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Abstract

Considering finite-support signals, it is shown that theaideampling process can be described by means of
an orthogonal projection within a Sobolev space. This priiation is shown to account for non-uniform and for
non-ideal sampling schemes as well. It further enables ondetive a minimax approximation scheme for an
arbitrary linear bounded functional while utilizing thenggled version of the signal as the only available data.
The paper extends and generalizes recent results derivetthdanfinite-support case, and proposes accordingly
applications suitable for the more practical situation aité-support signals (images) such as approximation of
representation coefficients, Fourier transform evaluagiod derivative calculations. The new approach offerhérrt
insight into the intertwining relationship between thelagaand the discrete domains, suggesting improved methods

for multi-dimensional signal processing applications.
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Sampling Finite-Support Sobolev

Signals and Images

. INTRODUCTION

Discrete implementation of continuous-domain operatiengidely used in signal and image processing applica-
tions. Such discrete schemes process the sampled versamarsfalog signal, and manipulating it to yield another
set of discrete data. The latter is assumed to provide arogippation of the continuous-domain operator acting
on the original analog signal. Examples of such cases iechutnerical implementation of differential operators,
combined spaces representation such as the Gabor and tsase&hemes, and classical filtering tasks.

Consider a signal representation scheme for which a siregleesentation coefficient is defined by &n()
inner product. In cases where the sampled version of a sigitlaé only available data, it is a common practice to
approximate this inner product by means of a Riemann type Jins type of approximation indeed converges,
but some regularity constraints are to be imposed on thénatigontinuous-domain functions [1]. Nevertheless,
this convergence has not been put in the context of signaéseptation schemes for which the analysis function
is analytically known a priori. Furthermore, uniform idessimpling is not the only relevant sampling scheme and
practical non-ideal acquisition devices may be considaedell. A mathematical framework for describing non-
ideal acquisition devices has been recently introduced32] awaiting to be incorporated in such an approximation
scheme.

The Riemann type sum is also evident in the discrete Fouaestorm (DFT). Having the sampled version of a
signal, the DFT provides a Riemann type sum approximatiohfe Fourier transform itself at certain frequencies.
However, an alternative approximation scheme is called vioth the emphasis on both the sampling process
characteristics (such as ideal, non-ideal) and the aoalistiknown Fourier kernels.

Interpolation is yet another way of overcoming the diffigubf having partial knowledge on the original signal.
In such an approach, the signal is assumed to lie within aefireetl shift-invariant space. In some spaces the
original continuous-domain signal can be fully recondiedcfrom its ideal samples [4], [5] and its representation
coefficients can be exactly calculated. This property isulse LTI systems where the input signal is projected onto
a shift-invariant space defined by the impulse responseitmcdwithin this setup the ideal samples of the output
signal can be utilized to reconstruct this projection [3pwéver, this is not necessarily the case for finite-support
signals and images, for which an alternative approach teoxppating representation coefficients is required.

Discrete-domain data can also be manipulated by a digitaf.fiCurrent filter design methods rely on frequency



domain characteristics, e.g., identifying the pass- aog-baind frequencies and determine tolerance parametgrs an
filter order [6]. Within the context of continuous vs. disersignal processing, a digital filter should approximaee th
continuous-domain output signal rather than the frequeasponse of the analog filter alone; it is not guaranteed
that similar frequency characteristics would yield simiatput signals. By analyzing the overall effect induced by
the sampling process, an alternative design scheme mayrhedie

Inverse problems are of interest as well. A blurred imagehés result of convolving the original continuous-
space image with a certain kernel. The ensued discreteovecsirresponds then to the sampled version of the
output signal. Similar to the digital filter design situatjahis sampled version can be processed to approximate
the sampled version of the original image itself. This alétive deconvolution approach should consider the nature
of the sampling process as well as the continuous-domaivobaion operation.

Another continuous vs. discrete issue is concerned witlergifitial operators. Numerically solving differential
equations involves discretization. For instance, a commay for approximating the continuous-domain derivative
is the backward (forward) difference method. Here also, diserete approximation scheme does not take the
sampling process into account and an alternative schemémagquired instead. This observation is also relevant
to the direct implementation of differential operators eoamly used in image processing algorithms [7].

