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Abstract. We present a new sampling theorem for surfaces and higher

dimensional manifolds. The core of the proof resides in triangulation

results for manifolds with boundary, not necessarily bounded. The pro-

posed method adopts a geometric approach that is considered in the

context of 2-dimensional manifolds (i.e surfaces). Further, our approach

and formalism lend themselves too the derivation of a geometric the-

orem for non-uniform sampling of one-dimensional signals compatible

with the classical Shannon-Whittaker theorem. The new approach is

also considered in the context of image processing.
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1. Introduction

Sampling is an essential preliminary step in processing of any continuous

signal by a digital computer. This step is the heart of any digital processing

of any (presumably continues) data/signal. Undersampling causes distor-

tions due to the aliasing of the post processed sampled data. Oversampling,

on the other hand, results in time and memory consuming computational

processes which, at the very least, slows down the analysis process. It is

therefore important to have a measure which is instrumental in determin-

ing what is the optimal sampling rate. For 1-dimensional signals such a

measure exists, and, consequently, the optimal sampling rate is given by

the fundamental sampling theorem of Shannon, theorem that yielded the

foundation of information theory and led technology into the digital era.

Shannon’s theorem asserts that a signal can be perfectly reconstructed from

its samples, given that the signal is band limited within some bound on its

highest frequency. Ever since the proof of Shannon’s theorem in the late

1940’s, deducing a similar sampling theorem for higher dimensional signals

is an essential problem related to various aspects of signal processing. This

is further emphasized by the vast interest and applications of image process-

ing and the growing need of fast yet accurate techniques for processing high

dimensional data such as medical and satellite images.

In this report we wish to present new sampling theorems for manifolds

of dimensions ≥ 2. These theorems are derived form fundamental studies

in three areas of mathematics: differential topology, differential geometry
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and quasi-regular maps. Both classical and recent results in these areas are

combined to yield a rigorous and comprehensive sampling theory for such

manifolds.

We first present sampling theorems for surfaces (dimension 2) and then

for higher dimensional manifolds. In the case of surfaces, we account for

those surfaces that are at least C2, with bounded principal curvatures. This

condition is, in a way, analogous to band limited signals in the case of one

dimension (the classical Shannon sampling theorem). We then present sam-

pling theorem for surfaces that are not C2. Afterwards we proceed to present

sampling theorems for manifolds of dimension ≥ 3. The main reasons for

such a differentiated treatment of surfaces and of higher dimensional man-

ifolds is that the geometry of surfaces is much more intuitive than that of

manifolds of dimension ≥ 2. Therefore, the main ideas behind the given

theorems, are more accessible in this case. Apart from this, there is also a

more deeper reason to distinguish between surfaces and higher dimensional

manifolds: it is rooted in the geometrical richness of manifolds of dimen-

sions ≥ 3, as opposed to surfaces. This richness reflects on the present work

through the variety of curvature measures applicable to manifolds of dimen-

sions > 2, as compared with surfaces. In higher dimensions we can consider

scalar, sectional and Ricci curvatures, each of which with its specific geo-

metrical meaning and computational considerations. As a result, and due

to the crucial role curvature plays in this whole work, when setting sam-

pling theorems for high dimensional manifolds we first need to have a good

understanding of which of the possible curvatures we would like to use.

Recently a surge in the study of fat triangulations and manifold sampling

in Computational Geometry, Computer Graphics and their related fields

has generated a vast amount of publications (see [AB], [BCER], [CDR1],

[CDR2], [CDRR], [E], [LT], [Mee], [PA], to name just a few). However, our

results are vastly extending the class of manifolds for which fat meshes and

“good” samplings exist. Moreover, the method proposed herein, appertains

to the vast corpus of Differential Topology and Geometry and hence inherits

the mathematical correctness and conciseness of the classical apparatus.

The report is organized as follows: In Section 2 we review some prelim-

inary results relevant to the theory. We first review aspects of sampling
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theory. Afterwards we present the most relevant results from differential

topology that play a central role in the theoretical background of our the-

ory. More precisely, we focus on PL-approximation of smooth manifolds

and its counterpart of smoothing of PL-manifolds. These results are di-

rectly adopted in order to show that our proposed reconstruction method is

accurate and also to overcome the problem of non-smoothness. In Section

3 we will provide some additional background results, combining both dif-

ferential geometry and the theory of quasi-regular mappings. These results,

both classical such as those of S.S Cairns, starting from the early 1930‘s,

and new, due to K. Peltonen from the 1990’s and to E. Saucan from 2000’s

will be later adopted to give the existence of sampling for manifolds. In

Section 4 we show how to apply the surfaces/manifolds sampling results to

obtain a new, geometric proof of the classical Shannon sampling theorem,

and also to the analysis of images. In the final section we examine some

delicate aspects of our study, and discuss extensions of this work, relating

both to geometric aspects of sampling, as well as to its relationship with

classical sampling theory.

2. Preliminaries

2.1. Shannon’s Theorem and Sampling Theory. We do not present

here in detail the classical Whittaker-Kotelnikov-Nyquist-Shannon theorem

(or Shannon’s theorem, for short), but restrict ourselves to bringing the

following version:

Theorem 2.1. Let f ∈ L2(R), such that supp (f̂) ⊆ [−π, π], where f̂ de-

notes the Fourier transform of f . Then

f(x) =
∑

t∈Z

f(t) sinc(x− t) ;

where sinc(x) = sin πx
πx

.

The classical Shannon theorem pertains to band limited signals. Various

generalizations of it were proposed (see [PA], [SZ], [AG], [BD], [AF], [UZ],

amongst others).

We conclude this brief overview of Shannon’s theorem with a few remarks

relevant to the sequel:
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(1) Mathematically, Shannon’s theorem belongs to the field of interpo-

lation (see, e.g. [BD], [SZ]). The main – and surprising – fact is that

linear interpolation (the secant approximation, to be more precise –

see Sections 2.2, 2.3 below) basically suffices to faithfully reconstruct

manifolds.

(2) The quest for reproducing kernels is natural. However, not every

family of functions admits such kernels (see [Ar], pp. 380-381).

