
A Local Algorithm for Ad Hoc Majority Voting Via

Charge Fusion

Yitzhak Birk, Liran Liss, Ran Wolff and Assaf Schuster
Technion – Israel Institute of Technology

{birk@ee,liranl@tx,ranw@cs,assaf@cs}.technion.ac.il

June 24, 2006

Abstract

We present a local distributed algorithm for a general Majority Voting problem:
different and time-variable voting powers and vote splits, arbitrary and dynamic inter-
connection topologies and link delays, and any fixed majority threshold. The algorithm
combines a novel, efficient anytime spanning forest algorithm, which may also have ap-
plications elsewhere, with a “charge fusion” algorithm that roots trees at nodes with
excess “charge” (derived from a node’s voting power and vote split), and subsequently
transfers charges along tree links to oppositely charged roots for fusion. At any instant,
every node has an ad hoc belief regarding the outcome. Once all changes have ceased,
the correct majority decision is reached by all nodes within a time that in many cases
is independent of the graph size. The algorithm’s correctness and salient properties are
proved, and experiments with up to one million nodes provide further validation and
actual numbers. To our knowledge, this is the first locality-sensitive solution to the
Majority Vote problem for arbitrary, dynamically changing communication graphs.

1 Introduction

1.1 Background

Emerging large-scale distributed systems such as the Internet-based peer-to-peer systems,
grid systems, ad hoc networks and sensor networks, impose uncompromising scalability re-
quirements on (distributed) algorithms used for performing various functions. Clearly, for an
algorithm to be perfectly scalable, i.e., O(1) complexity in problem size, it must be “local” in
the sense that a node only exchanges information with nodes in its vicinity. Also, informa-
tion must not need to flow across the graph. For some problems, there are local algorithms
whose execution time is effectively independent of the graph size. Examples include Ring
Coloring [1] and Maximum Independent Set [2].

1

lesley
Text Box
CCIT Report #590 May 2006

Unfortunately, there are important problems for which there cannot be such perfectly-
scalable solutions. Yet, locality is a highly desirable characteristic: locality decouples com-
putation from the system size, thus enhancing scalability; also, handling the effects of input
changes or failures of individual nodes locally cuts down resource usage and prevents hot
spots; lastly, a node is usually able to communicate reliably and economically with nearby
nodes, whereas communication with distant nodes, let alone global communication, is often
costly and prone to failures.

With these motivations in mind, efficient local (or ”locality sensitive”) algorithms have
also been developed for problems that do not lend themselves to solutions whose complexity
is completely independent of the problem instance. One example is an efficient Minimum
Spanning Tree algorithm [3]. Another example is fault-local mending algorithms [4, 5].
There, a problem is considered fault-locally mendable if the time it takes to mend a batch
of transient faults depends only on the number of failed nodes, regardless of the size of the
network. However, the time may still be proportional to the size of the network for a large
number of faults.

The notion of locality that was proposed in [4, 5] for mending algorithms can be gener-
alized as follows: an algorithm is local if its execution time does not depend on the system
size, but rather on some other measure of the problem instance. A non-trivial measure
with a low value for many instances suggests the possibility of a solution with unbounded
scalability (in graph size) for these instances. This observation encourages the search for
local algorithms even for problem classes that are clearly global for some instances. In this
paper, we apply this idea to the Majority Vote problem, which is a fundamental primitive
in distributed algorithms for many common functions; E.g., leader election, consensus and
synchronization.

1.2 The Majority Vote Problem

Consider a system comprising an unbounded number of interconnected nodes. Each node
has a certain (possibly different) voting power on a proposed resolution, and may split its
votes arbitrarily between “Yes” and “No”. Nodes may change their connectivity (topology
changes) at any moment, and both the voting power and the votes themselves may change
over time1. In this dynamic setting, we want every node to decide whether the fraction of
Yes votes is greater than a given threshold. Since the outcome is inherently ad hoc, it makes
no sense to require that a node be aware of its having learned the “final” outcome, and we
indeed do not impose this requirement. However, we do require eventual convergence in each
connected component.

The time to determine the correct majority decision in a distributed vote may depend
on the significance of the majority rather than on system size. In certain cases such as a tie,
computing the majority would require collecting at least half of the votes, which would indeed
take time proportional to the size of the system. Yet, it appears possible that whenever the

1Nodes are assumed to trust one another. We do not address Byzantine faults in this paper.

2

majority is evident throughout the graph, computation can be extremely fast by determining
the correct majority decision based on local information alone.

Constantly adapting to the input in a local manner can also lead to efficient anytime
algorithms: when the global majority changes slowly, every node can track the majority
decision in a timely manner, without spending vast network resources; when a landslide
majority decision flips abruptly due to an instant change in the majority of the votes, most
of the nodes should be able to reach the new decision extremely fast as discussed above;
and, after the algorithm has converged, it should be possible to react to a subsequent vote
change that increases the majority with very little, local activity. A less obvious situation
occurs when a vote change reduces the majority (but does not alter the outcome), because
the change may create a local false perception that the outcome has changed as well. The
challenge to the algorithm is to quickly squelch the wave of erroneous perceived outcome,
limiting both the number of affected nodes and the duration of this effect.

The Majority Vote problem thus has instances that require global communication, in-
stances that appear to lend themselves trivially to efficient, local solutions, and challenging
instances that lie in between.

The main contribution of this paper is a local algorithm for the Majority Vote problem.
Our algorithm comprises two collaborating components: an efficient anytime spanning forest
algorithm and a charge-fusion mechanism. A node’s initial charge is derived from its voting
power and vote split such that the majority decision is determined by the sign of the net
charge in the system. Every node bases its ad-hoc belief regarding the majority on the sign
of its charge or on that of a charged node in its vicinity. The algorithm roots trees at charged
nodes, and subsequently fuses opposite charges using these trees until only charges of one
(the majority) sign are left, thus disseminating the correct decision to all nodes.

We provide formal proofs for key properties, as well as simulation results that demon-
strate actual performance and scalability. Offering a preview of our results, our experiments
show that for a wide range of input instances, the majority decision can be computed “from
scratch” in constant time. Even for a tight vote of 52% vs. 48%, each node usually commu-
nicates with only tens of nearby nodes, regardless of the system size. In [6], similar behavior
was demonstrated using an (unrelated) algorithm that was suited only for tree topologies.
To our knowledge, the current paper offers, for the first time, a locality-sensitive solution to
the Majority Vote problem for arbitrary, dynamically changing communication graphs.

The remainder of the paper is organized as follows. Section 2 provides an overview of
our approach. Section 3 presents a basic spanning forest (SF) algorithm, which is adapted
to routing charges in section 4. Our majority vote (MV) algorithm is detailed in section 5.
The correctness and locality properties of MV are proved in sections 6 and 7, respectively.
In section 8, we provide some empirical results to confirm our assumptions and demonstrate
the performance of our algorithm. Section 9 describes at some length related work. Section
10 offers concluding remarks.

3

2 Overview of Our Approach

Consider a vote on a proposition. The voting takes place at a set of polls, which are intercon-
nected by communication links. We propose the following simple protocol for determination
of the global majority decision. For each unbalanced poll, transfer its excess votes to a
nearby poll with an opposite majority, leaving the former poll balanced. Every balanced
poll bases its current belief regarding the majority on some unbalanced poll in its vicinity.
We continue this poll consolidation process until all remaining unbalanced polls posses excess
votes of the same type, thus determining the global majority decision. We next state the
problem formally, and elaborate on our implementation of the foregoing approach.

Let G(V,E) be a graph, and let λ = λn/λd be a rational threshold between 0 and 1.
Every node i is entitled to Vi votes; we denote the number of node i ’s Yes votes by Yi. For
each connected component X in G, the desired majority vote decision is Yes if and only if
the fraction of Yes votes in X is greater than the threshold:

∑
i∈X Yi∑
i∈X Vi

> λ.

Since a node can change its current vote at any time, we must distinguish between a
node’s current vote and the votes or “tokens” that are transferred between nodes during
the consolidation process. In order to prevent confusion, we introduce the notion of the
(“electrical”) charge of a node, and base the majority decision on the sign of the net charge in
the system. The following equivalent criterion for determining a majority vote decision allows
us to work with integers and only deal with linear operations (addition and subtraction):

Yes ⇔ λd

∑

i∈X

Yi − λn

∑

i∈X

Vi ≥ 0.

A node i ’s charge, Ci, is initially set to λdYi − λnVi. Subsequent single-vote changes at a
node from No to Yes (Yes to No) increase (decrease) its charge by λd. An addition of one vote
to the voting power of a node reduces its charge by λn if the new vote is No, and increases
it by λd − λn if the vote is Yes. A reduction in a node’s voting power has an opposite effect.
Charge may also be transferred among nodes, affecting their charges accordingly but leaving
the total charge in the system unchanged. Therefore, the desired majority vote decision is
Yes if and only if the net charge in the system is non-negative:

∑

i∈X

Ci ≥ 0.

Our Majority Vote algorithm (MV) entails transferring charge among neighboring nodes,
so as to “fuse” and thereby eliminate equal amounts of opposite-sign charges and, in so
doing, also relay ad hoc majority decision information. Eventually, all remaining charged
nodes have an identical sign, which is the correct global majority decision. Therefore, if we
can transfer charge such that nearby charged nodes with opposite signs cancel one another

4

without introducing a livelock, and subsequently disseminate the resulting majority decision
to neutral nodes locally, we will have a local algorithm for the Majority Vote problem.

We solve the aforementioned livelock problem with the aid of a local spanning forest
algorithm (SF) that we will introduce shortly. The interplay between SF and MV is as
follows. The roots of SF’s trees are set by MV at charged nodes. SF gradually constructs
distinct trees over neutral nodes. MV then deterministically routes charges of one sign over
directed edges of the forest constructed by SF towards roots containing opposite charge.
The charges are fused, leaving only their combined net charge. Finally, MV unroots nodes
that turned neutral, and SF guarantees that all neutral nodes join trees rooted at remaining
charged ones in their vicinity. Each node bases its (perceived global) majority decision on
the sign of the charge of its tree’s root. Therefore, disseminating a majority decision to all
nodes is inherently built into the algorithm.

Although the system is dynamic, we ensure that the total charge in any connected com-
ponent of the graph always reflects the voting power and votes of its nodes. By so doing,
we guarantee that the correct majority decision is eventually reached by every node in any
given connected component, within finite time following the cessation of all changes.

3 Spanning Forest Algorithm

In this section, we describe SF, an efficient algorithm for maintaining a spanning forest in
dynamic graphs, and prove its loop-freedom and convergence properties. In the next section,
we will adapt this algorithm for use by MV.

3.1 SF Algorithm description

Given an undirected graph with positive integer edge weights and a set of nodes marked
as active roots, the algorithm gradually builds trees from these nodes. At any instant,
edges and nodes can be added or removed, edge weights can change, and nodes can be
marked/unmarked as active roots. However, the graph is always loop-free and partitioned
into distinct trees. Some of these trees have active roots, while others are either inactive
singletons (the initial state of every node) or rooted at nodes that used to be active. We
denote a tree as active or inactive based on the activity state of its root.

Whenever the system is stable, each connected component converges to a forest in which
every tree is active (if active roots exist). Loop freedom ensures that any node whose path
to its root was cut off, or whose root became inactive, will be able to join an active tree in
time proportional to the size of its previous tree. Unlike shortest path routing algorithms
that create a single permanent tree that spans the entire graph (for each destination), SF is
intended to create multiple trees that are data-dependent, short-lived, and local. Therefore,
in order to reduce control traffic, an edge-weight change does not by itself trigger any action.
Nevertheless, expanding trees do take into account the most recent edge weight information.
So, although we do not always build a shortest path forest, our paths are short.

5

Algorithm 1 formally states SF. In addition to topological changes, the algorithm supports
two operations that specify whether a node should be treated as an active root (Rooti and
UnRooti), and one query (NextHopi) that returns a node’s downtree neighbor, or ⊥ if the
node is a root. (We denote by downtree the direction from a node towards its root.) To its
neighbors, a node i’s state is represented by its perceived tree’s activity state Ti, its current
shortest path weight Wi, and an acknowledgement number Ai. The algorithm converges in a
similar manner to Bellman-Ford algorithms [7]: after each event, node i considers changing
its next hop pointer (Pi) to a neighbor that minimizes the weight of its path to an active
root (step 2). More formally, to a neighbor j that is believed by i to be active (λi(Tj) = 1)
and for which λi(Wj) + d(i, j) is minimal.

Loops are prevented by ensuring that whenever a portion of a tree is inactivated due to
an UnRoot operation or a link failure, a node will not point to a (still active) node that is
uptree from it [8]. (Edge weight increases can also cause loops. However, we do not face this
problem because such increases do not affect a node’s current weight in our algorithm.) This
is achieved both by limiting a node i’s choice of its downtree node (next hop) to neighbors
that reduce i’s current weight (or that leave i’s weight unchanged when it would be inactive
otherwise), and by allowing i to increase its current weight only when i and all its uptree
nodes are inactive (step 1).

In order to relay such inactivity information, we use an acknowledgement mechanism as
follows: a node i will not acknowledge the fact that the tree state of its downtree neighbor has
become inactive (step 6), before i is itself inactivated (Ti is set to 0 and Ai is incremented
in step 4) and receives acknowledgements for its own inactivation from all its neighbors
(IsAck(i) becomes true). Note that i will acknowledge immediately an inactivation of a
neighbor that is not its downtree node. Therefore, if a node i is inactive and has received
the last corresponding acknowledgement, all of i’s uptree nodes must be inactive and their
own neighbors are aware of this fact.

An active root expands and shrinks its tree at the fastest possible speed according to
minimum path considerations. However, once a root is marked inactive, it takes a three-
phase process to mark all nodes in its tree as inactive and reset their weight to ∞. First, the
fact that the tree is inactive (Ti = 0) propagates to all the leaves. Next, Acks are aggregated
from the leaves and returned to the root. Note that node weights remain unchanged. Finally,
the root increases its weight to ∞. This weight increase propagates towards the leaves,
resetting the weight of all nodes in the tree to ∞ on its way. It may seem that increasing the
weight of the leaves only in the third phase is wasteful. However, this extra phase actually
speeds up the process by ensuring that nodes in “shorter” branches do not choose as their
next hop nodes in “longer” branches, which haven’t yet been notified that the tree is being
inactivated. (This phase corresponds to the wait state in [8].)

3.2 Loop Freedom

We prove that SF is loop-free at every instant by carefully reasoning about possible node
weights in trees. We say that a node i is active if Ti = 1, and inactive if Ti = 0. For facility

6

Algorithm 1 Spanning Forest (SF)

Definitions: N i is the set of i’s neighbors

Variables for node i:

• Ri ∈ {0, 1} (root activity state), Ti ∈ {0, 1} (tree ac-
tivity state), Wi ∈ N (path weight), Ai ∈ N (Ack
number), Pi ∈ N i ∪ {⊥} (next hop pointer)

• Denote by χ = {T, W, A} the set of visible variables;
∀j ∈ N i, X ∈ χ: λi(Xj) holds the value of Xj as
known to i.

Macros:

• Inactive(i) ≡ (Ti = 0) ∨ (Pi 6= ⊥ ∧ λi(TPi
) = 0) -

Evaluates to true iff i is inactive or its current next
hop is assumed to be inactive

• IsAck(i) - Evaluates to true iff i’s neighbors have all
acknowledged i’s most recent (highest) Ack number.
Nodes that become neighbors are considered to have
sent and received all Acks that could have been pend-
ing to or from each other. (The details of Ack manage-
ment are omitted for brevity, but are included in the
running code.

Events: /* trigger + event specific action */

• Initi() : Ri = 0, Ti = 0, Wi = ∞, Pi = ⊥,

Ai = 0,∀j ∈ N i : LinkDowni(j).
• LinkUpi(j): send Update(Ti, Wi, Ai) to j.
• LinkDowni(j) : λi(Tj) = 0, λi(Wj) = ∞,

λi(Aj) = ⊥. if (Pi = j) Pi = ⊥.
• Rooti operation: Ri = 1.
• UnRooti operation: Ri = 0.
• receive Update(T, W, A) from j:

update λi(Tj), λi(Wj), and λi(Aj).
• receive Ack(A) from j: record the most recent version of

i’s Ack number acknowledged by j.

After every event also do: /* common actions */

1. /* if i is inactive and all uptree nodes have acknowl-
edged, update i’s weight according to its next hop: */

if (Ti = 0 ∧ IsAck(i) = true)

Wi =

�
∞, Pi = ⊥ ∨ λi(WPi

) = ∞
λi(WPi

) + d(i, Pi), otherwise

2. /* improve i’s path: */

let j ∈ N i s.t. Wi(j) is minimal, where

Wi(j) =

�
λi(Wj) + d(i, j), λi(Tj) 6= 0
∞, otherwise

if ((W (j) < Wi) ∨
(W (j) = Wi ∧ W (j) < ∞ ∧ Inactive(i)))

Pi = j, Wi = Wi(j), Ti = λi(Tj)

3. /* if i was marked as a root, set variables accordingly:
*/
if (Ri = 1)

Ti = 1, Wi = 0, Pi = ⊥

4. /* if i is turning inactive, increment i’s Ack: */

if (Ti 6= 0 ∧ ((Pi = ⊥ ∧ Ri = 0) ∨
(Pi 6= ⊥ ∧ λi(TPi

) = 0)))
Ti = 0, Ai = Ai + 1

5. send Update(Ti, Wi, Ai) to all neighbors if something
changed.

6. send Ack(λi(Aj)) to each unacknowledged neighbor j,
with the exception of Pi if IsAck(i) = false.

Output: The NextHopi query returns Pi’s current value.

of exposition, we also make the following definitions:

Definition 3.1 (generalized weight). The generalized weight2 of a node i, Ŵi, equals Wi if
i is active and ∞ otherwise.

Definition 3.2 (dead branch node). i is a dead branch node if the following conditions hold
for every node j uptree from or equal to i:

1. Tj = 0.

2. For every in-flight update message u sent by j: Tu = 0.

3. For every neighbor m of j: λm(Tj) = 0.

4. If j 6= i: IsAck(j) = true.

2This notion is only used in proofs.

7

We begin by stating two simple facts, and establishing sufficient conditions for determin-
ing dead-branch nodes. The proofs are deferred to Appendix A.

Lemma 3.3. After any event in which Ŵi increases for some nonisolated node i, Ŵi = ∞,
Ti = 0 and IsAck(i) = false.

Lemma 3.4. If Pi 6= ⊥, then either Ŵi > λi(ŴPi
) or Ŵi =

λi(ŴPi
) = ∞.

Lemma 3.5. If one of the following holds for some node i at time t:

1. Ti = 0 and IsAck(i) = true.

2. Ti = 0, IsAck(i) = false, and all of i’s pending acknowledgements are in-flight.

then i is a dead branch node.

We now show that the generalized weights of nodes uptree from i or messages sent by
them are at least as high as i’s, depending on i’s acknowledgement status. Loop-freedom
follows.

Lemma 3.6. For every node i

1. if IsAck(i) = true, then for every j uptree from i or j = i, and for every neighbor m

of j: (a) λm(Ŵj) ≥ Ŵi, and (b) for every in-transit update message u sent by j with

weight Ŵu: Ŵu ≥ Ŵi.

2. if IsAck(i) = false, then the same claims hold when replacing Ŵi with Wi.

Proof. Initially all nodes are isolated so the Lemma holds trivially. Consider an event at
time t, and assume that the Lemma was correct with respect to some non-isolated node i
at t− (a reconnecting isolated node has no uptree nodes and no messages in flight). We
show that the Lemma still holds at t+ by contradiction. The Lemma can be violated in the
following cases:

(a) The event occurs in i. Since for any update message u sent by i at t+: Ŵu = Ŵi(t
+),

the Lemma can be violated only due to update messages in transit from i or due to nodes
uptree from i, as a result of i’s new state. We reach a contradiction by examining all
IsAck(i)’s possible state transitions:

• IsAck(i)(t−) = IsAck(i)(t+) = true. Lemma 3.3 guarantees that Ŵi cannot increase.
Therefore, 1) cannot be violated and 2) does not apply.

• IsAck(i)(t−) = IsAck(i)(t+) = false. Since Wi can only increase in step 1, and
IsAck(i)(t−) = false, Wi cannot increase. Therefore, 2) cannot be violated.

