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Abstract

This paper is focused on the performance analysis of binary linear block codes (or ensembles) whose
transmission takes place over independent and memoryless parallel channels. New upper bounds on the
maximum-likelihood (ML) decoding error probability are derived. These bounds are applied to various en-
sembles of turbo-like codes, focusing especially on repeat-accumulate codes and their recent variations which
possess low encoding and decoding complexity and exhibit remarkable performance under iterative decoding.
The framework of the second version of the Duman and Salehi (DS2) bounds is generalized to the case of
parallel channels, along with the derivation of their optimized tilting measures. The connection between the
generalized DS2 and the 1961 Gallager bounds, addressed by Divsalar and by Sason and Shamai for a single
channel, is explored in the case of an arbitrary number of independent parallel channels. The generalization
of the DS2 bound for parallel channels enables to re-derive specific bounds which were originally derived
by Liu et al. as special cases of the Gallager bound. In the asymptotic case where we let the block length
tend to infinity, the new bounds are used to obtain improved inner bounds on the attainable channel regions
under ML decoding. The tightness of the new bounds for independent parallel channels is exemplified for
structured ensembles of turbo-like codes. The improved bounds with their optimized tilting measures show,
irrespectively of the block length of the codes, an improvement over the union bound and other previously
reported bounds for independent parallel channels; this improvement is especially pronounced for moderate
to large block lengths. However, in some cases, the new bounds under ML decoding happen to be a bit
pessimistic as compared to computer simulations of sub-optimal iterative decoding, thus indicating that

there is room for further improvement.

Index Terms: Block codes, distance spectrum, input-output weight enumerator (IOWE), linear
codes, maximum-likelihood (ML) decoding, memoryless binary-input output-symmetric (MBIOS)
channels, parallel channels, repeat-accumulate (RA) codes.
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1 Introduction

We analyze the error performance of linear codes where the codewords are partitioned into several
disjoint subsets, and the bits in each subset are transmitted over a certain communication channel.
This scenario can be viewed as the transmission of information over a set of parallel channels, where
every bit is assigned to one of these channels. Code partitioning is employed in transmission over
block-fading channels (for performance bounds of coded communication systems over block-fading
channels, see, e.g., [14, 35]), rate-compatible puncturing of turbo-like codes (see, e.g., [15, 31]),
incremental redundancy retransmission schemes, cooperative coding, multi-carrier signaling (for
performance bounds of coded orthogonal-frequency division multiplexing (OFDM) systems, see
e.g., [34]), and other applications.

In his thesis [11], Ebert considered the problem of communicating over parallel discrete-time
channels, disturbed by arbitrary and independent additive Gaussian noises, where a total power
constraint is imposed upon the channel inputs. He found explicit upper and lower bounds on the
ML decoding error probability, which decrease exponentially with block length. The exponents of
the upper and lower bounds coincide for zero rate and for rates between the critical rate (Reit) and
capacity. The results were also shown to be applicable to colored Gaussian noise channels with an
average power constraint on the channel.

Tight analytical bounds serve as a potent tool for assessing the performance of modern error-
correction schemes, both for the case of finite block length and in the asymptotic case where the
block length tends to infinity. In the setting of a single communication channel and by letting the
block length tend to infinity, these bounds are applied in order to obtain a noise threshold which
indicates the minimum channel conditions necessary for reliable communication. When generalizing
the bounds to the scenario of independent parallel channels, this threshold is transformed into a
multi-dimensional barrier within the space of the joint parallel-channel transition probabilities,
dividing the space into attainable and non-attainable channel regions.

In [21], Liu et al. derive upper bounds on the ML decoding error probability of structured
ensembles of codes whose transmission takes place over (independent) parallel channels. When
generalizing an upper bound to the case of independent parallel channels, it is desirable to have
the resulting bound expressed in terms of basic features of the code (or ensemble of codes), such as
the distance spectrum. The inherent asymmetry of the parallel-channel setting poses a difficulty
for the analysis, as different symbols of the codeword suffer varying degrees of degradation through
the different parallel channels. This difficulty was circumvented in [21] by introducing a random
mapper, i.e., a device which randomly and independently assigns symbols to the different channels
according to a certain a-priori probability distribution. As a result of this randomization, Liu
et al. derived upper bounds on the ML decoding error probability which solely depend on the
weight enumerator of the overall code, instead of a specific split weight enumerator which follows
from the partitioning of a codeword into several subsets of bits and the individual transmission
of these subsets over different channels. The analysis in [21] modifies the 1961 Gallager-Fano
bound from [12, Chapter 3] and adapts this bounding technique for communication over parallel
channels. As special cases of this modified bound, a generalization of the union-Bhattacharyya
bound, the Shulman-Feder bound [33], simplified sphere bound [8], and a combination of the two
former bounds are derived for parallel channels. The upper bounds on the ML decoding error
probability are applied to ensembles of codes defined on graphs (e.g., uniformly interleaved repeat-
accumulate codes and turbo codes). The comparison in [21] between upper bounds under ML
decoding and computer simulations of the performance of such ensembles under iterative decoding
shows a good match in several cases. For a given ensemble of codes and a given codeword-symbol
to channel assignment rule, a reliable channel region is defined as the closure of the set of parallel-