This work is motivated by image processing applicationsAbich combined space representation schemes have
been widely used. For instance, the Gabor, wavelet and edetdransforms were found to be adequate for obtaining
a sparse representation [8]-[11]. Sparsification in tura gl@own to be useful for super resolution algorithms, blind
source separation and deconvolution, as well as for enbaged image compression applications to name a few
[12]-[17]. Combined space representation schemes aredtguied for feature extraction and similarity assessments
[8], [18], [19]. Also, the DFT, DCT and other related transfs such as the polar Fourier transform [20] play an
important role in image processing algorithms as do padiféérential equations [7], [21], [22].

The common denominator of all these algebraic operatiotiseisnner product. The key point here is that any
linear bounded functional in a certain Hilbert space can é&s&cdbed by means of an inner product due to Riesz
representation theorem [23]. The main goal of this papeo igwestigate the effect of the sampling process on
such functionals within the context of images. In particutaiggesting alternative image processing schemes that
utilize the properties of the sampling scheme (ideal andideal, uniform and non-uniform) while considering a
robust minimax approximation approach. A similar approaels considered in [24] for the infinite support signals.
This work extends and generalizes those results to finjpat signals and images, giving rise to more practical
applications.

The paper is organized as follows. We begin with mathemlgpicgiminaries, then describe the ideal sampling

process by means of set transforms while focusing on finigpau signals. We consider generalized (non-ideal)



sampling and further show that the one-dimensional schemeiurally adopted to images. In Section IV we
establish intertwining relations of inner products defiroeer several Hilbert spaces. In particular, we state some
results connecting.(£2), ¢2 and Sobolev inner products. We then show that the derivateulation and the
Fourier transform evaluation can be described by means @t aransform as well. In Section V we present a
minimax approximation scheme and analyze its propertieterféial applications such as approximating the Fourier
transform or the derivative operation, as well as approsimgathe output of an LTI system are discussed in detail.

2D examples are given in Section VI followed by conclusians$ection VII.

Il. MATHEMATICAL PRELIMINARIES

Let H be a Hilbert space and Iét,,} € H be a frame for
S = Span {s,(t)} C H. 1)
Then, the set transforrfi is given by

S:ly — S (2)
N-1

Sc = Z Cn * Sn,
n=0

with its adjoint being

S* i H —ly (3)
N-1

S*x = Z (T, 8n)3 - €n-
n=0

The set{e,,} denotes the standard basisfef An orthogonal projection onto a closed subspaces denoted by
P4 and the spacel' is the orthogonal complement of in H. The Moore-Penrose pseudo inverse of a bounded
transformation is denoted byfasuperscript. An open interval on the real line or on the réamh@is denoted by.

We will assume with no loss of generality tHat= (—7, 7) or Q = (—m, 7) x (—m, 7) for the one-dimensional case
or for images, respectivelyZ}(2) denotes the Sobolev space of orgej25]. This special Hilbert space consists

of all functions satisfyingz, (1, ... z®) € Ly(Q) wherez®) is thep-th derivative ofz. The corresponding inner

product is
p —_—
@9 i) = 2o /Qw(”) (t) -y (t) dt. 4)
n=0
Alternatively, one can express this inner product withia frequency domain:
1 [ —
(@, 9) iz (@) :%/ X(w)Y(w) - (1+w?+ - +w?)dw. (5)



The Fourier transform operator (continuous or discretejeisoted byF and convolution is denoted by,

[1l. IDEAL SAMPLING AS A SET TRANSFORM

We consider first the ideal sampling scheme and interprest #raorthogonal projection within a Sobolev space.
This restriction to Sobolev rather than 1o (2) spaces is two-fold: recalling the standarg(2) norm, identical
functions might yield different sampling sequence giviiggto a one-to-many mapping; also, the distinct sampling
points have a Lebesgue measure of zero thus introducing bawmded transformation.

The infinite-support case was recently investigated in 4] in [26]. It was shown there that the ideal sampling
process can be described by means of a proper set transfpauifi€ally, the sampled value of a continuous-time

signalz € H,(f2) can be described by the inner-product operation

l’(to) = <l’, Sn>H2(Q) ’ (6)

where s,,(t) = e~ *~*%l/2. In the current work we extend this result and charactefiee appropriate sampling

function for the finite-support case.

