CCIT Report #586
May 2006

How to Choose a Timing Model?

Idit Keidar Alexander Shraer
{idish@ee, shralex@}xtechnion.ac.il
Department of Electrical Engineering, Technion, Haifa@20srael

Abstract resenting this system. For example, one seldom comes
across a system where the network latency can exceed
When employing a consensus algorithm for state ma-an hour. This suggests that in principle, even the most
chine replication, should one optimize for the case that unpredictable systems can be modeled as synchronous,
all communication links are usually timely, or for fewer with an upper bound of an hour on message latency. Al-
timely links? Does optimizing a protocol for better mes- though a round-based synchronous protocol works cor-
sage complexity hamper the time complexity? In this pa- rectly in this system, it can take an hour to execute a
per, we investigate these types of questions using mathsingle communication round, and hence may not be the
ematical analysis as well as experiments over Planet- optimal choice. Indeed, measurements show that timely
Lab (WAN) and a LAN. We present a new and efficient delivery of 100% of the messages is feasible neither
leader-based consensus protocol that li&3:) stable- in WANs nor under high load in LAN4[, 6, 4]. In-
state message complexity (in a system withocesses) stead, systems choose timeouts by which messages
and requires onlyD(n) links to be timely at stable times. ally arrive (e.g., 90% or 99% of the time); note that by
We compare this protocol with several previously sug- knowing the typical latency distribution in the system,
gested protocols. Our results show that a protocol that a designer can fine-tune the timeout to achieve a de-
requires fewer timely links can achieve better perfor- sired percentage of timely arrivals. One can then em-
mance, even if it sends fewer messages. ploy protocols that ensure safety even when messages
arrive late [LO, 21, 15]. Such protocols are called indul-
Keywords: synchrony assumptions, eventual syn- gent[L7].

chrony, failure detectors, consensus algorithms, FT \yhile indulgent protocols ensure safety regardless of

Middleware. timeliness, they do make some timeliness assumptions
in order to ensure progress. Periods during which these
1 Introduction assumptions hold are calleable For example, it is

possible to requirdeventual Synchrony (ES15, 10,
where messages among all pairs of processes are timely
in stable periods. Alternatively, one can use weaker
majority-based or leader-based models, where only part
of the links are required to be timely in stable peri-
ods. This defines a tradeoff: whereas weaker models
may require more communication rounds for decision,
they may also be stable more often (that is, their time-

Consensus is an important building block for
achieving fault-tolerance using the state-machine
paradigm R0]. It is therefore not surprising that the
literature is abundant with fault-tolerant protocols for
solving this problem. But how does a system designer
choose, among the multitude of available protocols, the
right one for her system? This decision depends on a

number of factors, e.g., time and message Comp|exity’Imessdrequm.adment.s will be satisfied mlor§ often). AI
resilience to failures (process crashes, message lossS€cONd consideration is message complexity: protocols

etc.), and robustness to unpredictable timing delays. that send more messages per round may require fewer
In this paper we focus on the latter, namely the as- rounds. Thus, there may also be a tradeoff between the

sumptions the protocol makes about timeliness. These!™M® and message complexities.

are captured in Eming model We study the impact of In order to provide insights into such tradeoffs, this
the choice of timing model on performance in terms of paper (1) defines a new timing model, (2) introduces
time and message complexity. It is important to note that a novel time and message efficient algorithm, and (3)
although the physical system is often given, the systempresents an evaluation of different consensus algorithms
designer has freedom in choosing the timing model rep- using probabilistic analysis, as well as concrete mea-

lesley
Text Box
CCIT Report #586
May 2006

surements in a LAN and in WAN over PlanetLaf.[describing timing models and indulgent protocols that
We next elaborate on each one of these contributions. exploit them. We have studied the number of rounds re-
We define a new modeBgction 2, eventually weak quired for consensus in stable periods in several timing
leader-majority)W LM . This model includes a leader models. Nevertheless19] studies neither how long it
oracle, and only requires that in stable periods, there betakes to reach stability in practical network settings, nor
timely links from a designated leader process to other the round durations in these models. Thus, it provides
processes and from a majority of processes to the leaderlittle insight regarding which model is best to use. The
Nothing is required before stabilization. The leader or- current paper provides analysis and measurements of the
acle can be implemented with linear ¢in the number actual time it takes to reach consensus while assuming
of processes) per-round stable state message complexthe different models in a LAN and a WAN (PlanetLab).
ity [22, 24]. Moreover, [L9 focuses on time complexity, and com-
We then present a new efficient algorithm for pletely ignores message complexity, which is often no
OW LM (Section 3, which has linear stable state mes- less important; all the protocols presented 18][send
sage complexity, and decides withirounds from sta- ~ ©(n?) messages in each round. Our new protocol has
bilization. If the leader stabilizes earlier than the com- O(n) stable state message complexity.
munication, our algorithm decides ihrounds. Previ-

ously known protocols fotyW LM [21, 11], may take The OW LM model satisfies the progress require-
O(n) rounds after stabilizatiorLf]. Note that we study ~ ments of the well-known Paxos protocdl], and re-
the performance of consensusdi’ LM without tak- ~ cent improvements, such akl]. But as noted in13],

ing into account the cost of leader election. This is jus- although these algorithms ensure constant time decision
tified since election protocols often ensure leader stabil- in Eventual Synchrony (ES), they may take a linear num-
ity [24, 1, 16], i.e., the leader is seldom re-elected. Thus, ber of communication rounds after stabilization to de-
the same leader may persist for numerous instances ofide in weaker models lik€ W LM. Most other pre-
consensus (possibly thousands). viously suggested leader-based protocols, €1g,,18],
Section 4performs probabilistic analysis of the be- require the leader to receive timely messages from a ma-
havior of consensus in different indulgent models, com- jority in each round, including during unstable periods,
paring our new algorithm with three previously known @nd hence do not work iGW LM.
algorithms. We focus on algorithms that take constant .
number of rounds from stabilization, all of which also Malkhi etal. 24] have presented a somewhat weaker
have quadratic message complexity. Our analysis stud-iming model intended for use with Paxos, where, as
ies the number of rounds needed to reach stabilizationi" O LM, some process has bidirectional timely links
and then decision in each model. Although it makes sim- With @ majority, but unlikeOWW LM, this process does
plifying assumptions, this analysis gives a good starting "0t have outgoing timely links to the rest of the pro-
point to understand such behaviors in real systems. ~ c€sses. Although their model allows Paxos to make

We then compare the performance of the above al- progress so that some of the processes decide, it does
gorithms in LAN and WAN Bection 5. To this end not allowall the processes to reach consensus decision

in a timely manner 19]. Here, we measure time un-
til global decisioni.e., until all processes decide, and
therefore strengthen the model accordingly.

we implement a round synchronization protocol and de-
ploy it in PlanetLab. We compare our measurements
with the probabilistic analysis and explain discrepan-
cies that arise. We give insights to the effect of good . .

. Evaluation. Several previous papers evaluated re-
leader election on leader-based consensus protocols. W?ated alaorithms in practical settings. Cristian and Fetze
show that our message efficient protocol, although re- [10] stugied stableperiods but or?l .for a model similar
quiring more stable communication rounds than several P ' y

previously known protocols, incurs practically no costin to E.S’ over a LAN. The insight that a Ieader-bas_ed al-
L . : .. gorithm can work better thaf’'S appears in previous
terms of actual running time, due to its easier to satisfy

Lo ; L . measurements on WANSgL,[3] and simulations 26].
weak timeliness requirements: it achieves comparable

(and sometimes superior) performance to that of the bestHowever these studies treated different questions than

O(n?) (message complexity) protocol, provided that ad- we do €.g., did not measure the time required to get a
equate timeouts are set sufficiently long stable period that allows for consensus

decision. Additionally, unlike most of the previous eval-
uations, our evaluation includes mathematical analysis
Related work as well as measurements in both LAN and WAN, thus

Model and Algorithm. In an earlier paperl9], identifying general trends that do not depend on a spe-
we introduced a round-based framework, GIRAF, for cific setting.

Algorithm 1 Generic algorithm for procegs.