• IsAck(i) changes from true to false. Since this change can only occur if Ti(t
−) = 1, it

follows from the algorithm that Wi cannot change, and we have: Ŵi(t
−) = Wi(t

−) =
Wi(t

+). Therefore, 2) holds at t+ due to our assumption that 1) held at t−.

8

• IsAck(i) changes from false to true. This change can only occur if the event is the
reception of an Ack message for i’s latest inactivation. If Ti(t

−) = 1, it follows from the

algorithm that Wi cannot change, and we have: Wi(t
−) = Wi(t

+) = Ŵi(t
+). Therefore,

1) holds at t+ due to our assumption that 2) held at t−. If Ti(t
−) = 0, according to

Lemma 3.5 i is a dead branch, so 1) holds trivially at t+.

(b) The Lemma is violated by a change in λm(Ŵj), where m is a neighbor of some node
j uptree of i. However, this change can only occur due to an update message u sent by j
before t, contradicting the assumption for u.

(c) The Lemma is violated by a message u sent by node j uptree from i at t+. Since

Ŵu = Ŵj(t
+), this would contradict either Lemma 3.4 or the value of λj(ŴPj

), for which we
have shown in (b) that the Lemma holds.

(d) The Lemma is violated indirectly due to a node k changing its next hop towards a

node j uptree from i. In this case: Ŵk(t
+) = Wk(t

+) > λk(Wj)(t
+) = λk(Ŵj)(t

+) > W0,

where W0 is either Wi or Ŵi according to the induction hypothesis with respect to IsAck(i).
Since we proved in (a) that the Lemma holds for any node k that encounters an event with
respect to itself, it must also hold with respect to i, a contradiction.

Theorem 3.7. There are no cycles in the graph at any instant.

Proof. Let i be a node that closes a cycle at time t. Therefore, at t+ we have λi(ŴPi
) =

λi(WPi
) < Wi = Ŵi. However, since Pi is also uptree from i, it follows from Lemma 3.6 that

λi(ŴPi
) ≥ Ŵi, a contradiction.

3.3 Convergence

We say that SF is converged if no messages are sent, all nodes are acknowledged (IsAck =
true for all nodes), and one of the following conditions hold:

• If no node is marked as an active root, then all nodes in the graph are inactive.

• Otherwise, all nodes are active and belong to trees with marked roots.

Theorem 3.8. SF converges within finite time after t0.

The proof, which follows from the properties of the standard Bellman-Ford algorithm, is
deferred to Appendix A.

4 Adapted Spanning Forest Algorithm

In order to use SF for routing charges, we inserted several changes to algorithm 1. The
adapted spanning forest algorithm (ASF) is algorithm 2. (New functional sections that were
added to the SF algorithm are preceded by ASF remarks.) We next detail each of these
changes.

9

Algorithm 2 Adapted Spanning Forest (ASF)

Variables for node i:

• SF variables:
Ri ∈ {−1, 0, 1} (root activity state), Ti ∈ {−1, 0, 1}
(tree activity state), Wi ∈ N (path weight), Ai ∈ N

(Ack number), Pi ∈ N i ∪ {⊥} (next hop pointer)
• Additional ASF variables:

Di ∈ N (delay), RIDi ∈ N (root ID), TIDi ∈ N (tree
ID), P i ∈ N i∪{⊥} (inverse hop pointer), W i ∈ V (in-
verse hop wieght), EPi ∈ N i ∪ {⊥} (expansion source
pointer), ELi (expansion time to live)

• ∀j ∈ N i : ∆i(j) ∈ N - i’s delay counter for neighbor j.
• Denote by χ = {T, TID, P, W, D, W, A} the set of vis-

ible variables; ∀j ∈ N i, X ∈ χ: λi(Xj) holds the value
of Xj as known to i.

Macros and constants:

• IsAck(i) - as in SF.
• Inactive(i) - as in SF.
• α > 1 - Max permissible ratio between Di and Wi.

Typically α = 4.
• CanChange(i) ≡ (Ti = 0 ∧ IsAck(i) = true) - node i

may change Pi only if it is inactive and acknowledged.
• CanRoot(i) ≡ (EPi = i) ∨

((Ti = 0 ∧ IsAck(i) = true) ∨ (Ti = 1 ∧ Pi = ⊥)) -
node i may become a root (with a new tree ID) either
if it is inactive and acknowledged or already an active
root.

• IsDelay(i, j) ≡ (λi(Dj) + ∆i(j) > λi(Wj) + d(i, j)).

Events: /* trigger + event-specific action */

• Initi() : Ri = 0, Ti = 0, Wi = ∞, Di = 0, Pi =
⊥, Ai = 0,RIDi = ∞,TIDi = ∞, P i = ⊥, W i =
∞, EPi = ⊥, ELi = 0,

∀j ∈ N i : LinkDowni(j).
• LinkUpi(j): send Update(χi, 0) to j.
• LinkDowni(j): if (Pi = j) Pi = ⊥. ∀X ∈ χi : set

λi(X) to X’s initial value.
• LinkWeightChangei(j, W):

Set estimate for d(i, j) as W .
• Rooti(R, RID, expand) operation:

Ri = R,RIDi = RID.
if (expand = true) EPi = i,

if (Wi < ∞) ELi = Wi.
• UnRooti operation: Ri = 0.
• receive Update(χ, EL) from j:

if (λi(Tj) = 0 ∨ λi(Wj) 6= W) ∆i(j) = 0;
∀X ∈ χ : λi(Xj) = X;
ELi = max(0, EL − d(i, j));
if (ELi > 0) EPi = j.

• receive Ack(A) from j: record the value of i’s Ack num
as acknowledged by j.

• on ClockT ick: ∀j ∈ N i :
if (λi(Ti) 6= 0 ∧ λi(Dj) + ∆i(j) <

α(λi(Wj) + d(i, j)))
∆i(j) = ∆i(j) + 1.

After every event also do: /* common actions */

1. /* ASF: Update sign and ID changes in existing trees
*/

if (Ti 6= 0 ∧ Pi 6= ⊥ ∧ λi(TPi
) 6= 0)

Ti = λi(TPi
),TIDi = λi(TIDPi

)
2. /* if i is inactive and all uptree nodes have acknowl-

edged, update i’s weight according to its next hop: */

if (Ti = 0 ∧ IsAck(i) = true)

Wi =

�
∞, Pi = ⊥ ∨ λi(WPi

) = ∞
λi(WPi

) + d(i, Pi), otherwise
3. /* improve i’s path */

let j ∈ N i s.t. Wi(j) is minimal, where

Wi(j) =

8>>>>><>>>>>:
λi(Wj) + d(i, j), λi(Tj) 6= 0 ∧

(EPi = j ∨
((j = Pi∨

CanChange(i))∧
IsDelay(i, j)))

∞, otherwise

if ((Wi(j) < Wi) ∨
(Wi(j) = Wi ∧ Wi(j) < ∞∧ Inactive(i)))

Pi = j, Wi = Wi(j),
Ti = λi(Tj),TIDi = λi(TIDj),
Di = min(λi(Dj) + ∆i(j),

α(λi(Wj) + d(i, j)))
4. if (Ri 6= 0 ∧ CanRoot(i))

Ti = Ri,TIDi = RIDi,

Wi = 0, Di = 0, Pi = ⊥
5. /* if i is turning inactive, increment i’s Ack: */

if (Ti 6= 0 ∧ ((Pi = ⊥ ∧ Ri = 0) ∨
(Pi 6= ⊥ ∧ λi(TPi

) = 0)))
Ti = 0, Ai = Ai + 1

6. /* ASF: update inverse hop information: */
if (Ti = 0) W i = ∞ else
let j ∈ N i s.t. W (j) is minimal, where

W (j) =

8>>>><>>>>:
λi(W j) + d(i, j), λi(TIDj) = TIDi∧

λi(Pj) = Pi

λi(Wj) + d(i, j), λi(TIDj) > TIDi∧
λi(Tj) = −Ti

∞, otherwise

W i = W (j), P i = j

7. if (W i = ∞) P i = ⊥
8. if (EPi = Pi) temp = ELi else temp = 0;

send Update(χi, temp) to all neighbors if anything
changed.

9. send Ack(λi(Aj)) to each unacknowledged neighbor j,
with the exception of Pi if IsAck(i) = false.

10. /* ASF: reset expansion wave variables: */
EPi = ⊥; ELi = 0

Output: The NextHopi, InvHopi and TreeSigni queries re-
turn the current values of Pi, P i and Ti, respectively.

10

4.1 Expanding the tree state to include sign information

To enable each neutral node to determine its majority decision according to its tree’s root,
we expand the SF root and tree state binary variables (Ri and Ti) to include the value of
−1 as well. While inactive nodes will still bear the value of T = 0, the tree state of an
active node i will always equal the sign of its next hop (downtree neighbor) as known to i
(Ti = λi(TPi

)) or the sign of Ri if i itself is an active root.

4.2 Associating an ID with every tree

We attach “Root ID” (RID) and “Tree ID” (TID i) variables to each node for symmetry
breaking as explained next. Every active root is assigned an ID during the Rooti operation,
which is propagated throughout its tree.

4.3 Adding inverse hops

To enable controlled routing of charge from the root of one tree to that of an opposite-
sign tree that collided with it, each node also maintains an inverse hop, which designates a
weighted path to the other tree’s root.

Node i considers a neighbor j as a candidate for its inverse hop in two cases: (a) i and j
belong to different trees and have opposite signs (Ti = −Tj); (b) i is j’s next hop, both nodes
have the same sign (Ti = Tj), and j has an inverse hop. We further restrict i’s candidates only
to those designating a path towards a root with a higher Tree ID. (Different IDs ensure that
only one of the colliding trees will develop inverse hops.) If there are remaining candidates,
i selects one that offers a path with minimal weight, or ⊥ otherwise.

Inverse hops are represented by weight (W i) and pointer (P i) variables. The foregoing
logic for determining a node’s inverse hop is specified in steps 6 and 7 of ASF. Note that
only active nodes can have inverse hops.

4.4 Limiting tree expansion and path improvements

To guarantee that paths do not break while routing charges, we normally allow only a dead-
branch node to change its next hop. However, as will be explained in the next section, there
are cases in which new active roots should be able to take over active nodes of neighboring
trees. Therefore, we extend the Root operation to include an expansion flag. Setting this
flag creates a bounded one-shot expansion wave, by repeatedly allowing any neighboring
nodes to join the tree. The wave will die down when it stops improving the shortest path of
neighboring nodes or when the bound is reached.

Expansion waves are realized by adding two new variables: an expansion time-to-live
(ELi) and a pointer (EPi). When the Rooti operation is invoked with the expansion flag
set, ELi is set equal to the node’s current weight (if it is finite), and EPi is set to i to signify
that an expansion wave was initiated in i. Any update message that i sends (step 8) will
convey ELi’s value.

11

If i is a node that receives a message with a positive EL value from a neighbor j, it
decrements this value (by the delay of the link from which the message was received) and
sets ELi accordingly. If ELi is positive, EPi is set to j to signify that an expansion wave
had been accepted from j. In this case, i can change its next hop pointer to j even if it is
not a dead-branch node, as is evident from step 3 of ASF and the CanChange predicate. If
i indeed changes its next hop during this event, then i takes part in the expansion wave and
every message it sends will also convey ELi’s value.

Note that the values of ELi and EPi are not not persistent between events, but rather
are reset each time in step 10 of ASF. Therefore, expansion waves have limited duration
and influence: they are initiated by a Root operation with a set expansion flag, carried by
messages with positive EL values, and die down when no such messages are sent. Trivially,
an expansion wave that originates in i can only reach a distance that is equivalent to i’s
weight before the wave was initiated (roughly i’s distance to its previous root).

4.5 Delaying root creation

Due to similar considerations as in the previous case, we delay the creation of a new root at
an active non-root node i, whenever Rooti is invoked without a set expansion flag. i will,
however, become a root immediately after it is inactive and acknowledged unless UnRooti
was invoked in the meantime. This behavior is enforced in step 4 of ASF and the CanRoot
predicate.

4.6 Introducing delays

Finally, we slow down the rate at which inactive nodes join active trees by introducing a clock
event (ClockT ick), a delay variable (Di), and a delay counter for every neighbor (∆i(j)).
Delays are essential to guarantee the local operation of the algorithm in some cases. (We will
elaborate on this matter when we discuss the locality properties of the algorithm in section
7.)

The delay mechanism works as follows. Denote by r the root of the tree that i belongs
to. Di generally represents the difference between the time passed from the moment that
the tree was created in r until i last joined this tree, and the network propagation time along
the tree path from r to i. Whenever a new tree is created at some node r, Dr is set to 0.
When a node i hears about a path with a specific weight to r via a neighbor j (by monitoring
changes in λi(Tj) and λi(Wj)), it records j’s weight (in λi(Wj) as well as j’s delay (in λi(Dj))
and resets ∆i(j) to 0. In every clock event, i increments ∆i(j) (up to a predefined limit). If
i eventually selects j as its next hop, it also updates Di to equal λi(Dj) + ∆i(j) (as long as
the value does not exceed a predefined limit) in step 3 of ASF. (Di = 0 indicates that both
i and all its downtree nodes actively joined r’s tree as soon as possible, i.e., without delays.)

The actual condition that enforces delays and slows down tree expansion rate is the
IsDelay predicate used in step 3 of ASF. Namely, i will not change its next hop and join
a path to r via j if the accumulated delay of this path (λi(Dj) + ∆i(j)) is not at least as

12

Table 1: ASF Interface

Procedure Function

Rooti (sign, ID, expand) Mark i as an active root with a
corresponding sign, ID, and
expansion property

UnRooti Unmark i as an active root

TreeSigni Return i’s tree state

NextHopi Return i’s next hop, or ⊥ if i is a root

InvHopi Returns i’s preferred inverse hop,
or ⊥ if there is none

high as the resulting path weight (λi(Wj) + d(i, j)). (This restriction is temporarily lifted
only for expansion waves.) Thus, the rate in which a path can be extended is reduced to
at most half the speed of that if delays never occurred. As a result, any information that is
passed from r to the tree nodes without delays (such as inactivating the tree) is guaranteed
to quickly reach every node in the tree.

This mechanism enables trees that cannot currently expand (e.g., trees that are sur-
rounded by other active trees) to accumulate a “delay credit” by incrementing ∆i(j) values
of neighboring nodes. Therefore, if a neighboring tree is subsequently inactivated, its nodes
can be quickly taken over.

The interface exposed by ASF algorithm to MV is summarized in Table 1. Although ASF
introduces considerable changes to SF, its basic operation remains practically the same: after
adjusting to additional sign and ID differences unique to ASF (step 1), the algorithm first
adjusts the node’s weight if it is a dead-branch (step 2), attempts to improve the node’s path
(step 3), sees if the node should become a root (step 4), and only then checks if the node
should be inactivated (step 5). The changes do not invalidate the algorithm’s correctness;
in Appendix A, we prove that:

Proposition 4.1. ASF is correct and converges within finite time.

5 Majority Vote Algorithm (MV)

MV is an asynchronous reactive algorithm. It operates by expressing local vote changes as
charge, relaying charge sign information among neighboring nodes using ASF, and fusing
opposite charges to determine the majority decision based on this information. Therefore,
both events that directly affect the current charge of a node, and events that relay information
on neighboring charges (via ASF), cause an algorithm action.

Every distinct charge in the system is assigned an ID. The ID need not be unique, but
positive and negative charges must have different IDs (e.g., by using the sign of a charge as

13

the least significant bit of its ID). Whenever a node remains charged following an event, it is
marked as an active root (using the ASF Root operation) with the corresponding sign and
charge ID. If the event was a vote change, we also set the root’s expansion flag, allowing
its tree to take over nearby active nodes via an expansion wave. This is important because
a vote change can introduce a new tree with a certain sign in a region of the graph that
contains only trees with that sign; the expansion wave balances the sizes of the new tree and
its neighboring trees, increasing the locality of future operations (such as charge fusions).

When trees of opposite signs collide, one of them (the one with the lower ID) will develop
inverse hops as explained above. Note that inverse hops are not created arbitrarily: they
expand along a path leading directly to the root. Without loss of generality, assume that the
negative tree develops inverse hops. Once the negative root identifies an inverse hop, it sends
all its charge (along with its ID) to its inverse hop neighbor and subsequently unmarks itself
as an active root (using the ASF UnRoot operation). The algorithm will attempt to pass
the charge along inverse hops of (still active) neutral nodes that belonged to the negative
tree (using the ASF InvHop query), and then along next hops of nodes that are part of the
positive tree (using the ASF NextHop query).

As long as the charge is in transit, it does not develop a new root. If it reaches the
positive root, fusion takes place. The algorithm will either inactivate the root or update the
root’s sign and charge ID, according to the residual charge. In case the propagation was
interrupted (due to topological changes, vote changes, expanding trees, etc.), the charge will
be added to that of its current node, possibly creating a new active root.

Algorithm 3 states MV formally. Ci(j) keeps track of the net charge transferred between
a node and each of its neighbors. When an edge (i, j) fails, MV adds a charge of Ci(j) to
i and a charge of Cj(i) to j. This operation effectively cancels out the net charge transfer
that ever took place between i and j. Thus, the net charge of a connected component
is always determined the votes of its own nodes. GenID(charge) can generally be any
function that returns a positive integer, as long as different IDs are generated for positive
and a negative charges. However, we have found it beneficial to give higher IDs to charges
with greater absolute values, which will cause them to “sit in place” as roots. This scheme
results in faster fusion since charges with opposite signs and lower absolute values will be
routed towards larger charges in parallel. It also discourages fusion of large same-sign charges
when multiple charges in transit overwhelm a common destination node before the algorithm
propagates its new state.

After updating a node i’s charge information following an event, the algorithm performs
two simple steps. In step 1, if i is charged, the algorithm attempts to transfer the charge
according to i’s tree sign and current next/inverse hop information obtained from ASF.
In step 2, i’s root state is adjusted according to its remaining charge. The output of the
algorithm, i.e., the estimated majority decision at every node, is simply the sign of the node’s
tree state (using ASF’s TreeSign query). For inactive nodes, we arbitrarily return true.

Remark. Apart from environmental events that cause a reaction both in ASF and MV
(such as Initi, LinkUPi and LinkDown), the algorithms have a mutual influence: MV is
invoked after any change in ASF’s state (since the answers to the TreeSigni, NextHopi, or

14

Algorithm 3 Majority Vote (MV)

Definitions: N i is the set of i’s neighbors

Variables for node i:

• Yi ∈ N (“Yes” votes), Vi ∈ N (total votes), Ci ∈ N

(charge), IDi ∈ N (charge ID)
• ∀j ∈ N i : Ci(j) ∈ N - net charge transferred between

i and a neighbor j, from i’s perspective.

Macros:

GenID(C) = 2(|C| − 1) + 1

2
(1 + sign(C))

Charge(V, Y) = λd · Y − λn · V

Events: /* trigger + event specific action */

• Initi: Vi, Yi, Ci = Charge(Vi, Yi),
IDi = GenID(Ci),∀j ∈ N(i) : Ci(j) = 0.

• LinkUpi(j): do nothing.
• LinkDowni(j): Ci+ = Ci(j), Ci(j) = 0.
• ChangeV otei(V, Y):

Ci+ = (Charge(V, Y) − Charge(Vi, Yi)),
Vi = V, Yi = Y, IDi = GenID(Ci).

• Receive Transfer(C, ID) from j:
if (Ci = 0) /* i is currently neutral */

IDi = ID

else /* fusion: update charge id */
IDi = GenID(Ci + C).

Ci+ = C, Ci(j)− = C.

/* common actions */
After each of the above events or a change in SF do:

1. /* if i is charged, try to transfer the charge: */

if (Ci 6= 0)
if (Sign(Ci) = −TreeSigni)

temp = NextHopi else temp = InvHopi.
if (temp 6= ⊥) send Tansfer(Ci, IDi) to temp,

Ci(j)+ = Ci; Ci = 0.
2. /* if i remained charged, verify it is marked as an ac-

tive root. Otherwise, unmark it: */

if (Ci = 0) UnRooti else Rooti(Sign(Ci), IDi, f) where
f = true if invoked by a ChangeV otei operation.

Output: true if TreeSigni ≥ 0, and false otherwise.

InvHopi queries could have changed), and ASF’s UnRooti and Rooti operations are called
directly from MV. Consequently, it may seem that an infinite recursion can occur. However,
it is not possible: if a node i remains charged, a second call to Rooti by MV does not change
ASF ’s state; if a node i was neutral or MV decides to transfer its charge, it remains neutral
and a second call to UnRooti by MV does not change ASF’s state. Any either case, the
invocation loop is terminated.

