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Abstract

Considering finite-support signals, it is shown that the ideal sampling process can be described by means of

an orthogonal projection within a Sobolev space. This interpretation is shown to account for non-uniform and for

non-ideal sampling schemes as well. It further enables one to derive a minimax approximation scheme for an

arbitrary linear bounded functional while utilizing the sampled version of the signal as the only available data.

The paper extends and generalizes recent results derived for the infinite-support case, and proposes accordingly

applications suitable for the more practical situation of finite-support signals (images) such as approximation of

representation coefficients, Fourier transform evaluation and derivative calculations. The new approach offers further

insight into the intertwining relationship between the analog and the discrete domains, suggesting improved methods

for multi-dimensional signal processing applications.
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Sampling Finite-Support Sobolev
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I. INTRODUCTION

Discrete implementation of continuous-domain operationsis widely used in signal and image processing applica-

tions. Such discrete schemes process the sampled version ofan analog signal, and manipulating it to yield another

set of discrete data. The latter is assumed to provide an approximation of the continuous-domain operator acting

on the original analog signal. Examples of such cases include numerical implementation of differential operators,

combined spaces representation such as the Gabor and wavelets schemes, and classical filtering tasks.

Consider a signal representation scheme for which a single representation coefficient is defined by anL2(Ω)

inner product. In cases where the sampled version of a signalis the only available data, it is a common practice to

approximate this inner product by means of a Riemann type sum. This type of approximation indeed converges,

but some regularity constraints are to be imposed on the original continuous-domain functions [1]. Nevertheless,

this convergence has not been put in the context of signal representation schemes for which the analysis function

is analytically known a priori. Furthermore, uniform idealsampling is not the only relevant sampling scheme and

practical non-ideal acquisition devices may be consideredas well. A mathematical framework for describing non-

ideal acquisition devices has been recently introduced [2], [3], awaiting to be incorporated in such an approximation

scheme.

The Riemann type sum is also evident in the discrete Fourier transform (DFT). Having the sampled version of a

signal, the DFT provides a Riemann type sum approximation for the Fourier transform itself at certain frequencies.

However, an alternative approximation scheme is called for, with the emphasis on both the sampling process

characteristics (such as ideal, non-ideal) and the analytically known Fourier kernels.

Interpolation is yet another way of overcoming the difficulty of having partial knowledge on the original signal.

In such an approach, the signal is assumed to lie within a predefined shift-invariant space. In some spaces the

original continuous-domain signal can be fully reconstructed from its ideal samples [4], [5] and its representation

coefficients can be exactly calculated. This property is useful in LTI systems where the input signal is projected onto

a shift-invariant space defined by the impulse response function. Within this setup the ideal samples of the output

signal can be utilized to reconstruct this projection [3]. However, this is not necessarily the case for finite-support

signals and images, for which an alternative approach to approximating representation coefficients is required.

Discrete-domain data can also be manipulated by a digital filter. Current filter design methods rely on frequency
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domain characteristics, e.g., identifying the pass- and stop-band frequencies and determine tolerance parameters and

filter order [6]. Within the context of continuous vs. discrete signal processing, a digital filter should approximate the

continuous-domain output signal rather than the frequencyresponse of the analog filter alone; it is not guaranteed

that similar frequency characteristics would yield similar output signals. By analyzing the overall effect induced by

the sampling process, an alternative design scheme may be derived.

Inverse problems are of interest as well. A blurred image is the result of convolving the original continuous-

space image with a certain kernel. The ensued discrete version corresponds then to the sampled version of the

output signal. Similar to the digital filter design situation, this sampled version can be processed to approximate

the sampled version of the original image itself. This alternative deconvolution approach should consider the nature

of the sampling process as well as the continuous-domain convolution operation.

Another continuous vs. discrete issue is concerned with differential operators. Numerically solving differential

equations involves discretization. For instance, a commonway for approximating the continuous-domain derivative

is the backward (forward) difference method. Here also, thediscrete approximation scheme does not take the

sampling process into account and an alternative scheme maybe required instead. This observation is also relevant

to the direct implementation of differential operators commonly used in image processing algorithms [7].

This work is motivated by image processing applications forwhich combined space representation schemes have

been widely used. For instance, the Gabor, wavelet and contourlet transforms were found to be adequate for obtaining

a sparse representation [8]–[11]. Sparsification in turn was shown to be useful for super resolution algorithms, blind

source separation and deconvolution, as well as for entropy-based image compression applications to name a few

[12]–[17]. Combined space representation schemes are alsoadopted for feature extraction and similarity assessments

[8], [18], [19]. Also, the DFT, DCT and other related transforms such as the polar Fourier transform [20] play an

important role in image processing algorithms as do partialdifferential equations [7], [21], [22].