A. Finite-support signals

Consider Sobolev signals having a finite open supforthe following lemma enables one to interpret the ideal
sampling process by means of inner product calculationsSelzolev space. The importance of this result will be
evident later on, when continuous-domain operations véllapproximated by sampled data.

Lemma 1:Let x € Hy(2) whereQ) = (—m, 7). Givent, € 2, the sampled value(t) is given by

z(to) = (T, Sto) my() » (7)
where
s(t) = =+ L. eint,
21 n 1+7’L2 (8)

s, (t) = s(t—to).
Proof: z is a Sobolev function having a finite support and can be egprbby means of a Fourier series

x(t) = Z an - ™, 9)

wherea € /5. In particular, for anyty € Q the equation

x(ty) = Z ap - eI, (10)



holds point wise. The sampled value ofis a linear bounded functional and by Riesz representatiearem can
be described by means of an inner product

x(to) = <x73to>H2(Q) ) (11)

wheres;, € H2(Q2) is unique. Lets;, be described by the Fourier coefficierttss /5. Then, the latter equation
yields

n

Zan-ej"tO = /a:-?todt+/:£"?todt
Q Q

n,m Q

= 2772an5n(1 +n?), (12)
where the equation holds for amyec /. It follows then that
1 1 ;
- . . ,—Jnto
" T2 e . (13)

L]
This sampling function i$2-periodic (Figure 1). Given a set of sampling poifits }, the corresponding sampling

functions{s, (t)} € H2(Q2) give rise to a set transforrf.
Corollary 1: If the sampling functions constitute a frame 8re H,(2), then S corresponds to an orthogonal

projection ontoS. Namely, Psz = S(S*S)fc wherec = S*2 are the ideal samples of

It is noted that the frame condition is met whenever the nurobsampling points is finite as is the case in image

processing applications. Also, no restrictions are mad@mathe sampling grid itself (uniform or non-uniform).
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Fig. 1. Givento, the sampling functiors,, satisfiesz(to) = (@, st,) (). Shown are sampling functions fa = —2,0,2 where
Q= (—m,m).



This interpretation of the ideal sampling scheme as an gtthal projection in a certain Hilbert space is significant
in the sense of uniting the continuous-domain signal withdlscrete-domain. In this regard, the Sobolev functions
are dense i, (€2). Thus, restricting the ideal sampling operator to such tions still maintains generality of the
results. It is also noted that non-uniform ideal samplingdequately described by this formulation and the frame

condition for such a scheme remains a necessary conditiosyfahesizingPs.

B. Generalized sampling

Sampling by non-ideal acquisition devices has also beerinpaitthe context of set transforms [2], [27]-[32].
That is, the sample sequence is the result of conseciti®) inner products where the sampling functions are
known a priori. It is shown here that sudh(£2) sampling schemes can alternatively be described by means of
Sobolev inner products. As in the infinite case [26], thiscdigsion will be found useful for solving approximation
problems while imposing a smoothness constraint on theénaligontinuous-domain signal. L€%,,(¢)} be a set
of sampling functions in_(£2) constituting a frame for their span. The generalized sasnple € L,((2) are then
given by

cln] = (z,sn) 1, - (14)
Assuming that: € H5(2), a proper description of the sampling process would then[de= (x, §n>H2(Q), where
$n € Hy(Q) is dependent om,, € Ly(€2) and onf2. In particular (see Section IV-A)

. 1 1
8n(t) = sn(t) * %; 1+n2

e, (15)

where the convolution operation is cyclic. These Sobolew@ing functions give rise to a set transfosn ¢, — S
whereS € H(2). However, it is not guaranteed that the frame conditionilsraet in Hy(€). In fact, it can be
proved that while the upper frame bound{af,} in L2(Q2) is a suitable choice fofs, } in Ha(£2), the lower frame

bound might equal zero [33]. This zero bound, in turn, doesaflow the reconstruction oPzz in Hy(92) [34].

C. Extension to images
The one-dimensional Sobolev space extends to the two-diorea case in the following manner. Let =
(a1, a2) be a tuple of nonnegative integers whési¢ = a; + ao. Also, let

g o

D% = . .
0¢ 0¢

(16)

We consider a two-dimensional Sobolev space of ogder 1 defined over a finite open suppdt= (—m,7) X

(—m, ). This space consists of function$(;, (2) that satisfyD“z € Ly(2) for all possible«x satisfying|a| < p.