channel transition probabilities for which the decoding error probability vanishes as the codeword
length goes to infinity. The upper bounds on the block error probability derived in [21] enable to
derive achievable regions for ensuring reliable communications under ML decoding.

Using the approach of the random mapper by Liu et al. [21], we derive a parallel-channel
generalization of the DS2 bound [9, 29, 32] and re-examine, for the case of parallel channels,
the well-known relations between this bound and the 1961 Gallager bound which exist for the
single channel case [8, 32]. In this respect, it is shown in this paper that the generalization of
the DS2 bound for independent parallel channels is not necessarily tighter than the corresponding
generalization of the 1961 Gallager bound, as opposed to the case where the communication takes
place over a single memoryless binary-input output-symmetric (MBIOS) channel.

The new bounds are used to obtain inner bounds on the boundary of the channel regions which
are asymptotically (in the limit where we let the block length tend to infinity) attainable under ML
decoding, and the results improve on those recently reported in [21]. The generalization of the DS2
bound for parallel channels enables to reproduce special instances which were originally derived
by Liu et al. [21]. The tightness of these bounds for independent parallel channels is exemplified
for structured ensembles of turbo-like codes, and the boundary of the improved attainable channel
regions is compared with previously reported regions for Gaussian parallel channels, and shows
significant improvement due the optimization of the tilting measures which are involved in the
computation of the generalized DS2 and 1961 Gallager bounds for parallel channels.

The remainder of the paper is organized as follows. The system model is presented in Section 2,
as well as preliminary material related to our discussion. In Section 3, we generalize the DS2
bound for independent parallel channels. Section 4 presents the 1961 Gallager bound from [21],
and considers its connection to the generalized DS2 bound, along with the optimization of its
tilting measures. Section 5 presents some special cases of these upper bounds which are obtained
as particular cases of the generalized bounds in Sections 3 and 4. Attainable channel regions are
derived in Section 6. Inner bounds on attainable channel regions for various ensembles of turbo-like
codes and performance bounds for moderate block lengths are exemplified in Section 7. Finally,
Section 8 concludes the paper. For a comprehensive tutorial paper on performance bounds of linear
codes under ML decoding, the reader is referred to [29].

2 Preliminaries

In this section, we state the assumptions on which our analysis is based. We also introduce no-
tation and preliminary material related to the performance analysis of binary linear codes whose
transmission takes place over parallel channels.

2.1 System Model

We consider the case where the communication model consists of a parallel concatenation of J
statistically independent MBIOS channels, as shown in Fig. 1.

Using an error-correcting linear code C of size M = 2F, the encoder selects a codeword z™
(m =0,1,...,M — 1) to be transmitted, where all codewords are assumed to be selected with
equal probability (ﬁ) Each codeword consists of n symbols and the coding rate is defined as

= log+M = %; this setting is referred to as using an (n, k) code. The channel mapper selects for
each coded symbol one of J channels through which it is transmitted. The j-th channel component
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Figure 1: System model of parallel channels. A random mapper is assumed where every bit is
assigned to one of the J channels; a bit is assigned to the ;' channel independently of the other
bits and with probability a; (where 23121 a; =1).

has a transition probability p(y|x;j). The considered model assumes that the channel encoder
performs its operation without prior knowledge of the specific mapping of the bits to the parallel
channels. While in reality, the choice of the specific mapping is subject to the levels of importance
of different coded bits, the considered model assumes for the sake of analysis that this mapping is
random and independent of the coded bits. This assumption enables to average over all possible
mappings, though suitable choices of mappings for the coded bits are expected to perform better
than the average.

