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ABSTRACT 
There are two basic approaches to allocate protection 

resources for fast restoration. The first allocates resources 

upon the arrival of each connection request; yet, it incurs 

significant set-up time and is often capacity-inefficient. The 

second approach allocates protection resources during the 

network configuration phase; therefore, it needs to 

accommodate any possible arrival pattern of connection 

requests, hence calling for substantial over-provisioning of 

resources. In this study we establish a novel protection 

approach that overcomes all the above drawbacks.  

During the network configuration phase, we construct an 

(additional) low-capacity backup network. Upon a failure, 

traffic is rerouted through a bypass in the backup network. 

We establish that, with proper design, backup networks 

induce minor capacity overhead. We further impose several 

design requirements (e.g., hop-count limits) on backup 

networks and their induced bypasses, and prove that, 

commonly, they also incur minor overhead. Our approach 

offers additional benefits, most notably: traffic demands can 

be routed in an unprotected fashion, using standard routing 

schemes; moreover, upon a failure, control effort and 

congestion on the (primary) network are small and localized 

since affected traffic is immediately rerouted through the 

backup network. Motivated by these findings, we design 

efficient algorithms for the construction of backup networks. 
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1. INTRODUCTION 
Transmission capabilities have increased to rates of 10 Gbit/s 

and beyond  [10]. With this increase, any failure may lead to 

a vast amount of data loss. Accordingly, fast restoration has 

become a central requirement in the design of high-capacity 

networks e.g., optical mesh networks. It has been recognized 

that, for many practical settings, the speed and capacity of 

the involved links do not allow to activate restoration 

mechanisms after the failure. Thus, protection resources 

must be allocated in advance i.e., before a failure occurs 

 [13].  

There are two basic approaches to allocate protection 

resources. In the first approach, resources are allocated on 

demand i.e., upon the arrival of every bandwidth request, 

thus incurring a significant overhead in terms of connection 

set-up time. Consequently, this approach presents a clear 

tradeoff between the efficiency of the resulting solution in 

terms of capacity usage and the time needed to compute it; 

furthermore, its corresponding solutions are usually based on 

only partial (or no) information regarding the network state 

and future connection requests. A different approach is to 

pre-allocate the protection resources during the configuration 

phase of the network. While this approach enables to 

perform computations offline, it requires allocating 

protection resources for any potential pattern of connection 

requests; hence, it usually calls for a substantial over-

provisioning of protection resources.  

In this study we introduce a novel protection approach, 

which overcomes all the above drawbacks and incurs a 

negligible toll of protection resources. The proposed 

approach is based on allocating dedicated resources to be 

used exclusively for handling failures. In essence, given a 

primary network that is used in normal operation mode to 

route demands (in an unprotected manner), we propose to 

establish a (low-capacity) backup network that can protect 

against any single failure experienced by the primary 

network; i.e., upon a failure of any primary link e=(u,v), the 

traffic on e is rerouted from u to v through bypass paths that 

exclusively belong to the backup network. We formulate this 

notion as a network design problem with the objective of 

minimizing the total spare capacity of the backup network. 

The following example illustrates this idea. 

Example 1: Considering Fig. 1, the solid lines represent the 

connectivity in a given (unprotected) primary network. Assume that 

the network is undirected and the capacity of all links (in each 

direction) is 1 except for the (bold) links (a,f) and (f,e) that have a 

capacity of 5. The dashed lines with indicated capacities represent 

a backup network. It is easy to verify that this backup network 

indeed provides protection against any single link failure in the 

primary network. For example, upon a failure of the (unit capacity) 

link (b,e), it is possible to reroute (exclusively over the backup 

network) one flow unit through the bypass path (b,c,d,e). Similarly, 

when link (a,f) that has a capacity 5 fails, it is possible to send one 

flow unit over the bypass path (a,e,f) and 4 flow units over the 

bypass path (backup link) (a,f). Note that bypass paths that protect 

Fig. 1:  A primary network and a corresponding backup 

network.
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different links in this primary network can intersect each other and 

share the same amount of bandwidth to achieve efficiency. For 

example, the links (b,e) and (c,e) are protected by the bypasses 

(b,c,d,e) and (c,d,e), respectively, with the shared links (c,d) and 

(d,e).  

Our analysis clearly indicates that the proposed approach, of 

establishing backup networks for primary networks, induces 

very small overhead in terms of extra capacity. We 

independently prove this claim for two different types of 

well-established models of real-world networks, namely 

Waxman networks  [15] and Power-Law networks  [4]. In 

essence, our results indicate that, in order to construct a 

backup network for an N-node primary network, it is 

sufficient to increase the total capacity allocated to the 

primary network by a factor of 1( )
N

O  for Waxman networks 

and by a factor of 1

ln
( )

N
O  for Power-Law networks. Hence, 

the analysis for both (independent) models share the 

following (identical) conclusion: at a minor price of extra 

capacity, it is possible to construct backup networks that 

fully protect against any single link failure.  

The above approach proposes other major advantages. First, 

the use of backup networks enables traffic demands to be 

routed in an unprotected fashion through any standard (and 

simple) routing scheme (e.g., shortest path algorithms); 

hence, their use can substantially simplify the routing 

process while still providing (transparent) protection to all 

connections being routed over the primary network. 

Moreover, upon a failure, the induced control effort is small 

and localized1. In particular, unlike common restoration 

schemes that (upon a failure) divert all traffic to backup 

paths and thus may suddenly overload distant links on the 

(same) network  [5], with our approach no hot spots are 

created on the primary network, since affected traffic is 

immediately rerouted to the backup network.2 Finally, the 

relative long-time scale associated with the pre-placement of 

spare capacity into the network enables the employment of 

offline construction algorithms (with a complete knowledge 

of the network) that are capable of maximizing the capacity 

sharing among the bypass paths, thus optimizing resource 

utilization.  

Motivated by these major benefits, we consider several 

(independent) design requirements that are important for the 

efficient deployment of backup networks. First, each link in 

the primary network should often be protected by a bypass 

path (in the backup network) with a bounded hop-count. 