States

k; € N, initially O /*round number*/

sent;[I1] € Boolean array
initially Vp; € II : sent;[j] = true

F D, € OracleRangeginitially arbitrary

M;[N][II] eMessages{_L},
initially Yk € NVp; € I1 : My[k][j] = L

D; € 2", initially @

Actions and Transitions:

inputreceivé(m, k)): ;, k € N
Effect: M;[k][j] — m

outputsend({M; [k;][i], ki)).,
Precondition;j € D; \ {i} A sent;[j] = false
Effect: sent;[j] < true

inputend-of-round
Effect: F D, «— oracle; (k;)
if (k; = 0) then (M;[1][i], D;) < initialize (F'D;)
else(M;[k; + 1][i], D;) «— computgk;, M;, FD;)
ki «— ki+1
Vp; € 11 : sent;[j] «— false

2 Model and Problem Definitions

We consider an asynchronous distributed system con-
sisting of a sefll of n > 1 processespi,psa, ..., Pn,
fully connected by communication links. Processes
and links are modeled as deterministic state-machines
called 1/0 automataZ3]. Communication links do not
create, duplicate, or alter messages. Messages may b
lost by links or take unbounded latency. Specific timing
models defined below will restrict such losses and late
arrivals. Less tham/2 processes may fail by crashing.
A process that does not fail torrect

Algorithms and models are defined using the GIRAF
framework [L9], which we extend here to allow for arbi-
trary communication patterns. For space limitations, we
only overview GIRAF; for formal treatment seg&q). In
GIRAF, all algorithms are instantiations of Algorithin
a generic round-based algorithm. Progess equipped
with a failure detector oraclewhich can have an arbi-
trary output rangeq], and is queried using theracle;
function. To implement a specific algorithm, one imple-
ments two functionsinitialize(), andcompute() Both
are passed the oracle output, aodnpute(plso takes as
parameters the set of messages received so far and th
round number.

Each process’s computation proceedsoimnds The
advancement of rounds is controlled by the environment
via theend-of-roundnput action. Theand-of-roungdac-
tions occur separately in each processand there are

ment properties defined below do require some synchro-
nization between processes, e.g., that some messages are
received at one process at the same round in which they
are sent by another. Therefore, an implementation of
an environment that guarantees such properties needs
to employ some sort of round or clock synchronization
mechanism. One way to do so is using synchronized
clocks (e.g., GPS clocks) when present. Alternatively,
an implementation that does not rely on synchronized
clocks can be employed, such as the one we present in
Section 5.1and deploy in PlanetLab.

When theend-of-roundaction first occurs, it queries
the oracle and callmitialize(), which returns the mes-
sage for sending in rountland a setD;, of the desti-
nations of this message. Subsequently, in each round, a
process sends a message to processBs in{i} (there
is no need for a process to explicitly send messages to it-
self) and receives messages available on incoming links,
until the end-of-roundaction occurs, at which point the
oracle is queried andompute()is called, which returns
the message for the next round, and a new/ §etf tar-
get processes.

Environments are specified usimyund-based prop-
erties This paper considers onlgventualproperties,
which hold from some unknown round onward. Namely,
the system may be asynchronous for an arbitrary period
of time, but eventually there is a round GSR¢bal Sta-

bilization Roundl, so that from GSR onward, the system

is stable, in the sense that no process fails and all even-
fual properties hold in each round. GSR isfingt round
that satisfies this requirement.

We now define some round-based properties. The
link from p, to py is timely in roundk, if the follow-
ing holds: if (i) end-of-round occurs in roundk, (ii)
d € Dy inroundk, and (iii) pg is correct, therpy re-
ceives the round message op, in roundk. A process

pis aQj-source if in every roundk > GSR, there are
j processes to which it has timely outgoing links. Cor-

rectness is not required from the recipients, aisdink
with itself counts towards the count ¢f. The subscript
“v” indicates that the set of timely links is allowed to
change in each round (i.e., the failures are mobile). Sim-
ilarly, a correct procesgis a{j-destination if in every
roundk > GSR, it hasj timely incoming links from
correct processes.
€ An Qfailure detector outputs a process so that there is
some correcp; s.t. for every round: > GSR and every
correctp;, oracle; (k) = i.

We study the following four timing models:

ES (Eventual SynchronyL5]: in every roundk > GSR,

no restrictions on the relative rate at which they occur at

1The notion ofj-timely links was first defined ir?], where the link

different processes, i.e., rounds are not necessarily Synt;om p to itself is not counted; hencejasource in our terminology is

chronized among processes. However, specific environ-

a(j — 1)-source in theirs.

all links between correct processes are timely. The key idea to preserving consistency when the
OLM (Leader-Majority]19]: 2 failure detector, the leader leader does not know the highest timestamp is to trust

is adn-source, and every correct process{g(a% | +1)- the leader, even if it competes against a higher times-
destination. tamp, provided that it indicates that at least a majority
(New) OW LM (Weak-Leader-Majority) Q failure detec- believes it to be the leader. The latter is conveyed using
tor, the leader is a)n-source and aO(|5] + 1)- themajApprovednessage field, which attests to the fact
destination. that the leader’s timestamps reflect “fresh” information

OAFM (All-From-Majority)[19] (simplified): every correct from g majority, and therefore any timestamp it does not
process is &(| 5 | + 1)-destination, and a0(| 5| +1)- know of could not have led to decision.
souree. A second challenge our algorithm addresses is avoid-
ing “wasted” rounds when the system stabilizes in the
Consensus A consensus problem is defined for agiven middle of a decision attempt. This poses a problem,
value domainyValues We assume thataluesis a totally as we strive to reduce the number of rounds as much
ordered set (our algorithm makes use of this order). Ev- as possible, so that the system does not have to main-
ery proces®; has a read-only variabberop; € Values tain stability for a long time in order for consensus to
initialized to some value < Values and a write-once be reached. The solution we employ is to pipeline pro-
variabledec; € ValuesJ{_L} initialized to L. We say posals. Namely, the leader tries in each round to make
that p; decidesd €Valuesin roundk if p; writesd to progress toward a decision, based on its current state

dec; whenk; = k. and the messages it gets in the current round, regard-
A consensus algorithm must ensure: (&lidity) if less of the unknown status of previous attempts to make
a process decidesthenprop; = v for some procesg;, progress.

(b) (agreementno two correct processes decide differ- We now describe the algorithm in detail. Algoritin
ently, and (c) {erminatior) every correct process even- works in the framework of Algorithm 1 described in
tually decides. We say that algorithmachieveglobal Section 2 and therefore implements tlitialize() and
decisionat roundk if every process that decides decides compute(functions. These function are passedder;,
by roundk and at least one process decides at radund the leader trusted by;’s Q oracle in the current round.
. . . Processp; maintains the following local variables: an
3 Time and Message Efficient Algorithm estimate of the decision valuest;: the timestamp of the
in OW LM estimated valué;s;; the maximal timestamp received in
. . . the current roundnaxT'S;; the maximal estimate re-
Algorithm 2 is a consensus algorithm f@WLM, ceived with timestampnazT'S; in the current round,
which has a linear stable state message complexity and,, ... p 57; (recall thatValuesis a totally ordered set);
reaches global decision withinrounds of GSR. the leader provided by the oracle at the end of the previ-
As in many indulgent algorithms, including Paxos, ous roundprevLD;, and in the current rounciewLD;
processes commit with i_ncreasing timestamp_s (called 5 Booleanflag, majApproved, which is used to indi-
“ballots” in [21]), and decide on a value committed by ¢4te whethep, received a message in the current round
majority. In Paxos, the leader always attempts to dis- fom a majority of processes that indicatpdas their
cover the highest timestamp in the system before COM-|gader: and the message typesgTypg which is used
mitting on a new one. Although_ t_h|s_occurs promptly in- 55 follows: Ifp; sees a possibility of decision in the next
ES, inOW LM, even after stabilization, the leader can g, rounds, then it sends@MMIT message. Once;
continue to hear increasing timestamps@in) rounds. ecides, it sends RECIDE message in all subsequent
Each time it receives a timestamps higher than the one it ;ngs. Otherwise, the message typeREPARE
has, the decision attempt is aborted, leading to a linear We now describe the computation of rouhd If p;
worst case decision time after GSE[. Our algorithm 55 ot decided, it updates its variables (lines 18-21),

must av0|_d such Scenarios in order t(_) always aCh'eV_eand then executes the following conditional statements:
constant time decision. Nevertheless, like Paxos, we still

need the leader to start a new decision attempt with a o If p, receives @ECIDE message then it decides on
fresh timestamp higher than those possessed by any pro- the received estimate by writing that estimate to
cess in the system. But unlike Paxos, our algorithm does dec; (rule decide-1 line 23), and sets its message
not assume that the leader knows all the timestamps of type (for the roundk; + 1 message) tOECIDE.
correct processes. Instead, the new timestamp is chosen

to be the round number, which is monotonically increas- e If p; receives a&cOMMIT message from a majority,
ing. This must be done with care, so as to ensure that the including itself (ruledecide-3, and receives a mes-
leader does not miss timestamps of real decisions. sage from itself with thenajApprovedndicator as