6 MV Correctness

Assume that all external events (link state changes, vote changes, etc.) stop at some time t0.
We say that MV is correct, if no more messages are sent within finite time after t0, and the
output of every node equals the majority decision in its connected component. (Note that
ASF clock events continue after this time, but they do not result in sending new messages.)

Denote by dmax the maximum edge delay in the graph at t0. Our correctness proof of
the algorithm follows several steps:

1. Establishing some baseline facts that hold within some finite time t1 after t0.

2. Proving several tree properties.

3. Proving that the set of active roots is fixed within finite time.

4. Proving that the algorithm stops within finite time with the correct results.

15

These steps are detailed in subsequent sections. The following general definitions are used
throughout the paper.

Definition 6.1 (node activation, depth and height). A node i is said to be activated
(inactivated) at time t if i was inactive (active) at t− and is active (inactive) at t+. The
depth of i at time t, Depi(t), is i’s distance from its root in units of network delay. The
height of i at time t, Heighti(t), is i’s distance to its farthest uptree node (a leaf) in units
of network delay.

Definition 6.2 (join event). A join event is an event e in which either (1) an inactive node
becomes active, or (2) an active node changes its weight (and remains active). Assume that
a join event e occurred at some node i. We denote by te the time at which e occurred, and
by Xe the value of any variable Xi at t+e (e.g, We stands for i’s weight at t+e). Similarly, we
denote i’s depth at t+e by Depe.

A node i is said to join node j, if it exhibits a join event e such that Pi(t
+
e) = j. Note

that both Te and We are determined according to the last message u from j that changed
either λi(Tj) or λi(Wj). However, e does necessarily occur upon receiving u. (Since u must
have been sent during a previous join event e′ at j, we also use this terminology with respect
to events, i.e., we say that e joined e′.)

Definition 6.3 (event chains and closure). The closure of a join event e, Close(e), is a set
of join events containing: (1) e itself, (2) any join event e′ that joins a previous join event
in Close(e). A sequence {en}, n ≥ 1 is a chain of join events in Close(e), if every event en

joined en−1 and e0 = e.

Definition 6.4 (expansion event). A join event e at node i is an expansion event if one of
the following conditions hold:

1. A root was created during e due to a vote change at i.

2. i joined a neighbor j due to an update message u from j, such that: (1) ELu > d(i, j));
and (2), e occurred upon receiving u.

Note that an expansion event enables an active node to change its next hop pointer. Given
a vote change event e, an expansion wave is its closure, Close(e).

6.1 Baseline facts

Say that two charges are distinct if they are located in different nodes or carried by different
messages. We initially make a simple observation:

Lemma 6.5. The number of distinct charges is constant after some finite time.

16

Proof. Since fused charges are never separated and no new charges are introduced to the
system, the number of distinct charges (whether counted as roots or transfer messages) is
positive and forms a non-increasing function of time. Therefore, after some finite time this
function is constant.

Unfortunately, this observation alone does not guarantee that all opposite signed charges
are fused within finite time because such charges might infinitely chase one another. There-
fore, at this stage we only assume that there exists a time after which no more fusions
between opposite-signed charges occur. In appendix B, we show that:

Lemma 6.6. As long as no fusions between opposite-signed charges occur, active roots can
only increase their IDs.

Lemma 6.7. All expansion waves die down within finite time.

Following these results, we conclude that there exists a time by which all expansion waves
die down and there are no more fusions between opposite signed charges. Denote this time
by t1.

6.2 Tree Properties

Assuming that the graph is not the trivial case of an isolated node, we now establish several
tree properties that hold after t1. These properties, namely uniformity, stability, inverse-
stability, and full-inactivity, are later used to prove that all opposite-signed charges in the
system are fused within finite time. Another related concept that characterizes the graph as
a whole rather than specific trees is a stable ID.

Since trees are solely managed by ASF, any algorithmic event we refer to in this section
corresponds to an ASF event. (We treat several ASF invocations in response to a single MV
event as a sequence of individual ASF events.) We begin with some tree-related definitions.

Definition 6.8 (tree creation, active and permanent trees). A tree is said to be created
at node i at time t if i was not an active root at t−, but is one at t+. A tree is active if
its root node is active. Otherwise, it is inactive. An active tree is permanent if it is never
inactivated. A tree rooted at node i is said to be destroyed at time t if either i ceases to be
a root or a new tree is created in i (i.e., i becomes active after being inactive at t−).

Hereafter, we denote by Treei a specific instance of a tree rooted at i. We refer to the
time since this instance was created in i until it was destroyed as the lifespan of Treei. Tree
characteristics are specified by state tuples, relations, and predicates, defined next.

Definition 6.9 (state tuple). The state tuple of a node i, χi, is the group of variables that
are exposed to other nodes (see ASF). Similarly, λi(χj) denotes the state tuple of node j as
known to i, and χu denotes the state carried by an update message u.

17

Definition 6.10 (relation conformance). Let R be a relation between two state tuples. A
node j conforms to R if for every neighbor m of j, and for every in-flight message u sent
from j to m:

• (χj, λm(χj)) ∈ R.

• (χj, χu) ∈ R.

• (χu, λm(χj)) ∈ R.

• For every in-flight message u′ sent before u to m,
(χu, χu′) ∈ R.

Definition 6.11 (predicate conformance). Let P be a boolean predicate over state-tuples. A
node j conforms to P if for every neighbor m of j, and for every in-flight message u sent
from j to m:

• χj ∈ P (i.e., P(χj) = true).

• χu ∈ P.

• λm(χj) ∈ P.

A tree conforms to a relation R (predicate P) if all its nodes conform to R (P). We
proceed with formal definitions of the tree properties.

Uniformity Uniformity captures the sign and ID characteristics of trees that either have
not exhibited fusion of opposite-signed charges since their creation, or a long time has passed
since they exhibited such a fusion. In these trees, all active nodes have the same sign, active
nodes can only increase their IDs, and every active node’s ID is equal to or less than the
root’s.

Definition 6.12 (uniform tree). An ordered pair of state tuples (χi, χj) satisfies the uniform
relation Ru if:

{Tj 6= 0} ⇒ {ID i ≥ ID j}.

Let i be a root node, and denote by T i i’s last sign (i.e., the last non-zero value of Ti). A
state tuple χv satisfies the uniform predicate Pu of Treei if: (1) Tv ∈ {0, T i}; and (2) if
Tv 6= 0 then IDv ≤ ID i. We say that Treei is uniform if it conforms to both Ru and Pu.

Stability A stable tree is an active tree in which for every active node, all nodes downtree
from it are guaranteed to be active. This, in turn, guarantees that in the absence of expansion
waves, the path from every active node to the root is fixed:

Definition 6.13 (stable tree). An ordered pair of state tuples (χi, χj) satisfies the stable
relation Rs if:

{Tj 6= 0} ⇒ {Ti 6= 0}.

Let i be a root node. We say Treei is stable if it is active and conforms to Rs.

18

Lemma 6.14. In any stable tree, an active node cannot be inactivated before the root.

Proof. Let i be a root of a stable tree, and let j ∈ Treei be an active node. Therefore, it
holds that λj(Tk) 6= 0 for k = Pj. Since k conforms to Rs, it follows that k is also active and
that Tu 6= 0 for any in-flight message u from k to j. Consequently, j cannot be inactivated
before k is. As the same reasoning holds for k and any node downtree from it, we have the
result.

Stable ID A stable ID is a concept that is related both to stability and uniformity. An ID
x is stable if for every node i that considers its neighbor j to be an active node with ID x,
then j belongs to a stable and uniform tree. This implies that j is active and has an ID=x
so any message that j sends also has these traits, ensuring that i’s information (regarding
j) is stable.

Definition 6.15 (stable ID). An ID x is stable if for every two neighboring nodes j and k,
if λj(Tk) 6= 0 and λj(TIDk) = x then k belongs to a stable uniform tree.

Inverse Stability Inverse stability implies certain constraints on inverse hops of nodes
whose ID is equal to their root’s. We distinguish between in-tree and cross-tree inverse hops:

Definition 6.16 (in-tree/cross-tree inverse hops). Let j be an active node for which P j = k.

• k is a cross-tree inverse hop of j if λj(IDk) > ID j and λj(Tk) = −Tj.

• k is an in-tree inverse hop of j if λj(IDk) = ID j, λj(Pk) = j, and λj(W k) < ∞.

In inverse stable trees, every such cross-tree inverse hop must point to a node belonging
to an opposite signed tree, and every such in-tree inverse hop must point to a node of the
same tree that also has an inverse-hop of its own. Thus, such inverse hops form a path to
an opposite-signed tree:

Definition 6.17 (inverse stable tree). Node k = P j is a stable inverse hop of node j if
j’s conditions on λj(χk) for k being a valid inverse hop also hold for χk and any in-flight
update message from k to j. An ordered pair of state tuples (χi, χj) satisfies the inverse
stable relation Ris if:

{ID i = ID j} ⇒ {W j < ∞ ⇒ W i < ∞}.

Let i be a root. Treei is inverse stable if for every node j ∈ Treei such that ID j = ID i: (1)
every inverse hop of j is stable; (2) j conforms to Ris.

19

Full Inactivity Finally, we distinguish between an inactive tree (whose root is inactive)
and a fully inactive tree whose nodes are inactive:

Definition 6.18 (fully inactive tree). A state tuple χv satisfies the inactive predicate Pi if
Tv = 0. Let i be a root node. We say that Treei is fully inactive if it conforms to Pi.

In order to track tree characteristics over time, we make the following definitions that
take into account the distances between nodes, messages and roots.

Definition 6.19. Let j be a node and u an in-flight message sent by it. The distance between
j and u, denoted by d(j, u), is the elapsed time since u was sent.

Definition 6.20. A node j conforms to a relation R up to height H if the following conditions
are met:

1. R includes the state-tuple pairs listed in definition 6.10 for all messages and neighbors
whose distance from j is less than or equal to H.

2. Let m be a neighbor of j such that d(j,m) > H. If there is no message u from j to m
such that d(j, u) = H, then one of the following conditions must hold:

• There exists at least one in-flight message u from j to m such that d(j, u) > H.
Assume that u is the most recent such message. It holds that (χj, χu) ∈ R as well
as (χu′ , χu) ∈ R for any in-flight message u′ sent after u.

• There is no in-flight message u from j to m such that d(j, u) > H. It holds that
(χj, λm(χj)) ∈ R as well as (χu′ , λm(χj)) ∈ R for every in-flight message u′ sent
from j to m.

Conformance to a predicate P up to height H is defined similarly. Let i be a tree root. Treei

conforms to a relation R (predicate P) up to height H at time t if every node j ∈ Treei such
that Depj(t) ≤ H conforms to R (P) up to height H − Depj(t).

In Appendix B, we show that trees conform to the uniformity, stability, and full-inactivity
properties up to heights that depend on time. The proofs are technical and rely on a careful
induction on events. Specifically, we prove the following:

Lemma 6.21. For all t ≥ t1, every tree is uniform up to a height of (at least) H(t) = t− t1.

Lemma 6.22. For all t ≥ t1, every active tree is stable up to a height of (at least) H(t) =
t − t1.

Lemma 6.23. Let i be a root of an inactive tree that was inactivated at some time t′. For
every t > t′, Treei is fully inactive up to a height of (at least) H(t) = t − t′.

From these lemmas and the fact that the graph is finite, it immediately follows that any
tree that existed at t1 becomes uniform and any such active tree becomes stable within finite
time.

20

Corollary 6.24. Let i be a root of a tree at time t1.

• Treei is destroyed or becomes uniform within finite time after t1.

• If i is active at t1, then Treei it will become stable within finite time after t1 assuming
i remains active.

In addition, we show that trees created after t1 are always uniform and stable (as long
as they are active).

Lemma 6.25. Let i be a root of a tree created at time t′ > t1. The following holds for every
t > t′:

1. Treei is uniform.

2. Treei is stable as long as i remains active.

Finally, we identify a sufficient condition for establishing a stable ID based on dmax (the
maximum edge delay in the graph), and establish several terms for inverse stability. The
proofs are deferred to Appendix B.

Lemma 6.26. Let x be a tree ID. If all active trees with an ID of x or higher are permanent
after some time t′ ≥ t1:

1. All active nodes with an ID=x must belong to uniform stable trees within finite time.

2. x becomes a stable ID in at most dmax time after (1).

Lemma 6.27. Let x be an ID, and assume that every ID y > x is stable after some time
t′ > t1. Let i be a root of a stable tree at t > t′. If the following conditions hold:

• Treei was created after t1 or has been stable for at least 3dmax time before t.

• Treei is uniform.

• Treei either was created with an ID=x after t′, has increased its ID to x after t′, or
was already inverse stable with an ID=x at t′.

then Treei is inverse stable.

6.3 Stability of active roots

We now prove by induction on decreasing IDs that the set of active roots must be fixed
(there are no more tree creations nor inactivations) within finite time after t1. The main
induction step is established by the following lemma.

Lemma 6.28. Let x be an ID. If all active roots with an ID y > x are permanent, then all
active roots with an ID of x will be permanent within finite time.

21

Proof. According to Lemma 6.26, there exists a time t′ > t1 by which every y > x is a
stable ID. Following corollary 6.24, there exists a time t′′ > t1 by which any active tree that
existed at t1 is uniform and stable. Let t′′′ = max(t′, t′′ + 3dmax). As the number of existing
active trees with ID=x at t′′′ is finite, there exists a time by which this set of trees is fixed,
i.e., remaining active trees are permanent. Following Corollary 6.24 and Lemma 6.25, every
active tree that was either created after t′′′ with an ID=x or increased its ID to x after t′′′,
satisfies the conditions of Lemma 6.27 and thus is inverse stable. We complete the proof by
showing that such trees are permanent by contradiction.

Let i be the root of such a tree, and assume by contradiction that i is inactivated at
some time t > t′′′. This can happen only if i develops an inverse hop, and MV subsequently
sends the charge and inactivates the tree. Let j1 = P i at t−. If j1 is an in-tree inverse hop
of i, inverse stability ensures that j1 is directly uptree from i, has an ID=x, and also has an
inverse hop j2 = P j1 . Denote by jn the first node along this inverse hop chain that has a
cross-tree inverse hop, k.

For every 1 ≤ i ≤ n, ji will neither be inactivated nor change its next hop before if
receives a message with T = 0 from its own next hop. Also, ji will not cancel its inverse hop
unless it is inactivated as before, or until it receives a message from P ji indicating that P ji

no longer presents a valid inverse hop. However, there can be no such messages in flight at
t− because Treei is both stable and inverse stable.

Since k is a cross-tree inverse hop of jn, it must have a stable ID and belong to a
permanent, stable and uniform tree. Therefore, k remains a valid inverse hop of jn (as long
as jn remains active) even after Treei is inactivated. Similarly, every ji (1 ≤ i ≤ n) continues
to hold a valid inverse hop after t until it is inactivated by a message sent from ji−1.

As MV transfers the charge from i before inactivating Treei, when the charge reaches
j1 it is still active and has a valid inverse hop. Similarly, the charge will be transferred to
j2, ..., jn, k with no interruption. Note that during the transfer, a node ji can change its
inverse hop towards another (stable) inverse hop chain ending with a different cross-tree
inverse hop k′. Nevertheless, the new chain must offer a path whose weight is strictly less
then the previous one. Therefore, in this case we just take k′ instead of k.

Denote k’s root by r. Once the charge reaches k, it will be deterministically forwarded
along next hops to r, because Treer is a permanent active tree. Therefore, the charge will
either be fused with the one in r or with any charge along the way within finite time (because
the finite weight of the path on which the charge is routed). This contradicts our assumption
that the number of distinct charges is constant after t1.

Lemma 6.29. The set of active trees is fixed within finite time after t1.

Proof. We initially prove that within finite time after t1, all active trees are permanent.
Observe that if x is the highest ID among remaining charges, there cannot be any active root
with a higher ID, so all active trees with an ID of y > x are trivially permanent. Since IDs
are positive integers, repeatedly applying Lemma 6.28 on decreasing charge IDs produces
the result.

22

Next, we claim that no new roots will be created within finite time, because an active
root permanently holds a distinct charge and the number of charges in the system is finite.
After this time, the set of active roots remains fixed since active roots are neither created
nor destroyed.

6.4 Convergence

In Appendix B, we show that the fact that the set of active roots becomes fixed (in finite
time) implies in a straightforward manner that:

Lemma 6.30. After t1 all charges are of the same sign.

Lemma 6.31. MV terminates within finite time after t1.

To show that the algorithm terminates with the correct result, we build upon the following
technical lemma:

Lemma 6.32. For any connected component X, if no transfer messages are underway then:
∑

i∈X

Ci = λd

∑

i∈X

Yi − λn

∑

i∈X

Vi

Proof. The following equation holds for every node i at all times:
∑

j∈N i

Ci(j) + Ci = λdYi − λnVi

(Initially, the equation holds trivially for all nodes; on vote changes, ∆λd is added to both
sides; in every other event charge is only transferred between the terms on the left.) There-
fore, for every group of nodes X at all times:

∑

i∈X

∑

j∈N i

Ci(j) +
∑

i∈X

Ci = λd

∑

i∈X

Yi − λn

∑

i∈X

Vi

If no transfers are underway, then for every two neighbors i, j : Ci(j) = −Cj(i). If X forms
a connected component, then the term

∑
i∈X

∑
j∈N i Ci(j) evaluates to zero, yielding the

expected result.

Theorem 6.33. MV stops within finite time after all external events have ceased with the
correct output in every node.

Proof. Termination is guaranteed from Lemma 6.31. Let X be a connected component
after the algorithm stopped. Assume that the majority decision for all nodes in X should
be true, i.e., λd

∑
i∈X Yi − λn

∑
i∈X Vi ≥ 0. Hence, according to Lemma 6.32,

∑
i∈X Ci ≥ 0.

Since Lemma 6.30 guarantees that all remaining charges must have the same sign, it follows
that ∀i ∈ X : Ci ≥ 0. Therefore, all nodes in X decide true, as there are no negative trees
in the graph. The situation when the majority decision should be false is shown similarly.

23

7 Locality properties

The locality of an execution of the algorithm depends on the input instance. In all cases in
which the majority is evident throughout the graph, the algorithm takes advantage of this
by locally fusing minority and majority charges in parallel. Many input instances follow this
pattern, especially when the majority is significant.

The algorithm operates in a way that preserves uniform charge distribution because: 1)
further vote changes are likely to create new roots uniformly, and 2) our charge ID scheme
discourages fusion of charges of the same sign. Therefore, we conjecture that for many input
instances, the size of remaining trees after the algorithm has converged will be determined
by the majority percentile, rather than by the graph size. For example, consider a fully
connected graph of size N for which each node has a single vote, a threshold of 1/2, and a
tight vote of 48% vs. 52%. After the algorithm converges, the absolute net charge is 4% ·N .
Assuming that the remaining charge is spread uniformly so that every charge unit establishes
an active root of its own, the number of nodes in each tree is about N

4%·N
= 25, regardless of

whether the graph contains a hundred or a million nodes.
From this conjecture it follows that, for these instances, there exists a non-trivial upper

bound H on the height of every tree once the algorithm has converged. Following any fixed
number of vote changes, we derive an upper bound on convergence time in terms of the
value of H. (Local convergence following topology changes is proved similarly.) Namely,
given a bulk of K single vote changes that hits a converged system, we show that the system
converges again in at most C · H time, where C is a function of only K, H, and other
algorithm constants, rather than system size. While this bound is far from tight– in fact, C
is doubly exponential in K – it is independent of the system size. Therefore, it is suitable
for our purpose of proving locality from a pure theoretical point of view.

Thus, the height of any tree in the converged system is also O(H). While this may
imply that tree height can increase over time, it does not happen in practice. In the next
section, we use simulations to verify our conjecture empirically, and demonstrate the local
characteristics of our algorithm for arbitrary vote changes.

Let t0 be the time at witch a set of K vote changes take place. We make the following
assumptions at t0:

• The system is converged at t−0 . There are no isolated nodes or disconnected compo-
nents. (In other words, we reason about each connected component separately.)

• At t−0 , the height of every tree is bounded by H.