Indeed, imposing a small hop-count limit on each bypass 

path is essential for supporting QoS requirements; for 

example, it has been noted  [1] that the queuing delay in 

congested networks increases exponentially with the number 

of hops. Another example of the importance of such hop-

                                                           

                                                          

1 I.e., portions of the network far away from the failed link do not 

need to be aware of the failure.  
2 Note that the mechanisms that switch the traffic from the primary 

network to the backup network are essentially simple and can be 

easily implemented (in hardware) by configuring all bypasses in 

advance. 

count limits is provided by optical networks, where the 

signal quality is deteriorated as it travels over multiple hops.  

Another fundamental design requirement for backup 

networks considers the number of bypass paths that protect 

each primary link (i.e., among how many bypasses the 

rerouted traffic is split). It is often important to bound this 

number due to several reasons: first, splitting traffic over 

multiple bypass paths can cause packets to arrive out of 

order, thus increasing delivery latency and buffering 

requirements  [14]; second, the complexity of a scheme that 

distributes traffic among multiple bypasses considerably 

increases with the number of paths  [12]; third, often there is 

a limit on the number of explicit bypass paths (such as label-

switched paths in MPLS) that can be set up between a pair of 

nodes  [12]. 

Finally, we address a design requirement that considers the 

topology of the resulting backup network; specifically, this 

requirement restricts each backup topology to be a subgraph 

of the primary topology. With this requirement, the 

construction of the backup network is much easier for 

practical purposes.  For example, when the backup network 

is a subgraph of the primary network, the duct systems that 

contain the communication cables of the primary network 

can be used to thread all communication cables of the backup 

network, thus avoiding an extensive and expensive digging 

process. In fact, with this requirement, it is possible to avoid 

hardware installation altogether. Indeed, when the backup 

network is a subgraph of the primary network, it is possible 

to allocate a fraction of the bandwidth of each primary link 

for protection purposes (i.e., for the backup network); hence, 

the backup network is defined over the (available) primary 

network infrastructure and no hardware installation is 

required.3

Each of these design requirements levies a toll in terms of 

the required backup capacity. Accordingly, we turn to 

consider the extra capacity that must be allocated to the 

backup network due to the imposition of each combination 

of the above design constraints. Specifically, we quantify the 

increase in extra capacity as follows. Given a set of (one or 

more) design constraints, what is the worst-case ratio 

between the minimum capacity that needs to be allocated to a 

backup network that satisfies this set of constraints and the 

minimum capacity that needs to be allocated to a backup 

network that has no constraints to satisfy? For all possible 

combinations of constraints we provide (rigorous) upper and 

lower bounds on this worst-case ratio. Table 1 summarizes 

the corresponding results for N-node networks.  

 The results summarized in Table 1 provide insights as well 

as important design rules for the efficient construction of 

backup networks. First, all combinations of design 

constraints save two  (namely, the combinations that  include  

 
3 Yet, it should be noted that defining the backup network over the 

primary network infrastructure may expose dependencies between 

certain failures on the primary network and failures on the backup 

network.   
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both the hop-count and the subgraph constraints) increase the 

extra capacity by a factor of at most 2; thus, their 

enforcement provides important performance benefits, and, 

at the same time, it incurs only a small cost in terms of extra 

capacity; in particular, although we have shown in our 

analysis that backup networks induce minor overhead only 

for the unconstrained case, this overhead remains small also 

when the corresponding combinations of design constraints 

are imposed.3 Yet, when the hop-count limits and the 

subgraph constraints are concurrently imposed, the extra 

capacity is (dramatically) increased by a factor of Ω(Ν); 
hence, since such an increase is usually prohibitive, only one 

out of the two design constraints should be considered. Also, 

it is interesting to note that the cost incurred by imposing the 

requirement to support unsplittable routing at the backup 

network is equal to that incurred by satisfying that 

requirement and the requirement for small hop-counts; 

hence, when the requirement to support unsplittable routing 

is imposed, hop-count limits can be also imposed at no cost. 

For the above design constraints, we design several 

polynomial running time algorithms that aim at minimizing 

the capacity allocated for the backup networks while 

satisfying a given set of constraints. Specifically, we design 

two types of algorithms. The first imposes the requirement to 

support unsplittable routing at the backup network while the 

other allows traffic to be split among several bypasses (i.e., 

the unsplittable routing requirement is not imposed). For the 

splittable case, we present a polynomial running time 

algorithm that optimally solves the problem while 

considering either one or both of the other design constraints 

(namely, the hop-count limits and the subgraph constraint). 

For the unsplittable case, we present two algorithms that 

approximate the optimal solution by a factor of at most 2. 

The first approximation is designed to meet the subgraph 

constraint while running in a time complexity of O(N·M) for 

                                                           
1 The hop count limit is set to (the tight value) 2 i.e., all bypass 

paths in the backup network must consist of at most 2 links.  
2 The number of bypass paths is restricted to (the tight value) 1, 

i.e., upon a failure on any primary link e=(u,v), the traffic is 

rerouted from u to v over a single bypass path.   
3 Indeed, each combination involve only O(1) increase in extra 

capacity. 

M-link N-node networks, and the other is designed to meet 

the hop-count limit while running in a (linear) time 

complexity of O(N). Finally, we show how to modify some 

of the proposed schemes in order to construct backup 

networks that protect against correlated failures.  

The rest of this paper is organized as follows. In Section 2, 

we introduce some terminology and formulate the model. In 

Section 3, we establish important design rules for backup 

networks and investigate the increase in allocated capacity 

induced by the requirement to satisfy the above design 

constraints. In Section 4, we show how to construct a backup 

network for any given primary network while satisfying a 

given set of constraints; moreover, we extend the single-link 

failure assumption and consider the construction of backup 

networks that provide protection against multiple (correlated) 

failures. In Section 5, we consider two well-known models 

of real-world networks and analytically show that backup 

networks induce very small overhead in terms of extra 

capacity. Finally, Section 6 summarizes the results and 

discusses future research directions.  

