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Abstract

Many sources of information are of analogue or continuous-time nature. However, digital signal processing

applications rely on discrete data. We consider the problem of approximating L2 inner products, i.e., representa-

tion coefficients of a continuous-time signal, from its generalized samples. Taking a robust approach, we process

these generalized samples in a minimax optimal sense. Specifically, for the worst possible signal, we find the best

approximation of the desired representation coefficients by proper processing the given sample sequence. We then

extend our results to criteria which incorporate smoothness constraints on the unknown function. Finally we compare

our methods with the piecewise-constant approximation technique, commonly used for this problem, and discuss the

possible improvements by the suggested schemes.

I. INTRODUCTION

Signal processing applications are concerned mainly with digital data, although the origin of many sources of

information is analogue. This is the case for speech and audio, optics, radar, sonar, biomedical signals and more. In

many cases, analysis of a continuous-time signal x(t) is obtained by evaluating L2 inner-products 〈wn(t),x(t)〉L2

for a set of functions {wn(t)}. For example, one may calculate a Gabor [1] or wavelet [2] representation of a

signal. Both are based on finding the signal’s representation coefficients; namely performing consecutive L2 inner

products with a set of analysis functions.

Typically, the analysis functions {wn(t)} are analytically known. On the other hand, in many applications of

digital signal processing, there is no knowledge of the continuous-time signal x(t), but only of its sample sequence.

Our problem is to approximate the required L2 inner-products, by proper processing of the available samples.

In some cases the sampled version of a signal is sufficient to calculate the original function. The classical

Whittaker-Shannon sampling theorem is a well known example of the latter; see also [3], [4] for additional shift

invariant settings. If the analog input can be determined from the sample sequence, then the required representation

coefficients can be calculated as well. Our main focus here is on situations where the knowledge of the continuous-

time function is incomplete, such that approximations of the continuous-time inner products must be performed

instead.

As an example of facing incomplete knowledge, we mention an initialization problem in wavelet analysis. To

initialize the pyramid algorithm [5] one must have the representation coefficients of the continuous time function
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x(t), for the initial scale. Unfortunately, those representation coefficients are unavailable, and we only have the

samples of x(t), obtained at the output of some anti-aliasing filter. A common practice in wavelet analysis is to

assume that the available samples are the required representation coefficients. This false assumption is also known

in the literature as the ’wavelet crime’ [6]. In [7] the authors address this problem by suggesting a digital filter

to process the available sample sequence, prior to applying the pyramid algorithm. The criteria for designing this

correction stage is set to be a minimax approximation of a filtered version of the required representation coefficients.

In fact, it can be shown that their result is compatible with a special case of our derivations, presented in Section

V-B.

A common approach to cope with incomplete knowledge of the continuous-time function x(t) is to first interpolate

the given sample sequence, thus obtaining an approximation x̂(t) (see for example [8]). The required calculations

can then be performed directly on x̂(t). The latter method implies that the original signal is first approximated

within the span of some synthesis function set, but the best choice of those synthesis functions is not always clear.

For rigorous analysis, see [9].

The problem of approximating a continuous-time inner product by properly processing uniform and ideal samples

was considered in [10], [11]; in order to approximate a single representation coefficient 〈w(t),x(t)〉L2
, it was

suggested to calculate an l2 inner product
∑

n b[n]x(nT ) instead. Assuming that the input x(t) is a smooth order

one Sobolev [12] function, an upper error bound for the approximation error |〈w(t),x(t)〉L2
−

∑
n b[n]x(nT )| was

derived, and the sequence b was determined by minimizing that upper bound.

In practice, however, ideal sampling is impossible to implement. A more practical model may consider generalized

samples [4], [13]–[16] instead. Generalized samples of a continuous-time signal are represented as the inner products

of this signal with a set of sampling functions {sn(t)} associated with the acquisition device. Thus, the n’th sample

can be written as c[n] = 〈sn(t),x(t)〉L2
. This sampling model is general enough to describe any linear and bounded

acquisition device (Riesz representation theorem [17], [18]). As an example, consider an analog to digital converter

which performs pre-filtering prior to sampling, as shown in Figure 1. In such a setting, the sampling vectors

{sn(t) = s(t − nT )} are shifted and mirrored versions of the impulse response of the pre-filter [13].

x(t) ✲ s(−t) ✲✑
✑

❄
c[n]

t = nT

Fig. 1. Filtering with impulse response s(−t) followed by ideal sampling. The sampling vectors are {s(t − nT )}.

Often, the fact that the samples are non-ideal is simply ignored. Assuming that the sample value is close to the

mean value of the signal, within some interval of length T , a common practice (referred herein as the ’sum’ approach)

is to approximate the L2 inner product by a Riemann-type sum: 〈w(t),x(t)〉L2
≈ T

∑
n c[n]w(nT ), where the
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over-line stands for complex conjugate. To determine the quality of this approximation, one must assume some

regularity conditions on the functions involved. In [19] the author derives convergence rates for such approximations

assuming ideal uniform sampling.

In this paper we take a different approach, which is similar in spirit to the works in [7], [16] and a direct

generalization of [10]. Given the generalized samples, we approximate the desired representation coefficients

{〈wn(t),x(t)〉L2
} in a minimax optimal sense. It turns out that the solutions to our robust objectives can also

be interpreted as an interpolation of the given samples, followed by applying the analysis functions {wn(t)} to the

interpolation x̂(t). The nice thing is that the interpolation stage stems naturally from the setup of the problem, rather

than being pre-specified arbitrarily. Additionally, the division of the algorithm into interpolation and analysis stages

is more of conceptual rather than practical; Both stages can be performed simultaneously, by digital processing of

the available samples.

Our results extend [10] in several ways. First, by considering generalized samples (as opposed to the ideal

sampling assumption of [10]) our derivations are applicable to practical acquisition devices. Second, if there is

prior knowledge that the generalized samples have been obtained from a smooth function, then we show how

to incorporate that constraint into the proposed robust solution. Third, our derivations are applicable to a series

of representation coefficients. Finally, we analyze the performance of the suggested approach, giving sufficient

conditions for it to outperform the naive sum approximation.

The outline of this paper is as follows. In Section II we describe the mathematical preliminaries. Section III

discusses situations where one can obtain perfect evaluation of the required L2 inner products, and establishes a

minimax approximation criterion when this is not the case. The latter minimax objective is solved in Section IV. In

Section V we consider the problem of incorporating smoothness constraints. Specifically, if there is prior knowledge

of the input to be smooth, then we show how to alter the minimax solution by recasting the problem into a proper

Sobolev space, presenting [10] as a special setting of our derivations. Section VI discusses the relations between the

errors due to the suggested minimax approach and the standard sum approximation method. We show the possible

gain in performance by the proposed method and derive sufficient conditions for the minimax solution to dominate

the standard approach. Finally, in Section VII, we conclude with several simulations.