The received vector y is maximum-likelihood (ML) decoded at the receiver when the specific
channel mapper is known at the receiver. While this broad setting gives rise to very general coding,
mapping and decoding schemes, we will focus on the case where the input alphabet is binary, i.e.,
x € {—1,1} (where zero and one are mapped to +1 and —1, respectively). The output alphabet is
real, and may be either finite or continuous. By its definition, the mapping device divides the set
of indices {1,...,n} into J disjoint subsets Z(j) for j = 1,...,J, and transmits all the bits whose
indices are included in the subset Z(j) through the j-th channel. We will see in the next section
that for a fixed channel mapping device (i.e., for given sets Z(j)), the problem of upper-bounding
the ML decoding error probability is exceedingly difficult. In order to circumvent this difficulty, a
probabilistic mapping device was introduced in [21] which uses a random assignment of the bits
to the J parallel channels; this random mapper takes a symbol and assigns it to channel j with
probability «;. This assignment is independent of that of other symbols, and by definition, the
equality 231:1 a; = 1 follows. This approach enables in [21] the derivation of an upper bound for
the parallel channels which is averaged over all possible channel assignments, and the bound can
be calculated in terms of the distance spectrum of the code (or ensemble). Another benefit of the
random mapping approach is that it naturally accommodates for practical settings where one is
faced with parallel channels having different capacities.

2.2 Capacity Limit and Cutoff Rate of Parallel MBIOS Channels

We consider here the capacity and cutoff rate of independent parallel MBIOS channels. These
information-theoretic quantities serve as a benchmark for assessing the gap under optimal ML
decoding between the achievable channel regions of various ensembles of codes and the achievable
channel region which corresponds to the Shannon capacity limit. It is also useful for providing
a quantitative measure for the asymptotic performance of various ensembles as compared to the
achievable channel region which corresponds to the cutoff rate of the considered parallel channels.



2.2.1 Cutoff Rate

The cutoff rate of an MBIOS channel is given by
Ry =1—logy(1+7) (1)

where v is the Bhattacharyya constant, i.e.,

72 Vplo)p(yl). (2)
Yy

Clearly, for continuous-output channels, the sum in the RHS of (2) is replaced by an integral.

For parallel MBIOS channels where every bit is assumed to be independently and randomly
assigned to one of J channels with a-priori probability o (where ijl a; = 1), the Bhattacharyya
constant of the resulting channel is equal to the weighted sum of the Bhattacharyya constants of
these individual channels, i.e.,

J
v =Y a; Y /pWl0; Hp(ylL; ). (3)
J=1 Yy

Consider a set of J parallel Gaussian channels characterized by the transition probabilities
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—o<y<oo, j=1,...,J

and (%) _is the energy per information bit to the one-sided spectral noise density of the j-th

where

channel. In this case, the Bhattacharyya constant is given by

J
Y= Z Ozjeil/j (6)
j=1

where v; is introduced in (5). From (1) and (6), the cutoff rate of J parallel binary-input AWGN
channels is given by

J E
—_R( =k
Ry=1-1logy | 1+ Zozje <N0)J' bits per channel use. (7)
j=1

Consider the case of J = 2 parallel binary-input AWGN channels. Given the value of <%) R and

the code rate R (in bits per channel use), it is possible to calculate the value of (%)2 of the

second channel which corresponds to the cutoff rate. To this end, we set Ry in the LHS of (7) to
R. Solving this equation gives

=——In . (8)
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2.2.2 Capacity Limit

Let C; designate the capacity (in bits per channel use) of the j-th MBIOS channel the set of
J parallel MBIOS channels. Clearly, by symmetry considerations, the capacity-achieving input
distribution for all these channels is ¢ = (%, %) The capacity of the J parallel channels where each
bit is randomly and independently assigned to the j-th channel with probability «; is therefore

given by
J
C = Z OéjCj. (9)
j=1

For the case of J parallel binary-input AWGN channels
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Figure 2: Attainable channel regions for two parallel binary-input AWGN channels, as determined
by the cutoff rate and the capacity limit, referring to a code rate of one-third bits per channel use.
It is assumed that each bit is randomly and independently assigned to one of these channels with
equal probability (i.e., a1 = ag = %)
In order to simplify the numerical computation of the capacity, one can express each integral in
(10) as a sum of two integrals from 0 to oo, and use the power series expansion of the logarithmic
function; this gives an infinite power series with alternating signs. Using the Euler transform to
expedite the convergence rate of these infinite sums, gives the following alternative expression:

32
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Cj=1—ln(2) 5;% —(Qﬁ?—l)Q(ﬁj)—l—Z( )2k+1a°(9) L oi=1,...,J (11)

k=0



where
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(note that erfex(x) ~ v 1 for large values of z). The infinite sum in (11) converges exponentially

and

fast with k£, and the summation of its first 30 terms happens to give very accurate result irrespective
of the value of ;.

Consider again the case of J = 2 parallel binary-input AWGN channels. Given the value of

(%) v and the code rate R (in bits per channel use), (9) and (10) enable one to calculate the value

of <%) for the second channel, referring to the capacity limitation. To this end, one needs to set
2

C' in the LHS of (9) to the code rate R, and find the resulting value of (%)2 which corresponds

to the capacity limit. The boundary of the attainable channel region referring to the capacity limit
is represented by the continuous curve in Fig. 2 for R = % bits per channel use; it is compared
to the dashed curve in this figure which represents the boundary of the attainable channel region
referring to the cutoff rate limit (see Eq. (8)).

