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ABSTRACT 

The problem of ordering and sizing parallel wires residing in a single 

metal layer within an interconnect channel is addressed in this paper. Wires 

are ordered such that cross-capacitances between neighboring wires are 

optimally shared for circuit delay minimization. Using an Elmore delay 

model including cross capacitances, an optimal wire ordering is uniquely 

determined, such that average signal delay can be minimized by proper 

allocation of inter-wire spaces. For uniform-width wires, the optimal order 

depends on the size of drivers, and is independent of size of receivers. The 

optimal order corresponds to minimal differences between driver resistances 

of neighboring wires. This result applies to most practical VLSI design 

scenarios. The problem of simultaneously ordering and optimizing variable-

width wires is addressed also.  The same ordering method is shown to be 

advantageous for minimizing the critical wire delay in most problem 

instances. Examples for 65-nanometer technology are analyzed and 

discussed.  
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1. INTRODUCTION 

  Cross-capacitances between wires in interconnect structures 

have a major effect on circuit timing. The importance of this effect grows 

with technology scaling [1], [2]. In this paper, delays in a bundle of parallel 

wires (with different drivers and loads) are minimized by choosing an 

optimal ordering of the nets, in addition to optimal allocation of wire widths 

and inter-wire spaces. The total width of the structure is a given constraint. 

Ordinary delay minimization ignores the net ordering degree of freedom and 

treats the order of signals in the channel as given. A brute-force approach to 

determine the best ordering is to generate all wire permutations, and for each 

permutation solve the wire-width and space optimization problem  [25]. This 

approach, however, is computationally infeasible for bundles exceeding just 

a few wires. The existence of a typical optimal wire ordering, which ensures 

that wire sizing and spacing yields best circuit timing, is proven in this 

paper. This optimal order is applicable for most VLSI circuit design 

scenarios. Its derivation is straight forward and requires only simple sorting. 

Heuristics for solving the most general cases of this problem are described 

and evaluated.  

 

Net-ordering for delay optimization has not been addressed in previous 

works. For a fixed order of wires, the problem of allocating widths and 

spaces to maximize performance in tuning of bus structures was proposed in 

 [3] and solved in  [25]. The wire sizing problem has been addressed in  [4] 

and  [5] for a single net. Sizing and spacing multiple nets with consideration 

of coupling capacitance has been addressed in  [6] for general interconnect 
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layouts by converting cross capacitance to effective fringe capacitance. 

Coupling capacitance has been addressed explicitly in the context of 

physical design for minimizing crosstalk noise  [7], [8] or dynamic power  [9]. 

Some authors treated wire sizing for throughput optimization in buses using 

uniform wire widths and spaces  [21],  [26],  [27]. Several variants of net-

reordering have been applied for improving layout efficiency  [13], and for 

noise reduction  [8],  [14]  [15]  [16]  [17]. Swapping of wires for power 

reduction was applied in  [18]. Vittal et al.  [14]  have suggested without 

proof to reduce crosstalk noise by sorting wires in order of driver strength, 

which is closely related to our result in delay minimization.  

 

2. PROBLEM FORMULATION 

Consider a channel of n signal nets 10 ,..., −nσσ between two side-walls 

(wires at fixed locations, connected to ccV  or ssV ) as shown in Fig. 1. iS and 

1+iS , respectively, denote spaces to the lower and upper neighbors of wire 

iW . The length of each wire is L. The sum of wire widths and spaces 

between the lower and upper side walls is given in the following constraint 

(1), which represents the total width A of the available area for laying out 

the bundle of wires. Throughout the rest of this paper the terms left (right) 

and lower (upper) are used interchangeably for the sake of convenience. 
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Figure 1:  Signal drivers (modeled as voltage sources with series resistances), interconnect channel 

wires of length L, and receivers (modeled as load capacitances). Timing optimization is performed by 

reordering the signal wires and by allocating wire widths and spaces, for a given constrained channel 

width A.  
 

Signal delays are expressed by an Elmore model using simple 

approximations for wire capacitances and wire resistance. The delay of 

signal iσ  was derived in  [25] and is given by 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

+
++++=∆

+1

11
,

iii

i

i

i
iiii

SSW

d
hR

W

eCb
CgkWRaSW (2) 

The coefficients hgkedba ,,,,,,  are technology dependent parameters. 

This model includes effects of wire resistance (inversely proportional to wire 

width iW ) and effects of wire capacitance terms (area capacitance is 
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proportional to spaces iS and 1+iS ).  Miller coupling factors can be included 

in the last term to account for worst-case crosstalk effect on delay. 