Hop-Count 

Limit1  

Unsplittable 

Routing
2

Subgraph 

Constraint 

Constraints  

                Price 

No No No 1 (by definition) 

No No +Yes Yes At least ( )12 1
N

⋅ − ; 

at most 2 

No +Yes Yes No Exactly ( )12 1
N

⋅ −  

Yes No No At most ( )12 1
N

⋅ −  

Yes No +Yes Yes ( )NΩ  

Table 1:  The increase in extra capacity due to each 

combination of design constraints (ratio with respect to the 

unconstrained case). 

2. MODEL 
We are given a primary network G(V,E) with a capacity ce 

for each link eœE. Let N=|V| and M=|E|. As commonly done 

in studies on survivability and on optical networks, we 

assume that the network is undirected.4 The goal is to 

construct a backup network Gb(V,Eb) that protects the traffic 

carried by each link in G(V,E). To that end, we have to find a 

set of links EbŒVµV and backup capacities { }be
c  for these 

links so that Gb(V,Eb) can be used to reroute the traffic of any 

primary link  eœE  once it fails. As explained, we consider 

three types of restrictions on the backup networks. The first 

is a hop count restriction h imposed on each bypass path in 

the backup network. The second restriction is on the 

topology of the backup network; specifically, this restriction 

limits the backup network to be a subgraph of the primary 

network. The third restriction is imposed on the number of 

bypass paths that protects each primary link. Referring to the 

third constraint, we formulate the following types of backup 

networks. Unsplittable backup networks have a bypass path 

p between the end-nodes of each (primary) link eœE such 

that p can carry all the traffic of e once it fails i.e., the 

capacity of p (denoted by c(p)) is at least ce. Splittable 

backup networks have a collection of bypass paths P(e) 

between the end-nodes of each (primary) link eœE such that 

the total capacity of all protection paths in P(e) is at least the 

capacity of e i.e., ce≤ÊpœP(e)c(p). Finally, among all feasible 

backup networks that satisfy the above restrictions, we wish 

to construct one with minimum total capacity i.e., b ee E
c

∈∑  

is minimized. 

                                                           
4 In optical networks, adjacent nodes are usually connected by a 

pair of (identical) fibers carrying information in opposite directions 

 [8]. Therefore, undirected graphs efficiently model real optical 

networks and thus have been the focus of many studies on 

survivability, e.g.,  [3], [16], [9], [7]. 
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In the basic version of the problem, we focus on the single 

link failure model i.e., at any given time there exists at most 

one failed link. Note that this assumption enables to 

construct backup networks that are significantly more 

efficient in terms of capacity, since bypass paths in the 

backup network for two different (primary) links can 

intersect each other and share the same amount of capacity. 

In Section 4, we extend the single link failure assumption 

and consider backup networks that protect against correlated 

failures. 

3. DESIGN RULES FOR BACKUP NETWORKS  
In this section we investigate the increase in the total 

capacity of backup networks when the design constraints 

mentioned in the Introduction are imposed. This 

investigation enables to understand some fundamental 

tradeoffs in backup networks, and it provides important 

design rules for their efficient construction. To that end, we 

quantify the increase in the total capacity allocated for the 

backup network due to each combination of the following 

design constraints: (i) imposing a hop-count limit of 2 on 

each bypass path; (ii) supporting unsplittable routing at the 

backup network (i.e., upon any failure of a primary link, 

there is at least one bypass path that can reroute all affected 

traffic); (iii) restricting the topology of the backup network to 

be a subgraph of the topology of the primary network. For 

convenience, we represent any combination of constraints as 

a triplet of binary indicators (H,U,S) with roles and possible 

values as follows. 

• Indicator H takes the value H+ if the 2-hop count 

limit is imposed, and the value H− otherwise. 

• Indicator U takes the value U+ if it is required to 

support unsplittable routing, and the value U− 

otherwise. 

• Indicator S takes the value S+ if the subgraph 

constraint is imposed, and the value S− otherwise. 

Then, for any combination of constraints (H,U,S), we denote 

by ρ(H,U,S) the worst-case ratio between the minimum 

capacity allocated for a backup network that satisfies the 

combination (H,U,S) and the minimum capacity allocated for 

a backup network that has no imposed restrictions (i.e.,  

(H−,U−,S−)). 

We outline the organization and the main results obtained in 

this section. In Subsection 3.1, we establish a lower bound 

on the minimum capacity of any backup network; this lower 

bound is essential for the evaluation of ρ(H,U,S) for each 

combination (H,U,S). In Subsection 3.2, we prove that 

protection capacity is increased (in the worst case) by a 

factor of at most ( 12 1
N

− )  when hop count limits are 

imposed and by a factor of exactly ( 12 1
N )−  when 

unsplittable routing must be supported (i.e., 

( ) ( )1, , 2 1 NH U Sρ + − − ≤ ⋅ −  and ( ) ( )1, , 2 1 NH U Sρ − + − = ⋅ − ). Somewhat 

surprisingly, we establish that when both constraints are 

concurrently imposed (i.e., both H and U are set) the 

protection capacity is still increased by a factor of exactly 

( )12 1
N

− ; hence, in unsplittable backup networks, the hop-

count limits can be imposed at no price. In Subsection 3.3, 

we show that restricting the backup network to be a subgraph 

of the primary network increases the protection capacity by a 

factor of at most 2 and at least ( )12 1 ,
N

−  both for the 

splittable and unsplittable cases. Finally, in Subsection 3.4, 

we consider the increase in the protection capacity when the 

backup network must concurrently satisfy both the hop count 

limit and the subgraph constraint; although each of them 

increases the protection capacity only by a (small) constant 

factor, we show that when both constraints must be satisfied 

(concurrently), the protection capacity dramatically increases 

by a factor of Ω(N). 