Algorithm 2 leader—based algorithm, code for process
1: Additional state
2: est; € Valuesinitially prop;
3: ts;, maxTS; € N, initially O
4: majApproved € Boolean, initially false
5
6
7
8

prevLD;, newLD, € II

: msgType € {PREPARE COMMIT, DECIDE}, initially PREPARE
: Message format

(msgTypes {PREPARE COMMIT, DECIDE}, est € Valuests € N, leader € II, majApproved; € Boolean)
procedure Destinationdeader;)
10: if (leader, = p;) then returnIl.
11: elsereturn{leader;}
12: procedureinitialize(leader;)
13: prevLD; «— newLD; « leader;
14: return{(msgTypg est;, ts;, newLD;, majApproveg), Destination§leader;))

15: procedure computek;, M[*][*], leader)
16: if dec; = L then

17: /*Update variables*/

18: prevLD; < newLD;; newLD, — leadey;

19: mazTS; — max{ m.ts| m € MIk;][+] }

20: maxEST; «— max{ m.est| m € MIk;][*] A m.ts = maxT5S; }

21: majApproved; «— (|{ j | M[k;][j].leader = p; }| > |n/2])

22: /*Round Actions*/

23: if 3m € M|k;][*] s.t. m.msgType = DECIDE then /*decide-1*/

24: dec; «— est; «— m.est; msgType; < DECIDE

25: elseif((|[{ j | M[k;][j].msgType = COMMIT }| > [n/2]|) A M[k;][i].msgType = COMMIT) [*decide-2*/
and (M k;][i]. maj Approved) then [*decide-3*/

26: dec; < est;; msgType; < DECIDE;

27: else if (M [k;][prevLD;].majApproved) then [*commit*/

28: est; «— Mk;][prevLD;).est; ts; < ki; msgType; < COMMIT;

29: elsets; < maxTS;; est; «— maxEST;; msgType; < PREPARE

30: return{(msgType;, est;, ts;, newLD;, majApproveg), Destinationgleader;))

true (rule decide-3, it decides on its own esti- tamp to the current round numbky (line 28). We
mate and sets its message typettIDE (line 26). say thatp; commits in roundc; with estimatecst’.
Rule decide-3ensures that no other process com- Themaj Approved indicator ensures that commits
mits or decides in the same round with a different of the same round are on the same value, since
value, since theommitrule checksnaj Approved any such commit is on an estimate received from
of the leader, and two processes cannot claim to a leader that was trusted by a majority in the previ-
be majApproved in the same round, since it is ous round £;-1), and majorities intersect.

not possible that different processes were trusted to

be leaders by a majority in the same round (round e Otherwise,p; prepares (sets his message type to
ki — 1). Rule decide-2ensures that a majority PREPARB and adopts the estimateaz E'ST; and

of processes have the latest information about the timestampnaxT'S; (line 29).

decided value. Since commits in further rounds

require the leader to hear from a majority (the Finally, p; returns the message forthe next rpgnd and
maj Approved indicator required by ruleommi, a subset of processes to which this message is intended.

the leader must hear from at least one process that! NS group is calculated using procediestinations()
has this information, and this will ensure that it @s follows: ifp; believes that it is the leader of the cur-

does not promote a value that contradicts agree-entround, theestinations(yeturns the set of all pro-
ment. cesses, and otherwise, the procedure returns the trusted
leader. Thus, starting from the first round in which all

e Let prevLD; be the leader indicated ip;'s round processes indicate the same leader in their messages (at
k; message. Ifp; receives a round;; message most one round after GSR), every process sends a mes-
from prevLD; with the majApprovedindicator as sage to this leader, and the leader sends a message to
true, thenp; sets its message type (for the round every other process. The stable state message complex-
k; + 1 message) t@oMmmIT, adopts the estimate ity is therefore linear im.
received fronprevLD;, sayest’, and sets its times- We prove the correctness of Algorithn2 in

Appendix A and show (Theorem 10) that it reaches 4.1 Mathematical Analysis
global decision by round GSRY, i.e., in5 rounds start-
ing at GSR. If the eventual requirements of fhéeader
are satisfied starting from round GSR (instead of
starting from round GSR as the model requires), then
all correct processes decide by round GSRi.e., in4
rounds (if GSR= 1 this means that querying the oracle
before the first communication round returns the correct
Q leader at all processes). We make this distinction in
order to analyze the performance of the algorithm in the
common case, when leader re-election is rare.

All communication in some single round can be
represented as am by n matrix A, where the rows
are the destination process indices, the columns are the
source process indices, and each ediry is 0 if a mes-
sage sent by; to p; does not arrive in round, and1 if
it does reacty; in roundk. p is the probability of any
entry A; ; to bel. Note that our protocol fof W LM
may not send messages on some links. If a message is
not sent, we denote the corresponding entryliby L.
We define random variables for decision time in differ-
ent models subscripted by the model name, €Xg.s is
. . - the total number of rounds until decision (including the
4 Probabilistic Comparison of Decision 0 niil stabilization) in ES. We denote sy (e.g.,

Time in Different Models P4 r) the probability of a communication round to sat-

isfy the requirements of modal/.

We analyze the expected number of communica- Analysis of ES Recall that ES requires all entries in
tion rounds it takes to achieve stabilization, and sub- the matrixA to bel. The probability for this is:
sequently achieve global consensus decision, in various ,
models. We study four models: ESLM, OW LM, Pgps =p" (1)
and QAF M, and the fastest known algorithm in each))
model — 3 rounds for ES 1f), 3 for LM ([19]), 4 An optimal ES consensus algorithm reaches a global

with stable leader fo)W LM (Section 3, and 5 for decision in 3 rounds from stabilization, thus we need
OAFM ([19). the assumptions of ES to be satisfied for 3 consecutive

rounds starting at some roukd> 1. The probability of

In this section we model link failure probabilities as this to happen at any given routds (Pgs)®. Thus:
Independent and Identically Distributed (11D) Bernoulli

random variables (as do most studies giving closed-form F(Dps) = 1 P @
analyses, e.g.2p]). By “link failure” we mean that the ES) = (Pgs)?
link fails to deliver a message in a timely manner, i.e.,

in the same round in which it is sent. The lID-based .
analysis is aimed to provide intuition on how the dif- Analysis of QLM Let pi be the stable leader. For

ferent models and algorithms relate to each other. In OLM, it is required thatd has a majority of ones in

) : very row. Additionally,0 LM requires that/l < j <
the next section we present real-life measurements, ande eryro dditionally, equires thav'l < j <

. . n A;r = 1. Denote the event that there is a majority of
check whether the IID-based predictions are accurate in’’ ok enote the eve artnere s amajonty o
practice ones in rowA; by M and the event that,; , = 1 by L.

We haven independent rows, and thus:

For the sake of the analysis, we assume that processes
proceed in synchronized rounds, although this is not re- Poray = (Pr(LNM))" = (Pr(L)+ Pr(M|L))" (3)
quired for correctness. We look at runs with no process)
failures, which are common in practice. Additionally, Note thatPr(L) = p. Given thatd;; = 1, the proba-
we do not take the cost of leader election into account, Pility that more tharg, —1 of the remaining: —1 entries
since we assume a stable leader, i.e., a leader that is seff oW j arel is:
dom re-elected (e.g.2f, 1]). Such a leader can persist o1
throughout numerous instances of consensus. We de- Pr(M|L) = Z
note the probability that a message arrives on timg.by T
For simplicity, we do not treat a process’ link with itself =l

differently than other links. Our metric in this section is g|gbal decision is achieved in 3 rounds from stabiliza-

number of rounds until global decision. The length of ion in (7.7, meaning that this condition o has to
each round is the time needed to satigfiand itis the pe satisfied for 3 rounds, and thus:

same for all algorithms we deal with, while the number
of rounds depends on the algorithm. $ection 5.3ve 1

E(D =—+2 5
investigate the effect of changing the explicit time length (Do) (Porm)3 + ©)
of each round on the overall decision time in each model.