 

Let Π∈π  denote an order (permutation) of the signals in the interconnect 

channel, taken from the set of all !n possible orders. We are seeking an order 

*π of the channel signals, that (after wire width and space allocation) yields 

the minimum average wire delay, i.e minimum total sum of delays given in 

(3): 
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This objective function is mathematically convenient because it is 

differentiable, and it is also a useful performance metric in industrial 

practice  [25]. 

Assume for the moment that the order π of the signals in the channel is 

given. Then, in order to minimize (3) subject to (1) we differentiate f and 

g  by all of their sizing variables: 
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At the minimum there exists some real numberλ  (Lagrange multiplier), 

satisfying gf ∇=∇ λ .  Rearranging and substituting yields the 

following: 
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The above equations and the area constraint equation (1) impose 2n+2 

algebraic equations in 2n+2 unknown variables nn SSWW "" 010 ,, −λ . 

Solving and substituting into (3) produces minimal total sum of signal 

delays for the assumed order π .   

 

The order of wires affects the sum of delays primarily because every pair of 

adjacent signal drivers is associated with a shared cross-capacitance between 

the wires. It makes sense to allocate large spaces to a wire driven by a weak 
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driver, in order to reduce the driver’s load. Strong drivers can cope with 

large cross-capacitances corresponding to narrow spaces. Consequently, in 

order to best utilize the total area given for the channel, weak drivers should 

share the same large spacing. Thus, a signal with a weak driver can benefit 

from the large space allocated anyway to its neighbor, which also has a weak 

driver, and vice versa. Similarly, strong drivers can share a small inter-wire 

space. The space sharing idea is illustrated in Fig. 2. There, the channel is 

comprised of some signals with weak drivers (W) and some with strong 

drivers (S). The ordering in Fig. 2(b) is superior to Fig. 2(a), which is 

apparently the worst. Wire sizing and spacing optimization aiming at 

minimizing the total sum of delays will yield smaller (better) delays for 

configuration 2(b), in comparison with 2(a). 

 

Figure 2: Space sharing in two interconnect channel configurations. a) Interleaved placement of 

strong and weak drivers, b) Sorted placement of signals according to driver strength.   

 

Consider now Π∈π as variable, and find which order yields the minimum 

total sum of delays after wire sizing and spacing for each ordering, as 

b a 
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discussed in the previous section. One needs therefore to solve the following 

problem: 

Minimize ( )SWf ,,π , subject to Π∈π and constraint (1)  

1
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             (6) 

 

In this formulation, both signal ordering and wire sizing are considered 

simultaneously. The main result of this paper is that the signal ordering can 

typically be solved independently of the wire sizing. Moreover, the optimal 

order can be derived directly from the setting of the given problem, by 

positioning the wires according to the effective resistances of their drivers, 

in a characteristic form of symmetric hill. It is shown below that the 

independence of sizing and ordering, and the optimality of symmetric hill 

ordering are valid for most problem instances which occur in practical 

circuit design. 

3. OPTIMALITY OF SYMMETRIC HILL ORDER 

 

3.1 Wires of uniform width 

For the sake of clarity, assume first that all the wires have the same width 

W while spaces can vary among wires. Hence, wire sizing means finding the 

optimal W and allocating optimal spaces between wires. For any 

order Π∈π , minimizing the total sum of delays involves only 2+n  

variables ( )nSSW ,,, 0 " . The following conditions are necessary for 

optimum: 
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Substitution of (9) and (8) into (7) yields   
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From (10) we obtain the following expressions for spaces at the optimum: 

( )( ) niRRhWdS iii <<++= − 0,21 1λ             (11) 

( )00 1 hRWdS += λ  

( )11 −+= nn hRWdS λ  

 

These optimal spaces depend on resistances of the signal drivers, but are 

independent of capacitive loads. Substitution of (11) into (1) yields the 

following expression for λ  
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Further substitution into (3) produces the following expression for the 

minimal total sum of delays. 
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Equation (13) consists of two terms 1f  and 2f . The first term 1f is invariant 

for different orders of signals. In the second term 2f , the indices of adjacent 

signals interact with each other in square root terms, thus making 

2f dependent on the order of signals in the channel. The physical reason for 

this is that cross capacitance between adjacent wires is determined by the 

space they share with each other.  