• At t−0 , node weights do note deviate too much from their node’s depth. More formally,
there exists a small constant K1 such that the weight of every node is no higher than
K1 times its depth3.

3We assume that changes in the physical topology are much less frequent than vote changes, which govern
the construction of trees; recall that the most recent edge weight is considered whenever a next hop pointer
is changed.

24

• The maximum delay of any edge (not necessarily a tree edge), dmax, is no longer than
H.

• For brevity, we assume that edge delays are symmetric: for any two nodes i and j,
d(i, j) = d(j, i).

• The vote changes do not change the majority decision. Moreover, when the system
converges again, there exists at least one charge with the majority sign.

Remark. To simplify the presentation, we define t0 = 0, so that every t > t0 can be
treated as absolute time rather than specifying it relative to t0. (For example, we can say: “If
A holds at t, then B holds by 2t”.) Also, we use the terms O(H) and const · H extensively
to express the fact that the time of a certain operation does not depend on system size.
Usually, we do not specify const explicitly. It can refer to different values at different places.
The existence of a constant factor is what matters.

Our locality proof builds upon the correctness proof in section 6, and follows a similar
structure. Specifically, we provide timing bounds on certain processes of the algorithm
(e.g., establishing uniform trees, developing stable inverse hops) whose correctness has been
proved in section 6. What distinguishes the proofs in this section is that we do not assume in
advance that all charge fusions cease at some finite time. Rather, we allow arbitrary fusion
of same-signed charges and bound the time between successive fusions of opposite-signed
charges. Thus, we define t1 only to be the time by which all expansion waves die down, and
whenever we rely on a lemma from section 6, we assume that no fusions of opposite-signed
charges occur after some time t′ > t1 and apply the lemma with respect to t′. Throughout
this section, we use the following notation:

Definition 7.1. Dmax(t) is the maximum depth of any node at time t. Dactive(t) is the
maximum depth of any active node at time t.

We begin by bounding the duration of expansion waves and the maximum node depth
during this period. The proofs are technical and are deferred to Appendix C.

Lemma 7.2. All expansion waves die down by t1 = K1H.

Lemma 7.3. For all t > t0, Dmax(t) ≤ 3t + const · H. Specifically, Dmax(t1) = const · H.

Once all expansion waves have died down, trees do not change their existing topology
(but may expand over dead-branch nodes) unless they are inactivated. Active trees do
not take over each other’s nodes, and the algorithm’s operation can be characterized by
local charge transfers between small neighboring trees. Nevertheless, care must be taken to
ensure that areas of activity remain local: trees can expand into large portions of the graph
by inactivating opposite-signed trees along the way and taking over their nodes; therefore,
tree state changes such as inactivations, new IDs, and sign flips, must be propagated to the
tree’s nodes at a faster pace than its expansion rate.

25

For example, consider a converged environment E of the graph. Assume that a vote
change introduces a single minority charge that is negligible compared to the net majority
charge in E. Nevertheless, even this single vote change can result in the creation of a tree
bearing a minority sign. Let i be this tree’s root. Clearly, the minority charge will be fused
shortly (either at i or at a nearby root) and i will either be inactivated or flip its sign.
Assume that i is inactivated. For the algorithm to maintain local operation, Treei’s nodes
must also be inactivated before Treei expands too far. This way, Treei’s nodes can rejoin
remaining majority trees in close proximity, terminating the protocol activity in E.

At first sight, it seems that the expansion rate of Treei into this environment will be
limited by the algorithm’s reactive operation without introducing intentional delays because
after all expansion waves die down, each existing Treej in E must be inactivated before
any of its nodes can join Treei. Indeed, normally Treei’s expansion into Treej will be
delayed by at least Treej’s diameter (accounting for the inactivation and acknowledgement
phases), resulting in a slowdown of 1/2 through Treej’s nodes. Therefore, inactivity or sign
information, which is propagated along tree edges without delays, quickly reaches all Treei’s
nodes.

Unfortunately, there are still pathological cases in which Treei could expand unboundedly
into E if its expansion rate is not restricted. For these cases, we show that ASF’s delay
mechanism, which we introduced in section 4, ensures that a tree’s expansion rate is at most
half the speed permitted by the network delay. Based on this result, we bound the depths
of active nodes. The proofs are based on bounding the possible node weights that can be
assigned during join events, and are deferred to Appendix C:

Lemma 7.4. For all t > t1, Dactive(t) ≤
t
2

+ const · H.

Lemma 7.5. There exists a constant C1 such that for all t > t1 + dmax, every node i such
that Depi(t) > t

2
+ C1 · H is fully inactive (i.e., i conforms to Pi).

Using results from section 6, we now show that trees acquire the stability, uniformity,
and full inactivity properties locally:

Lemma 7.6. Assume that no fusion between opposite-signed charges occurs after some time
t′ > t1. Then:

• Let i be the root of an active tree at t′. Assuming that i remains active, Treei will be
stable by time 2t′ + const · H.

• Let j be the root of an inactive tree at time t′. Treej will be fully inactive by time
2t′ + const · H.

• Let k be the root of a tree at time t′. Treek will be uniform by time 2t′ + const · H.

Proof. We begin with stability. Let H(t) = t−t′, and assume that Treei remains active after
t′. According to Lemma 6.22, for every t > t′, Treei is stable up to a height of H(t). Following
Lemma 7.5, for every t > t1+dmax and for every node j ∈ Treei such that Depj(t) > t

2
+C1·H,

it holds that j is fully inactive. Therefore, by solving (t− t′)− dmax = t
2
+ C1 ·H, we obtain

that by time t′′ = 2t′ + 2 · C1 · +2dmax = 2t′ + const · H:

26

• Any node l ∈ Treei such that Depl(t
′′) ≤ H(t′′)− dmax conforms to Rs due to Lemma

6.22.

• Any node l ∈ Treei such that Depl(t
′′) > H(t′′) − dmax conforms to Rs because it is

fully inactive according to Lemma 7.5. (Note that t′′ > t1 + dmax so it is justifiable to
apply Lemma 7.5 here.)

Hence, Treei is stable. Following lemmas 6.21 and 6.23, we use exactly the same reasoning
to show that by time t′′, it holds that Treej is fully inactive and Treek is uniform.

Our next step is to bound the time until all minority charges are fused. The crux of
our proofs is to divide the time since t1 into phases (or intervals). Each phase begins by
assuming the highest possible tree heights and active node depths (according to Dmax and
Dactive) while ignoring previous phases, and ends with some property that holds. While this
approach results in an exponential growth in elapsed time, the number of phases depends only
on K, H, and other algorithm constants, rather than on system size. Unless noted otherwise,
we will refer hereafter to fusion between opposite-signed charges simply as ‘fusion’. We first
bound the time between successive fusion events as follows:

1. We establish a limit on the highest ID that can be assigned to a minority charge.
Next, by induction on decreasing charge IDs starting from the highest minority charge
ID, we show that following a relaxation period after the last fusion took place, any
root inactivation deterministically leads to fusion (if no fusion has already occurred by
then).

2. We then show that it does not take too long for an inactive node with a weight of ∞
to join a neighboring active node. This observation is generalized to inactive trees in
a straightforward manner.

3. By combining steps 1 and 2 we prove that, in the absence of fusions and inactivations,
all inactive nodes join permanent active trees quickly, establishing a fixed forest of
active trees that spans the entire graph. Therefore, any minority charge in the graph
is either routed and fused at a majority root, or causes a root inactivation, which
guarantees fusion.

Lemma 7.7. For all t > t0, the highest ID assigned to any minority charge is smaller than
2Kλd.

Proof. At t0, there are no minority charges in the system. Hence, the absolute value of
the net minority charge inflicted by K vote changes is at most Kλd. Since no new minority
charges are introduced after t0, this value cannot increase. Consequently, the maximum ID
assigned to any single minority charge is at most 2(Kλd − 1) + 1 < 2Kλd.

Lemma 7.8. There exist constants C1, C2, C3, C4 such that the following holds at every
t′ > t1:

27

If an active root is inactivated at some time t′′ > C1t
′ + C2H, then at least one fusion

between opposite-signed charges either has already occurred in the interval (t′, t′′], or will
occur by t′′′ = C3t

′′ + C4H.

The proof is based on the following technical lemma:

Lemma 7.9. Let x be a charge ID and t̃′ > t1 a time after which every root with an ID of
y > x is not inactivated by inverse hops. Then, there exist constants C̃1, C̃2, C̃3, C̃4 ≥ 1 such
that if an active root with an ID x is inactivated at some time t̃′′ > C̃1t̃

′ + C̃2H then at least
one fusion between opposite-signed charges either has already occurred in the interval (t̃′, t̃′′],

or will occur by t̃′′′ = C̃3t̃
′′ + C̃4H.

Proof. Currently assume that no fusion occurs after t̃′. According to lemmas 6.25 and 7.6,
by time t(1) = 2t̃′+const ·H all active trees are stable, and every tree is uniform. In addition,
every tree with an ID of y whose root was inactivated before t̃′ will be fully inactive by t(1).
As a result, every active node with an ID of y is guaranteed to be part of a stable uniform
tree by t(1) because active roots with y IDs are permanent. Recalling that dmax = const ·H,
it follows from Lemma 6.26(2) that y is a stable ID at t(2) = t(1) + const · H.

According to Lemma 6.27, any tree with an ID x after t(2) that: (1) was created after
t(2), (2) increased its ID to x after t(2), or (3) was inverse stable at t(2), is inverse stable. (For
cases (2) and (3), we must also assume that trees that were created before t̃′ had been active
for at least 3dmax time. This can be guaranteed by taking t(2) > t(1) +3dmax.) If there exists
a tree at t(2)− that had an ID=x but was not inverse stable, unstable inverse hops would
inactivate its root within Dactive(t

(2)) time unless the root ID is increased. Therefore, after
t(3) = t(2) + Dactive(t

(2)), all active trees with ID=x are inverse stable.

Let C̃1 and C̃2 be such that t(3) = C̃1t̃
′ + C̃2H (we bound Dactive(t

(2)) using Lemma
7.4), and let i be an active root with an ID=x that is inactivated at t̃′′ > t(3). If i was
inactivated by fusion at t̃′′, or fusion has occurred in the interval (t̃′, t̃′′), then we are done.
Otherwise, i was inactivated by a stable inverse hop at t̃′′. Following the arguments of
Lemma 6.28, the charge of any active root i with an ID=x that develops a stable inverse hop
is deterministically fused at a neighboring root k (or with a charge along the way), as long as
k remains active. In this case, fusion takes place by t̃′′′ = t̃′′ +2Dactive(t̃

′′)+dmax, accounting
for the path of active nodes in both Treei and Treej, and the edge connecting them. By

bounding Dactive(t
′) according to Lemma 7.4, we obtain t̃′′′ = C̃3t+ C̃4H for matching values

of C̃3 and C̃4. Note that according to our assumption, k can be inactivated before t̃′′′ only
due to fusion.

Proof. (Lemma 7.8) The proof is established by induction on decreasing charge IDs as
follows: let x be a charge ID; we assume that the lemma holds for inactivations of roots
with ID y > x, and claim that it also holds for inactivations of roots with ID y ≥ x. For
the induction base, let xmax be the highest possible ID that can be assigned to a minority
charge after t0 according to Lemma 7.7. Since the system was converged before t0, there
cannot be minority ID values greater than xmax in any state tuple of any form (node TID

28

fields, message TID, etc.). Consequently, the lemma holds trivially for roots with an ID of
y > xmax because they cannot develop inverse hops, and remain active until their charge is
fused. In addition, the lemma also holds for xmax directly from Lemma 7.9.

For the induction step, denote by Ĉ1, Ĉ2, Ĉ3, Ĉ4 the constants for which the lemma holds
with respect to IDs larger than x. Let t̂′ = Ĉ1t

′ + Ĉ2H and assume that some root i with
an ID of y ≥ x was activated at time t′′ > C̃1t̂

′ + C̃2H = C̃1Ĉ1t
′ + (C̃1Ĉ2 + C̃2)H, where C̃i

denotes the constants of Lemma 7.9. We distinguish among the following cases:
Case I: i’s ID is larger than x. Since t′′ > t̂′, we obtain from the induction hypothesis

that either fusion has occurred in the interval (t′, t′′], or will occur by Ĉ3t
′′ + Ĉ4H.

Case II: i has an ID=x. As long as roots with IDs larger than x are not inactivated
after t̂′, it follows from Lemma 7.9 that either fusion has occurred in the interval (t̂′, t′′] ⊂

(t′, t′′], or fusion will occur by C̃3t
′′ + C̃4H. However, if such inactivation has occurred at

t̂′′ ∈ [t̂′, C̃3t
′′+C̃4H], we obtain from the induction hypothesis that either fusion has occurred

in the interval (t′, t̂′′], or fusion will occur by:

Ĉ3t̂
′′ + Ĉ4 ≤ Ĉ3(C̃3t

′′ + C̃4H) + Ĉ4H =

C̃3Ĉ3t
′′ + (Ĉ3C̃4 + Ĉ4)H , t′′′.

By taking C1 = C̃1Ĉ1, C2 = C̃1Ĉ2 + C̃2, C3 = C̃3Ĉ3 and C4 = Ĉ3C̃4 + Ĉ4, the claim holds in
all cases. Since Lemma 7.7 ensures that xmax ≤ 2Kλd, we conclude that the lemma holds for
any active root with constants that depend only on K (albeit exponentially), H, and other
algorithmic constants rather than the system size.

While we have ensured that trees do not expand too fast by providing an upper bound on
their expansion rate, we must also ensure that trees expand fast enough, because opposite-
signed trees can at times be separated by regions of inactive nodes that impede the algo-
rithm’s progress. In Appendix C, we show that:

Lemma 7.10. For every t > 2K1H the following holds. Let i be an active node, and j a
neighboring inactive node with Wj = ∞. If i remains active, then j becomes active in at
most 4d(i, j) time.

We are now ready to establish a bound on the time between successive fusion events:

Lemma 7.11. There exist constants C1, C2 such that, for every t′ > t1, if there are minority
charges in the system at t′ then fusion between opposite-signed charges will occur by C1t

′ +
C2H.

Proof. According to Lemma 7.8, if a root is inactivated at time t′′ > C1t
′ + C2H, a fusion

either has already occurred in (t′, t′′], or will occur by t′′′ = C3t
′+C4H. Let t(1) = C1t

′+C2H.
If fusion has occurred in (t′, t(1)] we are done. Therefore, assume this is not the case. The
following statements hold as long as there are no root inactivations or fusions after t(1).

Let j be the root of the last tree that was inactivated before t(1). Following Lemma 6.23,
Treej will be fully inactive by t(2) = 2t(1) + const · H. Since inactive trees cannot expand

29

and there are no more tree inactivations, the depth of any inactive node after t(2) is at most
Dmax(t

(2)). Therefore, all inactive trees will increase the weight of all their nodes to ∞ by
t(3) = t(2) + 2dmax + 2Dmax(t

(2)), accounting for receiving Acks from neighboring nodes (not
in the tree), propagating the Acks from the leaves to the root, and finally increasing the
weights from the root to the leaves.

At t0 every node in the graph was active. For a single vote change, the diameter of the
largest region containing inactive nodes at time t is 2t, following information propagation
considerations alone. Therefore, for K vote changes, this diameter is at most:

Dinactive(t) = 2tK + (K − 1)dmax

(accounting for K disjoint regions connected by (K − 1) edges). Lemma 7.10 ensures that
after time 2K1H, every inactive node j with a weight of ∞ that is adjacent to an active
node i that remains active, will become active in at most 4d(i, j) time. These conditions
hold for any inactive node after t(3). Consequently, all inactive nodes become active by
t(4) = t(3) + 4Dinactive(t

(3)), essentially fixing the topology of all trees in the graph. Denote
by D = Dactive(t

(4)) = Dmax(t
(4)) the maximum depth of any node in the final topology.

Finally, we consider the possible states of a remaining minority charge C in the system
at t(4):

1. C resides in an active root. Therefore, at least one pair of neighboring trees with
opposite-signed roots exist. In this case, one of these trees will start developing inverse
hops. If all nodes in this tree (and all messages sent by them) have identical IDs, then
inverse hops will reach the tree’s root and inactivate it in D time.

Therefore, by taking into account the following additional time: (1) 2dmax to ensure
that roots do not increase their ID by receiving same-signed charges (dmax to notify all
the neighbors of a root of its sign, and another dmax to receive any same-signed charges
that might have been sent before such notifications were accepted), (2) D to ensure all
nodes in a given tree have identical IDs, and (3) another dmax time to ensure that a
tree’s final ID reaches neighboring trees, we conclude that some root is inactivated.

2. C resides in a tree rooted at another minority charge C ′. This case is similar to 1)
with respect to C ′.

3. C resides in a tree rooted at a majority charge. Here, C will be routed and fused in D
time. If C is being transferred to such a tree, it adds at most dmax time.

Let t(5) = t(4)+2D+3dmax. If fusion occurs in the interval (t(1), t(5)], we are done. Otherwise,
a root inactivation must occur at t ∈ (t(1), t(5)]. Consequently, Lemma 7.8 guarantees that
fusion must take place by C3t + C4H ≤ C3t

(5) + C4H. By repeatedly substituting t(5), and
bounding Dmax(t) and Dactive(t) according to lemmas 7.3 and 7.4, we obtain C3t

(5) +C4H ≤
C1t

′ + C2H, for suitable values of C1 and C2.

Bounding the time by which all minority charges are fused is achieved by simply applying
Lemma 7.11 repeatedly until all minority charges are exhausted. The proof is deferred to
Appendix C.

30

Lemma 7.12. There are no minority charges in the system in const · H time.

Finally, for the algorithm to converge, all nodes must be active, uniform, and with fixed
weights. While we have shown that properties such as tree activity and uniformity are
achieved in bounded time, we have not yet bounded the propagation rate of weight changes.
To do so, we build upon the following technical lemma, which is proved in Appendix C:

Lemma 7.13. Let i be an active node. If i remains active and does not change its weight
after some time t > 2t1, then every uptree neighbor j is active and does not change its weight
by time t′ = t + 2d(i, j).

Theorem 7.14. Following any K vote changes, the system converges in O(H) time.

Proof. According to Lemma 7.12, all minority charges are fused in t′ = const · H time.
Following the same arguments of Lemma 7.11, there exist constants C1 and C2 such that
by time t′′ = C1t

′ + C2H all nodes are active and uniform, the tree topology is fixed, and
D = Dmax(t

′′) = const · H bounds the maximum depth of any node in the graph. (t′′

corresponds to t(4) in Lemma 7.11.) Furthermore, no inverse hops exist because this would
imply an additional fusion between opposite-signed charges, contradicting the fact that there
are no more minority charges in the system. Hence, no additional charge transfers occur.

Let i be a root at t′′, and j an uptree neighbor of i. Since roots do not change their
weights and t′′ > 2t1 (it can be easily verified that t(4) > 2t1 in Lemma 7.11), according to
Lemma 7.13 j does change its weight after t′′ + 2d(i, j). By induction, all nodes in Treei do
not change their weights by t′′′ = t′′ + 2D. Consequently, no additional update messages are
sent. Accounting for any in-flight messages at t′′, we conclude that the algorithm converges
by time t′′′ + dmax = const · H = O(H).

8 Empirical study

We simulated the algorithm’s execution on large graphs. The coded algorithm includes
several details, such as Ack management, that were partly omitted from the discussion
for brevity, as well as various small local optimizations that do not alter correctness. We
examined the time required until various levels of convergence are achieved (in terms of the
percentage of nodes that have reached the correct outcome and do not retract), as well as
the mean number of messages per edge. For simplicity, we only considered a 50% majority
threshold and one vote per node. However, simulations were run for several Yes/No voting
ratios, thereby checking the sensitivity of the results to the proximity of the vote to the
decision threshold.

Two representative unweighted graph topologies were used: a mesh for computing centers
and sensor networks, and de Bruijn graphs for structured peer-to-peer systems [9]. For each,
graph sizes varied from 256 nodes to 1024K nodes. Finally, both “bulk” (“from scratch”)
voting and ongoing voting were simulated.