2.3 Distance Properties of Ensembles of Turbo-Like Codes

In this paper, we exemplify our numerical results by considering several ensembles of binary linear
codes. Due to the outstanding performance of turbo-like codes, our focus is mainly on such ensem-
bles, where we also consider as a reference the ensemble of fully random block codes which achieves
capacity under ML decoding. The other ensembles considered in this paper include turbo codes,
repeat-accumulate codes and some recent variations.

Bounds on the ML decoding error probability are often based on the distance properties of the
considered codes or ensembles (see, e.g., [29] and references therein). The distance spectra and
their asymptotic growth rates for various turbo-like ensembles were studied in the literature, e.g.,
for ensembles of uniformly interleaved repeat-accumulate codes and variations [1, 7, 16], ensembles
of uniformly interleaved turbo codes [3, 4, 23, 30], and ensembles of regular and irregular LDPC
codes [5, 6, 12, 22]. In this subsection, we briefly present the distance properties of some turbo-like
ensembles considered in this paper.

Let us denote by [C(n)] an ensemble of codes of length n. We will also consider a sequence of
ensembles [C(n1)], [C(n2)], ... where all these ensembles possess a common rate R. For a given (n, k)
linear code C, let A% (or simply Aj) denote the distance spectrum, i.e., the number of codewords
of Hamming weight h. For a set of codes [C(n)], we define the average distance spectrum as

1
" [C(n)]] 2 A
CelC(n)]
Let U,, 2{6:0= % forh=1,...,n} = %, %, . 1} denote the set of normalized distances, then
the normalized exponent of the distance spectrum w.r.t. the block length is defined as
c [C(n)]
e g e 20 (13)



The motivation for this definition lies in the interest to consider the asymptotic case where n — oo.
In this case we define the asymptotic exponent of the distance spectrum as

rl(5) = lim rCMI) . (14)

n—oo

The input-output weight enumerator (IOWE) of a linear block code is given by a sequence
{Ay 1} designating the number of codewords of Hamming weight h which are encoded by informa-
tion bits whose Hamming weight is w. Referring to ensembles, one considers the average IOWE
and distance spectrum over the ensemble. The distance spectrum and the IOWE of linear block
codes are useful for the analysis of the block and bit error probabilities, respectively, under ML
decoding.

As a reference to all ensembles, we will consider the ensemble of fully random block codes which
is capacity-achieving under ML decoding (or ’typical pairs’) decoding.

The ensemble of fully random binary linear block codes: Consider the ensemble of binary random
codes [RB], where the set [RB(n, R)] consists of all binary codes of length n and rate R. For this
ensemble, the following well-known equalities hold:

RB(n,R n\  _n1—
AEL (nR)]  _ <h>2 (1-R)

r[RBOR) 5y = 111757;) —(1-R)In2 (15)
rRBUN(5) = H(S)—(1—R)In2

where H(z) = —zIn(x) — (1 — z)In(1 — x) designates the binary entropy function to the natural
base.

Non-systematic repeat-accumulate codes: The ensemble of uniformly interleaved and non-systematic
repeat-accumulate (NSRA) codes [7] is defined as follows. The information block of length N is
repeated ¢ times by the encoder. The bits are then uniformly reordered by an interleaver of size
gN, and, finally, encoded by a rate-1 differential encoder (accumulator), i.e., a truncated rate-1
recursive convolutional encoder with a transfer function 1/(1+ D). The ensemble [NSRA(N, q)] is

defined to be the set of (q(!q)]]\\{)]\!” RA different codes when considering the different possible permuta-
tions of the interleaver.! The (average) IOWE of the ensemble of uniformly interleaved RA codes

RA,(N) was originally derived in [7, Section 5], and it is given by

N N—h h—1
NSRA(N,9) (w) (qL%J ) ([%],1)

Aw,h - (qN) (16)
quw
and therefore the distance spectrum of the ensemble is given by
min(N,l_%J) (N) (qN—h)( -1 )
NSRA(N,q) _ w/ A |G ] -1 q q
A = (™) ’ {21 Shsal - LQJ
w=1 quw
AESRA(N’(]) =0forl1<h< [%], and AONSRA(N’q) = 1 since the all-zero vector is always a codeword

of a linear code. The asymptotic exponent of the distance spectrum of this ensemble is given by

!There are (gN)! ways to place ¢N bits. However, permuting the ¢ repetitions of any of the N information bits
(gN)!
[COR
by permuting the N information bits, the vector space of the code does not change, which then yields that there are

(q(!q)%z!\,! distinct RA codes of dimension k and number of repetitions g.

does not affect the result of the interleaving, so there are possible ways for the interleaving. Strictly speaking,




(see [17])
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Figure 3: Plot of the normalized asymptotic distance spectra for the ensembles of fully random
block codes and uniformly interleaved and non-systematic repeat-accumulate (NSRA) codes of
rate % bits per channel use. The curves are depicted as a function of the normalized Hamming
weight (0), and their calculations are based on (15) and (17).