3.1 A Tight Lower Bound on Minimum Capacity 
In this subsection, we establish a lower bound on the 

minimum capacity of unrestricted backup networks i.e., the 

case where (H−,U−,S−). This lower bound is used in 

Subsections 3.2 and 3.3 to bound from above the ratio 

ρ(H,U,S). In addition, we provide a simple example that 

demonstrates that this lower bound is tight.  

Lemma 1: Given a primary network G(V,E), denote for each 

vœV the maximum capacity of a link that is incident on v by 

C(v), i.e., ( )
( )

( ){ }
,

max ,
v u E

C v c v u
∈

=  where c(v,u) is the capacity 

of the link (v,u). Then, ( )1

2 v V
C v

∈
⋅∑  is a lower bound on 

the minimum capacity of any unrestricted1 backup network.  

Proof: Consider any unrestricted backup network Gb(V,Eb) 

for the primary network G(V,E). Let Eb(v) be the collection 

of all links that are incident on v in Gb(V,Eb). Note that, for 

each vœV, the total protection capacity of all links incident 

on v in Gb(V,Eb) must be at least C(v) i.e., 
( )

( )
b

e

e E v

c C v
∈

≥∑  

for each vœV. Indeed, otherwise the link with maximum 

capacity in G(V,E) that is incident on a node vœV is not 

protected. Thus, we conclude   

  

  
( )

( )
b

e

v V v Ve E v

c C
∈ ∈∈

≥ v∑ ∑ ∑ .        (1) 

Since the network Gb(V,Eb) is undirected, each link e=(v,u) 

in Eb belongs to both Eb(v) and Eb(u); hence, 

( )
2

b b

e

v Ve E e E v

c
∈∈ ∈

⋅ = ec∑ ∑ ∑ . This, together with (1), proves that 

( )1

2
b

e

v Ve E

c C
∈∈

≥ ⋅ v∑ ∑  i.e., the minimum capacity of every 

unrestricted backup network is at least  ( )1

2 v V
C v

∈
⋅∑ . à 

As the following simple example shows, the above lower 

bound is tight. Consider a network that consists of a pair of 

nodes u,v that are connected by a single link e. Obviously, 

for this case, the optimal backup network constitutes of a 

single parallel link to e with a capacity of ce; since by 

                                                           
1 I.e., the case (H

−
,U
−
,S
−
). 
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definition C(u)=C(v)=ce, it follows that ( )1

2 ev V
C v c

∈
⋅∑ = ; 

hence, the total capacity of this (optimal) backup network is 

exactly ( )1

2 v V
C v

∈
⋅∑ . 

3.2 The Price of Hop-Count Restrictions and 

Unsplittable Routing is Small 
In this subsection we investigate the increase in the 

protection capacity when the backup network must support 

unsplittable routing and/or satisfy hop count restrictions on 

each bypass path. Obviously, imposing each of the two 

design requirements substantially reduces the set of feasible 

solutions. Therefore, one could expect that the enforcement 

of any of these constraints results in a severe increase in the 

capacity needed for protection. Yet, in the following, we 

prove that designing backup networks that are restricted to 

reroute traffic unsplittably over bypass paths with a hop 

limit h=2 never increases the protection capacity by a factor 

of more than ( 12 1
N

− ) . Specifically, we show that each of 

the ratios ρ(H−,U+,S−) and ρ(H+,U+,S−) is equal to ( )12 1
N

− . 

For the case where only the hop count limit is imposed, we 

show that ( ) ( )1, , 2 1 NH U Sρ + − − ≤ − . The analysis for all these 

ratios is based on the following network construction.  

 

 

Theorem 1: The minimum protection capacity of an 

unsplittable backup network with a hop limit h=2 is larger by 

a factor of at most ( 12 1
N

⋅ − )  than the minimum protection 

capacity of a splittable backup network that has no hop count 

limits i.e., ( ) ( )1, , 2 1 NH U Sρ + + − ≤ ⋅ − .  

Proof: Given a primary network G(V,E), in order to prove 

the theorem it is sufficient to show that Procedure QoS-

Backup Network constructs an unsplittable backup network 

that consists of solely 2-hop protection paths and has a total 

capacity of at most ( ) ( )11
N v V

C v
∈

− ⋅∑ ; this, together with 

Lemma 1 (that establishes a lower bound of ( )1

2 v V
C v

∈
⋅∑  

on the minimum capacity of any splittable backup network), 

proves the theorem. Let Gb(V,Eb) be the backup network 

returned by Procedure QoS-Backup Network when applied 

on the primary network G(V,E). First, it is easy to see that, 

by construction, each link (u,v)œE has a 2-hop bypass path 

(u,s,v) in Gb(V,Eb); hence, each primary link in G(V,E) is 

protected by a 2-hop path in Gb(V,Eb). Next, note  

that the total capacity of the links in Gb(V,Eb)  

is ( ) ( )
\{ }

;
u V s v V

C u C v C s
∈ ∈

= − ( )∑ ∑  since C(s)= 

( ){ } ( )1max ,v V N v V
C v C v∈ ∈

= ≥ ⋅∑  it holds that the total 

capacity of Gb(V,Eb) is ( )
\{ }u V s

C u
∈

=∑  

( ) ( ) ( ) ( ) ( ) ( )1 11 ;
N Nv V v V v V v V

C v C s C v C v C v
∈ ∈ ∈

= − ≤ − ⋅ = − ⋅
∈∑ ∑ ∑ ∑

 thus, according to Lemma 1, the capacity of Gb(V,Eb) is 

larger by a factor of at most ( 12 1
N

⋅ − )  than the minimum 

possible capacity for splittable backup networks. It is left to 

be shown that each link eœE has a protection path p in 

Gb(V,Eb) that can carry all the traffic of e i.e., ce≤c(p), thus 

establishing that Gb(V,Eb) is an unsplittable backup network 

for G(V,E). To that end, note that, for each link (u,v)œE, the 

bypass path (u,s,v) in Gb(V,Eb) has a capacity of  

min{C(u),C(v)}; indeed, by construction, the capacity of 

(u,s)œEb and (s,v)œEb is C(u) and C(v), respectively. 