Moreover, surfaces (and a fortiori higher dimensional manifolds) are

geometric objects with far “wilder” smoothness properties than sig-

nals, as usually considered (see, e.g. [HSV]). Therefore, a general

theory of reproducing kernels for manifolds seems difficult and re-

mains, at this stage, yet to be developed.

(3) Shannon’s theorem is equivalent to a variety of seemingly unrelated

results in classical Mathematical Analysis (see [HSV]). It is plausi-

ble, and indeed probable, that precisely these variations on the given

them can shed some more light on all the aspects of a sampling the-

ory for surfaces.

2.2. Background on PL-Topology. We first recall a few classical defini-

tions and notations:

Definition 2.2. Let a0, . . . , am ∈ Rn. a0, . . . , am are called independent iff

the vectors vi = ai − a0 i1, ...,m are linearly independent.

The set σ = a0a1 . . . am = {x = αiai |αi ≥ 0,
∑
αi = 1} is called the m-

simplex spanned by a0, . . . , am. The points a0, . . . , am are called the vertices

of σ.

The numbers αi are called the barycentric coordinates of σ. The point

σ̃ =
∑ αi

m+1 is called the barycenter of σ.

If {a0, . . . , ak} ⊆ {a0, . . . , am}, then τ = a0 . . . ak is called a face of σ,

and we write τ < σ.

Definition 2.3. Let A,B ⊂ Rn. We define the join A ∗ B of A and B as

A ∗ B = {αa + βb | a ∈ A, b ∈ B ; α, β ≥ 0, α + β = 1}. If A = {a}, then

A ∗B is called the cone with vertex a and base B.

Definition 2.4. A collection K of simplices is called a simplicial complex

if
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(1) If τ < σ, then τ ∈ K.

(2) Let σ1, σ2 ∈ K and let τ = σ1 ∩ σ2. Then τ < σ1, τ < σ1.

(3) K is locally finite.

|K| =
⋃

σ ∈ K
σ is called the underlying polyhedron (or polytope) of K.

Definition 2.5. A complex K ′ is called a subdivision of K iff

(1) K ′ ⊂ K;

(2) if τ ∈ K ′, then there exists σ ∈ K such that τ ⊆ σ.

If K ′ is a subdivision of K we denote it by K ′ ⊳K.

Let K be a simplicial complex and let L ⊂ K. If L is a simplicial complex,

then it is called a subcomplex of K.

Definition 2.6. Let a ∈ |K|. Then

St(a,K) =
⋃

a∈σ
σ ∈ K

σ

is called the star of a ∈ K.

If S ⊂ K, then we define: St(S,K) =
⋃

a ∈ S
St(a,K).

Definition 2.7. Let σ = a0a1 . . . am and let f : σ → Rp. The map f is

called linear iff for any x =
∑
αiai ∈ σ, it holds that f(x) =

∑
αif(ai).

Let K,L be complexes, and let f : |K| → |L|. Then f is called linear

(relative to K and L) iff for any σ ∈ K, τ = f(σ) ∈ L.

The map f : K → L is called piecewise linear (PL) iff there exists a

subdivision K ′ of K such that f : K ′ → L is linear.

If (i) f : K → L is a homeomorphism of |K| onto |L|, (ii) f |σ is linear and

(iii) τ = f |σ ∈ L, for any σ ∈ K, then f is called a linear homeomorphism.

Definition 2.8. A cell γ is a bounded subset of Rn defined by:

γ = {x ∈ Rn |
∑

j

αijxj ≥ βi; i = 1, . . . , p},

for some constants αi,j and βi.

The dimension m of γ is defined as min{dimΠ | γ ⊂ Π,Π a hyperplane in Rn}.
Let γ be an m-dimensional cell. The (m− 1)-cells βj of ∂γ are called its

(m− 1)-faces, the (m− 2)-faces of each βj are called the (m− 2)-faces of γ,

etc. By convention ∅ and γ are also faces of γ.
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A cell complex is defined in the same manner as a simplicial complex,

more exactly, a cell complex K is a collection of cells that satisfy conditions

1.– 3. of Definition 2.4.

Subcomplexes are also defined analogous to the simplicial case. In partic-

ular, the q skeleton Kq of K, Kq = {γ | γ ∈ K, dimγ ≤ q} is a subcomplex

of K.

Lemma 2.9. Let K be cell complex. Then K has a simplicial subdivision.

Proof. See [Mun], Lemma 7.8. �

We next define the concept of embedding for complexes, but first we need

some basic definitions:

Definition 2.10. Let K be a simplicial complex.

(1) f : |K| → Mn is Cr differentiable (relative to |K| ) iff f |σ ∈ Cr(σ),

for any simplex σ ∈ K.

(2) f : |K| → Mn is non-degenerate iff rank(f |σ) = dim(σ), for any

simplex σ ∈ K.

Definition 2.11. Let σ be a simplex, and let f : σ → Rn, f ∈ Cr. For

a ∈ σ we define dfa : σ → Rn as follows: dfa(x) = Df(a) · (x − a), where

Df(a) denotes the formal derivative Df(a) = (∂fi/∂x
j)1≤i,j≤n, computed

with respect to some orthogonal coordinate system contained in Π(σ), where

Π(σ) is the hyperplane determined by σ. The map dfa : σ → Rn does not

depend upon the choice of this coordinate system.

Note that dfa|σ∩τ is well defined, for any σ, τ ∈ St(a,K). Therefore, the

map dfa : St(a,K) → Rn is well-defined and continuous, and it is called –

in analogy to the case of differentiable manifolds – the differential of f .

Remark 2.12. In contrast to the differential case, the tangent space Tf(p)(M
n)

is a union of of polyhedral tangent cones, It, therefore, does not possess a

natural vector space structure (see [Th], p. 196).

Definition 2.13. Let K be a simplicial complex, let Mn be a Cr submanifold

of RN , and let f : K →Mn be a Cr map. Then, f is called

(1) an immersion, iff dfσ : St(σ,K) → Rn is injective for each and every

σ ∈ K;
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(2) an embedding, iff it is an immersion and a homeomorphism on the

image f(K);

(3) a Cr triangulation, iff it is an embedding such that f(K) = Mn.