The common denominator of all these algebraic operations isthe inner product. The key point here is that any

linear bounded functional in a certain Hilbert space can be described by means of an inner product due to Riesz

representation theorem [23]. The main goal of this paper is to investigate the effect of the sampling process on

such functionals within the context of images. In particular, suggesting alternative image processing schemes that

utilize the properties of the sampling scheme (ideal and non-ideal, uniform and non-uniform) while considering a

robust minimax approximation approach. A similar approachwas considered in [24] for the infinite support signals.

This work extends and generalizes those results to finite-support signals and images, giving rise to more practical

applications.

The paper is organized as follows. We begin with mathematical preliminaries, then describe the ideal sampling

process by means of set transforms while focusing on finite support signals. We consider generalized (non-ideal)
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sampling and further show that the one-dimensional scheme is naturally adopted to images. In Section IV we

establish intertwining relations of inner products definedover several Hilbert spaces. In particular, we state some

results connectingL2(Ω), ℓ2 and Sobolev inner products. We then show that the derivativecalculation and the

Fourier transform evaluation can be described by means of a set transform as well. In Section V we present a

minimax approximation scheme and analyze its properties. Potential applications such as approximating the Fourier

transform or the derivative operation, as well as approximating the output of an LTI system are discussed in detail.

2D examples are given in Section VI followed by conclusions in Section VII.

II. M ATHEMATICAL PRELIMINARIES

Let H be a Hilbert space and let{sn} ∈ H be a frame for

S = Span {sn(t)} ⊆ H. (1)

Then, the set transformS is given by

S : ℓ2 → S (2)

Sc =
N−1∑

n=0

cn · sn,

with its adjoint being

S∗ : H → ℓ2 (3)

S∗x =
N−1∑

n=0

〈x, sn〉H · en.

The set{en} denotes the standard basis ofℓ2. An orthogonal projection onto a closed subspaceA is denoted by

PA and the spaceA⊥ is the orthogonal complement ofA in H. The Moore-Penrose pseudo inverse of a bounded

transformation is denoted by a† superscript. An open interval on the real line or on the real plane is denoted byΩ.

We will assume with no loss of generality thatΩ = (−π, π) or Ω = (−π, π)×(−π, π) for the one-dimensional case

or for images, respectively.Hp
2 (Ω) denotes the Sobolev space of orderp [25]. This special Hilbert space consists

of all functions satisfyingx, x(1), . . . x(p) ∈ L2(Ω) wherex(p) is thep-th derivative ofx. The corresponding inner

product is

〈x, y〉Hp

2
(Ω) =

p∑

n=0

∫

Ω
x(n)(t) · y(n)(t) dt. (4)

Alternatively, one can express this inner product within the frequency domain:

〈x, y〉Hp

2
(Ω) =

1

2π

∫ ∞

−∞
X(ω)Y (ω) · (1 + ω2 + · · · + ω2p) dω. (5)
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The Fourier transform operator (continuous or discrete) isdenoted byF and convolution is denoted by∗.

III. IDEAL SAMPLING AS A SET TRANSFORM

We consider first the ideal sampling scheme and interpret it as an orthogonal projection within a Sobolev space.

This restriction to Sobolev rather than toL2(Ω) spaces is two-fold: recalling the standardL2(Ω) norm, identical

functions might yield different sampling sequence giving rise to a one-to-many mapping; also, the distinct sampling

points have a Lebesgue measure of zero thus introducing a non-bounded transformation.

The infinite-support case was recently investigated in [24]and in [26]. It was shown there that the ideal sampling

process can be described by means of a proper set transform. Specifically, the sampled value of a continuous-time

signalx ∈ H2(Ω) can be described by the inner-product operation

x(t0) = 〈x, sn〉H2(Ω) , (6)

where sn(t) = e−|t−t0|/2. In the current work we extend this result and characterize the appropriate sampling

function for the finite-support case.

A. Finite-support signals

Consider Sobolev signals having a finite open supportΩ. The following lemma enables one to interpret the ideal

sampling process by means of inner product calculations in aSobolev space. The importance of this result will be

evident later on, when continuous-domain operations will be approximated by sampled data.