 

What is the order Π∈π that minimizes 2f ? The interaction of adjacent 

signals (indices) appears in a sum of successive square roots of driver 

resistance. This hints that the sought order will enforce the two resistances 

under each square root to be as close as possible to each other. Notice also 

that 2f  contains separate square roots with driver resistance of the leftmost 

and rightmost signals. Therefore, it makes sense to position the wires with 

lowest driver resistances (strongest drivers) at the left and right ends of the 

channel. As proven below, symmetric hill ordering captures the above 

reasoning, and indeed yields the minimum in average wire delay. 
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Definition: Symmetric hill ordering.  Given a sequence ( )n
iiR

1= of positive 

real numbers, assume without loss of generality that they are increasingly 

ordered, e.g., nn RRRR ≤≤≤≤ −121 " . Split this sequence into odd and even 

subsequences "" ≤≤≤≤≤ +− 121231 kk RRRR and "" ≤≤≤≤≤ +22242 kk RRRR . 

Reverse the order of numbers in the even subsequence, thus turning it into 

monotonic decreasing sequence. Finally, concatenate the odd and the 

modified (reversed) even subsequences into one sequence. The order of 

numbers in the new sequence thus obtained is called Symmetric hill ordering 

as it resembles climbing descending a symmetric hill. Fig. 3 demonstrates 

the described process. For proving the optimality of symmetric hill ordering, 

a few more definitions and properties are introduced. 

 

 

 

Figure 3. Creation of symmetric hill order  

 

Definition: successive roots sum. Let ( )10 ,, −nRR "  be a sequence of 

positive real numbers (driver's resistance) and let ( )Rϕ  be a positive, non 

decreasing function of driver resistance. The sum of roots of successive 

numbers of the sequence ( ) ( ) ( ) ( )1

0 1 11

i n
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The term 2f in (13) is a successive roots sum where ( )R d W hRϕ = + . We’ll 

show in the following that successive roots sum gets its minimum when the 

sequence of R values is in symmetrical hill order. 

 

Property: pair swapping. Let ( )
lkji RRRR ,,, be a quadruple of real 

positive numbers, such that the internal numbers satisfy kj RR ≥ , while the 

external numbers satisfy li RR ≤ . There exists then   : 

 ljjkkilkkjji RRRRRRRRRRRR +++++≥+++++  (14) 

The above inequality states that swapping the numbers of the internal pair 

( )
kj RR , such that their relation will be the same as that of the external pair 

will yield smaller successive roots sum. 

 

Proof: In (14) the middle terms on both sides are equal; therefore it is 

sufficient to prove that ljkilkji RRRRRRRR +++≥+++ . Squaring 

the two sides one needs to show that ( ) ( ) ( ) ( )
ljkilkji RRRRRRRR +×+≥+×+ . 

Expanding both sides, it is left to show that ( ) ( ) 0≥−×− jkli RRRR , which 

indeed follows from the assumption on the relations of the internal and 

external pairs. ● 

 

The pair swapping property exists also when instead of R  we consider ( )Rϕ , 

where function ϕ  is positive non-increasing. Just substitute ( )Rϕρ = , and 

all the above arguments hold for ρ  . 
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Property: optimal insertion. Let ( )10 ,, −nRR " be a sequence of positive real 

numbers ordered as a symmetric hill. Let >R max{ }10 ,, −nRR " . Then the 

location where inserting R  into the sequence minimizes the new successive 

root sum, is at the center between the two largest numbers. Hence the new 

sequence is also in symmetric hill order. 

 

Proof: Let us insert R arbitrarily into the sequence between iR and 1+iR , 

thus resulting in the quadruples ( )11 ,,, +− iii RRRR  and ( )21,,, ++ iii RRRR  in 

the new sequence of 1+n numbers. If iR and 1+iR were not the two center 

numbers of the old sequence (top of the hill), at least one of these quadruples 

satisfies the condition of pair swapping. Therefore, the successive roots sum 

of the new sequence can be reduced by appropriate swapping of R with its 

left or right neighbor. If R is inserted before 1R or after nR , a swap with 

1R (or nR ) decreases the sum of successive roots. The only position where 

the pair swapping condition does not exist is in between the two largest 

numbers of the old sequence. Such insertion creates a new sequence ordered 

as a symmetric hill.● 

 

The optimal insertion property exists also when instead of R  we 

consider ( )Rϕ , where function ϕ  is positive non-increasing.  

 

Definition: local maximum. Let ( )10 ,, −nRR " be a sequence of positive real 

numbers. The number 10, −<< njR j , is called a local maximum of  

( )10 ,, −nRR "  if both 1−≥ jj RR  and 1+≥ jj RR  .  
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Property: local maximum elimination. Let ( )10 ,, −nRR " be a sequence of 

positive real numbers. Let ( )1, +ii RR and ( )21 ,, ++ jjj RRR  be two disjoint 

subsequences, where 1+jR is a local maximum and 11 ++ >> iji RRR . Then, 

moving 1+jR in between iR and 1+iR decreases the successive root sum of the 

sequence. 