Therefore, since by definition of C(·), the value of both C(u) 

and C(v) is at least the capacity value of the link (u,v)œE, it 

follows that the capacity min{C(u),C(v)} (of the bypass path 

(u,s,v))  is at least the capacity of the link (u,v). à 

QoS-Backup Network <Primary Network G(V,E)> 

 

1. Initialize the set of links in the backup network 

to be empty i.e., Eb≠f. 

2. Let s be a node in V incident to a link with 

maximum capacity i.e., C(s)=MaxvœV{C(v)}. 

3. For each node uœV/{s}, add to the set Eb a link 

between nodes s and u with a capacity C(u).  

4. Return the network Gb(V,Eb). 

As mentioned in the Introduction, splitting the rerouted 

traffic over a small number of bypass paths, each with a 

bounded hop-count, is essential for supporting QoS-sensitive 

applications. Note that, in the worst case, the rerouted traffic 

can be split among Ω(M) bypass paths, each with Ω(N) links. 

For such cases, Theorem 1 suggests a useful design rule that 

enables to trade the amount of capacity needed for protection 

with the quality of the rerouted traffic. Note that this tradeoff 

is very effective, as it involves O(M) improvement in the 

split ratio and O(N) improvement in the hop-count of the 

bypass paths, at a price of just O(1) increase in the 

(minimum) protection capacity.  

We proceed to present other important insights and design 

rules for the efficient construction of unsplittable backup 

networks with hop count limits. To that end, we first 

establish the following corollary that stems directly from the 

upper bound on ρ(H+,U+,S−) (Theorem 1) and the obvious 

relations ρ(H−,U+,S−)≤ρ(H+,U+,S−), ρ(H+,U−,S−)≤ρ(H+,U+,S−). 

Fig. 2:  Procedure QoS-Backup Network 

Corollary 1: The ratios ρ(H−,U+,S−), ρ(H+,U−,S−) and 

ρ(H+,U+,S−) are all bounded from above by ( )12 1 . 
N

⋅ −

We now show that the upper bound obtained in Corollary 1 

for the ratios ρ(H−,U+,S−) and ρ(H+,U+,S−) is tight. To that 

end, it is sufficient to establish a lower bound of ( )12 1
N

⋅ −  

for these ratios. We first focus on establishing a lower bound 

for the cost incurred by the requirement to reroute traffic 

unsplittably i.e., a lower bound for ρ(H−,U+,S−). More 

specifically, we present an example of optimal unsplittable 

and splittable backup networks that share the same primary 

network and differ from each other in the allocated capacity 
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by a factor of ( 12 1
N

⋅ − ) . The example is illustrated through 

Fig. 3. The solid lines represent a primary network (with a 

topology of an N-node ring), and the dashed lines represent 

an unsplittable backup network in (a) and a splittable backup 

network in (b). We assume that the capacities of all links in 

the primary network are equal to 1. Moreover, it is assumed 

that each link has a capacity of 1 in the backup network of 

(a) and a capacity of ½ in the backup network of (b).    

Fig. 4:  Procedure Subgraph Backup Network 

 

 

First note that any unsplittable backup network must consist, 

for each node vœV, of at least one link with a unit capacity 

that connects v to some other node in V\{v}. Indeed, if a node 

v is connected to all its neighbors in the backup network only 

by links with a capacity smaller than 1, it cannot reroute the 

traffic unsplittably upon any failure on the links that are 

incident to v in the primary network. This, together with the 

fact that every backup network for the given primary 

network must consist of at least N-1 links1, establishes that 

the total capacity of any unsplittable backup network must be 

of at least N-1. In particular, the unsplittable backup network 

presented in (a) is optimal. Consider now the splittable 

backup network presented in (b). Note that this backup 

network is a ring. Therefore, upon a failure of any primary 

link, it is possible to split the traffic evenly and reroute each 

half in an opposite direction. Thus, since the capacity values 

of all links are equal to ½ in the backup network and equal to 

1 in the primary network, the backup network is feasible as it 

protects against any failure on the primary network. Note 

that the total capacity allocated for this backup network is 
2

N ; 

hence, the total capacity of any optimal splittable backup 

network (for the given primary network) is at most 
2

N . Thus, 

it holds that ( ) ( )1

2

1
, , 2 1 NN

N
H U Sρ − + − −

≥ = ⋅ − .  

Finally, note that, since ρ(H+,U+,S−)≥ρ(H−,U+,S−), the lower 

bound obtained for ρ(H−,U+,S−) also applies for ρ(H+,U+,S−) 

i.e., ( ) ( )1, , 2 1 NH U Sρ + + − ≥ ⋅ − . Note that for both ratios, this lower 

bound coincides with the upper bound established in 

Corollary 1. Hence, the price of unsplittable routing is 

exactly ( )12 1
N

⋅ −  and is not affected by imposing (additional) 

                                                           
1 Indeed, otherwise the backup network is not connected; and, 

clearly, if the primary network has a connected topology then the 

backup network must also be connected.  

hop-count limits on the bypass paths i.e., 

( ) ( ) ( )1, , , , 2 1 NH U S H U Sρ ρ− + − + + −= = ⋅ − . We summarize this 

discussion with the following corollary.  

Corollary 2: Each of the ratios ρ(H−,U+,S−) and ρ(H+,U+,S−)  

is exactly ( )12 1
N

⋅ − . 

3.3 The Subgraph Constraint has a Small Price 
As mentioned in the Introduction, from a practical viewpoint, 

it may be much easier to construct a backup network with a 

topology that is a subgraph of the primary network. 

Accordingly, in this subsection we investigate the increase in 

protection capacity when the topology of the backup network 

is required to be a subgraph of the topology of the primary 

network. Specifically, we show that, due to this "subgraph 

constraint", the total capacity allocated for the backup 

network increases (in the worst case) by a factor that is 

between ( )12 1
N

⋅ −  and 2 for both splittable and unsplittable 

backup networks i.e., ( ) ( ) ( )1, , , , , 2 1 ,2NH U S H U Sρ ρ− − + − + + ⎡ ⎤∈ ⋅ −⎣ ⎦ .  