II. MATHEMATICAL PRELIMINARIES

We denote continuous-time signals by bold lowercase letters, omitting the time dependence, when possible. The

elements of a sequence c ∈ l2 will be written with square brackets, e.g. c[n]. XF (ω) =
∫

x(t)e−jωtdt is the

continuous time Fourier transform of x and Cf (ω) =
∑

n c[n]e−jωn is the (2π periodic) discrete-time Fourier

transform (DTFT) of the sequence c. ST stands for the ideal sampling operator, such that the n’th element of

STw is w(nT ). The operator PA represents the orthogonal projection onto a closed subspace A, and A⊥ is the

orthogonal complement of A. The Moore-Penrose pseudo inverse [20] and the adjoint of a bounded transformation

T are written as T † and T ∗, respectively. ℜ stands for the real part. We will denote by S the sampling space, which

is the closure of span {sn}. Similarly, W is the analysis space, obtained by the closure of span {wn}.
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Inner products and norms are denoted by 〈a, b〉H and ‖a‖H, respectively. Here, H stands for the Hilbert space

involved. Usually, we will consider H to be L2, l2 or the order-one Sobolev space W 1
2 , which will be discussed in

detail in Section V. When the derivations are general enough to describe inner products and norms within L2 or

for that matter any Hilbert space, we will omit the space subscript from the notations, i.e., 〈f, g〉 or ‖f‖. All inner

products are linear with respect to the second argument. For example, 〈x,y〉L2
=

∫ ∞

−∞
x(t)y(t)dt.

An easy way to describe linear combinations and inner products is by utilizing set transformations. A set

transformation V : l2 → H corresponding to frame vectors {vn(t)} is defined by V a =
∑

n a[n]vn(t) for all

a ∈ l2 [21]. From the definition of the adjoint, if a = V ∗y, then a[n] = 〈vn,y〉. Denoting by S (W ) the set

transformation corresponding to the vectors {sn} ({wn}), the generalized samples c[n] = 〈sn,x〉L2
can be written

as c = S∗x, and the desired representation coefficients q[n] = 〈wn,x〉L2
by q = W ∗x. If A is a set transformation

with a closed range A, then the orthogonal projection onto A can be written as PA = A(A∗A)†A∗.

To handle well posed problems, we assume that the sample sequence c and the desired representation coefficients

q have finite energy, i.e., c, q ∈ l2. This will also ensure that if any bounded transformation G : l2 → l2 is applied

to the generalized samples c, the error sequence q −G(c) is in l2 as well. Accordingly, criteria which consider the

l2 norm of the error sequence are well defined. One way to enforce c, q ∈ l2 is to require that {sn} and {wn}

form frames [21] for S and W , respectively, which is precisely what we assume in this work.

III. PROBLEM FORMULATION

The given data are the generalized samples c of a continuous-time function x(t), modelled by

c[n] = 〈sn(t),x(t)〉L2
. (1)

We wish to evaluate a set of continuous-time inner products q satisfying

q[n] = 〈wn,x〉L2
. (2)

The analysis functions {wn} are analytically known. Unfortunately, the input x is unknown. Our goal is to

approximate the required representation coefficients q by proper processing the sample sequence c.

A natural question to be first considered is whether there is an unavoidable error due to our partial knowledge of

x(t), or can we evaluate exactly the required L2 inner products, based on the generalized samples. The following

theorem addresses this preliminary question.

Theorem 1: Let x be an arbitrary function, satisfying c = S∗x. It is possible to obtain the required representation

coefficients q = W ∗x, by proper processing of the sample sequence c, if and only if W ⊆ S.

Proof: See Appendix I.

In some cases, we may have additional prior knowledge on x, such that not all signals in L2 should be considered.

By restricting our attention to a proper subgroup, it is possible to obtain a zero error, even if W * S. This is true

whenever the knowledge of x allows us to determine a bijection (injective and surjective transformation) between

x(t) and its samples. To illustrate the last point, suppose that x ∈ A, where A is a closed subspace of L2 satisfying
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the direct sum condition L2 = A ⊕ S⊥ (i.e., L2 can be described by the sum set
{
a + v; a ∈ A,v ∈ S⊥

}
with

the property A ∩ S⊥ = {0}). Then, we can perfectly reconstruct x from its generalized samples by

x = A(S∗A)†c, (3)

where A is any bounded set transformation with range A [16]. As a result, we can also perfectly evaluate the

coefficients q = W ∗x as

q = W ∗A(S∗A)†c. (4)

Another example in which bijection between the signal and its generalized samples exists is the finite innovation

case is considered in [22].

Nevertheless, in the general case the condition W ⊆ S may not be satisfied, or there may be no prior knowledge

of x(t). Thus, the coefficients W ∗x cannot be computed exactly and instead must be approximated from the given

samples c. A common practice is to perform the l2 sum approximation:

〈w(t),x(t)〉L2
≈ T

∑

n

c[n]w(nT ), (5)

where one implicitly assumes that the generalized samples of x are close to the mean value of the input signal,

within an interval of length T , and similarly the ideal samples of w are a suitable choice for representing the

analysis function. However, in the general case there are no optimality claims for this approach and its analysis

must rely on regularity conditions for the functions involved [19].

Alternatively, we may approximate the continuous-time inner products by choosing a sequence d which minimizes

the squared norm of the error vector e = W ∗x− d. Since x satisfies c = S∗x, by decomposing x along S and S⊥

the error vector can be written as

e = W ∗S(S∗S)†c + W ∗PS⊥x − d, (6)

where we used PSx = S(S∗S)†c. This leads to the following objective

min
d

∥∥W ∗S(S∗S)†c + W ∗PS⊥x − d
∥∥2

l2
. (7)

It so happens that the solution of (7) depends on PS⊥x, which is unknown. To eliminate the dependence on x, one

may instead consider a robust approach, where the sequence d is optimized for the worst possible input x. Valid

inputs must be consistent with the known samples, i.e., must satisfy c = S∗x. Additionally, if the norm of the input

is not bounded, then neither is the norm of the error. Hence, to define a well posed problem, we will assume that

x is norm bounded by some positive constant L. This leads to the minimax objective

min
d

max
‖x‖≤L,c=S∗x

‖W ∗x − d‖
2
l2

. (8)

In the next sections, we derive a solution for d, and compare its performance with the standard approach, given

in (5). As we shown, d does not depend on L, so that exact value of the signal’s energy is not required.
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IV. MINIMAX APPROXIMATION

The minimax problem of (8) is closely related to the generalized sampling problem considered in [16, Theorem

3]. Relying on results obtained in that context leads to the following theorem.