The corresponding inner product is given by [25]
@Yoy = D (D%, D%, q) 17)
{a: 0< || <p}

For example, the inner product éf5(2) (i.e. p = 1) is given by

e = (.3) +<8_~”” @> +<@ @>
) TR ILD TN GG O/ 1y0) \OG 0Ca/ pye)

It follows that the sampling function for such a case is gign

1 1
5(C1,05 €205 €1, C2) = —5 > TrnZtm?

L oJn(Ci—Ci0) . ,gm(¢2—C2,0
=i o eInl ). edm( ),
where((1 0, (2,0) is the sampling point. It is pointed out that this samplingdiion (Figure 2) cannot be separated
into a multiplication of two one-dimensional functions.sél there is no restriction on the sampling grid. If the
sampling functions constitute a frame for their span, tRem can be analytically synthesized. This latter requirement
is met whenever the number of samples is finite. Also, maydly [35], it is noted that different sampling schemes,

such as ideal and non-ideal schemes, can be incorporated sinhgle unifying set transform.

D. Extension to Sobolev spaces of higher orders

The sampling function of Lemma 1 considers Sobolev funstiohorderp = 1. Nevertheless, for some appli-
cations the continuous-domain model is known a priori tostginof smoother functions. This model corresponds
to Sobolev functions of ordey > 1. Considering such cases, the sampling function for thedsmensinal case
satisfies

el (18)

where

lim s(t) = i (19)

p—00 2T

Figure 3 depicts sampling functions for several orders.

IV. INTERTWINING RELATIONS OF INNER PRODUCTS

The Ly(£2) inner product plays a key role in combined spaces reprets@mtfor both one-dimensional signals
and images [8], [10], [11], [18], [36]-[42]. It is shown hettgat such inner products can be expressed by means of
Sobolev inner products. Also, Sobolev inner products amvshto be adequate for describing the derivative and

the Fourier transform operations.
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(b)

Fig. 2. Given(¢1,0,¢2,0), the two-dimensional sampling functiof(¢i,o, ¢2,0; (1, (2) satisfiesz (¢1,0,{2,0) = (a:,s)Hz(m. Shown is the
function itself (a) and the image of its logarithm (b) f@fi,0, ¢2,0) = (0,0).
A. L, {5 and Sobolev inner products

The following lemma establishes an intertwining relatitipsbetweenl,(2) and H,(2) inner products.

Lemma 2:Let y € Ly(R2). Then,Vz € Ha(2)

(z, y>L2(Q) = (z,y* S>H2(Q) ) (20)

wherey * s is a continuous-domain periodic convolution and given in Lemma 1.
Proof: LetI: Hs(Q2) — L2(Q2), Iz = z. This operator is bounded and has an adjoint. GiyenL,(12), the
equation

(@9 L, = (@Y gy (21)



holds for anyz € H2(Q2). Leta, b, c € {5 be the Fourier coefficients af, y and Iy, respectively. Then, the equality
21 anbp =21 Y anty - (1+n?) (22)

holds for anya, yielding ¢,, = b, /1 + n?. This relation can then be shown to coincide with the comtirsidomain
periodic convolutiony = s. O
This intertwining relationship between inner productstdes one to interpret ank» (€2) linear bounded functional
by means of anff,(©2) functional. Recalling that the ideal sampling process wasve to coincide with a proper
set transform inH»(2), we have established a framework connecting continuousa@tooperations with discrete-
domain calculations. This connection is further invegtigan Section V where approximation issues are addressed.
Another type of intertwining relation considers thginner product as reflected by the adjoint of the sampling
set transform. Letr € H, and letc = S*x be its sampled version. Her® : /o — S C H is a set transform
describing the sampling process (ideal or non-ideal). There ¢z (c,a), = (x,Sa),,. Furthermore, by setting
to be the sampled version of an arbitrary analysis functibe/; inner product resembles a Riemann type sum.
As a result, the equivalence of this inner product with theeinproduct of{ provides a quantitative measure for
comparing the Riemann type sum approximation scheme wighottmer scheme, in particular with the minimax

scheme. This issue is addressed in Section V too.