The proof of the upper bound (Theorem 2) is based on the 

network construction specified in Fig. 4. More specifically, 

given a primary network G(V,E), we prove that the following 

procedure constructs a backup network that is a subgraph of 

G(V,E) and has a capacity of at most twice that of an optimal 

backup network (with arbitrary topology and no hop-counts).  

Theorem 2: Restricting the backup network to be a subgraph 

of the primary network increases the minimum protection 

capacity by a factor of at most 2 both for the splittable and 

for the unsplittable case i.e., ρ(H−,U−,S+)≤2 and 

ρ(H−,U+,S+)≤2.  

 

(a) (b) 

Fig. 3:  The price of unsplittable routing is exactly ( )12 1 .
N

⋅ −  

(a) Optimal unsplittable backup network with a capacity of N-1. 

(b) Optimal splittable backup network with a capacity of 
2

N . 

Subgraph Backup Network <Primary Network G(V,E)> 

 

1. Initialization 

• Let e1, e2,…,eM  denote a non-decreasing ordering of 

the links of E according to their capacities. 

• Initialize the set of links in the backup network to be 

empty i.e., Eb≠f. 

• Define an index i and initialize it to zero i.e., i≠1. 

2. While i≤M 

• Consider the link ei=(ui, vi) in the primary network 

G(V,E). 

• If ei does not create a cycle with the (current) links of 

Eb, add to Eb a link between nodes ui and vi with 

capacity ce (i.e., the same capacity as in the primary 

network).  

• i≠i+1 

3. Return the network Gb(V,Eb). 
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Proof: Given a primary network G(V,E), in order to prove 

the theorem it is sufficient to show the existence of an 

unsplittable backup network Gb(V,Eb)  that is a subgraph of 

G(V,E) and has a total capacity of at most ( )
v V

C v
∈∑ . 

Indeed, by Lemma 1, every splittable backup network has a 

lower bound of ( )1

2 v V
C v

∈
⋅∑  on the minimum protection 

capacity; hence, since the minimum protection capacity in 

the splittable case is not larger than in the unsplittable case, 

the existence of such a backup network (i.e., an unsplittable 

backup network that satisfies the subgraph requirement and 

has a total capacity of at most ) proves the 

theorem both for the splittable and unsplittable cases. 

Accordingly, in the following we show that the network 

G

( )
v V

C v
∈∑

b(V,Eb), returned by Procedure Subgraph Backup Network 

(Fig. 4), when applied on the primary network G(V,E), 

satisfies all the following: (i)  Gb(V,Eb) is an unsplittable 

backup network for G(V,E); (ii) Gb(V,Eb) is a subgraph of 

G(V,E); (iii) Gb(V,Eb) has a total capacity of at most 

. Hence, proving (i), (ii) and (iii) establishes the 

theorem.  

( )
v V

C v
∈∑

We first show that Gb(V,Eb) is an unsplittable backup 

network for the primary network G(V,E). To that end, we 

have to show (by definition) that each link eœE has a 

protection path p in Gb(V,Eb) that can carry all the traffic of 

e, i.e., ce≤c(p). Note that when a link eœE between nodes u 

and v is considered in the construction of Gb(V,Eb) (as per 

Fig. 4), either a parallel link to e with a capacity ce is added 

to the backup network Gb(V,Eb) or there already is a path in 

Gb(V,Eb) between u and v. Obviously, in the first case, the 

parallel link that was added to Gb(V,Eb) has a capacity ce that 

can support the traffic of the link e. In the second case, link e 

was considered after a path p from u to v was formed in 

Gb(V,Eb); hence, since the links are considered by decreasing 

capacity values, the capacity of each link along p in Gb(V,Eb) 

is not smaller than ce; therefore, the path p can support the 

traffic carried by e. 

We turn to show that the total capacity of Gb(V,Eb) is at most 

 To that end, we show the existence of a one-to-

one mapping f:E

( ).
v V

C v
∈∑

b→V in the network Gb(V,Eb). Specifically, 

we map each link (u,v)œEb into one of its end-nodes (i.e., 

either u or v) such that no two links in Eb are mapped into the 

same node in V. Since links are added to the backup network 

with capacity values identical to those in the primary 

network, and since C(v) is the maximum capacity of a link 

incident on node v, such a mapping enables to allocate for 

each link eœEb an exclusive node vœV such that ce≤C(v); 

obviously, this proves the theorem, since it implies that 

 ( ).b ee E v V
c C

∈ ∈
≤∑ ∑ v

                                                          

We turn to specify the mapping. We partition the set of 

nodes V into two disjoint sets S and T such that S»T=V. 

Initially, we pick an arbitrary node sœV and assign S={s} and 

T=V/{s}. At each step we choose a link e=(u,v) in Eb, which 

crosses the cut (S,T) (i.e., uœS, vœT and eœEb) and map (u,v)  

into the node vœT; then, we move the node v from the set T 

to the set S. The process is repeated until there is no link in 

the cut (S,T). Obviously, it follows by construction that at the 

end of the process each link (u,v) that was considered by the 

process is mapped into one of its end nodes (either u or v). 

Moreover, once a link (u,v) is mapped to v, the process 

removes v from the set T; hence, since the process maps links 

only to nodes in T, each node is always associated with at 

most one link i.e., there is no pair of links that are mapped to 

the same node. Therefore, it is left to be shown that at the 

end of the process all the links in Eb are mapped to some 

node in V. To that end, it is sufficient to show that each link 

is considered by the process at least once. 