In bulk mode, all nodes voted simultaneously at t = 0 with the desired Yes/No ratio, and
we measured the time until various fractions (90%, 95%, 100%, etc.) of the nodes decided

31

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000

T
im

e
 (

A
v
e

ra
g

e
 E

d
g

e
 D

e
la

y
s
)

Number of Nodes (Thousands)

(a) De-Bruijn and Mesh 95% Convergence Time vs. Size

De-Bruijn 40% Yes
De-Bruijn 45% Yes
De-Bruijn 48% Yes

Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes

 0

 100

 200

 300

 400

 500

 600

 700

 1 10 100 1000

T
im

e
 (

A
v
e

ra
g

e
 E

d
g

e
 D

e
la

y
s
)

Number of Nodes (Thousands)

(b) De-Bruijn and Mesh 100% Convergence Time vs. Size

De-Bruijn 40% Yes
De-Bruijn 45% Yes
De-Bruijn 48% Yes

Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800

F
ra

c
ti
o

n
 o

f
N

o
d

e
s
 C

o
n

v
e

rg
e

d

Time (Average Edge Delays)

(c) Fraction of Nodes Converged vs. Time (48% Yes Votes)

De-Bruijn 64K
De-Bruijn 256K

Mesh 64K
Mesh 256K

Figure 1: Bulk mode convergence and scale-up

32

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 10 100 1000

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s
 p

e
r

E
d

g
e

Number of Nodes (Thousands)

De-Bruijn and Mesh Number of Messages vs. Size

De-Bruijn 20% Yes
De-Bruijn 30% Yes
De-Bruijn 40% Yes
De-Bruijn 45% Yes
De-Bruijn 48% Yes

Mesh 20% Yes
Mesh 30% Yes
Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes

Figure 2: Messages per edge

on the correct outcome without subsequently retracting. Multiple experiments were carried
out for each (graph type, size, Yes/No ratio) combination, with i.i.d drawings of the votes
in the different experiments, and the results were averaged.

Figure 1 (a) and (b) depict the results for a convergence percentile of 95% and 100% for
graphs with 256 to 1024K nodes and several Yes/No ratios. As can be seen from Figure
1(a), the time it takes for 95% of the nodes to reach the correct outcome depends only
on the Yes/No ratio and is essentially independent of graph size. This is evidence of the
algorithm’s local behavior. Figure 1(b) presents the time for 100% convergence, i.e., the time
until the last node reaches the correct outcome. This measurement is deemed to be very
noisy. When averaging the results over several runs, we observe that for de Bruijn graphs,
the time to 100% convergence is nearly constant regardless of graph size. For mesh graphs,
the time appears proportional to the logarithm of graph size as the Yes/No ratio approaches
the threshold. Note that this worst case (over graph nodes) result is nonetheless averaged
over multiple voting instances.

Figure 1 (c) focuses on the convergence percentile, providing the distribution of converged
nodes over time. Two things are readily evident from the figure: 1) beyond the mean time
to convergence, the number of unconverged nodes declines exponentially with time; 2) this
distribution is independent of graph size. In fact, the distributions for different graph sizes are
barely distinguishable. This strongly suggests that locality and scalability hold for virtually
every convergence percentile except 100%.

Next, we investigated the communication resources consumed by the algorithm. We
measured the number of messages per edge versus graph size and the Yes/No ratio. As
depicted in Figure 2, the number of messages per edge depends only on the Yes/No ratio
and not on graph size. Our algorithm may send up to 50 messages per edge, compared with
only two in the optimal centralized algorithm. However, in our algorithm those messages are
sent concurrently throughout the graph and nodes do not wait for one another. In addition,
all messages have a small constant size.

33

 0

 20

 40

 60

 80

 100

 120

 140

 10 100

T
im

e
 (

A
v
e

ra
g

e
 E

d
g

e
 D

e
la

y
s
)

Number of Nodes (Thousands)

(a) De-Bruijn and Mesh 95% Convergence Time vs. Size

De-Bruijn 40% Yes
De-Bruijn 45% Yes
De-Bruijn 48% Yes

Mesh 40% Yes
Mesh 45% Yes
Mesh 48% Yes

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 100 200 300 400 500 600

F
ra

c
ti
o

n
 o

f
T

re
e

s

Tree Size (Number of Nodes)

(b) Distribution of Tree Sizes (48% Yes Votes)

De-Bruijn 64K
De-Bruijn 256K

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 100 200 300 400 500 600 700 800 900

F
ra

c
ti
o

n
 o

f
T

re
e

s

Tree Size (Number of Nodes)

(c) Distribution of Tree Sizes (48% Yes Votes)

Mesh 64K
Mesh 256K

Figure 3: On-going mode convergence and locality

34

So far, we only considered bulk voting. In our last set of experiments we investigated
an ongoing operation. Here, a given fraction (0.1%) of the nodes changes its vote once
every average edge delay. However, the overall Yes/No ratio remains constant. We view
this operation mode as the closest to real-life. In this setting we wish to evaluate the time
it takes for the effect of a single change to subside and to validate that our algorithm does
not converge to some pathological situation. An example of a pathological situation is one
in which all charge converges at a single node, whose tree then spans the entire graph.

In these experiments, we ran the system for some time. Subsequently, we stopped all
changes and made two measurements: the time it takes for the system to converge, and
the number of nodes in each tree upon convergence. As expected, convergence time (Figure
3(a)) in on-going mode does not differ from convergence in bulk mode (Figure 1(a)). As
depicted in Figures 3(b)(c), tree sizes are tightly distributed about their mean. There are
only few large trees, the largest of which spans approximately one percent of the graph.
These experiments thus confirm our conjecture that tree sizes are small, and demonstrate
that locality is maintained in the on-going mode as well.

9 Related Work

Our work bears some resemblance to Directed Diffusion [10], a technique to collect aggregate
information in sensor networks. As in [10], our routing is data-centric and based on local
decisions. However, our induced routing tables are relatively short-lived, and do not require
refreshment or enforcement. Our SF algorithm builds upon previous research in distributed
Bellman-Ford routing algorithms that avoid loops such as [8] and [11].

Several alternative approaches such as sampling, pseudo-static computation and flooding
can be used to conduct majority voting. With sampling the idea is to collect data from a
small number of nodes selected with uniform probability, and compute the majority based
on that sample. One such algorithm is the gossip based work of Kempe et al. [12]. Sampling,
however, can not guarantee correctness and is sensitive to biased input distributions. More-
over, gossip based algorithms make assumptions on the mixing properties of the graph which
do not hold for every graph. Pseudo-static computation suggests to perform a straightfor-
ward algorithm that would have computed the correct result had the system been static,
and then bound the error due to possible changes. Such is the work by Bawa et. al. [13]
for example. In flooding, input changes of each node are flooded over the whole graph, so
every node can compute the majority decision directly. Simple as it may sound, flooding
guarantees convergence to an exact solution in stable periods. However, the communication
costs of flooding are immense. Furthermore, the memory requirements of the method are
proportional to the size of the system.

One related problem that has been addressed by local algorithms is the problem of local
mending or persistent bit. In this problem all nodes have a state bit that is initially the
same. A fault changes a minority of the bits and the task of the algorithm is to restore the
bits to their initial value. A local solution was given for this problem in [4], which is correct
so long as the size of the minority is smaller than N/ log N . Our algorithm can solve the

35

same problem for any size of the minority. Another algorithm for this problem was given in
[5]. This second algorithm accepts a minority of any size. However, it only works for a static
topology and with lockstep execution. Our algorithm, in contrast, allows topology changes
and asynchronous communication.

Finally, [6] also conducts majority votes in dynamic settings. However, their algorithm
assumes that the underlying topology is a spanning tree. Although this algorithm can be
layered on top of another distributed algorithm that provides a tree abstraction, a tree overlay
does not make use of all available links as we do, and its costs must be taken into account.
Even when assuming that once a tree is constructed its links do not break, simulations have
shown that while [6] is faster in cases of a large majority, our algorithm is much faster as
the majority is closer to the threshold.

10 Conclusions

We presented a local Majority Vote algorithm intended for dynamic, large-scale asynchronous
systems. It uses an efficient, anytime spanning forest algorithm, which may also have other
applications, as a subroutine. The Majority Vote algorithm closely tracks the ad hoc solution,
and rapidly converges to the correct solution upon cessation of changes. Detailed analysis
revealed that if the occurrences of voting changes are randomly and uniformly spread across
the system, the performance of the algorithm depends only on the number of changed votes
and the current majority size, rather than on system size. A thorough empirical study
demonstrated the excellent scalability of the algorithm for up to millions of nodes – the kind
of scalability that is required by contemporary distributed systems.

References

[1] N. Linial, “Locality in distributed graph algorithms,” SIAM J. Computing, vol. 21,
pp. 193–201, 1992.

[2] D. Peleg, Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs
on Discrete Mathematics and Applications, 2000.

[3] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, “Compact distributed data structures
for adaptive network routing,” Proc. 21st ACM Symp. on Theory of Computing, pp. 230–
240, May 1989.

[4] S. Kutten and D. Peleg, “Fault-local distributed mending,” Proceedings of the 14th
Annual ACM Symposium on Principles of Distributed Computing, August 1995.

[5] S. Kutten and B. Patt-Shamir, “Time-adaptive self-stabilization,” Proceedings of the
16th Annual ACM Symposium on Principles of Distributed Computing, pp. 149–158,
August 1997.

36

[6] R. Wolff and A. Schuster, “Association rule mining in peer-to-peer systems,” in Proc.
of the IEEE Conference on Data Mining (ICDM), November 2003.

[7] L. Ford and D. Fulkerson, Flows in Networks. Princton University Press, 1962.

[8] J. Jaffe and F. Moss, “A responsive routing algorithm for computer networks,” IEEE
Transactions on Communications, pp. 1758–1762, July 1982.

[9] F. Kaashoek and D. Karger, “Koorde: A simple degree-optimal distributed hash ta-
ble,” In Proceedings of the Second Intl. Workshop on Peer-to-Peer Systems (IPTPS),
February 2003.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable and ro-
bust communication paradigm for sensor networks,” In Proceedings of the Sixth Annual
Intl. Conf. on Mobile Computing and Networking, August 2000.

[11] J. Garcia-Luna-Aceves, “A distributed, loop-free, shortest-path routing algorithm,”
Proceedings of IEEE INFOCOM, pp. 1125–1137, June 1988.

[12] D. Kempe, A. Dobra, and J. Gehrke, “Computing aggregate information using gossip,”
Proceedings of Fundamentals of Computer Science, 2003.

[13] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani, “Estimating aggregates on a
peer-to-peer network,” tech. rep., Stanford University, Database group, 2003. Available
from: http://www-db.stanford.edu/~bawa/publications.html.

A SF Proofs

A.1 SF Loop Freedom

Proof. (Lemma 3.3) Increases in Wi are possible only when Ti = 0 (step 1), and therefore do

not affect Ŵi whose value is already ∞. So, the only increase in Ŵi is due to Ti becoming
0, setting Ŵi to ∞. Because i is nonisolated and Ai is incremented in this case, IsAck(i) =
false (step 4).

Proof. (Lemma 3.4) Initially, all nodes are isolated, so the Lemma holds trivially. Consider
an event at node i at t = t0. We will show that if the Lemma holds at t−0 , it will also hold
at t+0 . If i changes its next hop at t0 to some node j, λi(Tj) must be 1 and step 2 ensures

that Wi = λi(Wj) + d(i, j) and Ti = 1. Since d(i, j) > 0, we have λi(ŴPi
) < Ŵi < ∞.

Otherwise, i remained with an existing next hop j. We are left with 3 possibilities: 1) if

λi(Ŵj) decreased, we return to the previous case; 2) if λi(Ŵj) remained unchanged, so will

Ŵi; 3) if λi(Ŵj) increased, Lemma 3.3 guarantees that λi(Tj) = 0 and step 4 sets Ti to 0,

resulting in Ŵi = λi(Ŵj) = ∞.

37

Proof. (Lemma 3.5) If Ti = 0 since i was initialized, then i must trivially be a dead-branch
node. Otherwise, let t′ < t be the last time Ti changed from 1 to 0, and let j be a neighbor
of i. At t′, Ai was increased and a message u with T = 0 and Ai’s recent value was sent to
every neighbor. After this time, i did not send any messages with T 6= 0.

If the link between i and j was brought up between t′ and t, then λj(Ti) = 0 ever since.
If the link between i and j was up during this time, the fact that j has acknowledged Ai

ensures that there exists a time t′ < t′′ < t in which u was accepted by j setting λj(Ti) = 0.
Because i did not send any messages with T 6= 0 after sending u, it follows from the FIFO
ordering of messages that λj(Ti) remains 0 at t.

Assume that Pj(t) = i. (Thus, the link between i and j was up at least since t′.)
If Pj did not point to i at t′′− it cannot point to i at t, because SF never chooses an
inactive neighbor (step 2). Similarly, j could not have pointed to another node after t′′ and
subsequently returned to i before t. Consequently, it holds that Pj(t

′′+) = Pj(t
′′−) = i, and

Tj(t
′′+) = λj(Ti)(t

′′+) = 0. Since j does not change its next hop, Tj remains 0 and IsAck(j)
must evaluate to true before sending i the Ack for u. Furthermore, IsAck(j) must remain
true at t because j is not inactivated again. Therefore, j also satisfies the assumptions of
the lemma at t. The proof is completed by repeatedly applying the same arguments for j
and any node uptree from it at t.

A.2 SF Convergence

Assume that the algorithm was converged at time 0, after which a finite number of topological
and root changes occurred. Let t0 be the time of the last change. We initially show that all
nodes remain acknowledged after some finite time t1:

Lemma A.1. There exists a time t1 > t0, s.t. for every t > t1 IsAck = true for all nodes.

The proof builds on the following two observations:

Lemma A.2. There exists a time t̂ > t0 s.t. for every t > t̂, if Tj changes from 1 to 0 for
some node j, then there exists a node i for which IsAck(i) = false and Wi < Wj.

Proof. Let t̂ be a time by which all messages that were sent before t0 have reached their
destination or were dropped. For every t > t̂, Tj changes to 0 for some node j only due to
the receipt by j of an update message u with Tu = 0 from a node i = Pj. Since Tj(t

−) = 1,
when i sent u it incremented Ai and set IsAck(i) = false (if it was not already false).
IsAck(i) will remain false at least until i receives from j an Ack for u. Therefore, it follows

from Lemma 3.6 that: λj(Ŵi)(t
−) ≥ Wi(t

−) = Wi(t
+). The proof is completed by observing

that Wj(t
−) > λj(Wi)(t

−) = λj(Ŵi)(t
−) and Wj does not change at t+.

Lemma A.3. If IsAck(i) = false for some node i, IsAck(i) will change to true within
finite time.

38

Proof. Assume that IsAck(i) = false forever. Therefore, some neighbor j did not send
i an acknowledgement. This can happen only if Pj = i and IsAck(j) = false. Since the
graph is finite and there are no cycles, applying the same argument for j and its uptree
nodes produces a contradiction.

Proof. (Lemma A.1) We distinguish between two cases: (1) there are no active roots after
t0; and (2) there is at least one active root.

For (1), note that no new roots are created after t0, so the number of these (inactive) roots
becomes constant within finite time. According to Lemma A.3, a remaining root i achieves
IsAck(i) = true within finite time. Because i cannot become active (without ceasing to be
a root), once IsAck(i) = true, it will remain so. Therefore, there exists a time t1 by which
all remaining roots have IsAck = true. Following Lemma 3.5, all nodes in the graph are
dead-branch nodes, ensuring IsAck = true for all nodes.

For (2), denote by Wmin the minimum value of W over nodes for which IsAck = false.
Because IsAck can change to false only if T changes to 0, it follows from lemmas A.2 and
A.3 that Wmin increases with time after t̂ (as defined in Lemma A.2). Moreoever, the
increases are discrete. If there are no more nodes with IsAck = false within finite time, we
are done. Otherwise, denote by Wmin(t), t > t̂ the infinitely increasing monotone function
of Wmin.

Let U(t), t > t̂ be the set of nodes i for which Ti(t) = 1 and Wi(t) ≤ Wmin(t). U is not
empty, since it contains at least one active root, which is never unrooted.

A node i that joins U at some time t′ > t̂ will never leave U . To see this, assume in
contradiction that i leaves U at t′′ > t′. Because Wmin is monotone and Wi cannot increase
while i ∈ U (weight increases are only possible if Ti = 0), i can leave U only if Ti changes
to 0. Therefore, according to Lemma A.2, there exists a node j for which IsAck(j) = false
and Wj(t

′′) < Wi(t
′′) ≤ Wi(t

′) ≤ Wmin(t′) ≤ Wmin(t′′). This introduces a contradiction to
Wmin’s minimality at t′′.

We now claim that all nodes will be in U within finite time. To see this, assume this is
not the case. Therefore, there exists a time t′ such that |U | is constant, and let u ∈ U(t′), v /∈
U(t′) be neighboring nodes. Since Wu cannot increase, and Wmin increases forever, there
exists a time t′′ such that W ∗ , λv(Wu) + d(u, v) < W (t′′), and λv(Tu) = 1. Therefore, the
following conditions must hold at t > t′′:

• Wv ≤ W ∗ because otherwise, step 2 of SF would have ensured that v joins U by
pointing to u. Therefore, Tv must be 0.

• Given that Wv ≤ W ∗, Pv cannot change because it would imply that v ∈ U . Similarly,
v cannot receive a message with T = 1 from Pv.

• Following Lemma A.3, IsAck(v) = true within finite time, and will remain so. From
this point onwards, v adjusts its weight according to any update message from Pv (step
1). Therefore, v cannot receive an update message from Pv with a weight higher than
W ∗ − d(v, Pv).

39

If Pv 6= ⊥, then after some finite time the same conditions also apply to Pv with an upper
bound of W ∗−d(v, Pv) on its weight. Since the graph is loop-free and finite, after some finite
time these conditions apply to a root node r. However, once IsAck(r) = true, r increases
its weight to ∞ (step 1) invalidating any upper bound on its weight, a contradiction.

Once all nodes are in U , no node will change to IsAck = false, guaranteeing that
IsAck = true for all nodes.

Proof. (Theorem 3.8) Let t1 be the time stated in Lemma A.1. After this time, every inactive
node i adjusts its weight according to its next hop, or becomes active. Because active nodes
remain active, inactive roots have a weight of ∞, and the graph is finite and loop-free, all
inactive nodes will either join some active tree or increase their weight to ∞ at some time t2.
Therefore, if there are no active nodes at t1, all nodes remain inactive and set their weight
to ∞ at t2, stopping the algorithm. If there is at least one active (root) node at t1, all nodes
are active by some time t2.

As there are no weight increases (T = 1 for all nodes), a node can always choose the min-
imum path to a root among its current next hop and its other neighbors without restrictions.
Hence, from this point onward the algorithm behaves exactly like the standard Bellman-Ford
algorithm with two exceptions: (1) there are multiple destinations; and (2), some of the ac-
tive nodes may not consider the latest edge weight to their next hop when calculating their
own weight (recall that weight changes do not trigger an event in our algorithm). However,
the algorithm’s operation can still be simulated by a standard Bellman-Ford algorithm as
follows.

Multiple roots can be simulated by zero-weighted edges connected to a single destination
node, accounting for (1). As for (2), let i be an active node such that Pi = j and Wi 6=
λi(Wj) + d(i, j) after t2. If Pi changes, the algorithm will take into account the most recent
value of d(i, Pi). If Pi does not change, consider the time by which λi(Wj) is constant (such
a time exists because λi(Wj) is a non-increasing positive integer) and add a bogus event that
sets d(i, j) to Wi − λi(Wj). (This event does not have any effect on the execution.) This
operation can be applied to all such nodes within finite time. Hence, convergence follows
from that of the standard Bellman-Ford algorithm.

A.3 ASF Loop-freedom and Convergence

Proof. (Proposition 4.1) We show that the aforementioned adaptations do not compromise
SF’s correctness and convergence properties. 1-3) merely add information, and hence do not
affect the behavior of the algorithm. 4) only restricts next-hop choices of active nodes, so it
cannot cause loops. Nevertheless, 4) still enables inactive nodes to join active trees. 5) can
imply that new roots can be created after the last Root operation was invoked. However,
once such “pending roots” are created they cannot be unrooted, and there can only be a
finite number of them. Therefore, there will be no root changes after some finite time, as
in the original algorithm. Finally, 6) merely delays the normal operation of the algorithm,
which does not affect any of our previous claims.

40

The proof of Lemma A.1 remains valid. Therefore, following the same line of arguments
as in Theorem 3.8, either all nodes are active or all nodes are inactive within finite time
(depending on the existence of an active root). If all nodes are inactive, there are no inverse
hops, and all nodes set their weight to ∞ within finite time.