Lemma 1:Let x ∈ H2(Ω) whereΩ = (−π, π). Given t0 ∈ Ω, the sampled valuex(t0) is given by

x(t0) = 〈x, st0〉H2(Ω) , (7)

where 




s(t) = 1
2π

∑
n

1
1+n2 · ejnt.

st0(t) = s(t − t0).
(8)

Proof: x is a Sobolev function having a finite support and can be expressed by means of a Fourier series

x(t) =
∑

n

an · ejnt, (9)

wherea ∈ ℓ2. In particular, for anyt0 ∈ Ω the equation

x(t0) =
∑

n

an · ejnt0 , (10)
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holds point wise. The sampled value ofx is a linear bounded functional and by Riesz representation theorem can

be described by means of an inner product

x(t0) = 〈x, st0〉H2(Ω) , (11)

wherest0 ∈ H2(Ω) is unique. Letst0 be described by the Fourier coefficientsb ∈ ℓ2. Then, the latter equation

yields

∑

n

an · ejnt0 =

∫

Ω
x · st0 dt +

∫

Ω
x′ · s′t0 dt

=
∑

n,m

anbm(1 + n · m)

∫

Ω
ej(n−m)t dt

= 2π
∑

n

anbn(1 + n2), (12)

where the equation holds for anya ∈ ℓ2. It follows then that

bn =
1

2π
·

1

1 + n2
· e−jnt0 . (13)

This sampling function isΩ-periodic (Figure 1). Given a set of sampling points{tn}, the corresponding sampling

functions{sn(t)} ∈ H2(Ω) give rise to a set transformS.

Corollary 1: If the sampling functions constitute a frame forS ∈ H2(Ω), thenS corresponds to an orthogonal

projection ontoS. Namely,PSx = S(S∗S)†c wherec = S∗x are the ideal samples ofx.

It is noted that the frame condition is met whenever the number of sampling points is finite as is the case in image

processing applications. Also, no restrictions are made asfor the sampling grid itself (uniform or non-uniform).
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Fig. 1. Given t0, the sampling functionst0 satisfiesx(t0) = 〈x, st0〉H2(Ω). Shown are sampling functions fort0 = −2, 0, 2 where
Ω = (−π, π).
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This interpretation of the ideal sampling scheme as an orthogonal projection in a certain Hilbert space is significant

in the sense of uniting the continuous-domain signal with the discrete-domain. In this regard, the Sobolev functions

are dense inL2(Ω). Thus, restricting the ideal sampling operator to such functions still maintains generality of the

results. It is also noted that non-uniform ideal sampling isadequately described by this formulation and the frame

condition for such a scheme remains a necessary condition for synthesizingPSx.

B. Generalized sampling

Sampling by non-ideal acquisition devices has also been putinto the context of set transforms [2], [27]–[32].

That is, the sample sequence is the result of consecutiveL2(Ω) inner products where the sampling functions are

known a priori. It is shown here that suchL2(Ω) sampling schemes can alternatively be described by means of

Sobolev inner products. As in the infinite case [26], this description will be found useful for solving approximation

problems while imposing a smoothness constraint on the original continuous-domain signal. Let{sn(t)} be a set

of sampling functions inL2(Ω) constituting a frame for their span. The generalized samples of x ∈ L2(Ω) are then

given by

c[n] = 〈x, sn〉L2(Ω) . (14)

Assuming thatx ∈ H2(Ω), a proper description of the sampling process would then bec[n] = 〈x, ŝn〉H2(Ω), where

ŝn ∈ H2(Ω) is dependent onsn ∈ L2(Ω) and onΩ. In particular (see Section IV-A)

ŝn(t) = sn(t) ∗
1

2π

∑

n

1

1 + n2
· ejnt, (15)

where the convolution operation is cyclic. These Sobolev sampling functions give rise to a set transform̂S : ℓ2 → Ŝ

whereŜ ∈ H2(Ω). However, it is not guaranteed that the frame condition is still met in H2(Ω). In fact, it can be

proved that while the upper frame bound of{sn} in L2(Ω) is a suitable choice for{ŝn} in H2(Ω), the lower frame

bound might equal zero [33]. This zero bound, in turn, does not allow the reconstruction ofP
Ŝ
x in H2(Ω) [34].

C. Extension to images

The one-dimensional Sobolev space extends to the two-dimensional case in the following manner. Letα =

(α1, α2) be a tuple of nonnegative integers where|α| = α1 + α2. Also, let

Dα =
∂α1

∂ζ1
·
∂α2

∂ζ2
. (16)

We consider a two-dimensional Sobolev space of orderp ≥ 1 defined over a finite open supportΩ = (−π, π) ×

(−π, π). This space consists of functionsx(ζ1, ζ2) that satisfyDαx ∈ L2(Ω) for all possibleα satisfying|α| ≤ p.
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The corresponding inner product is given by [25]

〈x, y〉Hp

2
(Ω) =

∑

{α: 0≤|α|≤p}

〈Dαx,Dαx〉L2(Ω). (17)

For example, the inner product ofH2(Ω) (i.e. p = 1) is given by

〈x, y〉H2(Ω) = 〈x, y〉L2(Ω) +

〈
∂x

∂ζ1
,

∂y

∂ζ1

〉

L2(Ω)

+

〈
∂x

∂ζ2
,

∂y

∂ζ2

〉

L2(Ω)

.