To that end, we first show that Gb(V,Eb) is connected. Recall 

that we assume that G(V,E) is connected. Hence, for each 

pair of nodes u,vœV, there exists a path in G(V,E) that 

connects u and v; hence, since we have shown that Gb(V,Eb) 

has a path that connects the end nodes of each link in E,1  

there is also a path between every pair of nodes u,vœV in 

Gb(V,Eb); hence, Gb(V,Eb) is connected. Now assume by way 

of contradiction that there exists a link in Eb that has not been 

considered by the process and denote by AŒEb the set of all 

such links. Since Gb(V,Eb) is connected, it follows that, for 

each link (u,v)œA, either u or v (or both) must be connected 

to at least one node in V\{u,v} by a link from Eb. Among the 

links in A, choose a link e=(u,v) that is closest in terms of 

hop count to a link that has already been considered by the 

process; by the selection of (u,v) there must exist a node 

wœV\{u,v} such that either the link (v,w) or the link (u,w) 

belongs to Eb and it has been considered by the process. 

Without loss of generality, assume that link (u,w) has been 

considered by the process. Therefore, by construction, when 

the process ends, node u is in the subset S. On the other hand, 

since by construction Gb(V,Eb) is acyclic, it is impossible that 

a link incident on the node v has been considered by the 

process, since this implies that there exists in Gb(V,Eb) a path 

between s and v and also a path between s and u that, 

together with the link (u,v), form a cycle in Gb(V,Eb).2 Hence, 

node v is in T and the link (u,v) crosses the cut (S,T); thus, by 

construction, it should have been considered by the process. 

Obviously, this contradicts the selection of the link (u,v). We 

thus conclude that all the links in Eb are considered by the 

process at least once. 

It remains to be shown that the topology of Gb(V,Eb) is a 

subgraph of G(V,E).  By construction, Procedure Subgraph 

Backup Network defines a link between a pair of nodes in 

Gb(V,Eb) only if the pair of nodes is connected by a link in 

 
1 Specifically, we have shown at the beginning of the proof that 

Gb(V,Eb) is an unsplittable backup network for G(V,E). Hence, it 

must have at least one path that connects the end nodes of each 

link in E. 

2 By construction, the process considers only links from Eb; 

moreover, it is easy to see that all considered links define a 

connected component. Therefore, there must exist in Gb(V,Eb) a 

path between s and v and also a path between s and u if the process 

has considered a link incident on the node v and a link incident on 

the node u. 
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the primary network G(V,E); hence, Gb(V,Eb) is a subgraph 

of G(V,E), thus completing the proof. à 

The property established in theorem 2 should be considered 

in cases where building a completely independent 

infrastructure for the backup network is too costly (or 

impossible). Specifically, in such cases, Theorem 2 suggests 

an important design rule that makes the construction of the 

backup network substantially easier at the price of increasing 

the total protection capacity by a factor of at most 2. We now 

turn to show that this result is almost tight for both the 

splittable and the unsplittable cases. Specifically, we show 

that each of the ratios ρ(H−,U−,S+) and ρ(H−,U+,S+) is larger 

than ( )12 1
N

⋅ − . To that end, we present an example of a 

primary network with two corresponding backup networks 

that due to the subgraph constraint differ from each other in 

the allocated capacity by a factor of ( )12 1
N

⋅ − . The example 

is illustrated in Fig. 5. The solid lines (in (a) and (b)) 

represent a primary network with a topology of an N-node 

path graph, the dashed lines in (a) represent a backup 

network that satisfies the subgraph constraint, and the dashed 

lines in (b) represent a backup network with an arbitrary 

topology. We assume that the capacities of all links in the 

primary network are equal to 1. Moreover it is assumed that 

each link has a capacity of 1 in the backup network of (a) 

and a capacity of ½ in the backup network of (b).  

 

We first bound from below the ratio ρ(H−,U−,S+). To that 

end, note that when the subgraph constraint is imposed, the 

backup and the primary networks must have identical 

topologies (i.e., the backup network must consist of a parallel 

link to each primary link).1 Therefore, the topology of the 

backup network is a path graph and there is only one path 

between each pair of nodes. Thus, upon a failure of any 

primary link e, the rerouted traffic cannot be split and is 

carried unsplittably over the link that is parallel to e in the 

backup network. Therefore, since the capacity of each 

primary link is 1, the capacity of the backup links must be of 

at least 1; hence, the total capacity of any backup network 

                                                           
1 Indeed, assume by way of contradiction the existence of a backup 

network with a topology that is not a duplicate of the given 

primary network but satisfies the subgraph constraint; clearly, this 

backup network is disconnected as it contains less than N-1 links. 

Yet, as mentioned, any backup network of a connected primary 

network must also be connected. 

must be of at least N-1, and in particular the backup network 

presented in (a) is optimal. On the other hand, the total 

capacity of any (unrestricted) optimal backup network for the 

given primary network is at most 
2

N . Indeed, the backup 

network presented in (b) is both feasible2 and allocated a 

backup capacity of 
2

N  units. Thus, it holds that 

( ) ( )1

2

1, , 2 1 ;N
NH U Sρ − − + −≥ = ⋅ − N  also, since ρ(H−,U+,S+)≥ρ(H−,U−,S+) 

must hold, it also holds that ( ) ( 1, , 2 1 )NH U Sρ − + + ≥ ⋅ − . These lower 

bounds, together with the upper bounds of Theorem 2, 

establish the following corollary.   

Corollary 3: The ratios ρ(H−,U−,S+) and ρ(H−,U+,S+) are 

bounded from below by ( )12 1
N

⋅ −  and from above by 2. 

3.4 A Prohibitive Cost for Hop-Count Limits 

Combined with Subgraph Constraints  
In the previous subsections we have shown that the 

minimum protection capacity increases by a factor of at most 

2 when either the backup network must satisfy hop-count 

limits or the backup network is required to be a subgraph of 

the primary network; similar efficient guarantees are 

obtained when each of these constraints is combined with a 

requirement to support unsplittable routing over the backup 

network. Yet, in contrast to these positive results, in this 

subsection we show that when the hop-count limit and the 

subgraph constraint are concurrently imposed, the protection 

capacity can increase by a factor as large as Ω(N) i.e., both 

ρ(H+,U−,S+)=Ω(N)  and ρ(H+,U+,S+)=Ω(N) hold. Obviously, 

this dramatic increase in protection capacity is prohibitive for 

practical purposes and implies that only one (i.e., the more 

significant) of the two constraints should be imposed.  