O @
I

6

Analysis of QW LM Let p, be the stable leader.
OW LM requires thatd has a majority of ones in row
Ay. We denote this event hy/. Additionally, it requires
thatvl < j <n A, = 1. We denote this event by’

Powrnv = PT‘(LI NM)= PT(L/) . PT‘(M|LI) (6)

Note thatPr(L’) = p™, and Pr(M|L') = Pr(M|L)
(defined in Equatio) since row Ay is independent

of other rows. Note that these conditions only exam-
ine the row and column corresponding to the leager,
Sincepy, is stable, all processes agree on its identity,

thus, the leader sends messages to all other processes
while every other process sends a message to the leade

Hence, the entries of A are not

We first analyze the algorithm dection 3 which
takes 4 rounds starting from GSR, under the stable
leader assumption. We get:

1

43
(Powram)*

E(DowrLm) =)

For comparison, we also examine an alternative so-

lution: we consider the optimal algorithm f&yL M
running over a simulation o LM in QW LM (shown

in Appendix B. We show that this simulation reaches
global decision ir¥ rounds. Therefore:

+6 (8)

1
E(DSimulated OWLM) - W

Analysis of) AF M This model requires! to have a
majority of ones in each row and column. Consider a
given rowk of A. We first analyze the probability that
the row includes a majority of ones. To this end, &t

be the random variable representing the ¢gll;. Ac-
cording to our assumptiory{, X, ..., X,, are indepen-
dent and identically distributed Bernoulli random vari-
ables with probability of success p. L&t = >"" | X;.
The probability that any given row in A has a majority
of I'sis:

Pr(X>3) = Enl (?)pi(l -p)"

~(g)+

For n (independent) rows we need to raise this expres-

sion to the power ofi. Now assume that every row has a
majority of 1 entries. The probability of any given entry
to bel is still at leastp. We therefore can make an iden-
tical calculation for the columns, raising the expression
again to the power di.

n
Pyary > (Pr(X > =)™

: ©

Since the algorithm fok) AF M achieves global deci-
sion in 5 rounds from GSR, this needs to hold3aon-
secutive rounds, and therefore we additionally raise the
expression to the power of 5. We get:

1

EDoara) = 50T

+4 (10)
In Appendix Cwe additionally investigate how Equa-

tions2, 5, 7 and10 behave as is increased.

and 4.2 Numerical results

' We plot the upper bounds on expected decision times
biven in Equation, 5, 7, 8 and 10 for specific val-
ues ofp. We focus on the case that = 8, similarly

to the group sizes used in other performance studies of
consensus-based systert§, [7, 3, 11], which used 4-9
nodes.

In Figure Xa) we see that even with a very high prob-
ability of timely message delivery, performance in ES
deteriorates drastically gs decreases, whil® AF' M,

O LM and the direct algorithm fap W L M maintain ex-
cellent performance. The direct algorithm oW LM
does not incur practically any penalty for its improve-
ment of message complexity from quadratioiio lin-
ear. We can also see thadtL M and our algorithm for
OW LM outperformd AF M in this high range op. Fi-
nally, the simulated algorithm fopW LM (OLM al-
gorithm running over the simulation frodppendix B

is worse than the direct one, since it is much harder to
maintain the needed timeliness conditions faounds
than for4 rounds.

Figure Xb) also examines smaller success probabili-
ties from0.9 and up. Here ES is no longer shown, since
it steeply deteriorates as we decreage.g., ES requires
349 rounds forp = 0.97). The intuition of why ES per-
forms so poorly, is that it is practically impossible to
get 3 matrices not containing even a single zero entry,
if the probability for a zero is non-negligible. Our di-
rect algorithm forOW LM greatly outperforms the sim-
ulated algorithm (e.g., fop = 0.92 our algorithm re-
quires 18 rounds, while the simulation-based requires
114 rounds).Q AF'M is better thar) LM andOW LM
whenp is low, but fromp = 0.96, O LM becomes bet-
ter, and starting fronp = 0.97, the direct algorithm for
OW LM becomes better. Thus$;AFM is better for
lower p values. For example, fgy = 0.85, QAFM
is expected to také0 rounds, while) LM is expected
to take69 rounds. Comparing the algorithms o, M/
andQOW LM, we see that even thougtiV LM requires
fewer timely links, QLM is slightly better, since the
dominant factor in the performance of both is the re-
quirement that the leader is¢a-source, and satisfying
it for 4 rounds instead df is harder.

(a) Expected number of rounds until global decision - 11D
50

X (b) Expected number of rounds until global decision - 11D . (c) Measurements on LAN vs. IID preAdic‘tilst‘
. ---ES 70 4
D - <>AFM CI<ARM
k —+-<>LM 0.95
a0r -+-<>LM 60 o<
K —e—Simulated <>WLM —*-Simulated <>WLM §
) . N —Direct <>WLM S 09
° N —Direct <>WLM » 50]
\) <]
3 30r . S 20.85
5 . 2 40 >
- 13
z 5 2 08 L BN = XY
_E 20 830 K O <>AFM (LAN)
E £ So7s " -+-<>LM (LAN)
= . Z 20 S ¥ —<>WLM (LAN)
10§ .. S 071 4. ! -%-ES (IID)
. » = g : ‘=% <>AFM (IID)
- ST 0.65(§ ! -4~ <>LM (IID)
0»- R e e e e e e e T I IY - . —— <>WLM (IID)
0.98 0.985 0.99 0.995 1 89 0.92 0.94 0.96 0.98 1 08 05 1 _15 2 25 3 35
p p Timeout (ms.)
d) Fraction of timely messages measured in WAN - e . o o
1() d 9 (e) Average incidence of rounds satisfying the model (f) Variance of satisfying rounds incidence (WAN)
1 WAN measurements with 95% confidence intervals 0.12
0.97 B B B ~ B 1 = =
0.94 1 I I,I‘I Jes
Z 0.1 4 P
0.91 — 208l , g ;
c 4 O
oo VAR | £ iy H ;
<] / 1- —~
0.85 5 Bl - 3008
£06 E 2 +x
0.82) 5.0 ; g £ % ;
0.79 2 5 I- |- 8 o.06 |
4 ¥
0.76) Zoal f } ’. £ :
[Shhel . o |
0.73 c o . > 0.04
2 : ES ES
o So2f & ol sam 4 1 N\ <>AFM
0.67 = ¥ I’ o 0.02 +e<>LM
0.64 J,}' s ‘ wm : — WM
0.6 I (3 hd
]90 120 150 180 210 240 270 300 330350 100 150 200 250 300 350 %0 100 150 200 250 300 350
Timeout (ms.) Timeout (ms.) Timeout (ms.)
() Average number of rounds until giobal decision (h) Average time until global decision (i) Minimal average time until global decision (WAN)
WAN measurements with 95% confidence intervals WAN measurements with 95% confidence intervals 5
T T X H -+-<>LM
250 Y | ---ES 30 [' 3 ---ES &) —<>WLM
. - <>AFM f | == <>AFM B
h [——<>LM 25 H H —e-<>LM 3
o 200 —<>WLM A b <>WLM 1 B
c —_ K ¥ -
= S 20 ' 3]
2150 ; 8 l 8
S e [\ i B o
5 ‘ Q15 U \ £
£ : £ . 1 =
£ 100 \ | 10 \ 5 0.5
4 H 3 Y ‘I K
F \ 111 g 0.65
50 H~ H 5 R ‘]; }] H l
o 1L, !]IIII o -1 S 0
100 150 200 250 300 350 100 180200 ey 300 350 150 200 250 300
timeout (millisec.) imeout (ms.) Timeout (ms.)
Figure 1. Comparison betweeB S, QAFM, QLM andOW LM.
5 Measurements noden; and noden; as measured by,. This infor-

mation is used for two purposes: to achieve round syn-
In this section we compargS, OAFM, QLM and chronization, which we describe below, and to “elect”
OW LM using experiments in two different practical one well-connected process as the leader, as discussed
settings - a LAN and a WAN (using PlanetLab). Ad- in Section 5.2
ditionally, we investigate whether the predictions made 5 process running GIRAF on a node gets theime-

assuming the 1ID model irBection 4were accurate. 45 5 parameter and runs two threads. In each local
Our experiments involve 8 nodes, like our analysis in 5 nq &, "the task of the first thread is to receive and
Section 4.2 record messages, inserting them into a message buffer
according to the round to which the message belongs
(this information is included in the message). Upon re-

The round mechanism (GIRAF, Algorithm 1) can be Ceipt of a message belonging to a future roénd> k;
implemented using synchronized clocks, when such areffom a noden;, this thread records the message and no-
available. Since this is not the case in a WAN, we imple- tifies the second thread.
mented round synchronization with the simple protocol =~ The second thread starts each roundy sending
described below. Before starting the experiments, we messages to its peers, and then waits for the remainder
measure the average latency between every pair of nodesf the round as specified by tlieneoutparameter. At
in the system using pings. Each nadgthen has an ar- the end of each round it calt®empute() In case a natifi-
ray L;, such thatL;[j] is the average latency between cation is received from the first thread about a receipt of

5.1 Implementation

round+4; message from node;, this thread stops wait-
ing, i.e., the round is ended immediately, axmmpute()
is called. It then starts rourid, and the duration of this
round is set tdimeout— L; [j].