If all nodes are active, the topology is static (in ASF active nodes do not change their
next hops) assuming that there are no expansion waves (we prove that all expansion waves
die down within finite time following the cessation of all changes in Lemma 6.7). Hence, a
node stabilizes its ID, activity state and weight once its direct downtree node is stable. Since
roots are stable, a simple induction from the roots towards the leaves guarantees that these
values are constant for all nodes within finite time. Similarly, a node stabilizes its inverse-hop
pointer and weight once all its direct uptree nodes have stabilized theirs. A simple induction
from the leaves toward the roots ensures that inverse-hop values are constant for all nodes
within finite time. With no additional changes to the state of any node, the algorithm halts
once the last update message is received.

B MV Correctness Proofs

B.1 Baseline Facts

Proof. (Lemma 6.6) An active root can be created at node i between multiple Rooti events
and the first UnRoot event (which deactivates the tree, if one was created). Following step
4 and the IsRoot predicate of ASF, once such an active root is created, its ID (TID i) equals
RID i as long as i remains active. As the only operation that changes RID i is Rooti, it
takes an additional Rooti operation (after the tree was created) to change i’s ID while it
is still active. Therefore, two consecutive Rooti operations with different IDs (without an
intervening UnRooti operation) must occur.

According to MV, different IDs represent different charges, and a Rooti invocation always
corresponds to the current charge at i. Therefore, when the first Rooti operation is invoked,
i has non-zero charge. As a charge transfer triggers an UnRooti operation (in step 2 of MV),
there can be no such transfers between the Rooti invocations. So, when the second Rooti
operation is invoked with a different ID, i must have changed its charge without initially
transferring it. Since there are no link failures or vote changes, this can happen only by
fusion.

In order to decrease its ID, i’s charge would have to be fused with an opposite-signed
charge. (Fusion of same-sign charges results in a larger residual charge in absolute value,
and hence in a larger ID.) This contradicts our assumption that no such fusions occur.

Proof. (Lemma 6.7) Let e0 be an expansion event that occurs before t0, and let {en}, n ≥ 1
be a chain of expansion events in Close(e0). Denote by Nen

the node at which en occurs,
and by ELen

the value of EL in any message sent during en. Since ELen
= min(0, ELen−1

−
d(Nen−1

, Nen
)) and ten

− ten−1
= d(Nen−1

, Nen
), we conclude that the values of ELen

decline
to zero linearly with time, terminating the chain.

41

Every expansion event belongs to some chain of expansion events, and every such chain
is part of an expansion wave, which originated in a vote change before t0. Since expansion
waves are created with finite EL values, each of these chains terminates within finite time
after t0, stopping all expansion waves.

B.2 Tree Properties

To prove the various tree properties stated in section 6.2, we make extensive use of the
following special cases that guarantee that a node is or had been a dead branch:

Lemma B.1. Let i be a tree root, and let t be Treei’s creation time. If Treei was not created
by a vote change, then i had been a dead-branch node at t−.

Proof. According to the the CanRoot predicate and step 4 of ASF, a new tree cannot be
established in i unless Ti = 0 and IsAck(i) = true. Following Lemma 3.5, i must have been
a dead-branch node at t−.

Lemma B.2. Let i be a node that changes its next hop pointer at time t. If this change did
not occur due to an expansion event, then i had been a dead-branch node at t−.

Proof. According to the the CanChange predicate and step 3 of ASF, i can change its next
hop pointer only if Ti = 0 and IsAck(i) = true. Following Lemma 3.5, i must have been a
dead-branch node at t−.

Our proofs also relies on a property we call ‘dead branch preserving’. After t1, new trees
can only be created at dead-branch nodes. This behavior limits the possible configurations
of active/inactive nodes in trees. In order to describe these configurations, we introduce the
notions of an extended path and state chains:

Definition B.3 (extended path). Let i be a root node. An extended path p of length l
in Treei is a directed route that starts at i, continues along tree edges (as defined by next
hops but in the opposite direction) until it reaches a node j ∈ Treei, and ends in one of the
following ways:

1. at j and it holds that Depj = l.

2. at a neighbor m of j such that Pm 6= j and Depj + d(j,m) = l.

3. at a point q located on an edge incident to j, such that Depj + d(j, q) = l.

Note that in cases (2) and (3), the last edge may be traversed twice (in different directions).

Definition B.4 (state chain). Let i be a root node. A state chain C of length l in Treei is
an ordered set of state-tuples along some extended path of length l in Treei. C includes the
following state tuples:

42

1. For every two consecutive nodes j and k in the path (j comes before k), C includes
χj, λk(χj), and χu for every in-flight message u from j to k. If Pk = j then C also
includes χk.

2. If j is the last node in the path, and the path ends at a point q located on an edge
incident to j, then C includes χu for every message u that j sent on this edge that has
not passed q.

The order of the state tuples is by increasing distances from the root, starting with χi whose
distance is 0. For every other node j ∈ Treei in the path, the distance of both λj(χPj

) and
χj is Depj. However, λj(χPj

) is ordered before χj. For every message u in the path, the
distance of χu is Depj + d(j, u) where j is the node that sent u. (χu is ordered after χj even
if u has just been sent.) Finally, if the path ends in a node m 6∈ Treei, then λm(χj) is the
last state in the chain.

As in the definitions of relations and predicates, we extend the previous definitions in
order to track state chains over time:

Definition B.5 (state chain extension). Let i be a root, and let C be a state chain of length
H in Treei. We define an extension for C in the following cases:

• Assume that C ends with the state of a message u, let j be the node that sent u, and
let k be u’s destination. If Depj + d(j, u) < H, we define C ′ as the extension of C that
includes the state of the latest in-flight message sent from j to k before u, or λk(χj) if
no such message exists.

• Assume that C ends with the state of a node j ∈ Treei. For every neighbor k of j, we
define C ′

k as an extension of C that includes the state of the latest in-flight message
sent from j to k, or λk(χj) if no such message exists.

A dead-branch preserving tree is simply a tree whose state chains conform to a limited
set of patterns:

Definition B.6 (dead-branch preserving state chains). Denote by ”0” a state tuple for which
T = 0, and by ”1” otherwise. A state chain is dead-branch preserving if its state tuples can
be described by one of the following regular expressions:

• ”0+”.

• ”1+”.

• ”0+1+”.

• ”1+0+”.

• ”0+1+0+”.

43

Definition B.7 (dead-branch preserving trees). A tree is dead-branch preserving if all its
state chains are dead-branch preserving. A tree is dead-branch preserving up to a height of
H if all its state chains of length H as well as their extensions are dead-branch preserving.

After t1, every tree is dead-branch preserving up to a height that grows linearly with
time:

Lemma B.8. For all t > t1, every tree is dead-branch preserving up to a height of H(t) =
t − t1.

Proof. By induction on events. We first note that the validity of the lemma not only
depends on the state of nodes and messages as determined by network events, but also on
time. The requirements that a node’s state has to conform to at a given time may change
because of H(t)’s increase over time. More specifically, given a root i, a node j ∈ Treei, and
a neighbor m of j, any state chain of length H(t) that includes λm(χj) must be dead-branch
preserving starting from the moment that H(t) = Depj + d(j, m). If m is also uptree from
j at this time, the same holds for χm. In order to reason about Treei’s state using a simple
induction over discrete events, we define the notion of implicit events. An implicit event is
an event that takes place at any such node m for which H(t) = Depj + d(j,m), given that
no (real) event takes place in m at this time.

Let i be a root, j a node uptree from i, and m a neighbor of j. Consider an event at time
t > t1. We assume that the lemma was correct at t−, and show that it must hold at t+ by
contradiction. For establishing the basis of the induction, we distinguish between two cases:

1. Treei existed at t1. At t = t1, Treei is trivially dead-branch preserving up to a height
of 0: for every neighbor k of i, the most recent in-flight message from i to k has
the same state as i; if no such message exists, it holds that λk(χi) = χi; therefore,
if i sent an update message at t1 then all zero-length state chains are either ”00” or
”11”; otherwise, the (single) zero-length chain in Treei contains only i’s state, and any
extension of this chain comprises two identical states as before.

2. Treei is created at some time t′ > t1. According to Lemma B.1, i was a dead-branch
node at t′−. Therefore, all state chains (of any length) at t′+ are of the form ”110+”.
(Every chain starts with i’s active state followed by that of an active message sent
by i at t′+, and ends with a sequence of inactive states.) Thus, Treei is dead-branch
preserving.

The lemma can apparently be violated in the following cases:
(a) Due to an event in i. If i becomes an active root, all state chains of any length are

dead-branch preserving as we have mentioned in the induction basis. If i is inactivated (and
sends a message to every neighbor), it replaces the initial ”1” with ”00” in every existing
state chain. Thus, all state chains of length H remain dead-branch preserving. If i does not
change its state the lemma holds trivially, a contradiction.

(b) Depj(t)+d(j,m) < H(t), Pm(t−) = Pm(t+) and the lemma is violated by m receiving
a message u from j. When u is received, λm(χj) is set equal to χu. If Pm 6= j or λm(χj)(t

−) =
χu, no further changes occur. Otherwise, we distinguish between the following cases:

44

• λm(χj) changes from ”1” to ”0”. If χm was not already ”0”, it changes to ”0” as well
and m sends a message with ”0” to every neighbor.

• λm(χj) changes from ”0” to ”1”. Here, χm must have been ”0” at t−. At t+, χm either
remains ”0” or it changes to ”1” and m sends a message with ”1” to all its neighbors.

Let C be a state chain of length H(t) that includes λm(χj) and χm. All the changes above
can be seen as a sequence of state copying operations between neighboring states (adjusting
λm(χj) according to χu or changing χm according to λm(χj)), state duplication operations
(sending a message according to χm), or state elimination operations (dropping χu after
adjusting λm(χj)). These operations can only reduce one dead-branch preserving pattern
to another (e.g, ”0+1+” to ”0+”). Therefore, C remains dead-branch preserving at t+, a
contradiction.

(c) Depj(t)+d(j, m) < H(t), Pm(t−) = Pm(t+) and the lemma is violated by a change in
χm (without m receiving a message at t). If Pm 6= j, the lemma holds trivially. Otherwise,
the only possible change occurs when λm(χj) is ”1” and χm is ”0” at t−, and χm changes
to ”1” at t+ due to a clock tick event. This results in eliminating the previous value of χm

and duplicating λm(χj) twice (by the new value of χm and an update message) in any state
chain of length H(t) that includes χm. Thus, Treei remains dead-branch preserving up to a
height of H(t).

(d) Depj(t)+d(j,m) = H(t), Pm(t−) = Pm(t+) and the lemma is violated by m receiving
a message u from j. Denote by C the state chain of length H(t−) at time t− that ends in χu.
According to the induction hypothesis, C is dead-branch preserving. When u is received,
the state chain that ends in λm(χj) is identical to C because λm(χj) is set to χu, and χu

is dropped. Therefore, if Pm(t) 6= j, the only state chain at t of length H(t) that includes
λm(χj) is C, so the lemma holds.

If Pm(t) = j, ASF guarantees that if λm(χj) changed to ”0” then so does χm (if it was not
already ”0”). Denote the state chain that ends with χm at t+ by C ′. Note that C ′ is equal
to the concatenation of C and χm at t+. Therefore, if C ends with a ”0”, the concatenation
of another ”0” in C ′ ensures that C ′ is dead-branch preserving. If C ends with a ”1”, it
must match either the regular expression ”0+1+” or ”1+”. Consequently, concatenating it
with either ”0” or ”1” (in C ′) leaves it dead-branch preserving.

If χm changed then m sends a corresponding message to every neighbor. In this case,
all state chains of length H(t+) that include χm are derived from C ′ by duplicating its last
state. If χm has not changed, for every neighbor k of m, either λk(χm) = χm or χu = χm for
the most recent message u sent from m to k. Thus, any extension of C ′ is also derived by
duplicating the last state of C ′. We conclude that all state chains of length H(t) (or their
possible extensions) at t+ are dead-branch preserving, a contradiction.

(e) The lemma is violated by an implicit event in m. Since m does not receive any
message at t, there exists ǫ > 0 such that: (1) no events occur in the system during the
interval [t − ǫ, t]; (2) ǫ < d(j, m); and (3) for every in-flight message u from j to m at t − ǫ,
it holds that d(j, u) < d(j, m) − ǫ.

45

Denote by C the state chain of length H(t− ǫ) at time t− ǫ that includes all state tuples
along the path from i to j and that of any in-flight message from j to m. According to the
induction hypothesis, it holds that both C and its extension C ′, which includes λm(χj), are
dead-branch preserving at t − ǫ. If Pm(t) 6= j, the only state chain at t of length H(t) that
includes λm(χj) is identical to C ′, so the lemma holds.

If Pm(t) = j, the only state chain at t that includes χm is equal to the concatenation
of C ′ and χm. Denote this chain by C ′′. According to ASF, it is not possible that Tm 6= 0
while λm(Tj) = 0. Therefore, if C ′ ends with a ”0”, the concatenation of another ”0” in C ′′

leaves it dead-branch preserving. If C ′ ends with a ”1”, it must match either the regular
expression ”0+1+” or ”1+”. Consequently, concatenating it with either ”0” or ”1” in C ′′ also
leaves it dead-branch preserving. Finally, for every neighbor k of m, either λk(χm) = χm or
χu = χm for the most recent message u sent from m to k. Therefore, any extension of C ′′

merely duplicates the last state of C ′′, guaranteeing that it also is dead-branch preserving,
a contradiction.

(f) Depj(t) + d(j, m) = H(t), Pm(t−) = Pm(t+) and the lemma is violated by a change
in χm (without m receiving a message at t). As we have shown in (e), the state chain that
ends with λm(χj) at t, C ′, is dead-branch preserving. Therefore, if Pm 6= j then the lemma
holds trivially. Otherwise, any state chain at t+ of length H(t) that includes χm is derived
from C ′ by duplicating its last state twice. (by the new value of χm and an update message).
Consequently, Treei is dead-branch preserving up to a height of H(t), a contradiction.

(g) Depj(t) + d(j, m) ≤ H(t), and the lemma is violated by a change in Pm. We analyze
this case with respect to state chains that include χj. A change of Pm from j to another node
only prunes some of the state chains that included χj, thereby leaving them dead-branch
preserving. Therefore, assume Pm changed from some other node to j. If Depj(t)+d(j,m) =
H(t), this case similar to (d) or (f) because we do not need to take into account the states
of nodes (or messages sent by them) that are uptree from m.

However, if Depj(t) + d(j,m) < H(t), we must take these states into account. Denote
the state chain that ends with λm(χj) at t by C. If m does not receive a message from j at
t, C does not change at t and hence is dead-branch preserving at t+. If m does receive such
a message, C must still be dead-branch preserving at t+ following the same arguments as in
(d). At t+, any state chain of length H(t) that includes λm(χj) is obtained by concatenating
C, χm, the state of a message u sent by m at t+, and the states of nodes/messages/neighbors
uptree from m. Since χu = χm = λm(χj) and Lemma B.2 ensures that m was a dead-branch
node at t−, any such state chain is dead-branch preserving, a contradiction.

We rely on the propagation of the dead-branch preserving property to prove the tree
properties of uniformity, stability, and full-inactivity:

Uniformity Proof. (Lemma 6.21) By induction on events. As in the proof of Lemma B.8,
the validity of the lemma also depends on the flow of time. Therefore, we will make use of
the notion of implicit events as defined there. Let i be a root, j a node uptree from i, and
m a neighbor of j. Consider an event at time t. We assume that the lemma was correct at

46

t−, and show that it must hold at t+ (assuming that Treei still exists) by contradiction. As
the basis for the induction, note that if Treei existed at t1, then it is trivially uniform up to
a height of 0 at t1. (We will address the case in which Treei is created after t1 shortly.) The
lemma can be violated in the following cases:

(a) Due to an event in i. If Treei is created at t, Lemma B.1 ensures that i was a dead-
branch node at t−. Therefore, Treei is trivially uniform (up to any height) at t+. According
to Lemma 6.6, as long as i is an active root it cannot decrease its ID. In addition, i cannot
change its sign because there are no fusions of opposite-signed charges after t1. Once i is
inactivated, it can obtain a new ID or sign only by creating a new tree or joining a different
tree. Consequently, as long as Treei exists, no event in i can violate the conformance of any
node in Treei to either Ru or Pu, a contradiction.

(b) Depj(t)+d(j, m) ≤ H(t), and the lemma is violated by a change in λm(Tj) or λm(ID j).
Such a change is possible only by receiving a message u from j at t. Therefore, it holds at
t+ that λm(χj) ∈ Pu, (χj, λm(χj)) ∈ Ru, and (χu′ , λm(χj)) ∈ Ru for any in-flight message u′

from j because these assumptions held for u at t−, a contradiction.
(c) m exhibits an implicit event and the lemma is violated because λm(χj) is not adjusted.

Since m does not receive a message at t, there exists ǫ > 0 such that: (1) no events occur in
the system during the interval [t − ǫ, t]; (2) ǫ < d(j, m); and (3) for every in-flight message
u from j to m at t − ǫ, it holds that d(j, u) < d(j, m) − ǫ. According to the induction
hypothesis, at t − ǫ, j conforms to Ru and Pu up to height d(j, m) − ǫ. Since there is
no in-flight message u from j to m with d(j, u) ≥ d(j, m) − ǫ at this time, it holds that
λm(χj) ∈ Pu, (χj, λm(χj)) ∈ Ru, and (χu, λm(χj)) ∈ Ru for any in-flight message u, by
definition. Consequently, j conforms to Ru and Pu at t, a contradiction.

(d) Depj(t) ≤ H(t), and the lemma is violated by a change in Tj or ID j, or by a message
u sent by j due to such a change. Let k = Pj(t

+). First, note that following ASF, if Tj or
ID j changed then Tj = λj(TPj

) and ID j = λj(IDPj
). So, at t+, it holds that χj ∈ Pu because

λj(χk) ∈ Pu according to (b). Also, observe that if j changes its next hop (and possibly its
depth) at t+, Lemma B.2 ensures that it must have been a dead-branch node at t−. Since
the lemma holds trivially in this case, we assume that j did not change its next hop.

In the case of Depj(t) = H(t), j trivially conforms to Pu and Ru up to a height of
0 because it sends a message reflecting its new state to all its neighbors at t+. Otherwise
(Depj(t) < H(t)), j must have conformed to Pu and Ru up to a height of H(t)−Depj(t) at t−.
Consequently, it continues to conform to Pu up to this height at t+. However, conformance
to Ru is guaranteed only if j does not decrease its ID. We next consider the possible cases
in which j can decrease its ID.

If j is inactive at t+, it follows from ASF that j could have changed its ID only if both
IsAck(j) = true and j was inactive at t−. According to Lemma 3.5, in this case j must have
been a dead-branch node at t− so the lemma holds trivially.

Alternatively, if j was inactive at t− and decreased its ID while being activated at t+, we
examine every possible state-chain C of height H(t) that includes χj at t−. Since χj(t

−) =
”0”, either λj(χk)(t

−) = ”1” or j receives at t a message u from k such that χu = ”1”.
According to Lemma B.8, C (and any extension of it) must follow the pattern ”1+0+”,

47

which ensures that j was fully inactive (i.e., j conforms to Pi) at t− up to a height of
H(t) − Dep(j). Consequently, j trivially conforms to Ru up to this height at t+.

If j was active at t− and remains active at t+, then a decrease in ID j at t implies that
λj(Tk) 6= 0 and that λj(IDk) had also decreased. Since λj(IDk) can change only by receiving
a message u from k, and k conforms to Ru at t, we reach a contradiction to the fact that
(χu, λj(χk)) ∈ Ru at t−.

(e) Depj(t) = H(t), and the lemma is violated because χj is not adjusted following a
change in λj(χk), where k = Pj(t

−) = Pj(t
+). If λj(Tk) = 0 at t+, then ASF ensures

that Tj(t
+) = 0. Otherwise, ASF ensures that either Tj(t

+) = 0, or Tj = λj(Tk) and
ID j = λj(IDk). Since λj(χk) ∈ Pu according to (b), it holds that χj ∈ Pu at t+ in any case.
Therefore, χj does not change at t only if χj ∈ Pu at t−.

Furthermore, either λm(χj) = χj or χu = χj for the most recent message u sent from j
to m. Consequently, j conforms to Ru and Pu up to a height of 0 as required.