 

Proof: For the sake of convenience let us denote 

211 ,,,, +++ jjjii RRRRR by zbyxa ,,,, , respectively. In this notation if 

xba >> and b is a local maximum of ( )zby ,, , we need to show 

that >+++++ zbbyxa zyxbba +++++ . From the setting we 

know that bzyx << ,,0 and ba > . Therefore, if we define 

( ) zyxbbazbbyxazyxg +−+−+−+++++=,, ,              (15) 

it is sufficient to show that g  is positive in the region bzyx << ,,0 .  

 

The region of definition of g  is a box, thus convex, in  zyx −−   space. 

Therefore, if we show that  g  is monotonic and has positive values on the 

corners of the box bzyx << ,,0 , then it is positive in the entire box.  

 

Indeed, all the first derivatives of g are non zero in the box.  

02121 >+−+=∂∂ xbxaxg , 02121 <+−+=∂∂ zyybyg  

and 02121 <+−+=∂∂ zyzbzg , for bzyx << ,,0 . 
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It remains to show that g is positive in the eight corners of the box, given at 

points ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )bbbbbbbbbbbb ,,,,0,,,,0,0,,,,0,0,0,,0,0,0,,0,0,0 . A 

straightforward substitution in the expression of g in (15) shows its positive 

value at every corner. ● 

 

The local maximum elimination property exists also when instead of R  we 

consider ( )Rϕ , where function ϕ  is positive non-increasing. 

Based on the above properties, we are ready to prove the theorem of optimal 

signal ordering in a channel. 

 

Theorem 1 (optimal ordering of uniform-width wires): Let a signal 

channel have arbitrary drivers, arbitrary capacitive loads and uniform wire 

width. Then the symmetric hill ordering of the signals in the channel 

according to driver resistance yields minimum total sum of delays 

(equivalent to average signal delay). 

 

Proof: It was shown in (13) that for any order of the signals, the minimized 

total sum of delays f consists of two terms 1f and 2f . The term 1f captures 

the delays resulting from the capacitive loads, a component that is 

independent of the signal order in the channel. The term 2f captures the 

delay contributed by the cross capacitances of the signals, a component 

which depends on the signal order. It is therefore sufficient to minimize 2f . 
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Let ( )10

* ,, −= nRR "π  be the drivers’ resistance symmetric hill order of the 

channel, and denote by ( )*

2f π  the corresponding term in the minimized 

total sum of delays obtained. We’ll show by induction that for any other 

order π of driver resistances ( ) ( )*

2 2f fπ π≤ . 

 

For a channel comprised of one or two signals the induction hypothesis 

trivially exists. For a channel of three signals, the optimality of symmetric 

hill ordering follows from the optimal insertion property. Put the two smaller 

driver resistances, say αR and βR in the channel first. Then, the optimal 

insertion property dictates the location of γR at the center, thus resulting in 

symmetric hill order. If αR ( βR )and γR are placed first, a direct 

calculation shows that βR ( αR )needs to reside such that γR is located at 

the center. 

 

By the induction hypothesis, the symmetric hill order is optimal for any 

1−n signals channel. Assume on the contrary that there exists a n signal 

channel whose optimal order π ′ is not symmetric hill. It follows from the 

non optimality of 
*π that ( ) ( )*

2 2f fπ π ′> . 

 

Let ( )rxl RRR ,,  be the center triplet of
*π , namely, xR is the largest 

resistance. There are two possibilities: triplet ( )rxl RRR ,,  exists or doesn’t 

exist inπ ′ .  
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If it exists, let us delete xR from bothπ ′ and
*π , thus inducing channels 

of 1−n signals
1, −′ nπ and

1,* −n
π . The first is not symmetrically hill 

ordered, while the second is. It follows from the induction hypothesis 

that ( ) ( )*, 1 , 1

2 2

n nf fπ π− −′< . However, the magnitude of the difference in 

2f between the n signal channel and its 1−n signal channel induced by 

xR deletion is the same for π ′ and 
*π and equals to 

( ) ( ) ( )2 / 2 / 2 /l x l x l rd W h R R d W h R R d W h R R∆= + + + + + − + + , where W is 

the uniform wire width and d and h are technology parameters. Therefore 

( ) ( ) ( ) ( )* *, 1 , 1

2 2 2 2

n n
f f f fπ π π π− −′ ′= + ∆ < + ∆ = , 

 

 This is a contradiction to ( ) ( )*

2 2f fπ π ′>  that followed from the non 

optimality hypothesis of
*π . 