Theorem 2: Consider the problem

min
d

max
c=S∗x,‖x‖≤L

‖W ∗x − d‖2
l2

,

where W and S are bounded set transformations with range W and S, respectively. The (unique) solution is

d = W ∗S(S∗S)†c. (9)

Before going into the details of the proof, note that we have not described the exact Hilbert space in which the

bound ‖x‖L2
≤ L and the inner products S∗x, W ∗x are calculated, since the derivations are general enough to

be applicable to any Hilbert space. In Section V we will show how smoothness constraints can be incorporated

by applying Theorem 2 in different Hilbert spaces. Additionally, the upper norm bound L is not expressed in the

solution (9). Thus, one only has to be sure that the signal has a finite norm, while its exact value is irrelevant

for the computation of d. The value of L will be used in Section VI though for analyzing the performance of the

proposed algorithm.

Proof: First we note that any x in the set D = {x | S∗x = c, ‖x‖ ≤ L} is of the form x = S (S∗S)
†
c + v

for some v ∈ G where

G ,
{
v | v ∈ S⊥, ‖v‖ ≤ L′

}
, (10)

and

L′ =

√
L2 − ‖S(S∗S)†c‖

2
. (11)

Thus,

max
x∈D

‖W ∗x − d‖
2
l2

= (12)

= max
v∈G

∥∥W ∗S(S∗S)†c − d + W ∗v
∥∥2

l2

= max
v∈G

‖ad + W ∗v‖
2
l2

= max
v∈G

(
‖ad‖

2
l2

+ 2ℜ{〈ad, W
∗v〉l2} + ‖W ∗v‖

2
l2

)
,

where we defined ad , W ∗S(S∗S)†c − d. As a result, the maximum in (12) is achieved when

ℜ{〈ad, W
∗v〉l2} = |〈ad, W

∗v〉l2 | . (13)

Indeed, let v ∈ G be the vector for which the maximum is achieved. If 〈ad, W
∗v〉l2 = 0 then (13) is trivially true.

Otherwise, we can define

v2 ,
〈W ∗v, ad〉l2
|〈W ∗v, ad〉l2 |

v. (14)

Clearly, ‖v‖ = ‖v2‖ and v2 ∈ G. In addition, ‖W ∗v‖l2
= ‖W ∗v2‖l2

and 〈ad, W
∗v2〉l2 = |〈ad, W

∗v〉l2 | so that

the objective in (12) at v2 is larger than the objective at v unless (13) is satisfied.
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Combining (13) and (12), our problem becomes

min
d

max
v∈G

(
‖ad‖

2
l2

+ 2 |〈ad, W
∗v〉l2 | + ‖W ∗v‖

2
l2

)
. (15)

Denoting the optimal objective value by A, and replacing the order of minimization and maximization, we get

A ≥ max
v∈G

min
d

(
‖ad‖

2
l2

+ 2 |〈ad, W
∗v〉l2 | + ‖W ∗v‖

2
l2

)

= max
v∈G

‖W ∗v‖
2
l2

, (16)

where we used the fact that ‖ad‖
2
l2

+ 2 |〈ad, W
∗v〉l2 | ≥ 0, with equality for ad = 0, or

d = W ∗S(S∗S)†c.

Thus, for any choice of d,

min
d

max
v∈G

‖ad − W ∗v‖
2
l2
≥ max

v∈G
‖W ∗v‖

2
l2

. (17)

The proof then follows from the fact that d given by (9) achieves the lower bound (17). Uniqueness of d follows

from (15), as the optimal solution must satisfy ad = 0.

Note that (9) resembles the solution of the Wiener-Hopf equations, where the Gramian matrix of the autocorrela-

tions is first inverted (pseudo-inverted), and the cross-correlation Gramian matrix is then applied. Another interesting

interpretation of (9) is obtained by presenting PSx = S(S∗S)†c. This leads to the following corollary.

Corollary 1: The solution (9) can be written as

d = W ∗PSx. (18)

This means that our robust approach first approximates the signal by its orthogonal projection onto the sampling

space, and then applies the analysis functions {wn}. Thus, we can also conclude that the suggested approximation

method results in zero error if W ⊆ S or if the prior knowledge x ∈ S exists. In fact, by identifying A of

(4) with S, the solutions indeed coincide. Interestingly, PSx is the minimax approximation of x over the set

D = {x | S∗x = c, ‖x‖ ≤ L}, as incorporated in the following proposition.

Proposition 1: PSx is the minimax approximation of x over the set D = {x | S∗x = c, ‖x‖ ≤ L}, i.e., it is the

unique solution of

min
x̂

max
x∈D

‖x − x̂‖
2
.

Proof: Projecting x− x̂ along S and S⊥ we have

‖x − x̂‖
2

=
∥∥S(S∗S)†c − PS x̂

∥∥2
+ ‖PS⊥x − PS⊥ x̂‖

2
. (19)

Accordingly, the maximization stage can be rewritten as

max
x∈D

‖x − x̂‖
2

= ‖eS(x̂)‖
2
+ max

x∈D
‖PS⊥x− PS⊥ x̂‖

2
= (20)

= ‖eS(x̂)‖
2
+

+ max
x∈D

(
‖PS⊥x‖

2
− 2ℜ〈PS⊥x, PS⊥ x̂〉 + ‖PS⊥ x̂‖

2
)

,
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where eS(x̂) = S(S∗S)†c − PS x̂. Similarly to the proof of Theorem 2, we can replace −2ℜ〈PS⊥x, PS⊥ x̂〉 by its

absolute value. Then, the minimax objective can be lower bounded by

min
x̂

(
‖eS(x̂)‖2 + max

x∈D

(
‖PS⊥x‖2 + 2 |〈PS⊥x, PS⊥ x̂〉|+

+ ‖PS⊥ x̂‖
2)

)
≥ max

x∈D
‖PS⊥x‖

2
, (21)

where we used the fact that for all x̂ we must have ‖eS(x̂)‖
2
≥ 0 and 2 |〈PS⊥x, PS⊥ x̂〉| + ‖PS⊥ x̂‖

2
≥ 0. The

proof then follows since x̂ = PSx is the minimizer which achieves this lower bound. Furthermore, it is unique,

since from (21) the optimal solution must satisfy PS⊥ x̂ = 0 and eS(x̂) = 0.

We conclude that the problem of approximating the representation coefficients in a minimax sense could be split

into two parts; first obtaining the minimax approximation of x itself, then applying the analysis operator W ∗ to

that approximation.

A. Element-Wise Optimality

In Theorem 2, we approximate a set of representation coefficients W ∗x, by minimizing (in a minimax sense) the

squared norm of the error sequence W ∗x − d. Instead, one may suggest alternative objectives which combine the

entries of the error sequence in an l1 norm i.e., ‖W ∗x − d‖l1
or the l∞ norm ‖W ∗x − d‖l∞

. We now show that

the suggested solution (9) is optimal according to all the above criteria, as it is minimax optimal element-wise.