B. Derivative evaluation

We focus on calculating the derivative of a signal at a cduletaet of points. In particular, we wish to describe
the ideal uniform sampled version of the derivative by meahsa set transform. For introducing a well posed

problem, one must guarantee that this sampled version warila member ofs. Thus, we restrict the admissible
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Fig. 3. Similar to Figure 1. Shown are sampling functionsresponding to several Sobolev orders- 1,2,10. HereQ = (—m, ).
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signals to be Sobolev functions of ordgr= 2. The following lemma introduces a new way to calculate the
derivative value of a Sobolev signal at a given point.

Lemma 3:Let = € HY(Q) wherep = 2, Q = (—x,w), and letty € Q. Then,z(M)(t,) is given by

x(l)(to) = <x7wto>H2(Q) > (23)

where

1 n
t :_E S
wolt) = 5 L T

Proof: Letz = 3, a, - /™, a € {3, where equality holds point-wise. The sampled value:@f is then

ceItt) e Q. (24)

given by
x(l)(to) = Zjn cay, - e, (25)

The proof then is similar to the proof of Lemma 1 while utitigithe appropriate Sobolev inner product fo« 2.
[
The set transform interpretation arises then from evaigatie derivative function at a countable set of points.

Practically, using digital means, this last result can bedusr calculating the derivative function of a signal. Sani
derivations extend this formulation to images as was dorfgeiction 11I-C. Also, this formulation can be naturally
adopted when extracting values of higher derivative ordeigure 4 depictsu,, (¢) for the finite-support case for
several sampling points. It is also noted here that thigréfitiating functional resembles other differentiatioasks
that are used for edge detection in image processing afiphisa[43], [44], and in this regard this very function

(24) provides the exact masking function to be approximatsdshown in Section V.

02 |

0.1

0.05-

-0.05

Fig. 4. Givento, the analysis functionu;, satisfiesz™ (t9) = (m,wt())Hg(m. Shown are the analysis functions fr = —2,0,2. The
order of the Sobolev space js= 2 andQ = (—, 7).
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C. Fourier transform evaluation

We focus on describing Fourier transform values by meanssaft aransform. Alternatively, we find an analysis
functionw,, (t) € H for which X (wy) = (x, w., ). It SO happens that such a description is not possibld §0f2)
space in the case &2 = R. This is due to the fact thaX (wy) is not a bounded functional; one may consider
a scaled and normalized version of th&wc(-) function and observe that the DC componéfitw = 0) may be
arbitrarily large although thé.;(2) norm is maintained fixed. Nevertheless, finite support dggaee adequate for
a bounded set transform description.

First, recall that the Fourier transform ofe Lo(12) is given by

X(w) = /Q (t) - e dt. (26)

HereQ = (—m, 7). A sample value of the Fourier transform has an inner proghetpretation given by

X(wp) = <x(t), eﬂ‘wot>L2(m : (27)

Following Lemma 2, thisLy(€2) inner product can be represented by means of a Sobolev inpdugt. The
following lemma describes the Fourier transform value oigaa at an arbitrary frequency by means of a Sobolev
inner product.

Lemma 4:Letz € Ho(2) whereQ2 = (—m, ), and letX (wg) be the value of its Fourier transform at an arbitrary

frequencywy. Then,

X(wo) = <$7 wwo>H2(Q) > (28)
where
1 sin[m(wo —n)]
oo (1) = . Lelnt, 29
'LU()() ;1_1_”2 W(WO—’I’L) (& ( )
Proof: This result stems from Lemma 2. 0

Note that the analysis function (29) reduces to a single baitnwhenw, € Z. Figure 5 depicts the real and
imaginary parts ofu,, (t) for wy = 10.5,80.5. The set transform characterization arises from evalgatie Fourier

transform at a countable set of frequencies.

V. MINIMAX APPROXIMATION

This description in a Sobolev space of the sampling procedsadd linear functionals allows for a minimax
approximation scheme based on the sampled version of alsBpth ideal and non-ideal sampling schemes are
naturally considered. This minimax approach provides #rr@tive approximation scheme to currently available

methods such as the Riemann type sum and other interpolatgmithms. For instance, the discrete Fourier
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Fig. 5. Givenwy, the analysis functionu.,, satisfy X (wo) = (z,ww,) 5 Here X (w) is the Fourier transform of € H>(£2). Shown

are the real (solid) and imaginary (dashed) parts of theyaisafunction ?orwo = 10.5 (a) and50.5 (b).

transform (DFT) provides a Riemann type approximation ef Bourier transform of a continuous-domain signal.
Nevertheless, we show here that a superior minimax approaall be used instead.