The IOWEs and distance spectra of various ensembles of irregular repeat-accumulate (IRA)
and accumulate-repeat-accumulate (ARA) codes are derived in [1, 16].

2.4 The DS2 Bound for a Single MBIOS Channel

The bounding technique of Duman and Salehi [9, 10] originates from the 1965 Gallager bound [13]
which states that the conditional ML decoding error probability F,, given that a codeword z™
(of block length n) is transmitted is upper-bounded by

m! A
P < Do (yl2™) | D (m((ylzm))) Ap>0 (18)

m/#m

where py,(y|z) designates the conditional pdf of the communication channel to obtain an n-length
sequence y at the channel output, given the n-length input sequence z.

Unfortunately, this upper bound is not calculable in terms of the distance spectrum of the code
ensemble, except for the particular cases of ensembles of fully random block codes and orthogonal
codes transmitted over a memoryless channel, and the special case where p = 1, A = 0.5 in which the
bound reduces to the union-Bhattacharyya bound. With the intention of alleviating the difficulty
of calculating the bound for specific codes and ensembles, we introduce the function VA (y) which
is an arbitrary probability tilting measure. This function may depend in general on the index



m of the transmitted codeword [32], and is a non-negative function which satisfies the equality

f \I’( dy = 1. The upper bound in (18) can be rewritten in the following equivalent form:
e\
n\Y|L
P < S0 () [ W0 () rpn (yla™) S0 [ BEE \pz 0. (19)
" N N = \ palylz™)
Recalling that \11,({”) is a probability measure, we invoke Jensen’s inequality in (19) which gives
w2\ ")
1 1 [ palylz™ 0<p<1
Pejm < T () P palyle™yr [ e , 20
m < m%:mz W palyle™) |y AS0 (20)

which is the DS2 bound. This expression can be simplified (see, e.g., [32]) for the case of a single
memoryless channel where

palylz) = [ [ p(uile:).
=1

Let us consider probability tilting measures ¥y, which can be factorized into the form

7 (y)

v () = [ o) w)

recalling that the function ™) may depend on the transmitted codeword z™. In this case, the
bound in (20) is calculable in terms of the distance spectrum of the code, thus not requiring the
fine details of the code structure.

Let C be a binary linear block code whose block length is n, and let its distance spectrum be
given by {An}}_,. Consider the case where the transmission takes place over an MBIOS channel.
By partitioning the code into subcodes of constant Hamming weight, let C;, be the set which includes
all the codewords of C with Hamming weight h and the all-zero codeword. Note that this forms a
partitioning of a linear code into subcodes which are in general non-linear. We apply the DS2 bound
on the conditional ML decoding error probability (given the all-zero codeword is transmitted), and
finally use the union bound w.r.t. the subcodes {Cj} in order to obtain an upper bound on the ML
decoding error probability of the code C. Referring to the constant Hamming weight subcode Cp,
the bound (20) gives

p

n—h h
Pao(h) < (An)’ (Zw y|o>i> <Z¢ plyl0) 7" <y|1>> "S5t e

Clearly, for an MBIOS channel with continuous output, the sums in (21) are replaced by integrals.
In order to obtain the tightest bound within this form, the probability tilting measure ¥ and the
parameters A and p are optimized. The optimization of ¢ is based on calculus of variations, and is
independent of the distance spectrum.

Due to the symmetry of the channel and the linearity of the code C, the decoding error probabil-
ity of C is independent of the transmitted codeword. Since the code C is the union of the subcodes
{Ch}, the union bound provides an upper bound on the ML decoding error probability of C which
is expressed as the sum of the conditional decoding error probabilities of the subcodes Cp given
that the all-zero codeword is transmitted. Let dpi, be the minimum distance of the code C, and R
be the rate of the code C. Based on the linearity of the code, the geometry of the Voronoi regions

10



implies that one can ignore those subcodes whose Hamming weights are above n(1 — R) (see [2]).
Hence, the expurgated union bound gets the form

n(1—R)