Theorem 3: The sequence d = W ∗S(S∗S)†c is a solution of mind maxc=S∗x,‖x‖≤L ‖W ∗x− d‖lp
, for any

natural p.

Proof: First assume that a single representation coefficient is to be approximated in a minimax sense

mined max
c=S∗x,‖x‖≤L

∣∣∣〈w,x〉 − d̃
∣∣∣
2

, (22)

where d̃ is a scalar. Degenerating the result (9) of Theorem 2 by letting W be the set transformation of the single

function w(t), the solution of (22) is

d̃ = 〈w, S(S∗S)†c〉.

Since (9) satisfies d[n] = 〈wn, S(S∗S)†c〉 for each entry of the vector d, we conclude that it is element-wise

optimal, implying that the solution will not change if we combine the individual errors in l1, l∞ or any lp norm.

V. IMPOSING SMOOTHNESS BY SOBOLEV SPACES

The objective in Theorem 2 considers functions within the set D = {x | S∗x = c, ‖x‖ ≤ L}. However, sometimes

we have prior knowledge of an input signal to be smooth. If we could restrict the set of possible inputs to include

only smooth functions, then the performance of the robust objective may be improved.

Sobolev spaces are natural candidates to describe smoothness. For simplicity, our main discussion will concern

the Sobolev space of order one.
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Definition 1: The Sobolev space of order one W 1
2 is the Hilbert space of functions which have a finite L2 norm,

and whose first derivative also has a finite L2 norm. The inner product in this space is given by 〈a,b〉W 1

2

=

〈a,b〉L2
+ 〈a(1),b(1)〉L2

, where a(1) and b(1) stand for the first derivative of a and b, respectively [12].

We note that the definition of the W 1
2 inner product, as stated above, is the common (but definitely not the only)

choice. Additionally, note that x ∈ W 1
2 also implies x ∈ L2 (but the opposite is not necessarily true). If we have

prior knowledge that the input x and its first derivative are of finite energy (which in particular implies that x is

continuous), we may consider the set of possible inputs to be D̃ =
{
x | S∗x = c, ‖x‖W 1

2

≤ L̃
}

, where L̃ is an

upper bound on the W 1
2 norm of x. This leads to the following minimax objective:

min
d

max
‖x‖

W1
2

≤L̃,c=S∗x

‖W ∗x− d‖
2
l2

. (23)

As we will soon show, we can solve this robust objective using Theorem 2. Furthermore, to determine the best

sequence d, one does not have to know the upper bound L̃ in advance, however, it has to be finite.

Since the derivations of Theorem 2 are general enough to be applicable to any Hilbert space, the problem can

be solved in the order one Sobolev space as well. However, the objective (23) contains mixed inner products and

norms; S∗x and W ∗x describe L2 inner products, while ‖x‖W 1

2

≤ L̃ is a Sobolev norm constraint. Hence, we will

first recast the whole problem into the order one Sobolev space, then apply the results of Theorem 2.

To this end, note that W 1
2 inner products can be compactly written in the Fourier domain by

〈s,x〉W 1

2

=
1

2π

∫ ∞

−∞

SF (ω)XF (ω)
(
1 + ω2

)
dω, (24)

where SF (ω) and XF (ω) are the Fourier transforms of s(t) and x(t), respectively. As introduced in [10], we can

use (24) to rewrite L2 inner products as W 1
2 inner products. Specifically, for any a ∈ L2,b ∈ W 1

2

〈a(t),b(t)〉L2
= 〈a(t) ∗ u(t),b(t)〉W 1

2

, (25)

where ∗ stands for the convolution operation and

u(t) =
1

2
e−|t|, (26)

is the inverse Fourier transform of 1/(1 + ω2).

Using (25), we can replace the L2 inner products W ∗x and S∗x, using their Sobolev counterparts, recasting our

problem into the order one Sobolev space, which leads to the following theorem.

Theorem 4: Consider the problem

min
d

max
c=S∗x,‖x‖

W1
2

≤L̃
‖W ∗x− d‖

2
l2

, (27)

where W and S are bounded set transformations with range W and S, respectively. The (unique) solution is

d = W̃ ∗S̃(S̃∗S̃)†c, (28)

where the inner products described by (28) are computed in the order one Sobolev space, S̃, W̃ are the set

transformations of {s̃n = sn ∗ u} and {w̃n = wn ∗ u} respectively, and the function u(t) is given by (26).



9

Proof: Using (25), we can rewrite (27) as

min
d

max
c=S̃∗x,‖x‖≤L̃

∥∥∥W̃ ∗x − d
∥∥∥

2

l2
,

where S̃ and W̃ are the set transformation of {s̃n = sn ∗ u} and {w̃n = wn ∗ u}, respectively, and u(t) is given

by (26). Since the derivations of Theorem 2 apply to any Hilbert space, the solution maintains similar form as in

(9), resulting in (28).

We point out that the obtained solution is element-wise optimal. The latter can be shown in a similar way as done

in Theorem 3. Also, note that (28) describes W 1
2 inner products. In practice, this means that the i, j’th element of

the matrix W̃ ∗S̃ is

〈w̃i, s̃j〉W 1

2

= 〈wi, s̃j〉L2
, (29)

and similarly

〈s̃i, s̃j〉W 1

2

= 〈si, s̃j〉L2
. (30)

Rewriting P eSx = S̃(S̃∗S̃)†c and using (29), we obtain the following corollary.

Corollary 2: The solution (28) can be written as

d = W ∗P eSx, (31)

where S̃ is the closure of span {s̃n} and P eSx stands for the orthogonal projection of x, in the W 1
2 sense, onto S̃.

The operator W ∗ describes the usual L2 inner products.

Another interesting interpretation of Theorem 4 is evident by rewriting all inner products in the L2 space.

Combining (30) with (31) we obtain the following corollary.

Corollary 3: The solution (28) can be written as

d = W ∗S̃(S∗S̃)†S∗x = W ∗E eS,S⊥x, (32)

where E eS,S⊥ stands for the oblique projection operator [16], [23], in the L2 sense, with a range space S̃ and a

null space S⊥.

Note that the oblique projection operator is well defined since there is a bijection between S and S̃.

Similarly as in Proposition IV, it can be shown that P eSx = E eS,S⊥x is the unique solution of

arg min
x̂

max
c=S∗x,‖x‖

W1
2

≤L̃
‖x − x̂‖

2
W 1

2

.

Corollaries 2 and 3 imply that the problem of Theorem 4, could be split into two parts; first obtaining the Sobolev

minimax approximation of x itself, then applying the analysis operator W ∗ to that approximation.