(f) j exhibits an implicit event and the lemma is violated because χj is not adjusted.
Let k = Pj. According to (c), it holds that λj(χk) ∈ Pu. Following the same arguments as
in (e), either Tj = 0, or Tj = λj(Tk) and ID j = λj(IDk). Therefore, it holds that χj ∈ Pu,
guaranteeing that j conforms to Ru and Pu up to a height of 0.

(g) j joins Treei by changing its next hop pointer, such that Depj(t) < H(t) and the
lemma is violated indirectly by a node uptree from it. According to Lemma B.2, j must be a
dead-branch node at t−, so the lemma holds trivially at t+ with respect to any node uptree
from k, a contradiction.

Stability Proof. (Lemma 6.22) Let i be a root of an active tree at time t. The proof is
immediate by observing that according to Lemma B.8, every state-chain of length H(t) (and
every extension of it) in Treei must follow the pattern of either ”1+” or ”1+0+” because i
is active. This guarantees that any node j with depth Depj ≤ H(t) conforms to Rs up to a
height of H(t) − Depj by definition.

Full Inactivity Proof. (Lemma 6.23) By induction on events. Since the validity of the
lemma also depends on the flow of time, we will use the notion of implicit events as defined
in the proof of Lemma B.8. Let j a node uptree from i, and m a neighbor of j. Consider an
event at time t ≥ t′. We assume that the lemma was correct at t−, and show that it must
hold at t+ by contradiction. The lemma can be violated in the following cases:

(a) Due to an event in i. When Treei is inactivated, its sends a message with T = 0
to all its neighbors. Hence, Treei conforms to Pi up to a height of 0 trivially. If i becomes
active (while remaining a root), it ceases to be an inactive tree by definition. Consequently,
as long as Treei remains inactive, every event in i can only result in sending messages with
T = 0, which leave Treei fully inactive (up to a height of H(t)), a contradiction.

(b) Depj(t) + d(j,m) ≤ H(t), and the lemma is violated by a change in λm(Tj). Such a
change is possible only by receiving a message u from j at t. Therefore, it holds at t+ that
λm(χj) ∈ Pi because these assumptions held for u at t−, a contradiction.

48

(c) m exhibits an implicit event and the lemma is violated because λm(χj) is not adjusted.
Since m does not receive a message at t, there exists ǫ > 0 such that: (1) no events occur in
the system during the interval [t − ǫ, t]; (2) ǫ < d(j, m); and (3) for every in-flight message
u from j to m at t − ǫ, it holds that d(j, u) < d(j, m) − ǫ. According to the induction
hypothesis, at t − ǫ, j conforms to Pi up to height d(j, m) − ǫ. Since there is no in-flight
message u from j to m with d(j, u) ≥ d(j,m) − ǫ at this time, it holds that λm(χj) ∈ Pi by
definition, a contradiction.

(d) Depj(t) ≤ H(t), and the lemma is violated by a change in Tj or by a message u sent
by j due to such a change. Let k = Pj(t

+). According to (b), it holds that λj(Tk) = 0 at t+.
Therefore, j could not have changed its next hop to k at t if Pj pointed elsewhere before the
event. Furthermore, if Depj(t) < H(t) then Tj could not have changed because according
to the induction hypothesis it holds that Tj = 0 at t−. As a result, a change in Tj can only
occur when Depj = H(t) and Tj 6= 0 at t−, and j is inactivated at t+. In this case, j sends
a message with T = 0 to all its neighbors. Hence, j conforms to Pi up to a height of 0 as
required, a contradiction.

(e) Depj(t) = H(t), and the lemma is violated because χj is not adjusted (or j does
not send a message) following a change in λj(χk), where k = Pj(t

−) = Pj(t
+). According

to (b), λj(Tk) must be 0 at t+. Therefore, λj(Tk) could only have changed from a non-zero
value to 0. If Tj 6= 0 at t−, ASF guarantees that it would change to 0 at t+. Thus, Tj must
have already been 0 at t−. In this case, either λm(χj) = χj or χu = χj for the most recent
message u sent from j to m. Consequently, j conforms to Pi up to a height of 0 as required,
a contradiction.

(f) j exhibits an implicit event and the lemma is violated because χj is not adjusted or j
does not send a message. Let k = Pj. According to (c), it holds that λj(χk) ∈ Pi. Following
the same arguments as in (e), so is χj, and j conforms to Pi up to a height of 0 as required,
a contradiction.

(g) j joins Treei by changing its next hop pointer, such that Depj(t) < H(t) and the
lemma is violated indirectly by a node uptree from it. Let k = Pj at t+. This case is
impossible because according to the induction hypothesis λj(Tk) = 0, a contradiction.

Interestingly, exactly the same proofs for showing the propagation of uniformity and
stability over time can be used to show that active trees created after t1 are always uniform
and stable:
Proof. (Lemma 6.25) Following Lemma B.1, i had been a dead-branch node at t′−. Therefore,
Treei is trivially dead-branch preserving, uniform and stable (up to a height of ∞) at t′+.
For all t > t′, the proof is exactly the same as that of Lemma 6.21 (for uniformity) and
Lemma 6.22 (for stability) by taking H(t) = ∞.

Stable ID The proof of Lemma 6.26 is based on the following observation:

Lemma B.9. In finite time after t1, all trees are uniform.

Proof. After t1, every tree in the system had either existed at t1, or had been created
afterwards. According to Lemma 6.25, trees created after t1 are uniform at every instant.

49

According to corollary 6.24, every tree that already existed at t1 is guaranteed to be uniform
within finite time. Therefore, there exists a time t ≥ t1 after which all trees in the system
are uniform at every instant.

Proof. (Lemma 6.26) After t′, any tree with an ID of x or higher lies in the following
categories:

• Trees that have been active since t′. According to corollary 6.24, such trees become
stable within finite time.

• Trees created after t′. Lemma 6.25 ensures that such trees are stable at all times.

• Trees that were inactive at t′. Following Lemma A.3, it holds that IsAck = true within
finite time for every such tree. Therefore, these trees cannot contain active nodes after
this time according to Lemma 3.5.

Consequently, any such tree is either stable or fully inactive within finite time after t′.
In addition, Lemma B.9 ensures that all trees are uniform within finite time after t1 (and

hence after t′), guaranteeing that any active node with an ID=x belongs to a tree whose ID
is x or higher. Thus, there exists a time t′′ by which every active node with an ID=x belongs
to a uniform stable tree, proving (1).

As for (2), let t′′′ = t′′ + dmax and let j and k be two neighboring nodes such that
λj(Tk) 6= 0 and λj(TIDk) = x at some time t > t′′′. Therefore, the last message u that was
received by j from k also carried these values. Denote by tu the time u was sent. If tu ≥ t′′

then k was part of a uniform and stable tree ever since u was sent.
Otherwise (tu < t′′), assume in contradiction that at some time after tu, k sent a message

with T 6= Tu or TID < x. Let u′ be the first message with such values. If u′ was sent before
t′, it must have arrived before t′′′. Since messages are delivered in FIFO order and u′ was
sent after u, this contradicts the fact that u was the last message received by j. If u′ was
sent after t′′, it follows that k changed its activity status or decreased its ID after it was part
of a uniform and stable tree. This presents a contradiction to either the uniformity or the
stability of k’s tree. Therefore, at t′′, it holds that Tk 6= 0 and IDk ≥ x, guaranteeing that k
belongs to a uniform and stable tree since then.

Inverse Stability Inverse stability holds for certain uniform and stable trees given that
all IDs higher than theirs are stable. To show this, we rely on the uniformity and stability
characteristics of new trees that we have proved above, and on the following two technical
lemmas:

Lemma B.10. Let i be a root of an active tree created after t1, and let j be an active node
uptree from i. For every neighbor k of j, if λj(TK) 6= 0 and λj(Pk) = j, then k is an active
node uptree from j.

50

Proof. Let t′ be the last time j joined Treei. j could have joined Treei in three ways:
by being uptree from i (or j = i) when Treei was created, by changing its next hop, or
indirectly due to some node downtree from j changing its next hop. Therefore, according to
lemmas B.1 and B.2 j must be a dead branch in any case at t′−.

Let t′′ be the time k sent an Ack for j’s last inactivation before t′. (If such a time does
not exist, let t′′ be the last time the link between j and k was raised before t′.) Following
the same arguments as in the proof of Lemma 3.5, if k is not uptree from j at t′′−, it will not
be uptree from j at t′. If k is uptree from j at t′′−, it will either remain uptree from j with
Tk = 0 until t′ or change its next hop to another node. Therefore, it is neither possible that
Tk 6= 0∧Pk = j at t′′+, nor could an update message with such values be sent in the interval
(t′′+, t′). Moreover, if Tk 6= 0 ∧ Pk = j held at t′′−, k would have sent an update message to
j with different values at t′′+ before sending the Ack.

Because j must receive k’s Ack before joining Treei, it follows that at t′− there are no
messages in transit from k to j with Tk 6= 0 ∧ Pk = j, and either λj(Tk) = 0 or λj(Pk) 6= j.
As a result, the only possibility for j to obtain λj(Tk) 6= 0∧λj(Pk) = j, is by receiving these
values from j in an update message sent after t′. This implies that k became an active node
uptree from j after j joined Treei. Following Lemma 6.25, Treei is stable ever since it was
created. Therefore, according to lemmas B.2 and 6.14 k must still be an active node uptree
from j.

Lemma B.11. Let i be a root of an active tree created before t1, and let j be an active node
uptree from i. Assuming Treei is stable since some time t′ ≥ t1, it follows that for every
t > t′ + 3dmax and every neighbor k of j, if λj(TK) 6= 0 and λj(Pk) = j then k is an active
node uptree from j.

Proof. We distinguish between the following cases:
Case I: j was an active node in Treei since t′ + 2dmax. If λj(TK) 6= 0 and λj(Pk) = j at

t, then k had been an active node directly uptree from j at some point during the interval
(t′ + 2dmax, t). Therefore, k must remain so at t because Treei is stable throughout this
period.

Case II: j became an active node in Treei (and remained one) at t′′ > t′ + 2dmax. Here,
we also distinguish between two cases:

• If j last joined Treei after t′, Lemma B.2 ensures that j was a dead-branch node
beforehand, whether it joined Treei directly (by changing its next hop) or indirectly.
Following similar arguments as in the proof of Lemma B.10, if λj(TK) 6= 0 and λj(Pk) =
j at t then k must have been an active node directly uptree from j after it joined Treei.
As we pointed out in case I, this mandates that j remains so at t.

• If j last joined Treei before t′, then j must have been inactive for at least 2dmax time
before t′′. (Note that j could not have been activated and inactivated again during
this time because Treei is stable.) Consequently, by t′ + dmax every neighbor of j had
received a message informing it that j is inactive, so k could not have been an active
node directly uptree from j after this time (at least until t′′). In turn, either λj(TK) = 0

51

or λj(Pk) 6= j since then, or j had acquired these values by receiving a message from k
by t′ + 2dmax. Therefore, if λj(Tk) 6= 0 and λj(Pk) = j after t′′, then k must have been
an active node directly uptree from j after it joined Treei as before.

Proof. (Lemma 6.27) by induction on events. We concentrate on proving that Treei conforms
to Ris; the stability of its inverse hops will be shown as a byproduct. Let i be the root of
such a tree. Consider an event at time t > t′. We assume that the lemma was correct at t−,
and show that it must hold at t+ by contradiction. Let j be a node in Treei at t+, and let
m be a neighbor of j. The lemma can be violated in the following cases:

(a) The lemma is violated upon tree creation. According to Lemma B.1, i was a dead-
branch node at t−. Thus, all nodes uptree from i are dead-branch nodes at t+. Since a value
of W < ∞ is only possible in an active state tuple (i.e., a state tuple with T 6= 0), all nodes
uptree from i conform to Ris trivially. On the other hand, i conforms to Ris at t+ whether
it has a (cross-tree) inverse hop or not, a contradiction.

(b) The lemma is violated due to an event in i that increases ID i to x. Since Treei

is uniform, at t+, ID i is strictly higher than any active state-tuple in Treei. Therefore, i
conforms to Ris trivially, while no other active node in Treei has an ID of x. Because Treei

is stable, if a node j ∈ Treei is inactive neither λm(χj) nor any in-flight message that j has
sent have an active state (and thus do not have W < ∞). Therefore, inactive nodes conform
to Ris regardless of their ID, a contradiction.

(c) The lemma is violated by a change in λm(χj). However, this change can only occur
by m receiving an update message u from j at t−, contradicting our assumption on u.

(d) The lemma is violated by a change in j’s state or a message sent by j. If j was not
in Treei at t− and joined it at t, the case is similar to (a) because Lemma B.2 ensures that
j was a dead-branch node at t−. If ID j 6= x at t+, the lemma holds trivially. Likewise, if j
increased its ID to x then j trivially conforms to Ris due to Treei’s uniformity. (At t+, j’s
ID is strictly higher than that of any in-flight message u sent by j with Tu 6= 0, and hence
with W u < ∞. The same holds for λm(χj).) Therefore, assume ID j(t

−) = ID j(t
+) = x

and that j was already in Treei at t− (and remained so at t+). We distinguish between the
following cases:

Case I: j has an inverse hop k at t+. Here, j conforms to Ris at t+ whether it had an
inverse hop at t− or not, because it conformed to Ris at t−.

Case II: j does not have an inverse hop at t+. If j did not have an inverse hop at t−, it
conforms to Ris at t+ because it did at t−. If j had an inverse hop k at t−, it can lose it in
the following cases:

1. Tj changed. However, this contradicts the fact that Treei is uniform and stable.

2. λj(χk) has changed such that k does not qualify for being a valid inverse hop of j. Such
a change is possible only by receiving a matching message u from k. If k was a cross-
tree inverse hop, it held at t− that λj(Tk) = −Tj and that λj(IDk) > x. According
to our assumptions λj(IDk) must be a stable ID, so k belongs to a (different) uniform

52

and stable tree. Hence, it follows from k’s conformance to Ru and Rs at t− that
Tk = Tu = λj(Tk) and IDk ≥ IDu ≥ λj(IDk). This proves that every cross-tree inverse
hop in Treei is stable. As λj(Tk) cannot change and λj(IDk) can only increase, k must
remain a valid inverse hop at t+.

If k was an in-tree inverse hop, it follows from either Lemma B.10 or Lemma B.11 that
k is an active node directly uptree from j. Since Treei is uniform and stable, it holds
at t− that Tk = Tu = Tj. Furthermore, IDk = IDu = x because λj(IDk) = ID j (k is
an in-tree inverse hop) and λj(IDk) ≤ IDk = λk(ID j) ≤ ID j (uniformity). Therefore,
k also conforms to Ris at t−, ensuring that W k = W u < ∞. This proves that every
in-tree inverse hop in Treei is stable. As a result, k must remain a valid inverse hop
at t+.

We conclude that j cannot lose a valid inverse hop without increasing its ID, a contradiction.
(e) The lemma is violated indirectly due to a node k changing its next hop towards j.

According to Lemma B.2, k must be a dead-branch node at t−, so the lemma holds trivially
at t+ with respect to any node uptree from k, a contradiction.

B.3 Convergence

To Prove Lemmas 6.30 and 6.31, we first show that a fixed set of active roots implies that
ASF converges independently from MV. Denote by t2 the time by which the set of active
roots is fixed.

Lemma B.12. ASF converges within finite time after t2.

Proof. After t2, the set of active roots is fixed. Any Root and UnRoot operations MV might
invoke afterwards do not create nor destroy active roots, so ASF’s operation is unaffected
by them. Following Proposition 4.1, ASF converges within finite time.

Denote by t3 the time by which ASF converges.

Lemma B.13. If there is a least one charge in the system at t1, there must be at least one
active tree at t3.

Proof. Let c be a charge that existed in the system at t1. Since no fusion can take place
after t1, c must still exist at t3. Assume in contradiction that there are no active trees at t3.
Therefore, there are no active roots at t2, and all nodes are inactive and acknowledged at t3.

According to step 4 and the CanRoot predicate of ASF, any charged node that is inactive
and acknowledged creates an active tree. So, c must be carried by an in-flight transfer
message at t3. However, once this message reaches its destination a new active root will be
created, contradicting the fact that the set of active roots is fixed after t2.

Proof. (Lemma 6.30) Assume in contradiction that this is not the case. If two charges with
opposite signs are active roots at t2, there must exist two neighboring trees with opposite

53

signs by t3. Since opposite signs imply different IDs, one of the trees must have developed
inverse hops down to its root. This presents a contradiction either to the algorithm operation,
which ensures that a root is inactivated once it develops an inverse hop, or to the fact that
no roots can be inactivated after t2. Therefore, there are no two active trees with opposite
signs at t3.

However, it follows from Lemma B.13 that there is at least one active tree at t3. Therefore,
all nodes are active and belong to trees with an identical sign S by t3. If two charges with
opposite signs exist after t1, one of them has a sign of −S. This charge will be routed along
next hops and fused in finite time after t3 if it has not been fused before, contradicting the
fact that no fusion can take place after t1.

Proof. (Lemma 6.31) If there are no charges at t1, the algorithm halts once ASF converges
at t3. Otherwise, Lemma 6.30 ensures that all remaining charges are of the same sign.
Therefore, at t3 the signs of both the converged trees and remaining charges are identical.
As a result, there can be no charge transfers after t3. Once all in-flight transfer messages
reach their destination, the algorithm halts.

C MV Locality Proofs

C.1 Expansion Waves

Expansion waves may be introduced to the system by vote changes at t0. The algorithm’s
behavior as long as expansion waves are present requires special treatment, because unlike
common operation (when all expansion waves die down), both active and unacknowledged
nodes can change their next hops.
Proof. (Lemma 7.2) All expansion waves are generated by vote-change events at t0. These
events set the EL value of any message they send equal to their node weight at t−0 , which
is bounded by K1H. Following the same arguments of Lemma 6.7, the last expansion event
must occur before t = K1H.

In order to bound the maximum node depth, we first bound paths of dead-branch nodes
and non dead-branch nodes separately, beginning with dead-branch nodes.

Lemma C.1. The height of any dead-branch node is at most t.

Proof. By induction on events. At t = 0, there are no dead branch nodes, so the lemma
holds trivially. (Even if a root is inactivated at as a result of a vote change, it still has to
notify its neighbors before it can become a dead-branch node.) Let i be a node that incurs
an event at time t. We assume that the lemma holds at t− and prove that it still holds at
t+.

If i changes its next hop pointer, it follows from the algorithm that Ti(t
+) 6= 0, so i is

not a dead branch node at t+. Furthermore, in this case there cannot be dead branch nodes
downtree from i at t+ by definition. Therefore, changing a next hop pointer does not alter
the height of any dead-branch node.

54

Since the lemma cannot be violated by tree topology changes, we only need to validate
the lemma with respect to the node that exhibits the event. If Ti 6= 0 at t−, i cannot be
a dead branch at t+ because even if it were inactivated, it still has to wait for matching
acknowledgements from its neighbors. If Ti = 0 and IsAck(i) = true at t−, Lemma 3.5
guarantees that i is a dead branch. Therefore, the lemma holds at t+, since it held at t−. If
Ti = 0 and IsAck(i) = false at t−, i can become a dead-branch node if IsAck(i) = true at
t+. In this case, we must ensure that Heighti(t

+) ≤ t.
We examine every neighbor j that is directly uptree from i at t+. Following the same

arguments of Lemma 3.5, j must have been a dead branch node that is directly uptree from
i ever since it sent an Ack for i’s last inactivation. Denote this time by t′. Therefore, the
lemma holds with respect to j at t′, and being a dead-branch node j could not have increased
its height in the interval [t′, t]. In addition, it holds that t ≥ t′ + d(i, j) because it takes
d(i, j) time for j’s Ack to reach i. (i must receive this Ack by t.) As a result, i’s height
through j is bounded by:

Heightj(t
′) + d(i, j) ≤ t′ + d(i, j) ≤ t.

Since this bound holds for all j, we have the result.

To bound paths of non dead-branch nodes, we initially handle the special case of nodes
that exhibit expansion events.

Lemma C.2. For any expansion event e, Depe = We = te.

Proof. By induction on expansion events. At t = 0, every expansion e occurs during a Root
operation, for which Depe = We = 0. For t > 0, an expansion event e occurs upon receiving
a message u sent by a previous expansion event e′. Denote by i and j the nodes in which e
and e′ occur, respectively. Since it takes d(i, j) time for u to reach i and assuming that the
lemma holds for e′, we have:

We = We′ + d(i, j) = te′ + d(i, j) = te.