Po< > Pyolh). (22)

h=dmin

For the bit error probability, one may partition a binary linear block code C into subcodes w.r.t.
the Hamming weights of the information bits and the coded bits. Let C, ; designate the subcode
which includes the all-zero codeword and all the codeowrds of C whose Hamming weight is A and
their information bits have Hamming weight w. An upper bound on the bit error probability of the
code C is performed by calculating the DS2 upper bound on the conditional bit error probability
for each subcode C,  (given that the all-zero codeword is transmitted), and applying the union
bound over all these subcodes. Note that the number of these subcodes is at most quadratic in
the block length of the code, so taking the union bound w.r.t. these subcodes does not affect the
asymptotic tightness of the overall bound. Let {4, } designate the IOWE of the code C whose
block length and dimension are equal to n and k, respectively. The conditional DS2 bound on the
bit error probability was demonstrated in [28, 29] to be identical to the DS2 bound on the block
error probability, except that the distance spectrum of the code

k
Ap =) App, h=0,....n (23)
w=0

appearing in the RHS of (21) is replaced by

k
géZ(%)AM, h=0,...,n. (24)
w=0
Since A} < Aj, then, as expected, the upper bound on the bit error probability is smaller than the
upper bound on the block error probability.

Finally, note that the DS2 bound is also applicable to ensembles of linear codes. To this end,
one simply needs to replace the distance spectrum or the IOWE of a code by the average quantities
over this ensemble. This follows easily by invoking Jensen’s inequality to the RHS of (21) which
yields that E[(Ax)?] < (E[Ap])? for 0 < p < 1.

The DS2 bound for a single channel is discussed in further details in [9, 28, 32] and the tutorial
paper [29, Chapter 4].

11



3 The Generalized DS2 Bound for Independent Parallel Channels

In this section, we generalize the DS2 bound to independent parallel channels, and optimize the
related probability tilting measures which enable to obtain the tightest bound within this form.

3.1 Derivation of the New Bound

Let us assume that the communication takes place over J statistically independent parallel channels
where each one of the individual channels is a memoryless binary-input output-symmetric (MBIOS)
with antipodal signaling, i.e., p(ylx = 1) = p(—y|x = —1). We start our discussion by considering
the case of a specific channel assignment. By assuming that all J channels are independent and
MBIOS, we may factor the transition probability as

J
=TT I »twil="™;4) (25)

J=14€Z(j)
which we can plug into (20) to get a DS2 bound suitable for the case of parallel channels. In order
to get a bound which depends on one-dimensional sums (or one-dimensional integrals), we impose

a restriction on the tilting measure \If,(qm)() in (20) so that it can be expressed as a J-fold product
of one-dimensional probability tilting measures, i.e.,

H IT ¢ (i (26)

J=14i€Z(j)
Considering a binary linear block code C, the conditional decoding error probability does not depend
on the transmitted codeword, so P. £ Al/[ M ! 0 Pejm = Pejo where w.o.l.o.g., one can assume that

the all-zero vector is the transmitted codeword

The channel mapper for the J independent parallel channels is assumed to transmit the bits
whose indices are included in the subset Z(j) over the j-th channel where the subsets {Z(j)}
constitute a disjoint partitioning of the set of indices {1,2,...,n}.

Following the notation in [21], let Ay, p, ., designate the split weight enumerator of the binary
linear block code, defined as the number of codewords of Hamming weight h; within the J disjoint
subsets Z(j) for j = 1....J. By substituting (25) and (26) in (20), we obtain

P, = Pe|0
GAC G ’ -1 (Pl )\
< S DY Ay [T T #wss )2 p(wil0s 5)» <(l|0“))
h1=0 hjy=0 y j=1i€I(j) PRI

= L (pilei) )
= Z Ah1h2 ..... hJH H Z¢ Yis J yz|0 ]); <(1|0“))
h1=0 hy=0 j= 1z€I ]) Yi Pl
Iz 1Z()| J Y hj
= D> Anyhgn H(Zwyg p(]0:3) 7 plylL; J)>
h1=0  h;=0 1
1 AN CRP
L. 1—= s =~ =
Hl (Z »(y; 4) Pp(y\O,J)”> C NS0 (27)
=1\ y
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We note that the bound in (27) is valid for a specific assignment of bits to the parallel channels.
For structured codes or ensembles, the split weight enumerator is in general not available when
considering specific assignments. As a result of this, we continue the derivation of the bound by
using the random assignment approach. Let us designate n; = |Z(j)| to be the cardinality of the set
Z(j),so E[n;j] = ajn is the expected number of bits assigned to channel no. j (where j =1,2,...,J).
Averaging (27) with respect to all possible channel assignments, we get the following bound on the
average ML decoding error probability:

ni ny J h;
Po<ESS 00 Ay [ <Z¢ (:3)" P p(l0:5) 7 p(ylL: ) )

hi=0  h;=0 j=1
P

J . nj—h;
11 <Z¢ v; 3)' P p(ylo; ])”)
j=1

hj
= > Z Z Apy . ,hJH (Zw yi ) e pl0:5) 7 plylLs j) )

n;>0 |\ hi=0  h;=0
zjnj:n
P

J nj—h;
H (Zw y:j) P p(ylo; J)’l)> Py (n) (28)

where Py (n) designates the probability mass function of the discrete random vector N £ (nq,...,ny).
After applying Jensen’s inequality to the RHS of (28) and changing the order of summation, we
get