 

Consider now the case where triplet ( )rxl RRR ,,  doesn’t exist inπ ′ . Then 

there are two possibilities. In the first, the triplet  appears in π ′  as a 

subsequence ( ),max( , ),min( ,R )x l r l rR R R R . The pair swapping property 

can be applied on the quadruple ( ) ( )( )llllx RRRRRR ,min,,max(,, , hence 

2f can be reduced. In the second possibility, in any order at least one of 

lR and rR is a local maximum inπ ′ , say lR . Then applying the local 
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maximum elimination property to lR and moving it to be adjacent to xR , 

will decrease 2f  value of the newly created order. This again contradicts the 

optimality assumption ofπ ′ ● 

 

The theorem states that the minimization of total sum of delays in a channel 

whose wires have uniform widths yields the best (minimal) result if the 

signals are ordered in a symmetric hill according to the effective resistances 

of their drivers. Notice that although wire width W is uniform, it is still a 

variable and should be optimally set together with the spaces 

( )nSS ,,0 " between the wires in order to minimize the total sum of delays. 

This is a simplification of the total sum of delays minimization problem 

[25], where individual wires can have different widths ( )nWW ,,1 " . 

 

3.2 Non-uniform wire widths 
 

In the following we’ll prove the optimality of the symmetric hill ordering for 

a more general cases with non-uniform wire width. First we assume that 

wire widths are matched to driver strengths. It is shown below that this 

dependency is common in most practical VLSI designs, and minimal total 

sum of delays (equivalent to average signal delay) is obtained by symmetric 

hill ordering. Next, we discuss the most general case where wire width can 

be varied arbitrarily. 

3.2.1 Wire widths matched to driver strengths 

Let ( )Rψ be a positive, non decreasing function of the driver resistance R , 

and let the corresponding wire width be defined by 

( )1W Rψ= .     (16) 
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In the former discussion of uniform wire width ( )Rψ  was simply a 

constant. The relation in (16) represents impedance matching, where a 

stronger driver (smaller R ) is assigned a wider wire with a lower 

impedance. 

 

Substitution of (16) into (10) yields the following relations between the wire 

spacing and their corresponding driver resistance. 

 

( ) ( )( ) ( )( )1 1
1 , 0i i i i iS d R R h R R i nψ ψλ − −= + + + < <  (17) 

      ( )( )0 0 0
1S d R hRψλ= +  

      ( )( )1 1
1

n n nS d R hRψλ − −= +  

 

The corresponding total sum of delays can again be split into order 

independent and order dependent terms as below. 
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. 

The term 1f  in (18) captures the capacitive load driven by the signal, which 

is independent of the signals order. The term 2f  captures the cross 

capacitance between signals, and it depends on their order. 
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The term 2f satisfies the definition of successive root sums, and all three 

properties are valid. The optimal signal ordering theorem can now be 

extended as follows. 

 

Theorem 2 (optimal ordering of variable-width wires): Let a signal 

channel have arbitrary drivers, arbitrary capacitive loads and wire width 

inversely proportional to the corresponding driver resistance. Then the 

symmetric hill ordering of the signals in the channel according to driver 

resistances yields minimum total sum of delays. 

 

Proof: All properties of symmetric hill order still hold when instead of R  

we consider positive non-increasing function ( )Rϕ .  ● 

 

The function ( )R Rψ α β= + , where α and β are real positive number is 

admissible, providing further minimization in comparison with the case of 

uniform width. The minimum total sum of delays is obtained by first 

ordering the signals according to Theorem 2. Then a minimization of total 

sum of delays for that order takes place, where the wire spacing  

( )nSS ,,0 "  and the parameters α and β are the optimization variables. 

Notice that 0=β is the case of uniform wire width. 

 

3.2.2 Further Generalization of wire widths 

Assume now that wire width can vary arbitrarily. It is no longer true that 

symmetric hill ordering yields the minimum total sum of delays. This  

general case might be caused by large capacitive loads, since the optimal 
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setting of wire width depends on the corresponding load. This in turn affects 

the optimal order within the channel.  