Remark 2.14. If the class of the map f is not relevant, f will be called

simply a triangulation.

Definition 2.15. Let f : K → Rn be a Cr map, and let δ : K → R∗
+ be a

continuous function. Then g : |K| → Rn is called a δ-approximation to f

iff:

(i) There exists a subdivision K ′ of K such that g ∈ Cr(K ′,Rn) ;

(ii) deucl

(
f(x), g(x)

)
< δ(x) , for any x ∈ |K| ;

(iii) deucl

(
dfa(x), dga(x)

)
≤ δ(a) · deucl(x, a) , for any a ∈ |K| and for all

x ∈ St(a,K ′).

Definition 2.16. Let K ′ be a subdivision of K, U =
◦

U , and let f ∈
Cr(K,Rn), g ∈ Cr(K ′,Rn). g is called a δ-approximation of f (on U) iff

conditions (ii) and (iii) of Definition 2.6. hold for any a ∈ U .

The most natural and intuitive δ-approximation to a given mapping f is

the secant map induced by f :

Definition 2.17. Let f ∈ Cr(K) and let s be a simplex, s < σ ∈ K. Then

the linear map: Ls : s→ Rn, defined by Ls(v) = f(v) where v is a vertex of

s, is called the secant map induced by f .

2.3. PL-Approximation of Smooth Manifolds. We show in this sec-

tion that the apparent “naive” secant approximation of surfaces (and higher

dimensional manifolds) represents a good approximation, both in distances

and in angles, provided that the secant approximation induced by a triangu-

lations that satisfies a certain un-degeneracy condition called “fatness” (or

“thickness”).

2.3.1. Fat Triangulations. We begin this section with the following informal,

intuitive definition:

Definition 2.18. A triangle in R2 is called “fat” (or ϕ-fat, to be more

precise) iff all its angles are larger than a prescribed value ϕ.
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In other words, fat triangles are those that do not “deviate” to much from

being equiangular (regular), hence fat triangles are not too “slim”. This can

be defined more formally by requiring that the the ratio r
R

≥ ϕ, for some

ϕ > 0, where r denotes the radius of the inscribed circle of τ (inradius) and

R denotes the radius of the circumscribed circle of τ (circumradius). (See

Fig. 2.1 below.)

Figure 1. Thin triangle - Peltonen’s definition.

One can easily check, by elementary methods, that the angle-condition

and the radii condition are equivalent. Even if, perhaps, more intuitive, the

angle condition is more difficult to properly formulate in higher dimension,

therefore we opt for the following formal definition of fatness:

Definition 2.19. A k-simplex τ ⊂ Rn, 2 ≤ k ≤ n, is ϕ-fat if there exists

ϕ > 0 such that the ratio r
R

≥ ϕ. A triangulation of a submanifold of

Rn, T = {σi}i∈I is ϕ-fat if all its simplices are ϕ-fat. A triangulation

T = {σi}i∈I is fat if there exists ϕ ≥ 0 such that all its simplices are ϕ-fat;

for any i ∈ I.

Proposition 2.20 ([CMS]). There exists a constant c(k) that depends solely

upon the dimension k of τ such that

(2.1)
1

c(k)
· ϕ(τ) ≤ min

σ<τ
∡(τ, σ) ≤ c(k) · ϕ(τ) ,

and

(2.2) ϕ(τ) ≤ V olj(σ)

diamj σ
≤ c(k) · ϕ(τ) ,

where ϕ denotes the fatness of the simplex τ , ∡(τ, σ) denotes the (internal)

dihedral angle of the face σ < τ and V olj(σ); diamσ stand for the Euclidian



10 EMIL SAUCAN, ELI APPLEBOIM AND YEHOSHUA Y. ZEEVI

j-volume and the diameter of σ respectively. (If dimσ = 0, then V olj(σ) =

1, by convention.)

Condition 2.1 is just the expression of fatness as a function of dihedral

angles in all dimensions, while Condition 2.2 expresses fatness as given by

“large area/diameter”. Diameter is important since fatness is independent

of scale.

Figure 2. Slivers

One can gain some insight into the equivalence of all the definitions above,

by analyzing the 3-dimensional examples below. (See [E] for a complete

classification of “slim” triangles in dimensions 2 and 3.)

Remark 2.21. The above definition is the one introduced in [Pe] and we

employ it, as already noted, mainly for briefness. For other, equivalent

definitions of fatness see [Ca1], [Ca2], [CMS], (based upon angles), [Mun]

(the most similar to the one given above – see below) and [Tu] (based upon

area/diameter).

2.3.2. The Main Result. While, by Proposition 2.20, we could have em-

ployed any of the equivalent definitions of fatness, the computations in the

proposition below are performed for

ϕ(σ) =
r(σ)

diam(σ)
;

(where the notations are as above).

Proposition 2.22 ([Mun], Lemma 9.3). Let f : σ → Rn be of class Ck.

Then, for δ, f0 > 0, there exists ε > 0, such that, for any τ < σ, such

that diam(τ) < ε and such that ϕ(τ) > ϕ0, the secant map Lτ is a δ-

approximation of f |τ .

Proof We first show that (i) Fb(x) = f(b) +Df(b) · (x− b), where b is the

barycenter of σ, is a δ/2-approximation to f on a sufficient small neigbour-

hood of b; then we prove that (ii) if τ < σ satisfies the conditions from the
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statement of the theorem, then Lσ is a δ/2-approximation to Fb. This two

assertions suffice to prove the theorem.

Proof of (i) Immediate from the definition of Df . We impose the addi-

tional requirement ||f(x)−Fb(x)||/||x− b|| < δϕ0/4 , for ||x− b|| < ε, (Here

|| · || denotes the Euclidean norm.)

Before we proceed further we need the following result: Let L,F : τ → Rn

be linear maps, s.t. ||L(x)−F (x)|| < c ,∀x ∈ τ . Then, ||DL(x) ·u−DF (x) ·
u|| ≤ c/r(τ), ll u in the plane of τ , ||u|| = 1. (This follows immediately

from (i) - for details see [CMS], p. 91.)