{ Z Z Z Ah17h27--~7hJPﬂ(ﬂ)

n;>0 h=0 hi1<ni,..h;<n;
Yonj=n hi+...+hy=h

hj
H(Zwyj p(y10:4) 7 ply|1: ) )
J ) nj—hj \ p 0
H (Zw v )7 p(y|0; J)") } :

> A

[(AVARS!
o IN
—_

(29)

Let the vector H = (hq,...,hy) be the vector of partial Hamming weights referring to the bits
transmitted over each channel (n; bits are transmitted over channel no. j, so 0 < h; < n;). Clearly,

Z i1 hj = h is the overall Hamming weight of a codeword in C. Due to the random assignment of
the Code bits to the parallel channels, we get

n n n n
Pn(n) = attay? .. al’
ny,n2,...,nyg

(hl,.}.lj,h‘]) (nl—hlil.i,]:’LJ—hJ)

(")
ni,...,njg

Py n(h|n) =

Apy ho,.h, P (1)
= Ap Pgin(hin) Py(n)

h n—h
— A coaly! 30
ha1 042 @y (hl’._'jhj><n1—h1,...,nJ—hJ> (30)
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and the substitution of (30) in (29) gives

{ Z iAh Z <h1,h2,}%..,hj>

anO h=0 hlgnl,...,thnJ
Yonj=n hi+..+hj=h

n—nh
ny —hi,ne —ho,....,n5—hy

h;
(%‘Zw(y;j) pI0s5) 7 plyl1sj) )

iy

Let k; = n; — hj for j =1,2,...,J, then by changing the order of summation in the above bound,
we obtain

o =

J
11
j=1

J
11 (aj > by d)' e p(ylo; )

=1

n J h;
P2 A D (h1h27..hJ)H(aJZwya p0:) 7 <|u>)

9

h=0  hi,shy>0 j=1
h1+..‘+h.]=h
p
J A\
> o) T (oS vt i
K,k >0 Lk, k)
k1+...+k.]=n7h
Since Z;]:l hj = h and Z},:1 kj = n — h, the use of the multinomial formula gives
h
—Ap
P < ZAh Z%Zl/}yj “op(]0:4) 7 plylLid)
7 n—hY) " 0<p<1
N1-1 AL A>0
Qa; ; 13 0;79)r . 31
; j Zij(y D' 7p(yl0; ) S ) =1 (31)
j=1...J

which forms a generalization of the DS2 bound for independent parallel channels, where the bound
is averaged over all possible channel assignments. This result can be applied to specific codes as
well as to structured ensembles for which the average distance spectrum A, is known. In this case,
the average ML decoding error probability P, is obtained by replacing Ay, in (31) with Ay,

In the continuation of this section, we propose an equivalent version of the generalized DS2
bound for parallel channels where this equivalence follows the lines in [29, 32]. Rather than relying
on a probability (i.e., normalized) tilting measure, the bound will be expressed in terms of an un-
normalized tilting measure which is an arbitrary non-negative function. This version will be helpful
later for the discussion on the connection between the DS2 bound and the 1961 Gallager bound
for parallel channels, and also for the derivation of some particular cases of the DS2 bound. We

2This can be shown by noting that the function f(t) = t” is convex for 0 < p < 1 and by invoking Jensen’s
inequality in (31).
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(m)

begin by expressing the DS2 bound using the un-normalized tilting measure Gy,
to U™ by

which is related

m) m
B(m)(y) = ( ) n(ylz™) (32)
B Z G pn Yy |1,‘ )
Substituting (32) in (20) gives
vz}
_1 n(ylz™ 0<p<
Pem < G(m n LE Gng) 1 ,1) . ™M DPnlYlL ’ SpPp>

(m)

As before, we assume that G, ’ can be factored in the product form

J
=1 I[ 9w

j=lieZ(5)

Following the algebraic steps in (27)-(31) and averaging as before also over all the codebooks of the
ensemble, we obtain the following upper bound on the ML decoding error probability:

P.=Py < ZAh Zaj (Zgyg (y]0; )" (yll;j)A>

1—pA h

P

J
(Zg(y;j)p(ylo;j)> aj (Zg v 3)' P p(yl0; J))

