, η) =
2pηc

1 + 2pη
+

1

2
ln(1 − 2p). (A.8)

and

E2(c, q, δ, η) = c





2qη + (1 − 2q)
√

δ
1−δ

1 + 2qη + (1 − 2q)
√

δ
1−δ



 +
1

2
ln(1 − 2q). (A.9)

Next, by invoking the Chernoff bound (A.5), we get an exponential upper bound on the second
term in the RHS of (48). Using the notation

ζw,h ,

√

w(n − h)

h(n − w)
(A.10)

we get (see Appendix A.2 for details)

Ah Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

≤
√

1 − 2t

1 + 2tη
e−g(c,t,k,s,η,h,n), − 1

2η
≤ t ≤ 0, k ≥ 0, s ≥ 0 (A.11)

where

g(c, t, k, s, η, h, n) ,

4tηnc + 2
√

2nc

(

s − kζw,h
√

1−ρ2
w,h

)

∆h − ∆2
h

(

s − kζw,h
√

1−ρ2
w,h

)2

2(1 + 2tη)

−

(

s − kρw,h
√

1−ρ2
w,h

)2

2(1 − 2t)
− k2

2(1 − 2t)
+

n

2
ln(1 − 2t) − nr(

h

n
) (A.12)

and

∆h ,

√

h

n − h
.

The next step is to find optimal values for k and s in order to maximize the function g. If k∗ = 0
then the exponent of ψ(C) is identical to that of the TSB. In order to find the optimal k ≥ 0 and
s ≥ 0 which maximize g, we consider the aforementioned probabilities by discussing separately the
three cases where h < w, h > w and h = w.

Case 1: h = w. In this case ζw,h = ζw,w = 1, and we get

Aw Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1), ν3 ≥ −lw,w(ν1, ν2)

)

≤
√

1 − 2t

1 + 2tη
e−g(c,t,k,s,η,w,n) (A.13)

− 1

2η
≤ t ≤ 0, k ≥ 0, s ≥ 0
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where

g(c, t, k, s, η, w, n) =

4tηnc + 2
√

2nc

(

s − k√
1−ρ2

w,w

)

∆w − ∆2
w

(

s − k√
1−ρ2

w,w

)2

2(1 + 2tη)

−

(

s − kρw,w√
1−ρ2

w,w

)2

2(1 − 2t)
− k2

2(1 − 2t)
+

n

2
ln(1 − 2t) − ln(Aw). (A.14)

Let us define the parameters

ξ = s − k
√

1 − ρ2
w,w

(A.15)

τ = s − kρw,w
√

1 − ρ2
w,w

. (A.16)

From (A.15) and (A.16), we get
k = −(ξ − τ)α (A.17)

where

α ,

√

1 + ρw,w

1 − ρw,w
. (A.18)

Hence, the Chernoff bounding technique gives

Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1), ν3 ≥ −lw,w(ν1, ν2)

)

≤
√

1 − 2t

1 + 2tη
e−g1(c,t,ξ,τ,η,w,n) (A.19)

− 1

2η
≤ t ≤ 0

where

g1(c, t, ξ, τ, η, h, n) =
4tηnc + 2

√
2ncξ∆w − ∆2

wξ2

2(1 + 2tη)

− τ2

2(1 − 2t)
− (ξ − τ)2α2

2(1 − 2t)
+

n

2
ln(1 − 2t). (A.20)

Maximizing the RHS of (A.19) w.r.t. τ yields

∂g1

∂τ
= − τ

1 − 2t
+

(ξ − τ)α2

1 − 2t
= 0

⇒ τ∗ =
α2ξ∗

1 + α2
. (A.21)

Notice that ∂2g1

∂τ2 < 0, hence plugging τ∗ in (A.20) maximizes g1. Substituting τ∗ into (A.20) gives

g2(c, t, ξ, η, w, n) , g1(c, t, ξ, τ
∗, η, w, n)

=
4tηnc + 2

√
2nc∆wξ − ∆2

wξ2

2(1 + 2tη)
−

α2

1+α2 ξ2

2(1 − 2t)
+

n

2
ln(1 − 2t). (A.22)
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A differentiation of g2 w.r.t. ξ and an introduction of the new parameter ǫ , α2

1+α2 gives

∂g2

∂ξ
=

√
2nc∆w − ∆2

wξ

1 + 2tη
− ǫξ

1 − 2t
= 0

ξ∗ =

√
2nc∆w(1 − 2t)

∆2
w(1 − 2t) + ǫ(1 + 2tη)

. (A.23)

From (A.21), ξ∗ − τ∗ > 0. Since α is non-negative, we get that k∗ in (A.17) is not-positive. But
since from (A.11), k ≥ 0, this yields that the optimal value of k is equal to zero. From the Chernoff
bound in (A.5), an optimality of k when it is set to zero implies that asymptotically, as n → ∞

Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1), ν3 ≥ −lw,w(ν1, ν2)

)

.
= Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βw(ν1)

)

. (A.24)

Case 2: h > w. In this case, from (40) it is obvious that ρw,h =
√

w(n−h)
h(n−w) . Hence, for this case,

we get that ρw,h = ζw,h. From (A.12)

g(c, t, k, s, η, h, n) =

4tηnc + 2
√

2nc

(

s − kζw,h
√

1−ζ2
w,h

)

∆h − ∆2
h

(

s − kζw,h
√

1−ζ2
w,h

)2

2(1 + 2tη)

−

(

s − kζw,h
√

1−ζ2
w,h

)2

2(1 − 2t)
− k2

2(1 − 2t)
+

n

2
ln(1 − 2t) − nr(

h

n
). (A.25)

In the following, we introduce the parameters

ξ , s − kζw,h
√

1 − ζ2
w,h

(A.26)

τ , k. (A.27)

Optimization over τ yields τ∗ = 0, so k∗ = 0, and asymptotically (as we let n tend to infinity),
one gets the following equality in terms of the exponential behaviors:

Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

.
= Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1)

)

. (A.28)

Case 3: h < w. From (40), the values of h approve that ρw,h =
√

h(n−w)
w(n−h) , so we get from (A.10)

that ρw,h < ζw,h. Define

ξ , s − kζw,h
√

1 − ρ2
w,h

(A.29)

τ , s − kρw,h
√

1 − ρ2
w,h

. (A.30)
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From (A.29) and (A.30)
k = −(ξ − τ)α′ (A.31)

where

α′ ,

√

1 − ρ2
w,h

ζw,h − ρw,h
. (A.32)

Since in this case ρw,h < ζw,h, then α′ > 0. Similarly to the arguments in case 1, we get again that
the optimal value for k is k∗ = 0, which implies (A.28) in the limit where the block length tends to
infinity.

A.2 Derivation of the Chernoff Bound in (A.11) with the Function g in (A.12)

Using the Chernoff bound (A.5) and defining

∆w ,

√

w

n − w
(A.33)

we get

Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

(a)

≤ E

[

et(
∑n

i=2 ν2
i −r2

ν1
)+s(ν2−βh(ν1))+k(ν3+lw,h(ν1,ν2))

]

, t ≤ 0, s ≥ 0, k ≥ 0

(b)
= E









e

t(
∑n

i=2 ν2
i −η(

√
2nc−ν1)2)+s(ν2−∆h(

√
2nc−ν1))+k



ν3+
∆w(

√
2nc−ν1)−ρw,hν2
√

1−ρ2
w,h













= E



e

t
∑n

i=2 ν2
i −tην2

1−2tnηc+2ηt
√

2ncν1+sν2−s∆h

√
2nc+s∆hν1+kν3+

k∆w
√

2nc
√

1−ρ2
w,h

− k∆wν1+ρw,hν2
√

1−ρ2
w,h





(c)
= E

[

et
∑n

i=4 ν2
i

]

E









e

−tην2
1+



2ηt
√

2nc+s∆h− k∆w
√

1−ρ2
w,h



ν1









E









e

tν2
2+



s− kρw,h
√

1−ρ2
w,h



ν2









·E
[

etν2
3+kν3

]

e

−2tnηc−s∆h

√
2nc+ k∆w

√
2nc

√

1−ρ2
w,h . (A.34)

where inequality (a) follows from the Chernoff bound (A.5), equality (b) follows from (A.1), and
equality (c) follows from the statistical independence of the components of the normalized noise
vector ν. For a zero-mean and unit-variance Gaussian random variable X, the following equality
holds:

E

[

eaX2+bX
]

=
e

b2

2(1−2a)

√
1 − 2a

, a ≤ 1

2
, b ∈ R. (A.35)
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Evaluating each term in (A.34) with the equality in (A.35), and substituting

ζw,h =
∆w

∆h
(A.36)

which follows from (A.10) and (A.33), then gives

E

[

et
∑n

i=4 ν2
i

]

=

(

1√
1 − 2t

)n−3

, t ≤ 0 (A.37)

E









e

−tην2
1+



2ηt
√

2nc+s∆h− k∆w
√

1−ρ2
w,h



ν1









=
1√

1 + 2tη
e









2ηt
√

2nc+∆h

(

s−
kζw,h

√

1−ρ2
w,h

)







2

2(1+2tη) (A.38)

E









e

tν2
2+



s− kρw,h
√

1−ρ2
w,h



ν2









=
1√

1 − 2t
e









s−
kρw,h

√

1−ρ2
w,h









2

2(1−2t) , k ≥ 0, s ≥ 0 (A.39)