Let H be a Hilbert space and I8 be a set transform corresponding to a set of analysis fur{io, }. It is
assumed that this set of functions constitutes a frame sogspan/V C H. The result of analyzing a signale H
is denoted by thé, sequence = W*z. The question raised then concerns the best possible apton scheme
for d while having the samples of the original continuous-donsagmal as the only available data. We consider a
minimax criterion for approximating the sequentevhile using the/, standard metric. This problem was recently
addressed in [26]. Let = S*x be the known samples aof € H. Then, the solution of

argmln max Hd—d
d ollzlly<L

. (30)

is given by

d=w*5(5*9)tc (31)
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This minimax solution corresponds to analyzing the ortag@rojection ofz onto S, namelyd = W* Psx. Also,
this solution is element-wise optimal. Approximatidf:| depends on the single analysis functiop alone (Figure

6). Alternatively, the minimax solution is optimal in afy sense® =1,2,...).

X

gr-———FF-—-———-

5

P

S

Fig. 6. Vector interpretation for the minimax solution. elin] = (z,w,) is approximated byl, = (Psz, Pswn).

It can be shown that if the original signal is a Sobolev fumittithe minimax solution for such a case corresponds
to a proper oblique projection [26]. Although the soluticare different, both are independent of the constant

However, this upper bound determines the approximatioor.elitrholds that
x = Psx + Psix, (32)
where Psz is analytically known. It then follows that

| Pssz|ly = /L? — || Psz|)3,. (33)

This last expression implies that even thoufhs arbitrarily chosen, it must satisf§ > ||Psz|. We wish to

identify the worst case signal that would yield the maximuosgible approximation error given by
en = |[d—d|, = IW"Ps.zl,, (34)

Clearly this worst case signal satisfies (32). Thus it resx&nidentify the exact expression féis. 2 that yields

the maximum possible approximation erkgf. We recall the property of a Bessel sequence [45]

2
S| v | < B el (35)

and state the following result.

Theorem 1:Let d € ¢, satisfy (31), and le{ Ps.w,} be a Bessel sequence for its span. Then,
2 2 2
ez, < B- (L~ ||Psall3,) (36)

where B is the corresponding Bessel bound.
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Proof: Notice thate,,[n] = (Ps.wy,, Ps.z). Applying the Bessel bound

|la—d |W*Ps.z,,
= Z ‘(PSJ.(L’, P5¢wn>’2

B ||Psx|

2
Lo

IN

IA

B (L* — ||Psz[3,) - (37)

[
If {Ps.w,} is a finite set of linearly independent functions, thBris equal to the maximum eigenvalue of their
corresponding Gram matrix. If this set is not a Bessel secgithren the approximation error can be made arbitrarily
large.
The minimax solution of (31) can be compared with the Riemtype sum method [26]. For example, let
¢ = S*z be the ideal uniform samples ofe H»(Q2) and letb = S*w be the samples of a single analysis function

w € Lo(2) (assuming thab € ¢5). Then, the Riemann sum approximation is given by

Ty cn]-bn] = (Psz,T - Sb)y,q)- (38)
Denotinge, to be the Riemann sum approximation error, it follows that

e = |(Psix,Psi) + (Psx, Psw — T - Sb)| (39)

< |Pseall - |Pscwl + || Psz|| - | Psw — T"- Sbl|,

where all inner products and norms areHn(2) andw = w * s. The sampling functiors is given by Lemma 1.
Finally,

max e? = maxe?, + C, (40)

whereC = ||Psz||-||Psw — T - Sb|| is a known constant, providing a measure of comparison leetilee Riemann
type sum and the minimax approximation schemes. It is noged that the element-wise property of the minimax
solution still holds forjmax e? — max e, |, and comparing the two approximation schemes is also pessiben
introducing several analysis functions.

Having established a minimax solution and analyzed itsgper&ince, it is now possible to apply this approxi-
mation scheme to an arbitrary linear bounded functionaliesngoy the next theorem.