It follows that the sampling function for such a case is givenby

s(ζ1,0, ζ2,0; ζ1, ζ2) =
1

4π2

∑

n,m

1

1 + n2 + m2
· ejn(ζ1−ζ1,0) · ejm(ζ2−ζ2,0),

where(ζ1,0, ζ2,0) is the sampling point. It is pointed out that this sampling function (Figure 2) cannot be separated

into a multiplication of two one-dimensional functions. Also, there is no restriction on the sampling grid. If the

sampling functions constitute a frame for their span, thenPSx can be analytically synthesized. This latter requirement

is met whenever the number of samples is finite. Also, motivated by [35], it is noted that different sampling schemes,

such as ideal and non-ideal schemes, can be incorporated into a single unifying set transform.

D. Extension to Sobolev spaces of higher orders

The sampling function of Lemma 1 considers Sobolev functions of orderp = 1. Nevertheless, for some appli-

cations the continuous-domain model is known a priori to consist of smoother functions. This model corresponds

to Sobolev functions of orderp ≥ 1. Considering such cases, the sampling function for the one-dimensinal case

satisfies

s(t) =
1

2π

∑

n

1

1 + n2 + · · · + n2p
· ejnt, (18)

where

lim
p→∞

s(t) =
1

2π
. (19)

Figure 3 depicts sampling functions for several orders.

IV. I NTERTWINING RELATIONS OF INNER PRODUCTS

The L2(Ω) inner product plays a key role in combined spaces representation for both one-dimensional signals

and images [8], [10], [11], [18], [36]–[42]. It is shown herethat such inner products can be expressed by means of

Sobolev inner products. Also, Sobolev inner products are shown to be adequate for describing the derivative and

the Fourier transform operations.
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Fig. 2. Given(ζ1,0, ζ2,0), the two-dimensional sampling functions(ζ1,0, ζ2,0; ζ1, ζ2) satisfiesx (ζ1,0, ζ2,0) = 〈x, s〉
H2(Ω). Shown is the

function itself (a) and the image of its logarithm (b) for(ζ1,0, ζ2,0) = (0, 0).

A. L2, ℓ2 and Sobolev inner products

The following lemma establishes an intertwining relationship betweenL2(Ω) andH2(Ω) inner products.

Lemma 2:Let y ∈ L2(Ω). Then,∀x ∈ H2(Ω)

〈x, y〉L2(Ω) = 〈x, y ∗ s〉H2(Ω) , (20)

wherey ∗ s is a continuous-domain periodic convolution ands is given in Lemma 1.

Proof: Let I : H2(Ω) → L2(Ω), Ix = x. This operator is bounded and has an adjoint. Giveny ∈ L2(Ω), the

equation

〈x, y〉L2(Ω) = 〈x, I∗y〉H2(Ω) (21)
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holds for anyx ∈ H2(Ω). Let a, b, c ∈ ℓ2 be the Fourier coefficients ofx, y andI∗y, respectively. Then, the equality

2π
∑

n

anbn = 2π
∑

n

ancn · (1 + n2) (22)

holds for anya, yielding cn = bn/1 + n2. This relation can then be shown to coincide with the continuous-domain

periodic convolutiony ∗ s.

This intertwining relationship between inner products enables one to interpret anyL2(Ω) linear bounded functional

by means of anH2(Ω) functional. Recalling that the ideal sampling process was shown to coincide with a proper

set transform inH2(Ω), we have established a framework connecting continuous-domain operations with discrete-

domain calculations. This connection is further investigated in Section V where approximation issues are addressed.

Another type of intertwining relation considers theℓ2 inner product as reflected by the adjoint of the sampling

set transform. Letx ∈ H, and letc = S∗x be its sampled version. HereS : ℓ2 → S ⊆ H is a set transform

describing the sampling process (ideal or non-ideal). Then, ∀a ∈ ℓ2 〈c, a〉ℓ2 = 〈x, Sa〉H. Furthermore, by settinga

to be the sampled version of an arbitrary analysis function,the ℓ2 inner product resembles a Riemann type sum.

As a result, the equivalence of this inner product with the inner product ofH provides a quantitative measure for

comparing the Riemann type sum approximation scheme with any other scheme, in particular with the minimax

scheme. This issue is addressed in Section V too.