Proof of (ii) Let v0, ..., vk be the vertices of τ , and let x ∈ τ, x =
∑

αivi.

Then, by the linearity of Ls and Fs it follows that Ls(x) =
∑

αiLs(vi) =
∑

αif(vi) and Fb(x) =
∑

αiFb(vi). Hence:

||Ls(x) − Fb(x)|| =
∣∣∣∣ ∑

αi
||f(x) − Fb(x)||

||x− b||
∣∣∣∣ ≤ max ||f(x) − Fb(x)|| .

But ||f(x) − Fb(x)|| < δ/2 and ||Ls(x) − Fb(x)|| < δ/2, for all ||x− b|| < ε.

Moreover, ||f(x) − Fb(x)||/||x− b|| < δϕ0/4, for all ||x− b|| < ε, and, since

ϕ0 ≤ r(τ)/diam(τ), it follows that:

||Ls(x) − Fb(x)|| < max ||vi − b||δϕ0/4 ≤ diam(τ)δϕ0/4 ≤ δ r(τ)/4 .

This concludes the proof of (ii), and, hence, of the proposition.

�

2.4. Smoothing of Manifolds. In this section we focus our attention on

the problem of smoothing of manifold. That is, approximating a manifold

of differentiability type Cr, r ≥ 0, by manifolds of type C∞. Of special

interest is the case where r = 0. Later, when posing our sampling theorem

we will make a use of this in two respects. One of them will be as a post-

processing step where, after reproducing a PL surface out of the samples,

we can smoothen it to get a smooth reproduced surface. Another aspect

in which smoothing is useful is as a pre-processing step, when we wish to

extend the sampling theorem to surfaces which are not necessarily smooth.

Smoothing will take place followed by sampling of the smoothed surface,

yielding a sampling for the non-smooth one as well. As a major reference to

this we use [Mun], Chap 4. Similar results can also be found in [HM] and

others.
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Remark 2.23. The question of smoothing of manifolds (and hence its so-

lution) is much less obvious when an additional requirement of “geometric”

approximation is added. s.a. as a “good” curvature (Gauss, mean, etc.)

convergence is also imposed. For the proof of this in the case of surfaces

refer to [BH].

2.4.1. Partition of Unity. Smoothing will be done while using a smoothing

convolution kernel. This kernel will be a C∞ function. Before introducing

this kernel we present the vary basic idea of partition of unity. At a first

glance it seems unrelated, but in fact this is the core of the smoothing

process.

Lemma 2.24. For every 0 < ǫ < 1 there exists a C∞ function ψ1 : R →
[0, 1] such that, ψ1 ≡ 0 for |x| ≥ 1 and ψ1 = 1 for |x| ≤ (1 − ǫ). Such a

function is called partition of unity.

Let cn(ǫ) be the ǫ cube around the origin in Rn (i.e. X ∈ Rn ; −ǫ ≤ xi ≤
ǫ ,∀i = 1, ..., n). We can use the above partition of unity in order to obtain

a non-negative C∞ function, ψ, on Rn such that ψ = 1 on cn(ǫ) and ψ ≡ 0

outside cn(1). Define ψ(x1, ..., xn) = ψ1(x1) · ψ1(x2) · · · ψ1(xn).

Remark 2.25. Let U be some open subset of Rn and let K ⊂ U be some

compact proper subset of U . Partition of unity enables us to define a non-

negative C∞ function which equals 1 on K, equals 0 outside U and is monoton-

ically decreasing as we approach ∂U . This powerful property will enable us

to build the desired smoothing kernel that will be used later.

2.4.2. Smoothing of Manifolds. We now introduce the main theorem regard-

ing smoothing of PL-manifolds.

Theorem 2.26 ([Mun]). Let M be a Cr manifold, 0 ≤ r < ∞, and f0 :

M → Rk a Cr embedding. Then, there exists a C∞ embedding f1 : M → Rk

which is a δ-approximation of f0.

The above theorem is a consequence of the following lemma concerning

smoothing of maps:

Lemma 2.27. [Mun] Let U be an open subset of Rm or Hm. Let A be

a compact subset of an open set V such that V ⊂ U . Let f0 : U → Rn
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be a Cr map, 0 ≤ r. Let δ be a positive number. Then there exists a map

f1 : U → Rn such that

(1) f1 is C∞ on A.

(2) f1 = f0 outside V .

(3) f1 is a δ-approximation of f0

(4) f1 is Cr-homotopic to f0 via a homotopy ft satisfying (2) and (3)

above.

Proof We may assume that V is compact and that U is open in Rn, (if U

is open Hn we can extend f0 in a neighborhood of the boundary ∂Hn). Let

W be an open set containing A such that W ⊂ V . Let ψ : Rm → R+ be a

C∞ map, such that ψ = 1 on A and ψ ≡ 0 outside W .

A

W

U

Figure 3. Partition of unity on A.

Define g = ψ · f , then g : Rm → Rn satisfying g = f on A and g ≡ 0

outside W . Inside A, g is of the same differentiability type as f whereas

outside W it is C∞.

Let ϕ : Rm → R be a C∞ function which is positive on int(cm(ǫ)) and

vanishes outside cm(ǫ). ǫ is some positive number yet to be defined. Further

assume that
∫

Rm ϕ = 1. Such a function can be obtained by, say, taking

a partition of unity, ϕ0, supported on some open subset of cm(ǫ) and then

factorizing it by
∫

Rm ϕ0. Such a function will be called a convolution kernel.

For x ∈ Rm, define

h(x) =

∫

cm(ǫ)
ϕ(y)g(x+ y)dy.

Choose ǫ so that
√
mǫ < d(W,Rm\V ). then h ≡ 0 outside V .
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Let

f1(x) = f0(x) · (1 − ψ(x)) + h(x).

Since ψ and h vanishes outside V conclusion (2) of the lemma is fulfilled.

Inside A we have f1(x) = h(x). Since

h =

∫

cm(ǫ)
ϕ(y)g(x+ y)dy =

∫

W+cm(ǫ)
ϕ(z − x)g(z)dz =

∫

Rm

ϕ(z − x)g(z)dz;

and ϕ is C∞, h is also C∞ inside W and in particular on A, thus fulfilling

conclusion (1).