Theorem 2:Let z € Hy(f2) be known by its ideal samplasc CV and letd = (x,w) be a linear bounded
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functional described by € H»(Q2). Then, the minimax approximation afis given by
d=c-G'-q", (41)

where

Gs[m,n| = (sm, sn>H2(Q) 42)

is the Gram matrix of the proper sampling functiops,} (as in Lemma 1) and € CV are the ideal samples of
w.

Proof: The finite set of sampling function§s,} are linearly independent and have a biorthogonal set.
The sequence corresponds to the representation coefficientdaf by this biorthogonal set, whereds; ! - ¢*
corresponds to the representation coefficientBgb by the sampling functions themselves. Following the minima

solution of (31)

~

d = (Psz,w)p,q =c" Gt

O
This theorem could be useful for numerical implementatidaving the sampled version of a signal, it states
that any linear bounded functional can be approximated byixnealculations. No continuous-domain operations
are further required. Possible applications include tHeutation of representation coefficients, the approxiorati
of Fourier transform values and the approximation of thevdéve values. The main task is to identify the proper
analysis functions to be applied. We are focusing on two iptesspplications. The first is a minimax scheme
for approximating the Fourier transform value at a finite gfefrequencies. The second application addresses the

problem of approximating sampled values of the output of @&h(LD) or an LSI (2D) system.

A. Fourier transform

We assume that € Hz(2), whereQ2 = (—x, 7). The uniform ideal sampling scheme is given by S*z. In

particular,

S N = SCHy(Q)

N—-1
2

Se = Z c[n] - s(t —nT). (43)

N—-1
2

n=—

Here N corresponds to the number of available samples, assumeel &m lvdd numbex(¢) is given by Lemma

1. Having this sampled version of a signal, it is a common tiwado apply a DFT for approximating the Fourier
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transform of the original signal:

XP = Y dn] e (a4)

The N values of the DFT serve then as a Riemann type sum approrimafi the Fourier transform (up to

multiplication by T) at equally spaced frequencies

27 N -1
=—Fk |kl < —-. 45
Wi NT’H_ 5 (45)

This approximation is by no means optimal in the minimax senslizing the proposed minimax solution one can
apply the following corollary.

Corollary 2: The minimax approximation of = X (w) is given by the sampled version of (29).

This corollary together with Theorem 2 provides an altemeamethod, other than the DFT, for approximating
sampled values of the Fourier transform of a continuousailorsignal. It extends naturally to images and can be
adopted for other image-related transforms as wall [R0], [44], [46]. The derivative functional is applicabhls
well.

Corollary 3: The minimax approximation fod = (1) (ty) is given by the sampled version of (24).

Here also, the two-dimensional case is readily extendedhéydrmulation of Section IlII-C.

B. Continuous-domain filtering

Let h(—t) € Ly be the impulse response of a continuous-time LTI system and £ L»(£2) be an arbitrary

input signal. Then, the sample value of the output signal-att,, is given by

d[n] = {z+h} (tn) = (@, hn) 1,0 » (46)

whereh,,(t) = h(t —t,). The aim is to find a minimax approximation scheme dofThat is, approximating the
sampled output of a continuous-time filter while having tampled version of the input signal as the only available
data.

Let S C Ly(Q) (i.e., 2 = R) be a shift-invariant space described by a shift-invarigeberalized sampling
schemeS : /; — S. A minimax approximation scheme for such a case was coresidier [30]. In such a setting
the minimax solutioni coincides with a digital filteiy whered = ¢ % g. The Fourier transform of is shown to be
comprised of the autocorrelation and cross-correlatioictions of the generating sampling function itself drd).

A similar expression was then derived for the uniform ideahpling scheme too [26]. It involved an interpretation
of the sampling and analysis process in a proper Sobolevesphde applying the minimax scheme of (31) in

this very space. Nevertheless, this digital filter intettien does not hold for the finite-support case and another
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approximation scheme is required, as given by the followdagpllary.

Corollary 4: The minimax approximation of [n] = {z * h} (¢,,) is given by the sampled version of
wy, (t) = [A(t — tn) - xa(t)] = s(t), (47)

wherex(2) is the characteristic function and the convolution operats cyclic.
All of the results above can be extended to images based din®sd&C and on the definition of the open support
Q. This open support has no restrictions and the choic® ef (—m,7) x (—m,7) was chosen for convenience

purposes only.