B. Derivative evaluation

We focus on calculating the derivative of a signal at a countable set of points. In particular, we wish to describe

the ideal uniform sampled version of the derivative by meansof a set transform. For introducing a well posed

problem, one must guarantee that this sampled version wouldbe a member ofℓ2. Thus, we restrict the admissible
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Fig. 3. Similar to Figure 1. Shown are sampling functions corresponding to several Sobolev ordersp = 1, 2, 10. HereΩ = (−π, π).
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signals to be Sobolev functions of orderp = 2. The following lemma introduces a new way to calculate the

derivative value of a Sobolev signal at a given point.

Lemma 3:Let x ∈ Hp
2 (Ω) wherep = 2, Ω = (−π, π), and lett0 ∈ Ω. Then,x(1)(t0) is given by

x(1)(t0) = 〈x,wt0〉H2(Ω) , (23)

where

wt0(t) =
1

2πj

∑

n

n

1 + n2 + n4
· ejn(t−t0), t ∈ Ω. (24)

Proof: Let x =
∑

n an · ejnt, a ∈ ℓ2, where equality holds point-wise. The sampled value ofx(1) is then

given by

x(1)(t0) =
∑

n

jn · an · ejnt0 . (25)

The proof then is similar to the proof of Lemma 1 while utilizing the appropriate Sobolev inner product forp = 2.

The set transform interpretation arises then from evaluating the derivative function at a countable set of points.

Practically, using digital means, this last result can be used for calculating the derivative function of a signal. Similar

derivations extend this formulation to images as was done inSection III-C. Also, this formulation can be naturally

adopted when extracting values of higher derivative orders. Figure 4 depictswt0(t) for the finite-support case for

several sampling points. It is also noted here that this differentiating functional resembles other differentiation masks

that are used for edge detection in image processing applications [43], [44], and in this regard this very function

(24) provides the exact masking function to be approximated, as shown in Section V.
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Fig. 4. Givent0, the analysis functionwt0 satisfiesx(1)(t0) = 〈x,wt0〉Hp

2
(Ω). Shown are the analysis functions fort0 = −2, 0, 2. The

order of the Sobolev space isp = 2 andΩ = (−π, π).
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C. Fourier transform evaluation

We focus on describing Fourier transform values by means of aset transform. Alternatively, we find an analysis

functionwω0
(t) ∈ H for which X(ω0) = 〈x,wω0

〉H. It so happens that such a description is not possible forL2(Ω)

space in the case ofΩ = R. This is due to the fact thatX(ω0) is not a bounded functional; one may consider

a scaled and normalized version of thesinc(·) function and observe that the DC componentX(ω = 0) may be

arbitrarily large although theL2(Ω) norm is maintained fixed. Nevertheless, finite support signals are adequate for

a bounded set transform description.

First, recall that the Fourier transform ofx ∈ L2(Ω) is given by

X(ω) =

∫

Ω
x(t) · e−jωt dt. (26)

HereΩ = (−π, π). A sample value of the Fourier transform has an inner productinterpretation given by

X(ω0) =
〈
x(t), ejω0t

〉

L2(Ω)
. (27)

Following Lemma 2, thisL2(Ω) inner product can be represented by means of a Sobolev inner product. The

following lemma describes the Fourier transform value of a signal at an arbitrary frequency by means of a Sobolev

inner product.

Lemma 4:Let x ∈ H2(Ω) whereΩ = (−π, π), and letX(ω0) be the value of its Fourier transform at an arbitrary

frequencyω0. Then,

X(ω0) = 〈x,wω0
〉H2(Ω) , (28)

where

wω0
(t) =

∑

n

1

1 + n2
·
sin [π(ω0 − n)]

π(ω0 − n)
· ejnt. (29)

Proof: This result stems from Lemma 2.

Note that the analysis function (29) reduces to a single harmonic whenω0 ∈ Z. Figure 5 depicts the real and

imaginary parts ofwω0
(t) for ω0 = 10.5, 80.5. The set transform characterization arises from evaluating the Fourier

transform at a countable set of frequencies.

V. M INIMAX APPROXIMATION

This description in a Sobolev space of the sampling process and of linear functionals allows for a minimax

approximation scheme based on the sampled version of a signal. Both ideal and non-ideal sampling schemes are

naturally considered. This minimax approach provides an alternative approximation scheme to currently available

methods such as the Riemann type sum and other interpolationalgorithms. For instance, the discrete Fourier
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Fig. 5. Givenω0, the analysis functionwω0
satisfyX(ω0) = 〈x,wω0

〉
H2(Ω). HereX(ω) is the Fourier transform ofx ∈ H2(Ω). Shown

are the real (solid) and imaginary (dashed) parts of the analysis function forω0 = 10.5 (a) and50.5 (b).

transform (DFT) provides a Riemann type approximation of the Fourier transform of a continuous-domain signal.