By its definition f1 = f0 +(h−g), so we have to choose ǫ small enough so

that h is a δ-approximation to g. By the mean value theorem (h is actually

some weighted mean of g), we have :

hi(x) = gi(x+ yi);

∂hi

∂xj
=
∂gi(x+ yij)

∂xj
;

where yi and yij are points in cm(ǫ). We only have to take care that ǫ is so

small that

|gi(x) − gi(x′)| < δ;

and

| ∂g
i

∂xj
(x) − ∂gi

∂xj
(x′)| < δ;

for

|x− x′| < ǫ;

this completes part (3).

Finally, we construct the desired homotopy between f0 and f1. Before

doing so let us stress the meaning of having such a homotopy. It is, that we

can get from f0 to f1 by a sequence of continuous deformations.

Let α(t) be a monotonic C∞ function such that, α = 0 for 0 ≤ t ≤ 1�3

and α = 1 for 2�3 ≤ t ≤ 1.

Put

ft(x) = α(t)f1(x) + (1 − α(t))f0(x).

Then, outside V ft ≡ f0 and ft is a Cr homotopy between f0 and f1 satis-

fying,

|ft − f0| < δ,
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and whenever f0 is differentiable,

|ft − f0| < δ.

This completes the proof.

�

3. Fat Triangulation

3.1. Theorems. In this section we review, in chronological order, existence

theorems dealing with fat triangulations on manifolds. For detailed proofs

see the original papers.

Theorem 3.1 (Cairns, [Ca3]). Every compact C2 Riemannian manifold ad-

mits a fat triangulation.

Remark 3.2. For a somewhat more general result, the proof of which em-

ploys less elementary methods than the one we sketch below, and that does

not generalize to open manifolds, see [Ca1], [Ca2].

Theorem 3.3 (Peltonen, [Pe]). Every open (unbounded) C∞ Riemannian

manifold admits a fat triangulation.

Theorem 3.4 (Saucan, [S2]). Let Mn be an n-dimensional C1 Riemannian

manifold with boundary, having a finite number of compact boundary com-

ponents. Then, any uniformly fat triangulation of ∂Mn can be extended to

a fat triangulation of Mn.

Remark 3.5. Theorem above holds also when the compactness condition of

the boundary components is replaced by the condition that ∂Mn is endowed

with a fat triangulation T such that inf
σ ∈ T

diamσ > 0.

Corollary 3.6. Mn be as above admits a fat triangulation.

Corollary 3.7. Let Mn be an n-dimensional, n ≤ 4 (resp. n ≤ 3), PL

(resp. topological) connected manifold with boundary, having a finite number

of compact boundary components. Then, any fat triangulation of ∂Mn can

be extended to a fat triangulation of Mn.

3.2. Methods.
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3.2.1. Background. Let us establish first some notations: Let Mn denote an

n-dimensional complete Riemannian manifold, and let Mn be isometrically

embedded into Rν (“ν”-s existence is guaranteed by Nash’s Theorem (see,

e.g. [Pe], [Spi5]).

Let Bν(x, r) = {y ∈ Rν | deucl < r}; ∂Bν(x, r) = Sν−1(x, r). If x ∈Mn, let

σn(x, r) = Mn ∩ Bν(x, r), βn(x, r) = expx

(
Bn(0, r)

)
, where: expx denotes

the exponential map: expx : Tx(Mn) →Mn and where Bn(0, r) ⊂ Tx

(
Mn

)
,

Bn(0, r) = {y ∈ Rn | deucl(y, 0) < r}.

Remark 3.8. Neither of the following (homeomorphisms) is guaranteed:

(1) σn(x, r) ≃ Bn(0, r)

(2) βn(x, r) ≃ Bn(0, r).

Also, let us give the following definitions, which generalize in a straight-

forward manner the classical ones used for surfaces in R3:

Definition 3.9. (1) Sν−1(x, r) is tangent to Mn at x ∈ Mn iff there

exists Sn(x, r) ⊂ Sν−1(x, r), s.t. Tx(Sn(x, r)) ≡ Tx(Mn).

(2) Let l ⊂ Rν be a line, then l is secant to X ⊂Mn iff | l ∩X| ≥ 2.

Definition 3.10. (1) Sν−1(x, ρ) is an osculatory sphere at x ∈Mn iff:

(a) Sν−1(x, ρ) is tangential at x;

and

(b) Bn(x, ρ) ∩Mn = ∅.
(2) Let X ⊂Mn. Then

ω = ωX = sup{ρ > 0 |Sν−1(x, ρ) osculatory at any x ∈ X}

is called the maximal osculatory radius at X.

Remark 3.11. (1) There exists an osculatory sphere at any point of

Mn (see [Ca3] ).

(2) If X is compact, then ωX > 0.

3.3. The Classical Case. In the compact case the method is to produce

a point set A ⊆ Mn, that is maximal with respect to the following density

condition:

(3.1) d(a1, a2) ≥ η ,
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where

(3.2) η < ωM .

Remark 3.12. In this special case ωM > 0.

One makes use of the fact that for a compact manifold Mn we have

|A| < ℵ0, to construct the finite cell complex “cut out of M” by the ν-

dimensional Dirichlet complex, whose (closed) cells are given by:

(3.3) c̄k = c̄νk = {x ∈ Rν | deucl(ak, x) ≤ deucl(ai, x), ai ∈ A , ai 6= ak},

i.e. the (closed) cell complex {γ̄n
k }, where:

(3.4) {γ̄n
k } = γ̄k = c̄k ∩Mn

(see [Ca3], [Pe] (for details)).

M
2
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Figure 4. Dirichlet (Voronoi) cells – the compact surfaces case.
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Remark 3.13. A result equivalent to 3.1 is proven in [AB], using basically

the same method as Cairns’ original one. However, the proof given in [AB]

is more technical. Moreover, the seminal papers of Cairns are not referenced

wherein.

Remark 3.14. Voronoi cell partitioning is also employed in “classical” sam-

pling theory (see [SZ]).