E

[

etν2
3+kν3

]

=
1√

1 − 2t
e

k2

2(1−2t) , t ≤ 0, k ≥ 0. (A.40)

From (A.38), straightforward algebra gives

E









e

−tην2
1+



2ηt
√

2nc+s∆h− k∆w
√

1−ρ2
w,h



ν1









e

−2tnηc−s∆h

√
2nc+ k∆w

√
2nc

√

1−ρ2
w,h

=
1√

1 + 2tη
exp



























−4tηnc − 2
√

2nc

(

s − kζw,h
√

1−ρ2
w,h

)

∆h + ∆2
h

(

s − kζw,h
√

1−ρ2
w,h

)2

2(1 + 2tη)



























.(A.41)

Plugging (A.37) and (A.39)–(A.41) into (A.34) finally gives

Ah Pr

(

n
∑

i=2

ν2
i ≤ r2

ν1
, ν2 ≥ βh(ν1), ν3 ≥ −lw,h(ν1, ν2)

)

≤ Ah√
1 + 2tη

(

1√
1 − 2t

)n−1

e

−4tηnc−2
√

2nc









s−
kζw,h

√

1−ρ2
w,h









∆h+∆2
h









s−
kζw,h

√

1−ρ2
w,h









2

2(1+2tη)
+









s−
kρw,h

√

1−ρ2
w,h









2

2(1−2t)
+ k2

2(1−2t)

=

√

1 − 2t

1 + 2tη
e−g(c,t,k,s,η,h,n), t ≤ 0, k ≥ 0, s ≥ 0 (A.42)

which proves the Chernoff bound in (A.11) with the function g introduced in (A.12).
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A.3 Monotonicity w.r.t. the Correlation Coefficient

Consider the probabilities Pr(E0→i, E
c
0→j ,y ∈ Cn(θ)|z1), and denote the Hamming weights of ci

and cj by di and dj , respectively. In [21], it is shown that as long as di > dj , the probabilities
Pr(E0→i, E

c
0→j ,y ∈ Cn(θ)|z1) are monotonically decreasing functions of the correlation coefficients

ρ between the planes (o, s0, si) and (o, s0, sj). Hence, the complex optimization problem in (24) is
simplified by choosing the first error event as well as the complementary error events in the RHS of
(24) to correspond to a codeword with Hamming weight dmin, and (25) is obtained. Here we prove,
that the aforementioned probabilities are monotonically decreasing functions of the correlation
coefficients for any choice of i, j. As a consequence, one can obtain a version of the ITSB by setting
in (24) π1 = λi = w where w ∈ {dmin, . . . , dmax}, and choosing the optimal w which minimizes the
resulting upper bound. In order to prove this, we follow the steps in [21, Appendix I] where it is
shown that the above probabilities are monotonically decreasing functions of ρ if

z2

βj(z1)
> ρ. (A.43)

Note that the joint event (E0→i, y ∈ Cn(θ)) implies that the noise component z2 is in the range
between βi(z1) and rz1 (see Fig. 1 in p. 4), so the minimum value of the RHS of (A.43) is

βi(z1)

βj(z1)
=

√

di(n − dj)

dj(n − di)
.

Clearly,
√

di(n − dj)

dj(n − di)
>

min(di, dj)[n − max(di, dj)]
√

didj(n − di)(n − dj)
(A.44)

but from (34), it is evident that the RHS of (A.44) is the maximal value of ρ, thus, condition (A.43)
is always satisfied referring to the joint event (E0→i, y ∈ Cn(θ)).
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z1

P1

si

z2

θ

φ = arccos(ρ)

sj

z′3βi(z1)

P2

s0
δi

2
δj

2

βj(z1)

rz1

z2

z3

z′
3

rz1
βi(z1)

βj(z1)l(z1, z2)
φ

Figure 2: (a): s0 is the transmitted vector, z1 is the radial noise component, z2 and z′3 are two (not
necessarily orthogonal) noise components, which are perpendicular to z1, and lie on planes P1 and
P2, respectively. The doted and dashed areas are the regions where Ei and Ec

j occur, respectively.
(b): A cross-section of the geometry in (a).
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Figure 3: Comparison between the error exponents for random block codes which are based on
the union bound (UB), the tangential-sphere bound (TSB) of Poltyrev [13] (which according to
Theorem 1 is identical to the error exponents of the ITSB and the AHP bounds), and the random
coding bound (RCE) of Gallager [7]. The upper and lower plots refer to code rates of 0.5 and
0.9 bits per channel use, respectively. The error exponents are plotted versus the reciprocal of the
energy per bit to the one-sided spectral noise density.
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