Nevertheless, we show here that a superior minimax approachcould be used instead.

Let H be a Hilbert space and letW be a set transform corresponding to a set of analysis functions {wn}. It is

assumed that this set of functions constitutes a frame for its spanW ⊆ H. The result of analyzing a signalx ∈ H

is denoted by theℓ2 sequenced = W ∗x. The question raised then concerns the best possible approximation scheme

for d while having the samples of the original continuous-domainsignal as the only available data. We consider a

minimax criterion for approximating the sequenced while using theℓ2 standard metric. This problem was recently

addressed in [26]. Letc = S∗x be the known samples ofx ∈ H. Then, the solution of

arg min
d̂

max
c, ‖x‖

H
≤L

∥∥∥d − d̂
∥∥∥

ℓ2
(30)

is given by

d̂ = W ∗S(S∗S)†c. (31)
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This minimax solution corresponds to analyzing the orthogonal projection ofx ontoS, namelyd̂ = W ∗PSx. Also,

this solution is element-wise optimal. Approximatingd[n] depends on the single analysis functionwn alone (Figure

6). Alternatively, the minimax solution is optimal in anyℓp sense (p = 1, 2, . . .).

x wn

P
S
wn

S
P

S
x

Fig. 6. Vector interpretation for the minimax solution. Here d[n] = 〈x,wn〉 is approximated bŷdn = 〈PSx, PSwn〉.

It can be shown that if the original signal is a Sobolev function, the minimax solution for such a case corresponds

to a proper oblique projection [26]. Although the solutionsare different, both are independent of the constantL.

However, this upper bound determines the approximation error. It holds that

x = PSx + PS⊥x, (32)

wherePSx is analytically known. It then follows that

‖PS⊥x‖H =
√

L2 − ‖PSx‖2
H. (33)

This last expression implies that even thoughL is arbitrarily chosen, it must satisfyL ≥ ‖PSx‖. We wish to

identify the worst case signal that would yield the maximum possible approximation error given by

em =
∥∥∥d − d̂

∥∥∥
ℓ2

= ‖W ∗PS⊥x‖ℓ2
. (34)

Clearly this worst case signal satisfies (32). Thus it remains to identify the exact expression forPS⊥x that yields

the maximum possible approximation errorem. We recall the property of a Bessel sequence [45]

∑

n

∣∣∣〈x, yn〉H2(Ω)

∣∣∣
2
≤ B · ‖x‖2

H2(Ω) , (35)

and state the following result.

Theorem 1:Let d̂ ∈ ℓ2 satisfy (31), and let{PS⊥wn} be a Bessel sequence for its span. Then,

e2
m ≤ B ·

(
L2 − ‖PSx‖2

H

)
, (36)

whereB is the corresponding Bessel bound.
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Proof: Notice thatem[n] = 〈PS⊥wn, PS⊥x〉. Applying the Bessel bound

∥∥∥d − d̂
∥∥∥
2

ℓ2
= ‖W ∗PS⊥x‖ℓ2

=
∑

n

|〈PS⊥x, PS⊥wn〉|
2

≤ B · ‖PS⊥x‖

≤ B ·
(
L2 − ‖PSx‖2

H

)
. (37)

If {PS⊥wn} is a finite set of linearly independent functions, thenB is equal to the maximum eigenvalue of their

corresponding Gram matrix. If this set is not a Bessel sequence then the approximation error can be made arbitrarily

large.

The minimax solution of (31) can be compared with the Riemanntype sum method [26]. For example, let

c = S∗x be the ideal uniform samples ofx ∈ H2(Ω) and letb = S∗w be the samples of a single analysis function

w ∈ L2(Ω) (assuming thatb ∈ ℓ2). Then, the Riemann sum approximation is given by

T
∑

n

c [n] · b [n] = 〈PSx, T · Sb〉H2(Ω) . (38)

Denotinger to be the Riemann sum approximation error, it follows that

e2
r = |〈PS⊥x, PS⊥ŵ〉 + 〈PSx, PSŵ − T · Sb〉| (39)

≤ ‖PS⊥x‖ · ‖PS⊥w‖ + ‖PSx‖ · ‖PSŵ − T · Sb‖ ,

where all inner products and norms are inH2(Ω) and ŵ = w ∗ s. The sampling functions is given by Lemma 1.

Finally,

max e2
r = max e2

m + C, (40)

whereC = ‖PSx‖·‖PSŵ − T · Sb‖ is a known constant, providing a measure of comparison between the Riemann

type sum and the minimax approximation schemes. It is noted here that the element-wise property of the minimax

solution still holds for
∣∣max e2

r − max e2
m

∣∣, and comparing the two approximation schemes is also possible when

introducing several analysis functions.