In this section we have considered the Sobolev space of order one. It is possible to extend the above derivations

to higher orders of Sobolev spaces, if sufficient degree of smoothness is known to be present. The order r Sobolev

space W r
2 is composed of finite energy functions with r finite energy derivatives; W r

2 inner products can be written

as 〈a,b〉W r
2

=
∑r

k=0〈a
(k),b(k)〉L2

, where the (k) superscript stands for the k’th derivative. Thus, we can obtain
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similar results, which only require the replacement of the function u(t) of (26) with the inverse Fourier transform

of 1/(1 + ω2 + ω4 . . . + ω2r).

As a concluding remark, we note that the obtained solution takes the form of applying the analysis functions

to x̂ = P eSx = E eS,S⊥x, which is the minimax approximation of x within the space S̃ . Furthermore, this space

is determined by the sampling functions {sn} and the smoothness constraint (manifested by u). Thus, we have

obtained a nice counterpart to methods that arbitrarily choose the interpolation space.

A. Extension of the Ideal Sampling Case Results

In this section, we show how Theorem 4 extends some recent work by Kirshner and Porat [10], [11].

In [10] [11], it was assumed that a single representation coefficient 〈w(t),x(t)〉L2
is to be approximated by

linearly processing the ideal sample sequence ST x = {x(nT )}. The processing is performed by calculating the l2

inner product 〈b, STx〉l2 with some sequence b. The ideal sampling case must be treated with caution; restricting

x(t) to be an L2 signal is not sufficient to guarantee that its ideal samples form an l2 sequence. For example,

take any x(t) in L2 and redefine its values on the uniform sampling grid {nT} to equal one. Clearly the redefined

signal is still in L2, but its ideal sample sequence has infinite energy. This last example shows that whenever ideal

sampling is of concern, we want the signal to be smooth, in addition to having finite energy. Only then, it is

guarantied that the l2 inner product 〈b, STx〉l2 is well defined.

To assure finite energy of STx = {x(nT )} it was assumed in [10] that x lies within an order one Sobolev space.

To see that this is a sufficient condition, we refer the reader to [10], [24], or [9, Appendix C] for the general case of

a sampling function with a bounded Fourier transform. Then, for any x ∈ W 1
2 the approximation error was upper

bounded by

|〈w(t),x(t)〉L2
− 〈b, STx〉l2 | ≤ B ‖x‖W 1

2

,

where B is a constant that depends on T, b,w and the function u(t) of (26). Finally, B was minimized with respect

to the processing sequence b.

Reinterpreting the derivations in [10], the approximation problem of [10, Thr. 3] can be restated as a minimax

objective:

min
b

max
‖x‖

W1
2

≤L̃
|〈w,x〉L2

− 〈b, STx〉l2 | , (33)

where L̃ is some (finite) upper bound on the W 1
2 norm of x. Note that in contrast to our minimax formulation,

the prior c = ST x is not part of (33). Furthermore, the processing method is restricted to a linear form through

〈b, STx〉l2 . Yet, it can be shown that the optimal solution of those two minimax problems remains the same (see

[16] for a similar setup). In [10] it is found that the optimal sequence b satisfies

∑

n

u(t − nT )b[n] = PU (w ∗ u) , (34)

where PU is the orthogonal projection, in the W 1
2 sense, onto U , which is the closure of span {u(t − nT )}.
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We now show this result of [10] as a special case of Theorem 4. First, define U to be the set transformation

of the function set {u(t − nT )}. It can be shown that on W 1
2 , U is the adjoint of the ideal sampling operator ST

[10]. Indeed, for any x ∈ W 1
2 , we have

x(nT ) =
1

2π

∫ ∞

−∞

XF (ω)ejωnT 1

(1 + ω2)

(
1 + ω2

)
dω

= 〈u(t − nT ),x(t)〉W 1

2

, (35)

or, using operator notations, c = STx = U∗x. We note that U (as well as U∗ = ST ) is a well defined bounded

operator in W 1
2 [9, Appendix C]. Additionally, the single representation coefficient 〈w,x〉L2

can be written as the

order one Sobolev inner product W̃ ∗x, with W̃ being the set transform of w̃(t) = w(t) ∗ u(t). Identifying S̃ with

U , we have from (28)

d = W̃ ∗U(U∗U)†c

= 〈w̃, U(U∗U)†c〉W 1

2

= 〈(U∗U)†U∗w̃, c〉l2 = 〈b, c〉l2 , (36)

where we denote b = (U∗U)†U∗w̃. As a result, Ub is exactly the orthogonal projection of w̃ = w ∗ u onto the

space U , which is compatible with (34).

B. The Shift Invariant Case

The approximation (9) was derived for general sampling and analysis subspaces of L2 or W 1
2 . An interesting

special case of this setup is when in addition, S and W are real shift invariant (SI) subspaces, each spanned by

shifts of length T of some fixed generating function [13], [16]. In this case, as we will show, the approximation

sequence d can be obtained by discrete-time filtering of the sample sequence c. Assume first that H = L2 and the

SI subspaces are

S =

{
f(t) | f(t) =

∑

n

a[n]s(t − nT ), a ∈ ℓ2

}
;

W =

{
f(t) | f(t) =

∑

n

a[n]w(t − nT ), a ∈ ℓ2

}
, (37)

where s(t) and w(t) are the real generators of S and W , respectively. In this SI case, the samples c[n], which are

given by

c[n] =

∫
s(t − nT )x(t)dt = x(t) ∗ s(−t)|t=nT , (38)

correspond to samples at times t = nT of the output of a filter with impulse response s(−t), with x(t) as its input

(see Figure 1). Here g(t) ∗ z(t) denotes the continuous-time convolution between the signals g(t) and z(t), and

y(t)|t=nT = y(nT ).



12

To ensure that the functions {sn(t) = s(t − nT )} and {wn(t) = w(t − nT )} form frames for S and W respec-

tively, a simple condition can be verified in the frequency domain [21]:

α ≤ Rf
W,W(ω) ≤ β, ω ∈ IW ;

γ ≤ Rf
S,S(ω) ≤ η, ω ∈ IS , (39)

for some 0 < α ≤ β < ∞ and 0 < γ ≤ η < ∞. Here we denote,

Rf
A,B(ω) =

1

T

∞∑

k=−∞

AF

(
ω + 2πk

T

)
BF

(
ω + 2πk

T

)
,

where WF (ω),SF (ω) are the continuous-time Fourier transforms of the generators s(t),w(t), and IW , IS are the

set of frequencies ω for which Rf
W,W(ω) 6= 0 and Rf

S,S(ω) 6= 0, respectively.