 

The most general problem setting such that symmetric hill ordering still 

yields minimal total sum of delays can be characterized by writing the 

relation between wire widths and driver resistances at minimum total sum of 

delays. At the minimum, equations (1) and (4) satisfy: 

10,0 −≤≤=
∂
∂

+
∂
∂

ni
W

g

W

f

ii

λ .                (19) 

Differentiating (1) and (4) we obtain 
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Substituting (20) into (19) yields 
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Equation (21) describes the dependence of wire width at minimum total sum 

of delays on the corresponding driver resistance, spacing to neighbor wires, 

and the capacitive load driven by the wire. Whenever equation (21) implies a 

monotonic non-increasing relation between wire width and driver resistance 

for all signals in the channel, symmetric hill order must yield the minimum 

total sum of delays among all possible orders. 

 

Driver resistance appears in the denominator of (21), yielding a non 

increasing relation. For the term 1++ ii SdSd at the nominator it has been 
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shown in (17) that the spaces are monotonically increasing with driver 

resistance, which also imposes a non increasing relation between i
W  and i

R . 

The only remaining term is the capacitive load at the nominator. In order to 

obtain a monotonic relation in (21) we impose the following condition on 

resistance of drivers and their corresponding capacitive loads. 

 

Theorem 3: Let a n  signal channel have arbitrary drivers and capacitive 

loads. Let 1,0,, −≤≤ njiji σσ  be any two signals and let ( )ii CR , and 

( )
jj CR ,  be their driver resistance and capacitive load, respectively.  If the 

relation ji RR ≥ implies  ji CC ≤  and vice versa, then the symmetric hill 

order yields minimum total sum of delays among all orders. 

 

Proof: If follows from equation (21) that wire widths are non increasing 

functions of driver resistance. Therefore theorem 2 is satisfied.● 

 

4. IMPLICATIONS FOR CIRCUIT DESIGN 

The above results are applicable to layout optimization for circuit 

performance improvement, by net ordering combined with wire sizing and 

spacing in interconnect channels. This section discusses two variants of the 

performance optimization problem, namely critical signal delay 

minimization, and impact of worst-case crosstalk effect on delays. 

 

4.1.1 Critical signal delay minimization (MinMax problem) 

Optimization of the interconnect layout as described above yields a 

distribution of delays within the bundle of wires which minimizes the 
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average signal delay. It is possible to perform further tuning of the layout by 

wire sizing and spacing, such that the worst wire delay in the distribution 

will be reduced (MinMax optimization problem). Such improvement is 

achieved by allocating more area to this wire, hence other wires become 

slower. Applying this tuning iteratively, the delays of all wires must be equal 

 [25]. Typically, a slight improvement in the delay of the slowest wire is 

gained at the expense of significant increase in the delays of all the other 

signals, until they all become equally critical. In industrial design practice, 

tuning each interconnect channel layout until all wire delays are completely 

balanced is not a desirable approach  [11] [12]. Optimization of average wire 

delay (which is equivalent to maximization of average slack) is more 

common  [25]. 

  

Despite the limited practicality, it is still interesting to find which wire 

ordering leads to the best possible worst wire delay for MinMax delay 

optimization. Formally, f in (3) is replaced by 

 

0 1 1 1

( )max
i i i

i i i i i

i n i i i i i i i i

eC hR hRb d d
f a kR W gR R C

W W S W S W S S≤ ≤ − + +

⎧ ⎫
= + + + + + + + + +⎨ ⎬

⎩ ⎭
 

Given signal order, an iterative method to find MinMax optimum can be 

used  [25]. The following observations have been made with regard to 

MinMax delay optimization, based on extensive numerical experimentation: 

1. Symmetric hill ordering is not necessarily optimal for the MinMax delay 

problem. When there are some excessively large load capacitances, or 

when there are only small differences among driver resistances, then the 

optimal order is most likely different from symmetric hill.  
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2. Symmetric hill order is optimal for many practical instances of the 

MinMax delay problem. The conditions which guarantee this property for 

a particular problem instance remain an open question. However, 

symmetric hill ordering can be used as a useful heuristic. 

 

3. The optimal MinMax delay is quite sensitive to net ordering. When 

random channel layouts are optimized heuristically by symmetric hill 

ordering (followed by wire sizing and spacing for MinMax delay), the 

percentage of delay improvement often exceeds the improvement gained 

in optimizing for average wire delay.   

 

 

4.1.2 Impact of non-uniform crosstalk assumption 

A worst-case crosstalk effect on delay occurs if adjacent wires make 

simultaneous logic transitions in opposite directions  [19] [20] [22] [24]. 

Although this is pessimistic, designers often assume such a worst case 

condition in delay modeling. This is done by multiplying cross capacitances 

between active wires by a Miller coupling factor (usually a factor of 2 is 

assumed  [10]).  Since sidewall shielding wires are inactive, they don’t 

induce a Miller effect. Consequently, the delay expression (2) should be 

modified for worst-case crosstalk, such that all the internal 1/S terms are 

multiplied by 2, except the terms 1/S0 and 1/Sn, which are left unchanged. 