Having established a minimax solution and analyzed its performance, it is now possible to apply this approxi-

mation scheme to an arbitrary linear bounded functional as given by the next theorem.

Theorem 2:Let x ∈ H2(Ω) be known by its ideal samplesc ∈ CN and letd = 〈x,w〉 be a linear bounded
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functional described byw ∈ H2(Ω). Then, the minimax approximation ofd is given by

d̂ = c · G−1
s · qT , (41)

where

Gs[m,n] = 〈sm, sn〉H2(Ω) (42)

is the Gram matrix of the proper sampling functions{sn} (as in Lemma 1) andq ∈ CN are the ideal samples of

w.

Proof: The finite set of sampling functions{sn} are linearly independent and have a biorthogonal set.

The sequencec corresponds to the representation coefficients ofPSx by this biorthogonal set, whereasG−1
s · qT

corresponds to the representation coefficients ofPSw by the sampling functions themselves. Following the minimax

solution of (31)

d̂ = 〈PSx,w〉H2(Ω) = c · G−1
s · qT .

This theorem could be useful for numerical implementation.Having the sampled version of a signal, it states

that any linear bounded functional can be approximated by matrix calculations. No continuous-domain operations

are further required. Possible applications include the calculation of representation coefficients, the approximation

of Fourier transform values and the approximation of the derivative values. The main task is to identify the proper

analysis functions to be applied. We are focusing on two possible applications. The first is a minimax scheme

for approximating the Fourier transform value at a finite setof frequencies. The second application addresses the

problem of approximating sampled values of the output of an LTI (1D) or an LSI (2D) system.

A. Fourier transform

We assume thatx ∈ H2(Ω), whereΩ = (−π, π). The uniform ideal sampling scheme is given byc = S∗x. In

particular,

S : C
N → S ⊆ H2(Ω)

Sc =

N−1

2∑

n=−N−1

2

c [n] · s(t − nT ). (43)

HereN corresponds to the number of available samples, assumed to be an odd number.s(t) is given by Lemma

1. Having this sampled version of a signal, it is a common practice to apply a DFT for approximating the Fourier
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transform of the original signal:

XD[k] =

N−1

2∑

n=−N−1

2

c[n] · e−j 2πnk

N . (44)

The N values of the DFT serve then as a Riemann type sum approximation of the Fourier transform (up to

multiplication byT ) at equally spaced frequencies

ωk =
2π

NT
k, |k| ≤

N − 1

2
. (45)

This approximation is by no means optimal in the minimax sense; utilizing the proposed minimax solution one can

apply the following corollary.

Corollary 2: The minimax approximation ofd = X(ω0) is given by the sampled version of (29).

This corollary together with Theorem 2 provides an alternative method, other than the DFT, for approximating

sampled values of the Fourier transform of a continuous-domain signal. It extends naturally to images and can be

adopted for other image-related transforms as well [?], [20], [44], [46]. The derivative functional is applicable as

well.

Corollary 3: The minimax approximation ford = x(1)(t0) is given by the sampled version of (24).

Here also, the two-dimensional case is readily extended by the formulation of Section III-C.

B. Continuous-domain filtering

Let h(−t) ∈ L2 be the impulse response of a continuous-time LTI system and let x ∈ L2(Ω) be an arbitrary

input signal. Then, the sample value of the output signal att = tn is given by

d [n] = {x ∗ h} (tn) = 〈x, hn〉L2(Ω) , (46)

wherehn(t) = h(t − tn). The aim is to find a minimax approximation scheme ford. That is, approximating the

sampled output of a continuous-time filter while having the sampled version of the input signal as the only available

data.

Let S ⊂ L2(Ω) (i.e., Ω = R) be a shift-invariant space described by a shift-invariantgeneralized sampling

schemeS : ℓ2 → S. A minimax approximation scheme for such a case was considered in [30]. In such a setting

the minimax solutiond̂ coincides with a digital filterg whered̂ = c ∗ g. The Fourier transform ofg is shown to be

comprised of the autocorrelation and cross-correlation functions of the generating sampling function itself andh(t).

A similar expression was then derived for the uniform ideal sampling scheme too [26]. It involved an interpretation

of the sampling and analysis process in a proper Sobolev space while applying the minimax scheme of (31) in

this very space. Nevertheless, this digital filter interpretation does not hold for the finite-support case and another
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approximation scheme is required, as given by the followingcorollary.