Letting S and W be the set transformations of {s(t − nT )} and {w(t − nT )}, respectively, it is easy to see that

W ∗Sa is equivalent to filtering the sequence a[n] by a discrete-time LTI filter with DTFT Rf
W,S(ω). Similarly, the

pseudo-inverse operator (S∗S)† can be represented by application of a filter with DTFT 1/Rf
S,S(ω) for ω ∈ IS and

zero otherwise. Combining the above, we have that for H = L2 the sequence d = W ∗S(S∗S)†c can be obtained

by filtering the sample sequence c with a digital filter having the frequency response

Gf (ω) =






Rf

W,S
(ω)

Rf

S,S
(ω)

, ω ∈ IS ;

0, ω /∈ IS .
(40)

We point out that by a proper choice of the sampling and analysis functions, the filter (40) is compatible with the

solution for the ’wavelet crime’ problem, as obtained in [7].

We now find the digital filter, when a smoothness constraint is incorporated, by considering the results of Theorem

4. Let u(t), as given by (26), be the inverse Fourier transform of 1/(1 + ω2) and define s̃ = s ∗ u. In the SI case,

the solution (32) then takes the form

Gf (ω) =





Rf

W,S̃
(ω)

Rf

S,S̃
(ω)

, ω ∈ IS ;

0, ω /∈ IS ,

(41)

where S̃F (ω) = SF (ω)/(1 + ω2) is the Fourier transform of s̃(t).

VI. ERROR ANALYSIS

In this section we investigate the error resulting from the minimax method. We then derive sufficient conditions

for our method to outperform the sum approximation (5). Although we use the S and W operators (as opposed to

their Sobolev counterparts S̃, W̃ ), all derivations are applicable to Sobolev spaces by considering the appropriate

inner products.

Let

emx = W ∗x− d (42)
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be the error sequence due to the minimax approach, where d is given by (9). Using (18) we can express the error

as

emx = W ∗PS⊥x. (43)

Define esum to be the error sequence due to the sum approximation method (5). The n’th element of esum satisfies

esum[n] = 〈wn,x〉L2
− T 〈STwn, c〉l2 . (44)

It should be noted that in many engineering applications, pre-filtering followed by ideal sampling is performed.

Then, the natural choice of T is the shift interval for the acquisition device impulse response (Figure 1).

We now examine the conditions which will assure that ‖emx‖
2
l2

≤ ‖esum‖
2
l2

. In the following lemma we first

introduce tight bounds for the difference ‖esum‖
2
l2
−‖emx‖

2
l2

. Clearly, if the difference is positive, then the minimax

method is preferable to the sum approximation method, and vice versa.

Lemma 1: For any x in the set
{
x| c = S∗x, ‖x‖L2

≤ L
}

the squared norm difference ‖esum‖
2
l2
−‖emx‖

2
l2

lies

within the tight bounds

BL ≤ ‖esum‖
2
l2
− ‖emx‖

2
l2
≤ BH , (45)

where

BL = ‖a‖
2
l2
− 2 |〈a, emx〉l2 | (46)

BH = ‖a‖
2
l2

+ 2 |〈a, emx〉l2 | ,

and

a[n] = 〈wn, S(S∗S)†c〉L2
− T 〈STwn, c〉l2 . (47)

Proof: Using (42) and (44) we can relate the two error sequences by

esum = a + emx, (48)

with a given by (47). Note that since the sample sequence c is available, and so are T, S and W , the sequence a is

known as well. Furthermore, a ∈ l2. The latter is evident by rewriting a = W ∗
(
S(S∗S)† − TS∗

T

)
c. Since c ∈ l2,

S∗
T = U is a bounded transformation [9, Appendix C] and so are S(S∗S)† and W ∗ (due to the frame assumptions)

the sequence a has finite energy. Taking the squared norm of both sides of (48) and rearranging terms, we get

‖esum‖
2
l2
− ‖emx‖

2
l2

= ‖a‖
2
l2

+ 2ℜ{〈a, emx〉l2} .

The bounds (46) then follow from

− |〈a, emx〉l2 | ≤ ℜ {〈a, emx〉l2} ≤ |〈a, emx〉l2 | .

We now show that the bounds are tight. Assume to the contrary that for all x in the set
{
x| c = S∗x, ‖x‖L2

≤ L
}

,

ℜ{〈a, emx〉l2} < |〈a, emx〉l2 | .
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Define x2 = S(S∗S)†c +
〈W∗P

S⊥x,a〉l2

|〈W∗P
S⊥x,a〉l2 |

PS⊥x. We point out that x2 is a valid input since it satisfies the norm

constraint ‖x2‖ ≤ L and is consistent with the known samples (i.e., c = S∗x2). However, by examining the

minimax error at x2, we have

ℜ{〈a, W ∗PS⊥x2〉l2} = |〈a, W ∗PS⊥x2〉l2 | ,

thus contradicting our initial assumption. The proof of tightness for the lower bound is similar.

Since the tight upper bound BH is nonnegative for all choices of emx, we conclude that the sum approximation

method cannot outperform the proposed minimax approach, for all possible inputs. On the other hand, in some

cases, it is possible to have better performance by the minimax approach, for all possible inputs. To assure this, the

lower bound BL must be positive. In the following lemma, we provide a tight upper bound on ‖emx‖l2
assuming

that the set {wn(t)} is orthonormal. Using this bound, we then state a sufficient condition for the minimax method

to outperform the standard sum approximation approach for all possible x.

Lemma 2: Let {wn(t)} be an orthonormal set, and let x satisfy ‖x‖ ≤ L, c = S∗x. Then

‖emx‖l2
≤ Bmx =

√
1 − cos2 (W ,S)L′, (49)

where

L′ =

√
L2 − ‖S∗(S∗S)†c‖

2
(50)

is the norm of PS⊥x and cos (W ,S) = infy∈W,‖y‖=1 ‖PSy‖.

Before giving the proof, we mention that cos (W ,S) is related to the largest angle [13], [16] between the spaces.

An explicit expression for cos (W ,S) in the case of SI spaces is given in [13].

Proof: Since

‖emx‖
2
l2

= ‖W ∗PS⊥x‖
2
l2

= 〈W ∗PS⊥x, W ∗PS⊥x〉l2 ,

we also have

‖emx‖
2
l2

= 〈PS⊥x, WW ∗PS⊥x〉

= 〈PS⊥x, PWPS⊥x〉

= 〈PWPS⊥x, PWPS⊥x〉

= ‖PWPS⊥x‖2 , (51)

where we utilized the orthonormality of the analysis set {wn(t)} to rewrite WW ∗ = PW . For any x satisfying

c = S∗x, ‖x‖ ≤ L we have ‖PS⊥x‖ ≤ L′, where L′ is given by (50). Thus we can bound

‖PWPS⊥x‖ ≤ sin
(
S⊥,W⊥

)
L′,

where we denote sin
(
S⊥,W⊥

)
= supy∈S⊥,‖y‖=1 ‖PWy‖. From [13], [25] sin

(
S⊥,W⊥

)
=

√
1 − cos2 (W ,S)

and the proof follows.
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Corollary 4: Let {wn(t)} be an orthonormal set. A sufficient condition for the minimax method to outperform

the sum approach for all x in the set {x| ‖x‖ ≤ L, c = S∗x} is ‖a‖l2
≥ 2Bmx, where a and Bmx are given by

(47) and (49), respectively.