Note that the sidewall wires appear in the equations as if they were signals 

with zero-resistance drivers. In symmetric hill order without assuming 

worst-case crosstalk, the wires with strongest (lowest-resistance) drivers are 

placed next to the sidewalls. The outermost spaces S0 and Sn tend to be 
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smaller than others, since they are not shared by two signals and the strong 

drivers can handle their capacitances. 

 

However, when the problem is modified by Miller coupling factors for 

worst-case crosstalk, the sidewall spaces have lower effective capacitances, 

and they are most appropriate for the weakest drivers (which are the most 

sensitive to crosstalk  [23]). Consequently, the preferred wire ordering can 

become a “symmetric valley” instead of a “symmetric hill”: the wires with 

weakest drivers are placed near the shields and the other wires are sorted 

such that the drivers with smallest resistance are in the middle of the 

channel. The resistances are monotonically increasing from the middle 

towards the sides, thus minimizing the differences between neighboring 

drivers.  

5. EXPERIMENTAL RESULTS  

Numerical experiments for various problem instances were performed using 

65 nanometer technology parameters. Continuous optimization has been 

used, and results were verified for allowed discrete sizes as required by the 

technology. Delay improvements were verified by SPICE simulations of 

several circuits before and after optimization. 

Experiment 1  

Random problem instances using five signals were evaluated as follows: 

Each signal was assigned a driver randomly. The range of driver resistances 

was 50 Ω to 3 KΩ , and load capacitances in the range 10-200fF were 

assigned accordingly, to avoid excessive driver loading, such that the 

conditions of theorem 3 were always satisfied. For each problem the wire 

widths and spaces were optimized once to yield minimum total sum of 

delays, and again to yield minimum worst-wire delay (MinMax). This was 
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repeated for all the 5!=120  possible orders. The procedure was done for 

eight different channel widths A – 1.5, 2, 2.5, 3, 3.5, 7, 9.5 and 12 mµ , and 

five different channel lengths L – 300, 500, 800, 1200 and 1500 mµ . The 

optimization impact (% improvement of best versus worst ordering, after 

width/space optimization, averaged over 20 random problem instances of 

each width and length configuration) is presented in Table 1. This 

experiment demonstrates that net ordering can significantly improve results 

of wire sizing and spacing optimization, especially when width is tightly 

constrained. All obtained optimal orders for total sum of delays 

minimization came out as symmetric hills (as expected, since theorem 3 is 

always satisfied in this example).  

Experiment 2  

The impact of net ordering on interconnect channels containing a large 

number of wires was evaluated, using 15 representative interconnect 

channels in 65nm technology. The number of signal wires per channel 

varied from 10 to 128, averaging 49. Width of each channel was determined 

by budgeting 2 minimal metal pitches per wire. Driver resistances varied 

from 50 Ω  to 2.5 KΩ , averaging 1.24 KΩ . Exhaustive search to find the 

worst and best ordering is infeasible for such problems. Instead, a poor 

ordering has been guessed, and the corresponding signal delays were 

compared with results of symmetric hill ordering. The experiment confirmed 

that symmetric hill net ordering can improve delays by a significant 

percentage: After net ordering and sizing optimization, up to 18.3% in 

average delays were obtained. On average, the interconnect delay 

improvement in this experiment was 11.8%, which is equivalent to 5% of 

the clock cycle. 
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Table 1 

Average improvement (best vs. worst ordering) for random problem instances, in 

sum-of-delays (upper half cell) and worst wire delay (lower half cell) 

 

Channel width Channel 

length 1.5 µm 2 µm 2.5 µm 3 µm 3.5 µm 7 µm 9.5 µm 12 µm 

10.14% 9.13% 8.13% 7.25% 6.62% 3.12% 2.25% 1.97% 
300 µm 

17.19% 14.98% 12.7% 10.86% 9.84% 4.6% 2.86% 2.13% 

11.31% 9.5% 8.21% 7.46% 6.71% 3.32% 2.43% 2.14% 
500 µm 

17.24% 15.18% 13.29% 10.81% 9.64% 5.13% 3.07% 2.94% 

9.82% 8.76% 7.79% 7.32% 6.5% 2.47% 1.92% 1.05% 
800 µm 

16.22% 14.11% 13.08% 11.09% 9.98% 5.14% 3.24% 1.83% 

8.78% 8.23% 7.38% 6.89% 6.35% 2.24% 1.7% 1.1% 
1200 µm 

14.18% 14.58% 13% 11.63% 9.84% 5.13% 2.72% 1.51% 

7.63% 7.2% 6.94% 6.54% 6.12% 2.1% 1.81% 0.97% 
1500 µm 

14.13% 14.02% 12.97% 11.51% 10.15% 4.99% 2.62% 2% 

 