3.4. Open Riemannian Manifolds. In adapting Cairns’ method to the

non-compact case, one has to allow for some (obviously-required) modifica-

tions. We present below the main steps of Peltonen’s proof:

The construction devised by Peltonen consists of two parts:

Part 1 This Proceeds in two steps:

Step A Comstruct an exhaustive set {Ei} of Mn, generated by the pair

(Ui, ηi), where:

(1) Ui is the relatively compact set Ei \ Ēi−1 and

(2) ηi is a number that controls the fatness of the simplices of the tri-

angulation of Ei , constructed in Part 2, such that it will not differ

to much on adjacent simplices, i.e.:

(i) The sequence (ηi)i≥1 descends to 0 ;

(ii) 2ηi ≥ ηi−1 .

The geometric feature that controls the sets Ei, Ui and the numbers ηi is

the maximal connectivity radius:

Definition 3.15. Let U ⊂ Mn, U 6= ∅, be a relatively compact set, and let

T =
⋃

x∈Ū σ(x, ωU ). κU = max{r |σn(x, r), connected for all s ≤ ωU , x ∈
T̄}, is called the maximal connectivity radius at U.

Lemma 3.16.

(3.5) ωU ≤
√

3

3
κU .

The maximal connectivity radius and the maximal osculatory radius are

interconnected by the following inequality:

Proof See Lemma 3.1, [Pe].

�

The numbers ηi are chosen such that they will satisfy the following con-

dition:
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Figure 5. Maximal connectivity radius at U .

ηi ≤
1

4
min
i≥1

{ωŪi−1
, ωŪi

, ωŪi+1
} .

We now proceed with

Step B

(1) Produce a maximal set A, |A| ≤ ℵ0, s.t. A ∩ Ui satisfies:

(i) a density condition, namely:

d(a, b) ≥ ηi/2 ,∀i ;

and

(ii) a “gluing” condition for Ui, Ui+1 , i.e. their intersection is large

enough.

Note that according to the density condition (i), the following

holds:

For any i and for any x ∈ Ūi, ∃a ∈ A s.t. d(x, a) ≤ ηi/2 .

(2) Prove that the Dirichlet complex {γ̄i} defined by the sets Ai is a

cell complex and every cell has a finite number of faces (so it can be

triangulated in a standard manner).

Part 2 Consider first the dual complex Γ, and prove that it is a Euclidian

simplicial complex with a “good” (i.e. proper) density. Project then Γ on

Mn (using the normal map). Finally, prove that the resulting complex Γ̃ can

be triangulated by fat simplices. Indeed, the fatness of any n-dimensional

simplex γ ∈ Γ̃, contained in the set Ui is given by the following bound:
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(3.6)
rγ
Rγ

≥ 1

25n+1

(n+ 2)
n+1

2

(n+ 1)n+1
.

Remark 3.17. In the course of Peltonen’s construction Mn is presumed

to be isometrically embedded in some RN1, where the existence of N1 is

guaranteed by Nash’s Theorem (see [Pe], [Spi5]).

3.5. Manifolds With Boundary of Low-Differentiability. The idea of

the proof of Theorem 3.5 is to build first two fat triangulations: T1 of a

product neighbourhood N of ∂Mn in Mn and T2 of intMn (its existence

follows from Peltonen’s result), and then to “mash” the two triangulations

into a new triangulation T , while retaining their fatness. While the mash-

ing procedure of the two triangulations is basically the one developed in the

original proof of Munkres’ theorem, the triangulation of T1 has been modi-

fied, in order to ensure the fatness of the simplices of T1. More precisely we

prove the following Theorem (see [S2]):

Theorem 3.18. Let Mn be a Cr Riemannian manifold with boundary, hav-

ing a finite number of compact boundary components. Then any fat Cr-

triangulation of ∂Mn can be extended to a Cr-triangulation T of Mn, 1 ≤
r ≤ ∞ , the restriction of which to a product neighbourhood K̃0 = ∂Mn × I0

of ∂Mn in Mn is fat.

In the general case we employ a method for fattening triangulations de-

veloped in [CMS]. The core of this methods resides in the following result:

Lemma 3.19. ([CMS], Lemma 6.3.) Let T1, T2 be two fat triangulations

of open sets U1, U2 ⊂ Rn, Br(0) ⊆ U1 ∩ U2, having common fatness ≥ ϕ0

and such that d1 = inf
σ1 ∈ T1

diamσ1 ≤ d2 = inf
σ2 ∈ T2

diamσ2. Then there exist ϕ∗
0-fat

triangulations T ′
1 , T ′

2 , ϕ∗
0 = ϕ∗

0(ϕ0), of open sets V1, V2 ⊆ Br(0), such that

(1) T ′
i

∣∣
Br−8d2

(0)
= Ti

∣∣
Br−8d2

(0)
, i = 1, 2 ;

(2) T ′
1 and T ′

2 agree near their common boundary.

Moreover:

(3) inf
σ′

1
∈ T ′

1

diamσ′1 ≤ 3d1/2, inf
σ′

2
∈ T ′

2

diamσ′2 ≤ d2 .

Remark 3.20. A more elementary, geometric approach in two and three

dimensions was developed in [S1].
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Remark 3.21. For the treatment of the same problem in the context of

Computational Geometry, see e.g [E], [PA].

Classical smoothing results are applied to derive Corollary 3.7 (see Section

2.2.3 and [Th]).

4. Sampling Theorems

4.1. Surfaces.

4.1.1. Smooth Surfaces.

Theorem 4.1. Let Σ be a connected, non-necessarily compact smooth sur-

face (i.e. of class Ck, k ≥ 2), with finitely many boundary components. Then,

there exists a sampling scheme of Σ, with a proper density D = D(p) =

D
(

1
k(p)

)
, where k(p) = max{|k1|, |k2|}, and k1, k2 are the principal curva-

tures of Σ, at the point p ∈ Σ.

Proof The existence of the sampling scheme follows immediately from Corol-

lary 3.6, where the sampling points are the vertices of the triangulation.