Proof: Using Lemma 1, the Cauchy-Schwartz inequality and Lemma 2, we have

BL ≥ ‖a‖
2
l2
− 2 ‖a‖l2

‖emx‖l2
≥ ‖a‖

2
l2
− 2 ‖a‖l2

Bmx,

from which the proof follows.

The error analysis is summarized in Figure 2.

‖emx‖ ≤ Bmx (Lemma 2)

BL BH ≥ 0

(Lemma 1)
‖esum‖ − ‖emx‖

Bmx ≤ ‖a‖l2
/2 ⇒ BL ≥ 0 (Corollary4)

Fig. 2. Regions of ‖esum‖ − ‖emx‖ for the case where {wn(t)} is an orthonormal set. If the maximal norm of the minimax error (49) is

smaller than ‖a‖
l2

/2, then the suggested robust approach is superior to the sum method, for all possible inputs.

Another interesting case, which is easy to evaluate, is when a single representation coefficient 〈w,x〉 is to be

approximated. In this setting, emx, esum and a are all scalars. It can then be shown that the minimax method and

the sum approximation approach are tightly upper bounded by

|emx| ≤ Bmx = L′ ‖PS⊥w‖

|esum| ≤ Bsum = |a| + Bmx, (52)

where the worst possible input, which achieves those upper bounds is

xworst = S(S∗S)†c +
aL′

|a| ‖PS⊥w‖
PS⊥w. (53)

Additionally, a sufficient condition for the minimax method to outperform the sum approach becomes

|a| ≥ 2L′ ‖PS⊥w‖ . (54)

For proof, we refer the reader to Appendix II.

As a conclusion from the above analysis, we get that when the spaces W and S are close (such that cos (W ,S)

is close to one), or when most of the signal’s energy lies within the sampling space S (such that L′ is small), then

the minimax method will outperform the standard approach. Similarly, for large sampling intervals T , we can make

‖a‖l2
large enough, again guaranteeing better performance by the minimax method.
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VII. SIMULATIONS

Suppose that we wish to approximate a single representation coefficient 〈w,x〉L2
, where w(t) is a modulated

and normalized Gaussian

w(t) = αe−t2/2 cos(4πt), (55)

with α chosen such that ‖w‖L2
= 1. Consider an input

x(t) = e−50t2 − e−50(t−0.75)2 , (56)

composed of two Gaussians, synchronized with the analysis function w(t) (Figure 3). For this example 〈w,x〉L2
≈

0.2.

−5 0 5
−1.5

−1

−0.5

0

0.5

1

1.5

Time [sec]

w

x

Fig. 3. The analysis function w(t) and the input signal x(t).

A. ZOH Sampling

Assume that the generalized samples of x(t) were obtained by averaging the value of x(t) within a small interval

of length ∆, i.e.,

c[n] =
1

∆

∫ nT+∆

nT

x(t)dt. (57)

In this setting, the n’th sampling vector sn(t) of (1) is

sn(t) =





1/∆, t ∈ [nT, nT + ∆];

0, otherwise.
(58)

By processing the generalized samples {c[n] = 〈sn,x〉L2
} using the transformation (9), we obtain the minimax

approximation of 〈w,x〉L2
. The latter can be obtained in the L2 space, or transformed into a proper Sobolev space,

i.e., using (28), when smoothness is of concern. Note that the input signal of the example (56) indeed satisfies

x ∈ W 1
2 . Accordingly, as we will show, the minimax solution with the smoothness constraints outperforms the

minimax method which just assumes an L2 input signal.
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Interpreting the minimax solutions as the application of the analysis operator W ∗ to the approximates PSx

and E eS,S⊥x (i.e., Equations (18) and (32) respectively), it is of interest to show the building blocks of those

approximations. Figure 4 depicts the sampling functions s0(t) ∈ S and s̃0(t) ∈ S̃ , for ∆ = 0.05. In Figure 5 we

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

t

s(t)             

s(t)*e
−| t |

/2

Fig. 4. ZOH sampling. Shown are typical sampling functions s0(t) (58) and s̃0(t) = s0(t) ∗ e−|t|/2, which are the generators for the shift

invariant spaces S and eS , respectively. Here, ∆ = 0.05 and both functions are normalized for presentation purposes.

plot a section of x with its projections onto the appropriate sampling spaces. The parameters T and ∆ were set to

0.1[sec] and 0.05[sec], respectively. For this example, the space S̃ captures most of the signal’s energy. Indeed, as

can be seen from Figure 5, the approximation E eS,S⊥x is very close to the original input and one may expect good

results while evaluating the minimax objective with the smoothness constraints.

In addition to performing the minimax approximations, we have also processed the samples using the standard

sum approach (5). In Figure 6 we present the specific errors for the current input, using several choices of T . The

minimax solution is optimized for the worst possible inputs within the considered set. However, the assumed test

signal (56) is by no means the worst possible input. It was merely used to produce the generalized samples. As a

result, for some sampling intervals, the suggested robust solutions are better, while for others they are outperformed

by the sum approximation.

It is also of interest to examine the signals that cause the highest value of the cost function. In Figure 7 we

plot those worst inputs. In both the presented cases, the worst possible input is calculated according to (53),

and is given by a projection of x onto the sampling space, and a vector in S⊥, which has the smallest angle

with the analysis function w(t). As can be seen from part (a) of Figure 7, the worst possible input in the set

D =
{
x | ‖x‖L2

≤ L, c = S∗x
}

is a highly non smooth function. This input is indeed possible in the L2 space,

but it is not likely to appear if we know the signal to be smooth. If we consider only order one Sobolev functions, the

worst input is a smooth function, and is much closer to the original input (part (b) of Figure 7). The exceptionally

good results of Figure 7 (b) are due to the fact that for this example, most of the signals energy lies within the

space S̃ (alternatively, L′ is small). As a result, the approximation P eSx = E eS,S⊥x describes well the original input.
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Fig. 5. A section of x and its approximation in the sampling space; The L2 orthogonal projection onto S yields rectangular pulses. The

oblique projection onto eS yields a smooth function, which is very close to the original input.
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Fig. 6. The errors as a function of T .

Note that in all cases, the worst inputs look the same for the acquisition device, as they both produce the same

generalized samples. To illustrate the last point, in Figure 8 we plot a section of x and the worst possible inputs

(for the L2 and the W 1
2 sets). In addition, we present the orthogonal projection PSx, in the L2 sense, which is

composed of rectangular pulses describing the integration zone due to the sampling functions (58). As can be seen,

all signals yield the same generalized samples, as they all have the same area within the rectangular pulses.