Because Tu 6= 0, neither j nor any node downtree from it could be a dead-branch node
during the interval (te′ , te). Following Lemma 3.5, this implies that for any node k downtree
from j or k = j, either Tk 6= 0 or IsAck(k) = false. Hence, k cannot change its next hop
unless it exhibits an expansion event during this interval. However, such an expansion event
is not possible: according to the induction hypothesis, We′ = te′ while any expansion event
during the interval must have a weight that is strictly higher than We′ ; since Wk ≤ Wu = We′

(Lemma 3.6), an expansion event at k would present a contradiction. Therefore, Depj(te) =
Depj(te′) because j’s path to its root does not change from te′ to te. Consequently:

Depe = Depe′ + d(i, j) = te′ + d(i, j) = te.

Now, we are able to bound the depth of any non dead-branch node using the following
technical lemma:

55

Lemma C.3. For every non dead-branch node i:

1. Depi(t) < H + t′ + t, where t′ is the last time i ceased to be a dead-branch node. (If i
has not been a dead-branch node since t = 0, set t′ = 0.)

2. For every node j downtree from i, if Depi(t) − Depj(t) > H + t′, then Wj(t) < t.

Proof. By induction on events. At t = 0, the depth of all nodes is bounded by H, so the
lemma holds trivially. We assume the lemma holds at time t−, and prove that is still holds
at time t+. Let i be some non dead-branch node at t+. The lemma can be violated (with
respect to i) in the following cases:

• i exhibits an expansion event. According to Lemma C.2, Depi = Wi = t, which satisfies
1). Following Lemma 3.6, this implies that all nodes downtree from i have W < t,
which satisfies 2), a contradiction.

• i becomes a non dead-branch node due to a join event in i. Let j = Pi(t
+). Therefore,

Ti(t
+) = λi(Tj)(t

+) 6= 0. This implies that either λi(Tj)(t
−) 6= 0, or i received a

message with T 6= 0 from j at t−. In both cases, j is a non dead-branch node at
t. Denote by t̃′ the last time j ceased to be a dead-branch node. (If j was a non
dead-branch node since t = 0, we define t̃′ = 0.) Assume for now that t − t̃′ ≥ d(i, j).
Since the lemma holds for j at t+ (an event in i does not affect j because i is uptree
from j), we have:

Depi(t) = Depj(t) + d(i, j) ≤

(H + t̃′ + t) + (t − t̃′) = H + 2t.

So 1) holds. Furthermore, if there exists a node k downtree from i such that Depi(t)−
Depk(t) > H + t (note that t′ = t), then:

H + t < Depj(t) + d(i, j) − Depk(t)

≤ Depj(t) − Depk(t) + t − t̃′

⇒ H + t̃′ < Depj(t) − Depk(t).

Therefore, 2) holds according to the induction hypothesis with respect to j because an
event in i does not influence j or any node downtree from it, a contradiction.

We now justify our assumption that t − t̃′ ≥ d(i, j) by considering the following two
situations:

a) j was never a dead-branch node after t = 0 (t̃′ = 0). Here, we examine the time it
took for i to be dead-branch node in the first place. (Recall that i is assumed to be
a dead-branch node at t−.) At t = 0, there are no messages in-flight and λj(Ti) 6= 0.
For i to be a dead-branch node at t−, it must have updated λj(Ti) to 0 and received
an Ack from j beforehand. Since each of these events required a message, we have
t = t − t̃′ ≥ 2d(i, j).

56

b) j last ceased to be a dead-branch node at t̃′ > 0. Since j was a dead-branch node
at t̃′−, it holds that λi(Tj)(t̃

′) = 0 and T = 0 for every in-flight message from j to i by
definition. i cannot change its pointer to j unless λi(Tj)(t̃

′) 6= 0. Therefore, at least
one message with T 6= 0 was sent from j to i after t̃′, ensuring that t − t̃′ ≥ d(i, j).

• A node k downtree from i increases its weight. Since k is not a dead-branch node
(otherwise i would also be a dead-branch node), it follows from 3.5 that either k is
active or IsAck(k) = false. According to ASF, k cannot increase its weight in this
case, a contradiction.

• A node k downtree from i changes its next hop. Since k cannot be a dead-branch
node, this can happen only due to an expansion event in k. Therefore, it follows from
Lemma C.2 that Depk(t

+) = Wk(t
+) = t. We distinguish between the following cases:

a) Depi(t
−)−Depk(t

−) > H + t′. According to the induction hypothesis, Wk(t
−) < t.

Therefore, an expansion event in k presents a contradiction to our observation that
nodes downtree from i cannot increase their weight.

b) Depi(t
−) − Depk(t

−) ≤ H + t′. Therefore:

Depi(t
+) = (Depi(t

−) − Depk(t
−)) + Depk(t

+) ≤

H + t′ + t

which satisfies 1). Lemma 3.6 ensures that for any node j downtree from k, Wj(t
+) ≤

Wk(t
+) thus satisfying 2), a contradiction.

Note that the passage of time itself cannot invalidate the lemma.

Finally, we can combine the previous results to achieve a bound on the maximum node
depth:
Proof. (Lemma 7.3) Let P be a path connecting a leaf node l to a root node r via next-hop
pointers. If r is a dead-branch node, it follows from Lemma C.1 that Heightr(t) ≤ t. If l is
a non dead-branch node, Lemma C.3 guarantees that Depl(t) ≤ H + 2t. Otherwise, P must
contain at least two nodes i and j such that i = Pj, j is a dead-branch node, and i is not.
(It is not possible for i and j to switch roles because every node uptree from a dead-branch
node is also a dead-branch node by definition.) In this case,

Depl(t) ≤ Depi(t) + d(i, j) + Heightj(t) ≤

H + 2t + dmax + t ≤ 2H + 3t.

Since r and l was chosen arbitrarily, we conclude that Dmax(t) ≤ 2H +3t for all t. Following
Lemma 7.2:

Dmax(t1) ≤ 2H + 3K1H = const · H.

57

C.2 Tree properties

The proofs of Lemmas 7.4 and 7.5 are based on the following two technical lemmas:

Lemma C.4. Let e be a join event and {en}, n ≥ 1 a chain of join events in Close(e). The
following holds for all en:

Wen
≤ We + (ten

− te) − (Den
− De) (1)

If in addition Den
≥ Wen

, then:

Wen
≤

We + De

2
+

ten
− te
2

(2)

Proof. By induction. The lemma holds trivially for e. We assume that it holds for en−1

and prove that it also holds for en. Let u be the update message sent by en−1 for which en

joins en−1, and let L denote the edge delay between nodes i and j in which en and en−1 have
occurred, respectively. u is accepted at i at time ten−1

+ L, updating λi(Dj) and resetting
∆i(j) to zero. For every t > ten−1

+ L, the clock tick operation of ASF ensures that:

∆i(j) ≤ t − (ten−1
+ L).

Therefore, at ten
we have:

Den
= λi(Dj) + ∆i(j) ≤ Den−1

+ ten
− (ten−1

+ L) (3)

By substituting (3) in (1) for en, and applying the induction hypothesis for en−1 we get at
ten

:

We + (ten
− te) − (Den

− De) ≥

We + (ten
− te) − (Den−1

+ ten
− (ten−1

+ L) − De) =

We + (ten−1
− te) − (Den−1

− De) + L ≥

Wen−1
+ L = Wen

.

This completes the proof for (1). If in addition Den
≥ Wen

, we have:

Wen
≤ We + (ten

− te) − (Wen
− De)

⇒ Wen
≤

We + De

2
+

ten
− te
2

Lemma C.5. Let i be an active node. For all t ∈ [t0, t1], Wi ≤ const · H.

Proof. An active node or a node that becomes active changes its weight during join events.
Therefore, we distinguish between the following cases:

58

1. i has not changed its weight since t0. Therefore, according to our assumptions at t0 it
follows that Wi(t) = Wi(t0) ≤ K1Depi(t0) ≤ K1H.

2. i last changed its weight due to a join event e′ ∈ Close(e), where e is a creation of a
new tree (after t0). Follwing Lemma C.4, We′ ≤ We + (te′ − te) − (De′ − De). Since
We = De = 0 and De′ ≥ 0, we have: We′ ≤ te′ ≤ t1. According to Lemma 7.2,
t1 ≤ K1H.

3. i last changed its weight due to a join event e′, in which it became directly uptree
from a node j that has not changed its weight since t0. Following 1), we have: We′ =
Wj + d(i, j) ≤ K1H + dmax ≤ (1 + K1)H.

4. i last changed its weight due to a join event e′ ∈ Close(e), where e is a join event as in
case 3). Following lemmas C.4 and 7.2, and noticing that te′−te ≤ t1 and De′−De ≥ 0,
we have:

We′ ≤ We + (te′ − te) − (De′ − De) ≤

(1 + K1)H + t1 ≤ (1 + 2K1)H.

We conclude that for all t ∈ [t0, t1], Wi(t) ≤ (1 + 2K1)H = const · H.

Proof. (Lemma 7.4) Let i be an active node. We distinguish between the the following cases:

1. i was active at t1 and remained so at t. After t1, a node cannot change its next hop
pointer unless it is inactive and acknowledged. Following Lemma 3.5, a node that is
inactive and acknowledge must be a dead-branch node. Therefore, neither i nor any
node downtree from it could have changed its next hop pointer since t1. Consequently,
Depi(t) equals Depi(t1), which according to Lemma 7.3 is less than const · H.

2. i’s last join event e′ belongs to Close(e), where e is a tree creation event that occurred
after t1. Since We = De = 0 and De′ ≥ We′ , it follows from Lemma C.4 that:

We′ ≤
te′ − te

2
≤

t

2
.

Consequently, Depi(t) = Depi(te′) = We′ ≤
t
2

because join events take into account
the latest edge weight information, and no node in the event chain from e′ to e could
have changed its next hop pointer (due to similar arguments as in case 1).

3. i’s last joined a node j after t1 based on a message u that was sent before t1. Denote
by tu the time u was sent. (If tu < t0, let tu = 0.) At time tu, it follows from Lemma
7.3 that Depj ≤ const · H. After this time, neither j nor any node downtree from it
could have changed their next hop pointer (due to similar arguments as in case 1), so
Depj(t) ≤ const ·H as well. Therefore, Depi(t) = Depj(t)+d(i, j) ≤ Depj(t)+dmax =
const · H.

59

4. i’s last join event e′ belongs to Close(e), where e is a join event as in case 3. Let j be
the node in which e takes place. As mentioned in case 2, join events take into account
the latest edge weight information and no node in the event chain from e′ to e could
have changed its next hop pointer up to t. Moreover, Depj remains constant after te.
Therefore, Depi(t) = Depi(te′) = Depj(te) + We′ − We. By applying Lemma C.4 with
respect to We′ , and noticing the fact that De ≤ k1We, we have:

Depi(t) ≤ Depj(te) +
We + De

2
+

te′ − te
2

− We =

Depj(te) +
De − We

2
+

te′ − te
2

≤

Depj(te) +
k1 − 1

2
We +

t

2
.

According to case 3 and Lemma C.5, both Depj(te) and We are bounded by const ·H.
Therefore, Depi(t) = t

2
+ const · H.

Proof. (Lemma 7.5) Let C1 be the constant promised by Lemma 7.4, and assume by contra-
diction that there exists a node i such that Depi(t) > t

2
+ C1 · H but i does not conform to

Pi. We distinguish between two cases:

1. i has not changed its depth since t− dmax. According to Lemma 7.4, i must have been
an inactive node since t− dmax because Depi > Dactive during the interval (t− dmax, t].
Therefore, at t− dmax, it holds that the last message i has sent to any of its neighbors
has T = 0, and so does any message that i sends during (t − dmax, t]. By time t, it
holds for every neighbor j of i that λj(Ti) = 0. Consequently, i conforms to Pi at t.

2. The last time i changed its depth was t′ ∈ (t − dmax, t]. According to ASF, a node
that changes its next hop becomes active. Thus, i must have changed its depth at t′

due to some node j downtree from it because according to Lemma 7.4, i is inactive
at t′. Following Lemma B.2, as a node uptree from j, i was a dead-branch node at t′.
Therefore, i remained a dead-branch node at t because it remained inactive, ensuring
that it conforms to Pi at t.

A contradiction.

C.3 Fusion Duration and Convergence

The proof of Lemma 7.10 builds upon the following three technical lemmas:

Lemma C.6. For every active node that decreases its weight at time t, Wi(t) ≤ t.

60

Proof. By induction on events. Let i be an active node that exhibits an event at time t.
We assume that the lemma holds at t− and prove that it still holds at t+. Let j = Pi(t

−). i
can decrease its weight in two cases:

Case I: The event is an expansion event. Therefore, Lemma C.2 ensures that Wi(t
+) = t.

Case II: At t−, it holds that λi(Wj) + d(i, j) < Wi and λi(Dj) + ∆i(j) > λi(Wj) + d(i, j).
Assume that the last time i chose j as its next hop occurred at t′ > t0. At t′+, it holds that
λi(Wj) + d(i, j) = Wi. Therefore, at least one update message u from j was received by i in
the interval (t′, t), such that Wu < λi(Wj) at the time it was received. Denote by tu the last
time such a message was sent. At t−u , j was active and decreased its weight (active nodes
cannot increase their weight), so according to our assumption Wj(tu+) ≤ tu. Therefore,

Wi(t
+) = Wu + d(i, j) = Wj(tu) + d(i, j) ≤

tu + d(i, j) ≤ t.

If i was active and directly uptree from j ever since t0, it is possible that λi(Wj)+d(i, j) > Wi

at t0. (This can happen if d(i, j) had increased before the system converged at t0, while i
was already uptree from j.) In this case, we apply exactly the same reasoning with t′ = t0
and Wu < Wi − d(i, j).

Lemma C.7. A node that exhibits an expansion event does not decrease its weight before it
is inactivated.

Proof. By contradiction. Assume that i is the first node that exhibits an expansion event
e′ and subsequently decreases its weight at some time t > te′ , while still active. Since e′

cannot be a root event (a root already has the minimal weight of 0), e′ must have occurred
due to the reception of a message u (with a positive expansion lifetime) from a neighbor j.
Note that j must have also exhibited an expansion event e when it sent u. i can decrease its
weight in two cases:

Case I: i experiences an additional expansion event e′′ at t. According to C.2, it follows
that We′′ > We′ . Thus, i must have increased its weight prior to e′′. However, this contradicts
ASF’s operation that does not permit an active node to increase its weight.

Case II: i exhibits a join event e′′ at t. Since i could not have exhibited an expansion
event after te′ (without being inactivated), i has not changed its next hop pointer ever since.
Consequently, i must have received an additional message ũ at t̃ ∈ (te′ , t] from j, such that
Weu < λi(Wj). However, this means that when ũ was sent, j also had decreased its weight.
Denote by teu ∈ (te, te′) the time ũ was sent. This contradicts the assumption that i is the
first node to violate the lemma, because j must have remained active at least until teu and
teu < te′ .

Lemma C.8. An active node can decrease its weight at most once before it is inactivated.

Proof. By contradiction. Let i be the first node that decreases its weight more than once
during an active period. Denote by t′ and t′′ the first and second times i decreased its weight
during this period, respectively.

61

Let j = Pi(t
′−), and denote by t̃ the last time i chose j as its next hop before t′−. (If

Pi = j since t0, let t̃ = t0.) Following Lemma C.7, i could not have experienced an expansion
event at t′. According to Lemma C.6, Wi(t

′) ≤ t′. Since i cannot increase its weight while
being active, it follows from Lemma C.2 that i cannot exhibit an expansion event at t′′.
Therefore, it holds that Pi = j during the interval [t̃, t′′+] because an active node can change
its next hop pointer only through expansion events.

For i to decrease its weight at t′, it must have received a message u′ from j in (t̃, t′], such
that Wu′ < λi(Wj) (at the time the message was received). Likewise, i must have received a
message u′′ from j in (t′, t′′], such that Wu′′ < λi(Wj). Denote by tu′ and tu′′ the time u′ and
u′′ were sent, respectively. Therefore, j must have also decreased its weight at tu′ and tu′′ ,
while remaining active. Since tu′′ < t′′, we reach a contradiction.

Proof. (Lemma 7.10) According to ASF, j will become active by pointing to i as soon as
λj(Di) + ∆j(i) > λj(Wi) + d(i, j) (unless j is activated earlier). Therefore, it is sufficient
to show that this condition holds by t + 2d(i, j). Note that all the condition terms are
non-negative. We distinguish between two cases:

Case I: Di ≥ Wi. Assume for now that i does not change its weight after t. If j has
already received i’s latest weight and activity state, then λj(Di) ≥ λj(Wi) at t. Hence, j will
be activated by t+d(i, j) because ∆j(i) increases linearly with time until the condition holds.
Otherwise, there must exist at t+ an in-flight update message u from i to j, which contains
i’s recent weight and activity state. u will reach j at most by t + d(i, j), resetting ∆j(i) to
zero. Afterwards, ∆j(i) increases linearly with time, guaranteeing that j will become active
by t + 2d(i, j). According to Lemma C.8, i can decrease its weight at most once after t.
(Increases are not possible at all because i is active). Therefore, if i changes its weight after
t, it can postpone j’s activation at most by 2d(i, j).

Case II: Di < Wi. This case is possible only if i’s most recent weight change or activation
has occurred due to an expansion event e. Since all expansion events die down by K1H
(Lemma 7.2) and We = te (Lemma C.2), it follows that te < K1H and Wi is at most K1H.
In addition, Wi cannot decrease (Lemma C.7) nor increase (i is active). Therefore, by time
K1H + d(i, j) > te + d(i, j), j must have received from i an update message reflecting i’s
state at te, resetting ∆j(i) to zero. Because there are no further updates to λj(Wi), ∆j(i)
increases linearly with time until ∆j(i) > λj(Wi) + d(i, j), which occurs at most by time
2K1H + 2d(i, j). Thus, the lemma holds for all t > 2K1H.

Proof. (Lemma 7.12) The absolute value of the net minority charge inflicted by K vote
changes is at most Kλd. Therefore, at most Kλd fusion events between opposite-signed
charges are required to eliminate all minority charges in the system.

If no such fusions occur before t1, Lemma 7.11 guarantees that at least one fusion occurs
by t = C1t1 + C2H. Let C = max(C1, C2). Applying the lemma once more with respect

to t ensures that at least two (separate) fusions occur by C1t + C2H = C
2

1t1 + (C1C2 +

C2)H < C
2
t1 + 2C

2
H. Therefore, the last fusion must occur by C(Kλd)t1 + 2C(Kλd)H. Since

t1 = const · H, we have the result.

62

Proof. (Lemma 7.13) We distinguish between three cases:
Case I: i did not experience a join event since the system was converged at t−0 . In this

case, it holds at all times that for every neighbor j of i: λj(Di)+∆j(i) = α(λj(Wi)+d(i, j)) ≥
λj(Wi) + d(i, j). Consequently, if j is directly uptree from i at t′, it must have adjusted its
activity state and weight according to i’s most recent values due to step 3 of ASF. Moreover,
after t′ j remains active and maintains its weight because it does not receive new values
from i nor change its next hop pointer. (Active nodes can change their next hop only due
to expansion events, which cease by t1 < t′.)

Case II: i exhibited a join event at t0 or afterwards, and Di(t) < Wi(t). In this case, i’s
last weight change must have been due to an expansion event e. Since te ≤ t1, it follows
from Lemma C.2 that Wi(t

+
e) < t1. At te + d(i, j), j receives an update message from i

and sets λj(Di), λj(Wi) and λj(Ti) accordingly. In addition, j resets ∆j(i) to 0. After this
time, ∆j(i) is incremented every clock tick as long as λj(Di) + ∆j(i) < α(λj(Wi) + d(i, j)).
Therefore, by time te + t1 +2d(i, j) < t′, it holds that λj(Di)+∆j(i) ≥ λj(Wi)+d(i, j). The
rest follows from case I.

Case III: i exhibited a join event at t0 or afterwards, and Di(t) ≥ Wi(t). Denote by
te ≥ t0 the time of the last event at which i became active or changed its weight. Following
similar arguments as in case II, at te + 2d(i, j) < t′ it holds that ∆j(i) ≥ d(i, j), and hence
λj(Di) + ∆j(i) ≥ λj(Wi) + d(i, j). The rest follows from case I.

63