The fact that the density is a function solely of k = max{|k1|, |k2|} follows

from the proof of Theorem 3.3 and from the fact that the osculatory radius

ωγ(p) at a point p of a curve γ equals 1/kγ(p), where kγ(p) is the curva-

ture of γ at p ; hence that the maximal osculatory radius (of Σ) at p is:

ω(p) = max{|k1|, |k2|} = max{ 1
ω1
, 1

ω2
}. (Here ω1, ω2 denote the minimal,

respective maximal sectional osculatory radii at p.)

�

Remark 4.2. Since for unbounded surfaces it may well be that κ → ∞,

it follows that an infinite density of the sampling is possible. However, for

practical implementations, where such cases are excluded, we have the fol-

lowing corollary:

Corollary 4.3. Let Σ,D be as above. Assume that there exists k0 > 0, such

that k0 ≥ k(p), for all p ∈ Σ. Then there exists a sampling of Σ having

uniformly bounded density.

Proof The proof is deduced immediately from Theorem 4.1 above.

�
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Σ

∂1Σ ∂2Σ

̥℘1

℘2

Figure 6. A non-compact surface Σ, with two boundary

components ∂1Σ and ∂2Σ. Observe the cusps ℘1 and ℘2 and

the funnel ̥.

.

Corollary 4.4. In the following cases there exist k0 as in Corollary 4.3

above:

(1) Σ is compact.

(2) There exist H1, H2,K1,K2, such that H1 ≤ H(p) ≤ H2 and K1 ≤
K(p) ≤ K2, for any p ∈ Σ, where H,K denote the mean, respec-

tive Gauss curvature. (That is both mean and Gauss curvatures are

pinched.)

(3) The Willmore integrand W (p) = H2(p) − K(p) and K (or H) are

pinched.

Proof



SAMPLING AND RECONSTRUCTION OF SURFACES AND HIGHER DIMENSIONAL MANIFOLDS23

(1) It follows immediately from a compactness argument and from the

continuity of the principal curvature functions.

(2) Since K = k1k2, H = 1
2(k1 +k2), the bounds for K and H imply the

desired one for k.

(3) Reasoning analogous to that of (ii), applies in the case of W =
1
4(k1 − k2)

2.

This concludes the proof of the theorem.

�

Remark 4.5. Condition (iii) on W is not only compact, it has the addi-

tional advantage that the Willmore energy
∫
ΣWdA (where dA represents

the area element of Σ) is a conformal invariant of Σ. See [ASZ] for its

importance in quasi-conformal mappings and their applications to imaging.

4.1.2. Non-Smooth Surfaces. We begin by proposing the following defini-

tion:

Definition 4.6. Let Σ be a (connected) surface of class C0, and let Σδ be a

δ-approximation of Σ. A sampling of Σδ is called a δ-sampling of Σ.

Theorem 4.7. Let Σ be a connected, non-necessarily compact surface of

class C0. Then, for any δ > 0, there exists a δ-sampling of Σ, such that if

Σδ → Σ, then Dδ → D, where Dδ and D denote the densities of Σδ and Σ,

respectively.

Proof The proof is an immediate consequence of Theorem 3.5 and its proof

and the methods exposed in Section 2.4. We adopt the sampling of some

smooth δ-approximation of Σ.

�

Corollary 4.8. Let Σ be a C0 surface with finitely many points at which Σ

fails to be smooth. Then every δ-sampling of a smooth δ-approximation of

Σ is in fact, a sampling of Σ apart of finitely many small neighborhoods of

the points where Σ is not smooth.

Proof From Lemma 2.27 and theorem 2.26 we have that any such δ-approximation,

Σδ, coincides with Σ outside of finitely many such small neighborhoods.

�
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Σ

Σδ

εN

Figure 7. A neighbourhood Nε such that Σ ≡ Σδ outside Nε

.

Remark 4.9. Even in the case where Σδ ∈ C2, and curvature measures exist

for Σ (e.g. if Σ is a PL-surface), it does not follow that the curvature mea-

sures converge punctually to the curvatures of Σ (see [BH] and the discussion

in Section 2.3.1). However, if Σ is compact and with empty boundary, the

desired convergence property holds ([BH]).

4.1.3. Reconstruction. We use the secant map as defined in Definition 2.17

in order to reproduce a PL-surface as a δ-approximation for the sampled

surface. As said in the beginning of Section 2.3 we may now use smoothing

in order to obtain a C∞ approximation.

4.2. Higher Dimensional Manifolds. Theorem 4.1 and Corollary 4.3

have straightforward generalizations to any dimension:

Theorem 4.10. Let Σn, n ≥ 3 be a connected, not necessarily compact,

smooth manifold, with finitely many compact boundary components. Then,

there exists a sampling scheme of Σn, with a proper density D = D(p) =
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D
(

1
k(p)

)
, where k(p) = max{|k1|, ..., |k2n|}, and where k1, ..., k2n are the

principal (normal) curvatures of Σn, at the point p ∈ Σn.

Corollary 4.11. Let Σn,D be as above. If there exists k0 > 0, such that

k(p) ≤ k0, for all p ∈ Σn, then there exists a sampling of Σn of finite density

everywhere.

Some of the conclusions of Corollary 4.4 also generalize. In particular we

have:

Corollary 4.12. If Σn is compact, then there exists a sampling of Σn having

uniformly bounded density.

However, more geometric conditions, such as those given in Corollary 4.4

are hard to impose in higher dimension, hence the study of such precise

geometric constraints is left for further study.

5. Applications to Classical Sampling Theory

5.1. 1-Dimension: The Classical Shannon Sampling Theorem. Our

approach and formalism lend themselves to the derivation of a geometric

sampling theorem for 1-dimensional signals. We further show that band-

limited signals considered in the context of the classical Shannon-Whittaker

theorem require, indeed, a finite sampling.

Definition 5.1. Let S(t) be a C2 planar curve. Let ρ(S) be its maximal

absolute curvature. Without getting into the details of arc-length parameter-

izing one can think of the maximal absolute value of the second derivative as

a sampling rate criterion. We will call η(S) = ρ(S)�2 the curvature rate of

S.