In Figure 9 we plot the upper bounds of the performance for the different approximation methods. The upper

two curves are due to Equation (52). If in addition the input is known to be smooth, we can perform all the inner

products and norms in the order one Sobolev space. As a result, the value of the upper bound Bmx changes, and
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Fig. 7. The original input and the worst possible counterpart in (a) L2, (b) Sobolev space of order one.

so is Bsum (the lower two curves of Figure 9).

Note that those upper bounds are obtained by the worst possible inputs plotted in Figure 7. Specifically, the signal

at the bottom part of Figure 7 achieves the lower two curves of Figure 9 (with the lowest curve for the minimax

method with the smoothness constraints, and the one above it for the sum approach). Similarly, when smoothness

is not of concern, the signal at the top part of Figure 7 achieves the top two error bound curves of Figure 9 (with

the higher curve for the sum approximation).

B. RC Sampling

As an additional example, suppose that the acquisition device is a low pass RC circuit, followed by an ideal

sampler with interval T (Figure 10). Here, the frequency response of the acquisition filter is given by 1/(1+jωRC),
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Fig. 8. A section of x and the worst possible counterpart in (a) L2, (b) Sobolev space of order one. Both are plotted against PSx to describe

the integration zones.

and the n’th sampling vector is shifted and mirrored version of the impulse response

sn(t) =





(RC)−1e
t−nT

RC , t ≤ nT ;

0, otherwise.
(59)

Figure 11 is similar to Figure 7, while considering the RC circuit sampling function (59), with the time constant

RC = 0.5. Here as well, the sampling functions posses discontinuities, giving rise to a non-smooth worst-case

function, as shown in the top part of Figure 11. When we expect the input to be smooth, the minimax objective

with the smoothness constraint can be used. For such a criterion, the worst-case input function behaves accordingly

(part (b) of Figure 11).
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Fig. 9. Upper error bounds according to equation (52). The sampling functions are given by (58).

x(t) ✲ R ✲✑
✑

❄

t = nT

C

c[n]

Fig. 10. An RC circuit, followed by ideal sampler, serves as the acquisition device.

Figure 12 shows the approximation error for the input x(t) of (56). Since input (56) is a smooth function, imposing

the smoothness constraint indeed improves the performance of the minimax methods. Here as well, the proposed

robust criterions do not always outperform the Rieman sum approximation (part (b) of Figure 12). However, by

considering the worst possible input, the superiority of the minimax methods is guaranteed. In Figure 13 we show

the upper error bounds for several values of T and RC. As expected, the robust approaches outperform the sum

counterpart. Additionally, when we restrict the set of possible inputs to order one Sobolev functions, the worst case

errors are smaller. As with the previous simulation, the presented error bounds are tight. For example, the worst

case inputs of Figure 11 achieve the error bounds in the top part of Figure 13.

As a final remark, note that the worst-case signal is dependent on the sampling and analysis functions (53).

Therefore, when either of them is non-smooth, the worst-case function might be non-smooth as well, being the

sum of functions with discontinuities. As a result, if we have prior knowledge that the input x(t) is smooth, it is

recommended to implement the minimax solution with the smoothness constraint.
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Fig. 11. The original input and the worst possible counterpart in (a) L2, (b) Sobolev space of order one. The sampling functions are given by

(59).

VIII. SUMMARY

A minimax approach has been introduced for approximating inner-product calculations within the continuous-

time domain, while having the generalized samples of the signal as the only available data. We have shown that

if the input signal is known to be a smooth function, then a smoothness constraint can be incorporated into the

minimax criterion. The latter was achieved by recasting the problem into a proper Sobolev space. A comparison of

our proposed robust methods with the standard Rieman sum approximation has been presented. Error bounds for

the different methods were derived, showing the possible improvement by the proposed methods. The derivations

presented herein extend recent results concerning the ideal sampling case, allowing for practical acquisition devices

to be incorporated.
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Fig. 12. Concrete approximation errors for the input (56) processed by the RC circuit. (a) RC = 0.05, (b) RC = 0.5.

APPENDIX I

PROOF OF THEOREM 1

In this appendix we show that for a general x ∈ H, satisfying c = S∗x, it is possible to obtain the required

inner products W ∗x if and only if W ⊆ S. The proof of this claim is similar to the proof of a sampling problem,

considered in [16, Sec. 3]. For completeness, we bring the derivations below.

Assume W ⊆ S and let d = Gc where

G = W ∗S (S∗S)
†
. (60)

We now show that d = W ∗x. Indeed, since for any function f , W ∗f = W ∗PW f we have Gc = W ∗PWS (S∗S)
†
c.

Substituting c = S∗x,

d = Gc = W ∗PWPSx = W ∗PWx = W ∗x, (61)
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Fig. 13. Upper error bounds. The sampling functions are given by (59) with (a) RC = 0.05, (b) RC = 0.5.

where we used the fact that PWPS = PW since W ⊆ S.

Now, assume that W * S and suppose that there exits a transformation d = G(c) achieving d = W ∗x. Consider

the signal x defined by x = xS⊥ + xW where xS⊥ is in S⊥ but not in W⊥ (such a function always exists since

W * S) and xW ∈ W . For this choice, c = S∗x = S∗xW but W ∗x−W ∗xW = W ∗xS⊥ 6= 0. Since we assumed

W ∗x = G(S∗x) and W ∗xW = G(S∗xW) we also have

W ∗xS⊥ = G(S∗x) − G(S∗xW) = 0, (62)

which implies that xS⊥ ∈ W⊥, contradicting our assumption.
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APPENDIX II

ERROR BOUNDS FOR THE SCALAR CASE

In this appendix we prove (52), (53) and (54).

To show (52) note that for a single representation coefficient we have

|emx| = |〈w, PS⊥x〉|

= |〈PS⊥w, PS⊥x〉|

≤ ‖PS⊥w‖L′, (63)

where we used the Cauchy-Schwartz inequality and the norm constraint ‖PS⊥x‖ ≤ L′, with L′ given by (50). The

bound is tight, since

x = S(S∗S)†c +
PS⊥w

‖PS⊥w‖
L′ (64)

is a valid input which achieves (63) with equality. Similarly, we can bound the error due to the sum method. Using

(48),

|esum| ≤ |a| + |emx| ≤ |a| + ‖PS⊥w‖L′. (65)

This upper bound is obtained by setting x = xworst as in (53). In fact, the signal xworst of (53) also achieves

the maximal bound in (63). Thus, there is a valid input which makes both the sum and the minimax methods to

operate as worst as possible.

To prove (54), we must find a sufficient condition that ensures that the lower bound BL of (46) is positive. Using

(46) and (63) we have that BL ≥ |a|
2
− 2 |a| ‖PS⊥w‖L′ from which (54) follows.
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