This algorithm allows a slow node to join its peers
already in roundk;, thus utilizing the rounds; message

had to reach a majority of processes (these two require-
ments can be satisfied by the same set of links). Since
this node is slow, there is a higher chance of messages
to be late on its links than on other links (unlike in 11D),
making it harder to satisfp AF M. As OLM requires
each process to receive a message from a majority, it

it received, and takes into account the expected latencysuffers from the same problem @AFM. OLM ad-
of this message to approximate the remaining time for ditionally requires that the messages of the leader reach

round k; in order to start round:; + 1 together with

all processes, which explains why there are more rounds

the peers. We found that this algorithm achieves very satisfying0 AF M thanOLM.

fast synchronization, and whenever the synchronization

is lost, it is immediately regained.

5.2 LAN

Our experiment includes 8 nodes running simultane-
ously on a 100Mbit/sec LAN. Each process sent 100

UDP messages to all others. In a LAN, machines of-

ten have synchronized clocks, and there is no need for

a synchronization algorithm. We therefore do not focus
on round synchronization over LAN, and only measure

message latencies and theirimpact on satisfying the con

ditions for consensus in different models.

The purpose of this experiment is to compdtg,
i.e., the probability of a communication round to satisfy
model M according to [ID-based predictions to the per-

centage of such rounds in measurements on LAN, for
various timeouts. A message is considered to arrive in a

communication round if its latency is less than the time-
out. The lID-predicted values are calculated by taking
the fraction of all messages that arrived in all commu-
nication rounds of the experiment as an estimatepfor
(the probability of a message to arrive on time in the
[ID analysis) and then using Equatiods 3, 6 and 9
from Section 4.1 We found that the measuredvalues
were high already for very short timeouts. For example,
whereas for a timeout df.1ms. we measureg = 0.7,

for a timeout of0.2ms. it was already = 0.976.

Figure Xc) shows measured and predictdtsg,
Pyarn, Porav and Pow . We see that even in a
LAN, the ES model is hard to satisfy, which matches
the 1ID-based predictions. Although still worse than the
other modelsE S is better in practice than what was pre-

According to lID-based prediction, at a high rate of
message arrivap(values), Py and Py rar are al-
most identical as can be seen fréiigure Xc), and both
are worse thap AF' M. In practice, for leader-based al-
gorithms, choosing a good leader helps. As implement-
ing a leader election algorithm is beyond the scope of
this paper, we designated one process to act as a leader
in all runs. We chose this process as follows: before
running our experiments, we measured the round-trip
times of all links using pings, and then chose a well-
connected node to be the leader. Given this leader, both

OW LM and{ LM behaved much better than IID anal-
ysis predicted, and we see ti{itl/ LM performs much
better than all other models. When we rQi.M and

OW LM with a less optimal leader, whose links have
average timeliness, we saw that much bigger timeouts
are needed for reasonable performance, and in partic-
ular, bigger timeouts than fopAF'M. For example,
while QAF M reachesPy4rn = 0.97 at a timeout of
0.9ms., having chosen an average lea@dr LM and
OLM reach the same incidence only at a timeout of
1.6ms, whereas with a good leadgil’ L M reaches this
point at a timeout 00.35ms. andQ LM at0.8ms.

5.3 WAN

We implemented GIRAFSection 5.) and deployed
it in PlanetLab, using 8 nodes located in Switzerland,
Japan, California USA, Georgia USA, China, Poland,
United Kingdom, and Sweden. The participating pro-
cesses on these nodes are started up non-synchronously,
and then synchronized and continue running for an over-
all of 300 communication rounds per experiment. We

dicted. The reason is that the messages that are late in @onsider only rounds that occur after the system sta-
run tend to concentrate, rather than to spread among albilizes for the first time (with respect to the model) to

rounds of the run uniformly as in 1ID. Thus, in practice,

eliminate startup effects. The experiment was repeated

there are fewer rounds that suffer from message loss, andvith different timeouts, 33 times (runs) for each time-

Pgg is higher.
On the other hand) AF M is worse in reality than

out. The PlanetLab node located in United Kingdom
was chosen to serve as the leader for the leader-based

was predicted, since it is sensitive to a poor performanceprotocols, since it was found to be well connected us-

of any single node. While in IID all nodes are the same,
in our experiment, one node was occasionally slow.
OAF M requires this node, like any other, to receive a

ing the same method as was done for our LAN experi-
ment Section 5.2 We measure the time and number of
rounds until the appropriate conditions for global deci-

message from a majority of processes, and its messagsion are satisfied for each model, starting at 15 random

points of each run, and the average of these represent théhe same, we saw that in reality this is not true. This af-
run. Additionally, we measure the fraction of rounds in fects(Q LM which requires every node to receive a mes-
each run that satisfy the timeliness requirements of thesage from a majority. On the other hatt}, 75/ is con-
different models. sistently low (around .4, rarely abové).5) for this time-

Figure :Kd) shows how timeouts translate to fraction out, hence the low variance. For Iarger timeouts, Usua”y
of delivered messageg (n Section 4 as measured in all nodes manage to receive a message from a majority,
our experiment. We have chosen to work with timeouts and we see that the incidence @A F M and QLM is
which assure that up 1@90% messages are delivered on hlgh, while the confidence intervals become shorter and
time, since it is known that in WANs, the maximal la- the variance goes to 0.

tency can be orders of magnitude longer than the usual Figure {g) andFigure Xh) show the average (over

latency B, 4], and thus assuring00% is unrealistic. all runs) number of rounds and time (resp.) that were
Figure Xe) shows the measure®zs, Poarn, needed to reach global decision in each model. We ob-

Pyra and Pow s, averaged over the repetitions of serve that for low timeouts the algorithm 8ection 3

the experiment for each timeout, as well as % achieves consensus much faster than the algorithms as-

confidence interval for the averag&igure Xf) shows suming any of the other modelslq, 19]). For time-

the varience of the values used to calculate the averageouts starting with approximately 180ms. and higher, its
points inFigure Xe). We see that the timeliness require- performance is comparable /.M, whereasO AF'M
ments of QW LM are satisfied much more frequently takes more rounds and time than both for timeouts less
than for the other models. This is becausd’ LM than 230ms. As before, the choice of the leader gave
only requires timeliness from the incoming and outgo- ¢LM and{W LM an advantage ové€rAF' M and thus

ing links of the leader. We also observe tldt A/ and the difference from lID-based prediction Figure ib)

OW LM are much easier to satisfy thgndF M and (according toFigure Xd), a timeout ofl60ms. corre-
QOES. For example, for a timeout of60ms. we get sponds, on average, to= 0.88).

Pps = 0, Poapy = 0.4 while Py = 0.79 and In general, we see that a longer timeout (a highier
Powrm = 0.94. the IID analysis), reduces the number of rounds for de-
We see that/ S rounds are really rare, especially with cision. On the other hand, it is obvious that a higher
short timeouts (for example when the timeout is less or a longer timeout, make each individual round longer.
than 200ms Prs = 0), which matches the IID-based e wish to explore this tradeoff and determine the op-

prediction ofSection 4on average, atimeout@00ms. timal timeout. Of course, the specific optimum would
corresponds tp = 0.95 used in IID analysis, i.e95% be different for a different system setting, but the prin-
of messages arrive on tlme) We observe that while the Cip|e remains_Figure x|) Zooms-in on the appropriate

confidence intervals oo apar, Pora, and Pow part of Figure Xh), and demonstrates this tradeoff for

are small and diminish as we increase the timeout, the¢,7, A7 and()W LM. For timeouts less thati70ms. (on
confidence intervals fak'S grow. Given a fixed number average, this corresponds o= 0.90 for 1ID), while

of measurements, the interval Iength follows from the OW LM's required number of rounds is increasing (as
variance.E'S has high variance even for large timeouts, the timeout decreases), the length of each round is de-
due to message loss. While in some runs, > of creasing. For timeouts more thaf0ms. (as the time-
rounds satisfyzS with a timeout of350ms., in others out increases) the number of required rounds decreases,

only 30% do. For short timeouts the variance B is but the cost of each round increases. For example, if
low and its confidence intervals are short since the inci- we set our timeout ta80ms., although the number of
dence offS rounds is consistently low. rounds will be very small (4.5 rounds on average accord-

Figure Xf) shows that for longer timeouts, the high ingtoFigure Xg)), the actual time until decision will be
incidence of) AF M, LM and(QW LM rounds varies 800ms., which is about the same as the average time we
only slightly (unlike £S). However, we see that for would get if we shorten the timeout i60ms. although
short timeouts{ LM has high variance. This is caused the required number of rounds would be higher. This
by its sensitivity to bad performance by any single node, shows that setting conservative timeouts (improving
as was observed in LAN as well. Specifically, for atime- will not necessarily improve performance. As we see
out of 160ms., while in some rur®% of all rounds from this graph, it might actually make it worse. From
satisfy the conditions o LM, in other runs little more Figure Xi), we conclude that in our setting, choosing the
than15% do. This happened because, for several runstimeout to bel70ms. is optimal for theQW LM algo-
with this timeout, the PlanetLab node located in Poland rithm and the timeow10ms. is optimal forQ LM . That
was slow to receive messages, although most of the mesthese timeouts correspond o= 0.90 andp = 0.96,
sages it sent arrived on time. While in IID all links are meaning for example, that setting the timeout T0ms.