Theorem 5.2. Let S is a C2 planar curve. Then it can be sampled in

sampling rate η(S) namely, the distance between each consecutive samples

is ≤ 1�η(S). If S satisfies the condition that ρ(S) is bounded, then the

required sampling rate is finite.

Corollary 5.3. If S(t) is a band-limited signal, then it necessitates a finite

sampling rate (in any finite time interval) according to η(S).
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ρ

Figure 8. Sampling of a C2 curve: the sampling rate is

η = 1/r, where r is the minimal radius of curvature.

Proof We view the signal‘s graph as a planar curve and use the theorem

above. Again, omitting some technicalities of re-parameterizing, the proof

amounts to showing that the second derivative of band-limited signals is

everywhere bounded.

A Taylor expansion of such signals is given for instance in [MH]. In

particular, for a band-limited signal S(t), we have by Shannon-Whittaker:

S(t) =

∞∑

−∞

S(tn)sinc(2W (t− tn)) ,

and it is shown that its p-th derivative is given by:

Sp(t) = (2W )p
∞∑

−∞

S(tn)(
d

dt
)psinc(2W (t− tn)) .

Calculations followed up by Marks and Hall ([MH]) also show that

(
d

dt
)psinc(t) =

∫ 1�2

−1�2
(2πif)pe2πifdf =

(−1)pp!

πtp+1
[sin(πt)cosp�2(πt)−cos(πt)sin(p−1)�2(πt)] ,

where,
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Time

Amplitude(f)

y = f(t)

f ''max

Figure 9. A band-limited signal y = f(t).

cosr(t) =

[r]∑

n=0

(−1)nt2n

(2n)!
.

sinr(t) =

[r]∑

n=0

(−1)nt2n+1

(2n+ 1)!
.

The above terms have the following asymptotic behavior from which the

boundedness of the second derivative (even for very large values of t), is

evident.

(
d

dt
)psinc(t) →

{
(−1)p�2πp(sinc(t)); p even

(−1)(p−1)�2πp( cos(πt)
πt

); p odd .

From the presentation above we conclude that a band-limited signal pos-

sesses a “geometric” sampling of finite rate.

�

Remark 5.4. An approximation approach was already employed for “clas-

sical” sampling theory – see [UZ].
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5.2. 2-Dimensions: Images. Perhaps the most direct application of the

sampling theorem for surfaces is to the field of images, via “inpainting” (see,

e.g. [SZ], p. 280). In this approach, images are viewed as parametrized

surfaces S = (u, v, f(u, v)), where (u, v) ∈ R – a rectangle of pixels, and

f(u, v) ∈ [0, 1] represents the shade of grey associated to the pixel (u, v).

Of course, if more attributes of the image are added, such as colors,

luminosity, etc., then a higher dimensional manifold is obtained, and we

may make again a recourse to the fitting sampling theorem.

In a completely analogous manner one can approach the problem of image

compression (see, e.g. [SZ], p. 280): here the samples represent the coarse

pixel set and the surface the fine pixel set.

6. Discussion

6.1. Sampling. More important, one honestly has to ask himself the fol-

lowing question: “What is a signal?”

If the answer to the question above is given in the classical context, i.e.

if a signal is viewed as an element f of L2(R), such that supp (f̂) ⊆ [−π, π],

where f̂ denotes the Fourier transform of f , then our result does not hold.

Indeed, we have the following counterexample:

Counterexample 6.1. There exist band limited signals (as above) f such

that:

(i) f ∈ L2(R), f ′′ ∈ L∞(R);

but

(ii) f ′′ is not bounded.

Therefore, our approach refers to a more “intuitive” or “blackboard” in-

terpretation of signals.

On the other hand, it is more broad, in the sense that it applies to any

PL curve in the plane, not only for graphs of function.

Remark 6.2. A result similar to ours (yet technically weaker) was recently

proved by G. Meenakshisundaram ([Mee]).

6.2. Simplex Fatness and Future Study. Since the fatness of the tri-

angulation of intMn depends, by Formula 3.6, only on the dimension n of

the given manifold, and since by Lemma 3.19, the fatness of the mash of
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the tringulations of ∂Mn and intMn is a function solely on the fatness of

the given triangulation (and hence upon the dimension n), it follows that a

lower bound for the fatness of any triangulations is achieved.

Remark 6.3. The existence of a lower bound for the fatness of the simplices

ensures the existence of lower bounds for the dilatation and distortion of

quasi-conformal and quasi-isometric representations of the manifolds (see

[ASZ], [S2]). Such representations are relevant in Medical Imaging (see

[ASZZ]).

However, since the bound given by Formula 3.6 is achieved via the specific

construction of [Pe], the following question arises naturally:

Question 1. Is the lower bound of Formula 3.6 the lowest possible?

The answer to the question above seems to be negative, since Peltonen’s

construction depends upon the specific isometric embedding employed.

More important, the diameters of the simplices obtained in our construc-

tion (i.e. the mesh of the triangulation) are a function of the curvature

radii, hence an extrinsic constraint, hence again strongly dependent upon

the embedding in higher dimensional Euclidean space. This fact immedi-

ately generates the following question:

Question 2. Does the Nash embedding technique impose any restrictions

upon the curvature radii?

Remark 6.4. For further problems related to the quality of the obtained

triangulation and its relevance to he theory of quasiregular mappings, see

[S3].

We conclude with the following remarks and suggestions for further study:

We have obtained in Corollary 4.4 week intrinsic condition for the ex-

istence of fat triangulation with mesh bounded from below. As already

noted, one would like to find such non-extrinsic (i.e. curvature restricting)

conditions (perhaps coupled with fitting topological constraints) in higher

dimension, as well. Indeed, in dimensions greater or equal three, even the

problem of deciding which curvature (sectional, Ricci, scalar) is most rele-

vant is a highly non-trivial problem, that we defer for further study.
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Another direction of study stems from the need, both in the classical

signal-processing context and in that of manifold sampling, for mashing and

sampling methods of geometrical objects that are not even PL, and hence

no smoothing techniques can be applied for them. In this general setting,

metric curvatures, represent, in our view, the most promising tool. Indeed,

research in this direction is currently undertaken.
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