Experiment 3  

This example demonstrates how the set of wire driver resistances influences 

ordering optimization impact. The effect of signal ordering on MinmAx 

delay in channels with both strong and weak drivers is shown in Table 2. A 

bundle of 7 signals with driver-load pairs of (50 Ω , 50 fF ) or (3 ΩK  , 5 

fF) is examined for various numbers of the weak drivers. Channel width and 

length were A=3 mµ  and L=500 mµ . As can be expected, when the numbers 

of strong and weak drivers were about equal, signal ordering is most 

effective.  The worst ordering is indeed the interleaved one, described in 

Figure 2a, while the best one is clearly symmetric hill. 
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Table 2 

% improvement of best versus worst ordering, after width/space optimization, for a 

signal channel with two driver strengths 

No. of weak drivers Percent of improvement in worst 

delay  

1 0.11% 

2 8% 

3 12.7% 

4 16.3% 

5 10.76% 

6 5.25% 

 

Experiment 4  

This example demonstrates the influence of driver's resistances range on 

ordering optimization impact. The range of drivers is specified by the 

ratio max

min

R

R
, where maxR and minR are the largest and the smallest driver 

resistances in a set of wires being ordered. 19 different 7-wire sets were 

evaluated, with driver resistances distributed uniformly around a constant 

average of 1 KΩ . In these sets, max

min

R

R
 varied from 1 (all drivers equal) to 6.4. 

Channel length is 700 mµ  and width is 3 mµ  in all cases. The results are 

presented in Figure 4. As can be seen, optimization impact increases with 

resistance range. Worst wire delay optimization is influenced much more 
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than optimization of average delay. For larger range of driver resistances the 

increase in delay improvement is negligible. 
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Figure 4. Influence of relative range of drivers on optimization impact  

 

Experiment 5 

The delay improvement by wire ordering is examined for different metal 

levels. Problem instances of 500 mµ  length and variable widths have been 

used. Technology parameters were extracted for for 5
th

, 6
th

, 7
th
 and 8

th
 metal 

levels in an industrial 65nm process. Results of 20 random minmax 

optimization problem instances for each {channel width; metal level} 

combination were calculated. In order to compare different metal levels, 

channel widths are expressed in terms of the metal pitch min minW S+ . Channel 

widths thus in each case is min min min( )k W S S+ + , where 6, 12k = … . The average 

delay improvement is presented in Fig. 5. As can be seen, the optimization 
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impact is about the same for the different metal levels, and the optimization 

is more beneficial when the channel width is more constrained.  
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Figure 5. The relation between metal level and delay improvement for channels of 

different widths 

 

Experiment 6 

In this experiment, delays obtained by exhaustive simultaneous 

ordering/sizing/spacing optimization are compared with results of heuristics 

using symmetric hill order for total sum of delays objective. Another set of 

random 1600 instances were generated similar to example 1, with the same 

set of channel widths and lengths. Heuristic wire width assignment with the 

inverse linear width function ( )R Rψ α β= +  was applied. For each value 

of channel width and length, the delay difference between the optimal result 
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of exhaustive search and the optimal result of the heuristic was expressed as 

a fraction of the delay difference between best and worst results of the 

exhaustive search. On average for all these problem instances, the global 

minimum was approached as closely as 0.37%.  

 

  

6. CONCLUSION 

Reordering of wires in a constrained-width interconnect channel can 

improve results of wire-sizing and spacing for timing optimization. The 

optimal order of wires generally depends on both wire driver resistances and 

load capacitances. Analysis of average delay minimization showed that 

when wire widths are uniform or are specified by a monotonic non-

increasing function of driver resistance, the optimal order can be determined 

directly. This optimal order depends on driver resistances only, and takes the 

form of a symmetric hill. Load capacitances do not affect the optimal order 

under these conditions. The general problem of simultaneous net-ordering, 

wire-sizing and spacing optimization has been presented. In the general case, 

the optimal solution might be dominated by load capacitances, and the 

optimal order may not be symmetric hill. Solution heuristics were proposed 

for the general case. Numerical experiments demonstrated that delay 

improvements in the range of about 10% are attainable in state-of-the art 

technology, and heuristic results approach the global optimum within 

approximately 0.5%.  
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