10

cause90% of messages on average to arrive on time in
our setting. Note that we present a methodology rather
than a specific timeout: a system administrator can per-
form measurements and choose the timeout for a specific
system, according to such criteria.

Finally, if we compare the performance OV LM
with that of O LM with their optimal timeouts, we see
thatOW LM is expected to tak&30ms., which is only
80ms. more than what) LM is expected to take at its

[6] N. Cardwell, S. Savage, and T. Anderson. Modeling the
performance of short tcp connections, 1998.

[7] M. Castro and B. Liskov. Practical byzantine fault toler-
ance. INUSENIX pages 173-186, Feb. 1999.

[8] T.D. Chandra, V. Hadzilacos, and S. Toueg. The weak-
est failure detector for solving consensusl. ACM
43(4):685-722, July 1996.

[9] H. Chernoff. A measure of asymptotic efficiency for
tests of a hypothesis based on a sum of observations.
Ann. Math. Statist.23:493-507, 1952.

best setting. We conclude that it is clearly well worth us- [10] F. Cristian and C. Fetzer. The timed asynchronous dis-

ing OW LM, while gaining the reduction of stable state

tributed system model. IEEE TPDS June 1999.

message complexity from quadratic to linear. [11] D. Dobre, M. Majuntke, and N. Suri. ~CoReFP:

6 Conclusions

Contention-Resistant Fast Paxos forWANs. Technical
report, TU Darmstadt, Germany, 2006.

[12] P.Duttaand R. Guerraoui. Fast indulgent consensus with

We presented a timing model that requires timeliness

zero degradation. IEDCC, Oct. 2002.

on O(n) links in stable periods and allows unbounded [13] P. Dutta, R. Guerraoui, and I. Keidar. The overhead of

periods of asynchrony. We introduced a consensus algo-
rithm for this model, which has linear per-round stable
state message complexity, and achieves global decision
in a constant small number of rounds from stabilization.

[

consensus failure recovery. Technical Report 200456,
EPFL, 2004.

4] P. Dutta, R. Guerraoui, and I. Keidar. The Overhead
of Indulgent Failure RecovenyDistributed Computing
2006.

Since all previously known algorithms that can operate [15] C.Dwork, N. A. Lynch, and L. Stockmeyer. Consensus

in this model require linear number of rounds, we com-
pared our algorithm to algorithms that require stronger

in the presence of partial synchrody ACM 35(2):288—
323, Apr. 1988.

models, all of which also have quadratic message com- [16] A. Fernandez, E. Jimenez, and M. Raynal. Eventual

plexity.

Even though our algorithm might take more rounds
to decide compared to the others, we have shown that its
easier to satisfy weak stability requirements allow it to
achieve comparable or even superior global consensus
decision time (with very low variance), despite the fact

leader election with weak assumptions on initial knowl-
edge, communication reliability, and synchronyD8N
2006.

[17] R. Guerraoui. Indulgent algorithms. RODC, 2000.
[18

] R. Guerraoui and M. Raynal. The information structure
of indulgent consensu$EEE Transactions on Comput-
ers 53(4):453-466, 2004.

that it sends much fewer messages in each round. Our[19] |. Keidar and A. Shraer. Timeliness, failure-detectors,

analysis includes measurements in a LAN and a WAN,

and consensus performance. AG®DC, 2006.

as well as mathematical analysis, and thus is valid in a [20] L. Lamport. The implementation of reliable distributed

broad variety of systems.

multiprocess system&€omputer Network, 1978.

[21] L. Lamport. The part-time parliamentACM Trans.

Acknowledgments

Comput. Syst16(2):133-169, May 1998.

[22] M. Larrea, A. Ferandez, and S. A&valo. Optimal im-

We thank Hagit Attiya and Liran Katzir for many
helpful discussions.

plementation of the weakest failure detector for solving
consensus. IBRDS pages 52-59, 2000.

References [23] N.Lynch and M. Tuttle. An introduction to Input/Output

Automata.CWI Quarterly 2(3):219-246, 1989.

[24] D. Malkhi, F. Oprea, and L. Zhou. Omega meets paxos:

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election.DhSC, 2001.

[2] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and [25]

S. Toueg. On implementing omega with weak reliability

and synchrony assumptions. RODC, 2003. [26]

[3] T. Anker, D. Dolev, G. Greenman, and |. Shnayderman.
Evaluating total order algorithms in WAN. Int. Work-
shop on Large-Scale Group Communicatiaf03.

[4] O. Bakr and I. Keidar. Evaluating the running time of a
communication round over the Internet. RODC, 2002.

[5] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Kar-
lin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,
and M. Wawrzoniak. Operating system support for
planetary-scale network services, 2004.

11

Leader election and stability without eventual timely
links. DISC, pages 199-213, sep 2005.

D. Peleg and A. Wool. The availability of quorum sys-
tems.Inf. Comput, 123(2):210-223, 1995.

P. Urban, I. Shnayderman, and A. Schiper. Comparison
of failure detectors and group membership: Performance
study of two atomic broadcast algorithni3SN 2003.

A Correctness of Algorithm 2 If a processp; decides using ruleslecide-2,3in
round k£ with estimateest;, then by ruledecide-3
Lemma 1. A process’s timestamp at the start of round 2 [k]lj].majApproved = true, meaning thap; was
L is less thark. believed to be the leader in the previous roune- 1
by a majority of processes. Let us denote this majority
Proof. We prove the claim by induction on the round by M. SinceM; and M, intersect, as two majorities,
numberk’. Base casek’ = 1. The claim is correct prevLD; = j. Sincep; decides on its own estimate
since a process’s timestamp is initialized to 0. The in- est;, we get thakst; = est;. O
duction hypothesis is that the claim holds up to round
k’. Let us inspect the possible actions of processes at thd-€MMa 4. If some process sendsP&EPAREOr COM-
end of round:’. A process can decide and in this case its M!T Message with timestantp > 0 and estimater
timestamp does not change and in roéigt 1 it will re- then some process commits in rourdvith estimater.
main less or equal to' — 1, by the induction hypothesis.
Alternatively, a process may commit, and then (on line numberk’, starting from a round, in which a message

o e i
28) itwill ao!optk as ts new timestamp for rourkd+1, with the timestamps was first sent with some estimate
and the claim holds here as well. Finally, a process may _,

, by some process;.
adopt the timestamp of a rourid message it received vy P #
in roundk’ (line 29) and again, by induction hypothesis,
the claim is true.

Proof. We prove the claim by induction on the round

Base Casek‘ = ky. From the definition ok, p; could
not receive a message witk from another process in
an earlier round. Thug; commits with timestamps
and estimate’ in roundkq — 1, and from the algorithm,
]ﬂo —1=ts.

Lemma 2. A process’s timestamp is non-decreasing.

Proof. Observe that when a process decides, its times-
tamp does not change. It does not change in the follow-
ing rounds as well. If a procegs does not decide in
round k, then it can change its timestamp by adopting
eitherk (when committing on line 28) or the maximum
timestamp (of a roun& message) received in rourd

as its new timestamp (line 29). Sinpgreceives its own
message in roundl, the latter is not lower than its cur-
rent timestamp. In case it commits, since according to
Lemma 1 its old timestamp cannot exceéd— 1, by
adoptingk it can only increase.

Induction Hypothesis. If any process sends BRE
PARE Or COMMIT message in rounkl;, such that

ko < kv < K/, with timestamp s and some estimate’,
then some process commits in routidwith estimate

z”.

Induction StepWe need to show that if, in rourid + 1,

a process sendsRREPAREOr COMMIT message with
timestampts and some estimate’ then some process
commits in roundts with estimatez”. Observe, that

if a COMMIT message is sent, it would have a times-
tamp equal to the previous round numliérand since

ts = ko — 1 < k'’ (by the base case), this case is not
possible. Observe that if BREPAREmMessage is sent in
round &’ + 1 with timestampts and estimater”, the
Proof. Observe a process; that commits in round Sending process must have adopted the timestamp to-
k. Thenp; evaluates rulecommitto true and com- gether with the estimate from sor&®EPAREOr COM-
mits or decides on the estimate that it receives from MIT message sent in rourkd. By the induction hypoth-
its leader, prevLD; (line 28). By rule commit esis, we get that some process commits in rotsnahd
M{[k][prevLD;].majApproved = true, meaning that estimater”. O
there is a majority of processes that send a raundl
message withprevLD; as their leader. Let us denote
this majority by M.