ﬂ: n—h :1P
(Zg(y;j)p(ylo;j)> } : 0§£§ h (33)

Note that the generalized DS2 bound as derived in this subsection is applied to the whole code
(i.e., the optimization of the tilting measures refers to the whole code and is performed only once
for each of the J channels). In the next subsection, we consider the partitioning of the code to
constant Hamming weight subcodes, and then apply the union bound. For every such subcode, we
rely on the conditional DS2 bound (given the all-zero codeword is transmitted), and optimize the
J tilting measures separately. The total number of subcodes does not exceed the block length of
the code (or ensemble), and hence the use of the union bound in this case does not degrade the
related error exponent of the overall bound, but on the other hand, the optimized tilting measures
are tailored for each of the constant-Hamming weight subcodes, a process which can only improve
the exponential behavior of the resulting bound.

3.2 Optimization of the Tilting Measures for the Generalized DS2 Bound

In this section, we find optimized tilting measures {9 (-; j )}‘j]:l which minimize the DS2 bound (31).
The following calculation generalizes the analysis in [32] for a single channel to the considered case
of an arbitrary number (J) of independent parallel MBIOS channels.

Let C be a binary linear block code of length n. Following the derivation in [21, 32], we partition
the code C to constant Hamming weight subcodes {Cy};_,, where Cj, includes all the codewords
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of weight h (h = 0,...,n) as well as the all-zero codeword. Let Po(h) denote the conditional
block error probability of the subcode Cp under ML decoding, given that the all-zero codeword is
transmitted. Based on the union bound, we get

P <> Pyo(h). (34)
h=0

As the code C is linear, Po(h) = 0 for h = 0,1,...,dmin — 1 where dyin denotes the minimum
distance of the code C. The generalization of the DS2 bound in (31) gives the following upper
bound on the conditional error probability of the subcode Cp:

)

Pyo(h) < (An)? Z%Z@byy p(y10:4) 7 ply]1;.4)*

1-6Y) ™

Z%Zd)yy 7p(yl0; )7 , 0<p<1, A>0, 6%

Note that in this case, the set of probability tilting measures {t(-; )} 5—1 may also depend on the
Hamming weight (h) of the subcode (or equivalently on ¢). This is the result of performing the
optimization on every individual constant-Hamming subcode instead of the whole code.

This generalization of the DS2 bound can be written equivalently in the exponential form

Pyo(h) < e "BS¥0wndleid o< p<1, A>0, 62 h (36)
n
where
—Ap
EP¥ (N, p,J{a;}) £ —prf(8) — pSIn Zaj Zw ui )l ) 5 pyl1; )
J N1-=1 NS
—p(L=8)In | > ;> w(y: i)' »p(yl0;5)” (37)
Jj=1 y
and 7¢(4) designates the normalized exponent of the distance spectrum as in (14).
Let \
N A N N A L p(y’1§j))
91(y;:5) = pWl0;3)7 5 92(y;J =pyO;JP<. 38
(y;7) = p(y0; ) (y;7) = p(y0; ) (10 7) (38)

then, for a given pair of A and p (where A > 0 and 0 < p < 1), we need to minimize

§ln Z%wa Trga(yid) | + (1) Z%Zwyj o g1(y: )

over the set of non-negative functions v (- ; j) satisfying the constraints

i) =1, j=1...J (39)
Y
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To this end, calculus of variations provides the following set of equations:
[ (= 8)(1 = )gu(y: )
Dy ) S RS
Doy 2= (i g) P g1y d)
a;6(1 = 5)g2(y; J)
+ i
J 11 .
Doy 2j=1 (i) P 92(y3J)
where §; is a Lagrange multiplier. The solution of (40) is given in the following implicit form:

V(y;4) = (k1,91 (y;9) + kojg2(y59))” kij ko >0, j=1,...,J

+&6=0, j=1,...,J (40)

where

J
ST @) iy )

k2. ; 0 j=1yey
g , 41
ki, 1-0 7 - (41)
ST ayid)' e ga(yi )
j=1yey

We note that k = Zf—j in the RHS of (41) is independent of j. Thus, the substitution 8; = k:lpj
gives that the optimal tilting measures can be expressed as

O(yid) = Bigr(ws ) + kga(y; 5))”

. 1; 5 A 4
= B; p(yl0; ) 1+k<m>] yed j=1,...,J (42)
By plugging (38) into (41) we obtain
J 1 o A1PE
> fass) sl |14k (BEED) ]
s =5 p(y[0; ) “
k—l_dz":z 08P p(l0: ) <p<yu;j>>A Hk(p(ml;j)y "~ ()
Pl B o \p(y]0; ) p(yl0; 7)

and from (38) and (39), §; which is the appropriate factor normalizing the probability ti