VI. EXAMPLES
A. Derivative Approximation

Suppose we are given the image of Figure 7, and wish to appedgi the derivative)/d¢; at the origin.
Calculating the derivative at the origin corresponds toniiiging a proper image (Figure 8) for performing a
Sobolev inner product wittPsz. The latter is the orthogonal projection of the original gasonto the sampling
space, and it is determined by all the sampled values of tlagénThis inner product can also be described by
means of a discrete scheme utilizing the sampled versioheobtiginal image, the sampled version of Figure 8,

and a proper Gram matrix (Theorem 2). Assuming ideal sampthis Gram matrix is explicitly given by

1 (G —Cum) . pim(Can—Cam)

1
G(n’m)_ﬁ%urn%rm? ’

where((1 n, C2,n) and((1,m, (2,m) are any possible pair of sampling points. Given the sampéesian of the image
of Figure 7, there are many continuous-space images thadspmmd to such a sampled version. Nevertheless, they

all share the same orthogonal projection onto the sampliiages (Figure 9).

B. Gradient Approximation

We utilize the minimax approach for approximating gradiealues of an image given by its samples. The 2D
derivative functional along the horizontal direction wagwn to correspond with Figure 8. The proper Gram matrix

was given in (48). Choosing a masking kerneBof 3, one can determine the minimax kernel by applying Theorem

2
—a By
Gld"=| -5 0o 41|, (48)
- —f «

wherea = 0.36, 5 = 6/60 and~y = 0.60.
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Given an image, the gradient value at a point is given by thiad@prean sum of the horizontal and vertical
derivative values. Those values can be calculated by timelatd backward difference model, or alternatively by the
minimax approach presented here. Consider the image ofé~ifi(a), the minimax approximation of the gradient
value is given in Figure 10(b) whereas the backward diffeeemodel results in Figure 10(c). Although similar,
those two figures are slightly different as evident from Feyd0(d). This difference is mainly due to different
localization of the gradient value; the minimax approachrapimates the derivative at the very sampling point
whereas other methods do not. Another source of differenaiié to different approximation values; and in this
regard the minimax approach guarantees the minimizatidgheomaximum possible error induced by the sampling

process whereas other method do not.

VIlI. CONCLUSIONS

Sampling finite-support Sobolev signals has been shownitwice with an orthogonal projection within proper
Sobolev spaces. Since these signals are dengg(in), restricting the input signal to belong to a Sobolev space
still maintains generality of the results. Both ideal andhideal sampling schemes have been adopted by this
interpretation. In cases where the sampling scheme isitledcby L, (2) inner products (generalized sampling),
the sampling process was expressed by yet another Sobaoler pnoduct.

A minimax approach was then applied to approximating camtirs-domain functionals while having the sampled
version of the input signal as the only available data. Sundal bounded functionals can be also described by
proper set transforms in a Sobolev space. Practical apipisainclude representation coefficients approximation,
Fourier transform evaluation and derivative calculatiensften used in image processing applications. Such a

Sobolev description for both the sampling process and tmtiramous-domain functionals gives rise to a closed

Fig. 7. A continuous-space image and a sampling grid denogedmarks.



19

Fig. 8. A two-dimensional function that corresponds to tleeivétive value of a continuous-space image along the biotét direction at
the origin. The derivative value is given by a Sobolev innerdpict expression.

[ 4

Fig. 9. Shown is the orthogonal projection of the image inuFég7 onto the sampling space. Only seven samples were tat@adcount
S0 as to emphasize that this orthogonal projection is analigt known.

form minimax solution. This solution exploits the orthogbprojection induced by the sampling process and it can
be implemented by matrix operations (i.e., masking) al&ueh an approach can be incorporated into many multi-
dimensional signal processing algorithms where contistamain functionals are desired although a sampled

version of the signal is the only available data.
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(b) Gradient values calculated by the minimax approach.
Shown are the values raised by 0.4.

(c) Gradient values calculated by the backward difference (d) A comparison: minimax approach vs. backward differ-
model. Shown are the values raised by 0.4. ence model. Shown is the difference image. The values
raised by 0.4.

Fig. 10. Gradient approximation: minimax approach vs. ek difference method.
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