Suppose that a proceps commits in roundk with
estimateest;. By the same reason as above, there is a
majority of processes that send a round- 1 message | emma 5 (Uniform Agreement) No two processes de-
yv|th prevLD_j as their Ieader._ Let us denote this major- cide differently.
ity by M,. SinceM; and M, intersect, as two majori-
ties, prevLD; = prevLD;. Sincep; commits on the Proof. Let k& be the lowest numbered round in which
estimateest; sent byprevLD;, we getthaest; = est;. some process decides. Supppsdecidesr in roundk.

Lemma 3. If in round &, a process; commits on es-
timateest;, then no process commits in roukdvith a

different estimate, or decides in roukdvith a different
estimate using ruledecide-2,3

Please note that the claim lremma 4does not hold

for DECIDE messages, since a process decides adopting
only the estimate and not the associated timestamp from
anothemECIDE message.

12

Since no process decides in an earlier royndlecides If type = PREPARE it means thats, is the maximum
by rulesdecide-2,3 Therefore p; receives a majority of timestamp the leader received in any message of round
COMMIT messages in round including from itself, and £’ (line 29). Because it received a message fggnand

it decides on: - the estimate of one of theommIT mes- because, according temma 1 the highest timestamp
sages (the one from itself). Frobemma 3 all com- that can be received in round + 1 is &/, we get that
MIT messages include the same estimate Hence,a k — 1 < ts, < K/, and since (byvemma 4 there must
majority of processes commits in roukd- 1 with esti- be a process that commits in rounel with estimate
matex. Let us denote this majority of processes$y z # x (recall thatk — 1 > 0), this is a contradiction to
Note thatk — 1 > 1 since according to the pseudo-code, the induction hypothesis. O

the first round of the algorithm is round number 1. We

claim that if any process commits or decides in round Auxiliary Notation: we definekcqzer > GSR to be
k' > k — 1 then it commits or decides. The proofis the first round starting from which all correct processes

by induction on round numbé'. indicate in their messages the same corfEletader pro-
cess as their leader.

Base Casel’ = k — 1. As processes iy, commitz in Lemma 6. Starting from roundk;eqqer, (2) the correct
roundk —1, fromLemma 3 no process commitswithan () jeader receives a message from a majority of pro-

estimate different fromv in roundk — 1. By definition ;o556 (b) every correct process receives the message
of k, no process decides in roukd- 1. of the correct) leader.

Induction Hypothesidf any process commits or decides Proof. By the definition ofQW LM, starting at round

in any roundkl such thatt — 1 < k1 < K/, then it GSR the leader receives a message from a majority of

commits with estimate or decidese. processes, and every correct process receives a message
from the leader. This is provided that these messages

Induction Steplf some procesg decides in round’ + are a.c.tually sent by.the processes (this follows frqm the

1, then in that round either some other process sends efinition of timely link). Sincekicqae, > GSE, itis

DECIDE message with decision valug(rule decide- left to prove that processes will send these messages.

1) or p sends &OMMIT message with estimate(rule In each rqund of Algorithn2, every process sends a
decide-2. In both cases, by the induction hypothesis, Message to its leader, and the leader sends a message to
y=z. all processes. It follows from the definition &f..qe:,

Suppose by contradiction that some progessom- that in the computation of round. 4., — 1, every cor-
mits in roundk’ + 1 with estimate: # «. First, sincep; rect process gets the identity of the same correct leader
decides by ruleglecide-2,3n roundk, by Lem,ma 3VV(ZE from its oracle. Therefore, every correct process sends
have thati’ + 1 k. Since we know by the induction & Message to this unique leader at robindy.,. By the
hypothesis that’ > k — 1 we now get that’ > k — 1. guarantees oW LM, the leader receives a message
Sincek! > k — 1_2 1 we also get that’ > 1. Since from majority of processes. This proves (a).

p; commits, it hasn't received anyECIDE message in (b) is correct, since the leader also trust itself start-

J ’ . .

roundk’ + 1. Since rulecommitevaluated to true for INd from the computation of roundc.qer — 1, and

p;, a messagen = (type (# DECIDE), z, ts., * will therefore send a message to every process in round
1 - 1 Ll zZ H

true) was received by; in roundk’ 41 from the leader Kicader- By the the guarantees ¢fiV LM this mes-

Id. Notice thatts, might be different thamnazT'S; of sage of the leader will be delivered to every correct pro-

roundk’ + 1. cess. O
Observe thenaj Approved = true field of the mes-

e 5 Lemma 7. In every roundk > kjeqqer + 1, the() leader
sagem. This indicates that the leader received a mes- sendsmagj Approved — true in its round k message

sage from a majority of processes in rouhl and ,hq every correct procegsthat does not decide before
therefore it must have heard from at least one Process;und. either commits or decides in rourid

pe. € S,. Recall that every process i), commits in ’

roundk — 1 with estimatex. Thusp, has timestamp Proof. In our model, every correct process executes an

k — 1 at the end of round — 1. FromLemma 2 since infinite number of rounds, and in particular, executes
k' >k —1, p,'s timestamp is at leagt — 1. roundk. If p decides by rulelecide-lor rulesdecide-2,3

If type =COMMIT, this means thats, = &’ (line 28). we are done. Otherwise, in order to prove the lemma, we
As was explainedy’ > 1, and byLemma 4we get that need to show that ruleommitis satisfied.
some process commits in roukd with estimatez # Starting from roundk;..4..- all processes indicate the

2. This is a contradiction to the induction hypothesis. same correct procegsader in their messages. Since,

13

by Lemma 6 leader receives a message from a major- Theorem 10. (a) the algorithm solves consensus by
ity of processes in rounk..q.- onward, and these pro- roundGSR + 4; and (b) if the eventual requirements of
cesses indicate it as leader in round- 1 > kjcqder, it the (2 leader are satisfied starting from rourfdS R — 1
will send majApproved = true in its roundk mes- (instead of starting frond”S R as required by the model),
sage. Since, again byemma 6 starting from round then all correct processes decide by roudd R + 3.

Kieader EVErY process receives a message from the cor-]
rect(leaderp receives a message frdmuder inround ~ Proof. FromLemma 9 every correct process decides by
k (p hasprevLD = leader in roundk), and evaluates roundGSR + 4, or GSR + 3 if the condition of (b) is

rule committo true. O satisfied. Validity holds, since the decision can only be

one of the initial estimates of the processes. Uniform
Lemma 8. All correct processes decide by round 2dreementis proven ilemma 5 N
kjleade'r‘ + 3.

. B A Simulation of QLM in QW LM
Proof. Observe that in our model every correct process

executes an infinite number of rounds, and in particu-
lar, executes roundl;., .- + 3. We prove the lemma by
contradiction. Assume that some correct proggsies

not decide by round;..q.- + 3. Then it did not receive
any DECIDE messages in rountd..q., + 3, and in par-
ticular, since byemma 6it receives a message from its
leader, the leader did not decide in the previous round,
namely roundk;cqqe- + 2. This means that in round
kieader + 2, the leader evaluated at least oneletide-2

or decide-3to false. But according td_.emma 6rule
decide-3must evaluate to true for the leader. So the
problem was with rulelecide-2 Since byLemma 6the
leader received a message from a majority of processe
in roundk;cqqe- +2, ONe of the messages must have been
with type# comMmIT. According toLemma 7 all non-
commit messages must beCIDE messages. But then
the leader should decide in rourg.,q.,- + 2 by rule
decide-1- a contradiction.

As was explained in19], simulating a GIRAF model
M, means invoking thenitialize 4 () and compute ()
functions of some algorithm that works inM;, while
satisfying the properties off;. In particular, if M,
and M, are both GIRAF models, then a reduction al-
gorithm T, _, s, instantiates thénitialize() and com-
pute() functions, denotedhitializer() and compute-(),
and invokegnitialize 4 () andcomputg () in model M,
(while satisfying the properties a#l>).

Algorithm 3 presents a simulation, of théLM
model introduced in19, in the QW LM model pre-
sented in this paper. Therefore, we show an implemen-
1iation of initializeqw s () and computew as() func-
tions that work inQW LM model. We denote by
initializey 1,07 () andcompute 1,5/ () the functions of an
algorithm designed fo® L M.