Corollary 4: The minimax approximation ofd [n] = {x ∗ h} (tn) is given by the sampled version of

wtn
(t) = [h(t − tn) · χΩ(t)] ∗ s(t), (47)

whereχ(Ω) is the characteristic function and the convolution operation is cyclic.

All of the results above can be extended to images based on Section III-C and on the definition of the open support

Ω. This open support has no restrictions and the choice ofΩ = (−π, π) × (−π, π) was chosen for convenience

purposes only.

VI. EXAMPLES

A. Derivative Approximation

Suppose we are given the image of Figure 7, and wish to approximate the derivative∂/∂ζ1 at the origin.

Calculating the derivative at the origin corresponds to identifying a proper image (Figure 8) for performing a

Sobolev inner product withPSx. The latter is the orthogonal projection of the original image onto the sampling

space, and it is determined by all the sampled values of the image. This inner product can also be described by

means of a discrete scheme utilizing the sampled version of the original image, the sampled version of Figure 8,

and a proper Gram matrix (Theorem 2). Assuming ideal sampling, this Gram matrix is explicitly given by

G(n,m) =
1

4π2

∑

n,m

1

1 + n2 + m2
ejn(ζ1,n−ζ1,m) · ejm(ζ2,n−ζ2,m),

where(ζ1,n, ζ2,n) and(ζ1,m, ζ2,m) are any possible pair of sampling points. Given the sampled version of the image

of Figure 7, there are many continuous-space images that correspond to such a sampled version. Nevertheless, they

all share the same orthogonal projection onto the sampling space (Figure 9).

B. Gradient Approximation

We utilize the minimax approach for approximating gradientvalues of an image given by its samples. The 2D

derivative functional along the horizontal direction was shown to correspond with Figure 8. The proper Gram matrix

was given in (48). Choosing a masking kernel of3×3, one can determine the minimax kernel by applying Theorem

2

G−1 · qT =





−α β γ

−δ 0 δ

−γ −β α




, (48)

whereα = 0.3δ, β = δ/60 andγ = 0.6δ.
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Given an image, the gradient value at a point is given by the Pythagorean sum of the horizontal and vertical

derivative values. Those values can be calculated by the standard backward difference model, or alternatively by the

minimax approach presented here. Consider the image of Figure 10(a), the minimax approximation of the gradient

value is given in Figure 10(b) whereas the backward difference model results in Figure 10(c). Although similar,

those two figures are slightly different as evident from Figure 10(d). This difference is mainly due to different

localization of the gradient value; the minimax approach approximates the derivative at the very sampling point

whereas other methods do not. Another source of difference is due to different approximation values; and in this

regard the minimax approach guarantees the minimization ofthe maximum possible error induced by the sampling

process whereas other method do not.

VII. C ONCLUSIONS

Sampling finite-support Sobolev signals has been shown to coincide with an orthogonal projection within proper

Sobolev spaces. Since these signals are dense inL2(Ω), restricting the input signal to belong to a Sobolev space

still maintains generality of the results. Both ideal and non-ideal sampling schemes have been adopted by this

interpretation. In cases where the sampling scheme is described byL2(Ω) inner products (generalized sampling),

the sampling process was expressed by yet another Sobolev inner product.

A minimax approach was then applied to approximating continuous-domain functionals while having the sampled

version of the input signal as the only available data. Such linear bounded functionals can be also described by

proper set transforms in a Sobolev space. Practical applications include representation coefficients approximation,

Fourier transform evaluation and derivative calculations– often used in image processing applications. Such a

Sobolev description for both the sampling process and the continuous-domain functionals gives rise to a closed
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Fig. 7. A continuous-space image and a sampling grid denotedby x-marks.
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Fig. 9. Shown is the orthogonal projection of the image in Figure 7 onto the sampling space. Only seven samples were taken into account
so as to emphasize that this orthogonal projection is analytically known.

form minimax solution. This solution exploits the orthogonal projection induced by the sampling process and it can

be implemented by matrix operations (i.e., masking) alone.Such an approach can be incorporated into many multi-

dimensional signal processing algorithms where continuous-domain functionals are desired although a sampled

version of the signal is the only available data.

ACKNOWLEDGMENTS

This research was supported in part by the HASSIP Research Program HPRN-CT-2002-00285 of the European

Commission, and by the Ollendorff Minerva Center. Minerva is funded through the BMBF.



20

(a) A sampled image. (b) Gradient values calculated by the minimax approach.
Shown are the values raised by 0.4.

(c) Gradient values calculated by the backward difference
model. Shown are the values raised by 0.4.

(d) A comparison: minimax approach vs. backward differ-
ence model. Shown is the difference image. The values
raised by 0.4.

Fig. 10. Gradient approximation: minimax approach vs. backward difference method.
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