In odd roundsk;, every procesg; just forwards the
messages it collected in rourig as an array. Thg'"
entry of the array is# L only if p; received a message
from p; in the current round. In even rounds, each
messagé\/; [k;][!] thatp; receives frony; is in fact an
array, as explained above. In order to find out what mes-
sagep; sentin the previous roung; looks for this mes-
sage in one of the arrays it received. Thus, if there is a

Proof. (a) According to the definition af W LM, start- Processy that senip;’s message (has thg" entry of
ing from roundG'S R all (correct) processes get the same the array it sent~ 1), p; saves this message in a local
fixzed fixzed .

leader indication from theif2 oracle (and this indica- ~Message buffed/; ™™, in the entryM; ™[k /2][j]. It
tion does not change in further rounds). Therefore, then callscomputeq s with this local message buffer,
starting from round=SR + 1 all processes indicate the ~and local round numbér/2. This function is called ev-
same correc® leader in their messages, and we get that €'Y other round, hence thg/2. Thus, we simulate one
Keader = GSR + 1. FromLemma Severy correct pro- ~ round ofQ LM in every two rounds of W LM.
cess decides by rourig.,ger +3 = GSR + 4.

(b) if the eventual requirements of the leader Lemma 1l. GSRorm < GSRowrm + 2
are satisfied from round SR — 1 (instead of from Proof. Recall that all eventual properties®f’ LM are
GSR), then all correct processes indicate the same satisfied starting from roun@SRew s, and that both
correct leader process in their messages starting fromo1w LM and O LM do not have any perpetual proper-
round GSR onward, we get thak;.,q.r = GSR, ties.
from Lemma § all correct processes decide by round By definition of €2, there exists a correct process
Kieader +3 = GSR + 3. O p; that is indicated as leader by all oracles of correct

Lemma 9. (a) all correct processes decide by round
GSR + 4; and (b) if the eventual requirements of the
Q leader are satisfied from roun@SR — 1 (instead of
from GSR), then all correct processes decide by round
GSR+ 3.

14

Algorithm 3 simulation of) LM in QW LM. Code for process;.
1: Additional state)
M"Y [N][1T] eMessages{ L}, initially Yk € NVp; € IT : M ““U[k][j] = L
. procedureinitializeq vy oz (leader)
return(initialize 1, ps (leader), IT)
: procedure compute vy 1, a7 (i, M[*][*], leader)
if (k; is odd)then
return{{ M [k;][«], IT)
[*k; is even*/
forall j € N
if (31 € N, s.t. M[K][l][j] # L) then
M /2] = MIk)[[5]
return(computey 1 ar (ki /2, M4, leader), I1)

CcoNoaR WD

=
= o

is passed t@omputeq s (@ndinitializegrn()), the rithm Tz, — az, S.t. for every runr and every

leader indication that these functions see will be con- [€ N, roundG SR, (r)+1 of model M, occurs at most
stantlyp, starting from the first roundt > GSRowrm inroundGSRyy, () + «(l) of modelM;.

in which any of these functions are called. Notice that
k < GSRewrm + 1 since if GSRew L IS even,
computeo s Will be called iNnGSRow Ly, andk =
GSRow Ly If GSRow s 1S 0dd, thercomputeer,

will be called in the nextround, i.&: = GSRow v +

processes starting from rour@SRqwra. Sincep; denotedM; >, Mo, if there exists a reduction algo-

Lemma 12. OW LM >, OLM, wherea(l) = 21 + 2.

Proof. By Lemma 11, round GSR¢ry OcCcurs at
most at roundGSRow v + 2. From that round,
) computeqr () is called in every even execution of
: . computeOWLM(). Thus, rOUﬂd;SROLJW +1 of model
In QW LM, starting from round&SRowrar, the 1 hvroccurs at most at rour@S Rew 1.z -+ 4 of model
leaderp; is assured to receive a message from a ma- i1 L, roundGS Ry + 2 of model(LM at most
jority of processes. By the simulation code, in every at roundGSRomw s + 6 of model OW LM, etc. In
odd round, the leader forwards all received messagesgeneraL round?S Re 1. s + | of model® LM occurs at
to every other process. &S Row s is 0dd, in round most in roundS R .as + 21 + 2 of modelOW LM
GSRowrm + 1 every process will hear from the leader We geta(l) = 21 + 2, andOW LM >, OLM. O
and thecomputeq s function will be called, where it -
will see messages from a majority sent in the previous An optimal consensus algorithm forL.)M was pre-
round and received in this one from the leader. Simi- sented in 19). This algorithm reaches global decision
larly, every further invocation ofomputeens Will sSee by roundGSRyra + 2, i.e. in 3OLM rounds. By
majority of messages from every correct process that| emmal2, there exists a simulation algorithm 6f.1/
were actually passed through the leade®iv LM . If in QW LM (Algorithm 3), s.t. roundGSRora + 2
GSRow L is even,computeqr,pr Will still be called, occurs at most at roundSRory + 2 % 2 + 2 =
but it is not assured to see messages from a major-GSR, 46, i.e., global decision is reached in 7 rounds
ity, since the leader forwards what it saw in previous of OW LM.

round, which was before rour@S Row L, and there- In Section 3andAppendix Awe analyzed the perfor-
fore the guarantees of the model were not assured tomance of the direct algorithm f@¥1¥’ LM, Algorithm 3,
hold in that round. The nextomputesras isinround in the common case when the leader is stable and the

GSRowrm + 2, and only there it is assured to see a properties of the oracle are satisfied in rodi6R — 1,
message from a majority sent in previous round and for- j.e., one round earlier. If we use the simulation-based
warded by the leader in this one. Thus, in the worst case,algorithm for)W LM presented in this section, no im-
the timeliness guarantees 61,11 will hold starting at provement in performance will be achieved, and the al-
roundGSRowrLm + 2. gorithm will still take at most 7 rounds, since the worst
We conclude that the round starting from which both case is when the timeliness (and not the oracle) proper-
timeliness and failure detector guarantees hold, is atties are satisfied only starting at routitbR + 2 (see

most two rounds afteS Row - Thus,GSRora < proof of Lemma 1). Thus by making the oracle prop-
GSRowram + 2. O erties hold a round earlier we do not eliminate the worst
case discussed in this Lemma.
Recall the a-reducibility notion defined in 19: Note that the requirements &fiV LM are satisfied
Model M, is a-reducible ¢ : N — N) to model M7, in OLM, and therefore a simulation afW LM in

15

OLM is trivial. Both models are therefore equivalent bound for the probability that given a majority of ones in
by the “classical” notion of CHT §]. Nevertheless, each row, any given entry in A is 1, we have to raise this
OLM inherently requires &)(n?) message complex- expression to the power of 2. Additionally, this needs to
ity (since each process receives a message from a mahold for 5 consecutive rounds, and thus:

jority), whereasOW LM requires only linear message

complexity as we have shown in this paper. We therefore 1

think that the “classical” notion of model reducibility E(Dyarm) < — +4

and equivalence could be refined to take message com- (1 — e~ Umzp)me/2y10n

plexity into account, similarly to the notion éfround
reducibility [19] that took time (round) complexity of
the reduction into account.

For a fixedp < 1, the first expression in the sum above
approaches 1 as — oo, and thereford?(Doapn) —
5. O

C Asymptotic Behavior of E(D)

ES. For any fixedp < 1, lim,, .o E(Dgg) = oo,
sincelim,, .. p°" = 0.

LM. For any fixed p < 1, its clear that
lim,, 0o E(Dgrar) = 00, sincelim,, ., p>® = 0, and
Pr(M|L) < 1.

WLM. Similarly to O LM, for any fixedp < 1, both
the expression in Equatio)(and the one in Equation
(8) go to oo, however Equation8) grows faster, since
the exponent op is bigger.

AFM. In the following lemma we show that, asymp-
totically, E(Dyarar) approaches the constant value of
5 rounds, as, the number of processes, goes to infinity.

Lemma 13. For afixedp > 1, limy, oo E(Doarn)=
5

Proof. To bound the probability thatl has a major-
ity of 1's in a row, we use a Chernoff boun8] Let
X1, X5, ..., X,, and X be as defined above, and denote
uw = E(X) = np. By the Chernoff bound, for any
0<e< 1t

PX<(1—-ep)< e re /2

We would like to bound the probabiliti?(X < %) and
therefore take = (1 — ﬁ). Thus, forp > 1/2, we get:

P(X S)S 67(17i)2np/2

and n .
P(X>2)>1- e~ (1=35)"np/2

This is a bound on the probability that any given row in
A has a majority ofl’s. Forn (independent) rows, we
get that the probability exceeds — e~ (1~ 3:)"77/2)n.
As was already explained, if we takeas the lower

16

	Introduction
	Model and Problem Definitions
	Time and Message Efficient Algorithm in WLM
	Probabilistic Comparison of Decision Time in Different Models
	Mathematical Analysis
	Numerical results

	Measurements
	Implementation
	LAN
	WAN

	Conclusions
	Correctness of Algorithm 2
	A Simulation of LM in WLM
	Asymptotic Behavior of E(D)