We begin with the ratio ρ(H+,U−,S+). Consider the primary 

network G(V,E) presented in Fig. 6. Assume that all link 

capacities are equal to 1. Denote by V1 the upper set of nodes 

and by V2 the lower set of nodes. The network is a complete 

bipartite graph i.e., there is a link between each pair of nodes 

uœV1 and vœV2 but not between any pair of nodes that are 

both in V1 or in V2. Let Gb(V,Eb) be a splittable backup 

network for the primary network G(V,E) that satisfies both a 

hop-count limit h=2 and the subgraph constraint. We first 

                                                           
2 Indeed, the backup network is a ring with link capacities equal to 
1
2

; hence, upon a failure of any primary link, it is possible to split 

the traffic evenly and reroute each half in the opposite direction. 

 

 

V1 

V2

 

(a) (b) 

( )12 1 .
N

⋅ −Fig. 5: The subgraph constraint has a price of at least  

(a) Optimal backup network satisfying the subgraph constraint. 

(b) A backup network with arbitrary topology.  

Fig. 6:  A primary network with a topology of a complete 

bipartite graph. 
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show that Gb(V,Eb) and G(V,E) must share the same 

topology, i.e., Gb(V,Eb) must consist of a parallel link for 

each primary link eœE.  

Assume, by way of contradiction, that G(V,E) and Gb(V,Eb) 

do not share identical topologies. Hence, there must exist a 

link in the primary network with no corresponding parallel 

link in the backup network i.e., a link (u,v)œE such that 

(u,v)–Eb. Upon a failure of the link (u,v)œE, the backup 

network must provide an alternative 2-hop bypass path 

between the nodes u and v. Yet, it is easy to see that such a 

bypass cannot exist in the backup network. Indeed, there is 

no common neighbor vk to any two nodes vi, vj in G(V,E) that 

are connected by a link; hence, any path between u and v that 

does not include the direct link (u, v) must have a hop count 

larger than 2 in the primary network G(V,E). Thus, since 

Gb(V,Eb) is a subgraph of G(V,E), the bypass for the link 

(u,v) in Gb(V,Eb) must be larger than 2. Obviously, this 

contradicts the assumption that Gb(V,Eb) is a backup network 

that consists of bypasses with at most 2 hops. Thus, we 

conclude that Gb(V,Eb) and G(V,E) must share identical 

topologies.  

We now employ the fact that Gb(V,Eb) and G(V,E) share the 

same topology to show that the total capacity of Gb(V,Eb) is 

at least 
2

4

N . To that end, note that upon a failure of any 

primary link e, only the link that is parallel to e in the backup 

network satisfies the hop-count restriction h=2; indeed, we 

have already shown that all other bypass paths violate this 

hop-count limit. Hence, upon a failure of the link e only the 

link parallel to e (in the backup network) is employed. 

Therefore, since the capacity of each primary link is 1, the 

capacity value of each parallel link (i.e., a link in the backup 

network) must be of at least 1; hence, 
b b

b

e

e E

c E
∈

≥∑ . 

However, since Gb(V,Eb) and G(V,E) share the same 

topology it holds that |Eb|=|E|; hence, 
2

4
b b

b N
e

e E

c E E
∈

≥ = =∑ . 

Literally, any splittable backup network for G(V,E) that 

concurrently satisfies the hop-count limit and the subgraph 

constraint must be allocated with a capacity of at least 
2

4

N .  

On the other hand, it is easy to see that when no restrictions 

on the backup network are imposed, any spanning tree 

(defined over V) with link capacities equal to one, is a 

feasible backup network for G(V,E); since the total capacity 

in such a case is N-1, the total capacity of any (unrestricted) 

optimal backup network for G(V,E) is at most N-1. Thus, we 

conclude that ( ) ( )
2

4, ,
1

N

H U S N
N

ρ + − + = =Ω−  i.e., when neither the 

hop-count limits nor the subgraph requirements are 

considered, the capacity of the backup network can decrease 

by a factor of Ω(N). This lower bound, together with the fact 

that ρ(H+,U+,S+)≥ρ(H+,U−,S+), establish the following corollary. 

Corollary 4: The ratios ρ(H+,U−,S+) and ρ(H+,U+,S+) are 

bounded from below by Ω(N). 

4. CONSTRUCTING BACKUP NETWORKS  
In this section we show how to construct backup networks 

for any given primary network. We first present optimal 

construction algorithms for backup networks that satisfy the 

design constraints mentioned in the Introduction. Then, we 

consider the computational complexity of each algorithm. 

For the cases where the computational complexity is 

prohibitive, we present constant approximation algorithms 

that construct the backup networks in polynomial time; we 

also present some numerical results that show that the 

running time of all the proposed optimal algorithms is 

feasible for practical purposes. Finally, we show how to 

modify the proposed algorithms in order to construct backup 

networks that protect against correlated link failures.  

4.1. Optimal Algorithms  
In this section we formulate linear and integer programs, the 

solution of each identifies an optimal backup network for 

any given primary network. For ease of presentation, we 

transform each undirected link in the primary network 

G(V,E) into two directed links with opposite directions that 

have each the same capacity as the original (undirected) 

link.1 Denote by ( )
ebf e  the total flow rerouted over the 

backup link eb=(w1,w2)∈Eb upon a failure on the link e; let 

denote the capacity of the backup link e
ebc

b∈Eb. Upon a 

failure on a primary link e=(u,v)∈E, the flow ( )
ebf e  carried 

over the backup link eb=(w1,w2)∈Eb is a composition of 

flows that are rerouted from u to w1 through bypass paths of 

different hop counts. Let ( )h

ebf e  be the total flow over 

eb=(w1,w2)∈Eb that is rerouted from u to w1 through bypasses 

(from u to w1) with a hop-count of exactly h upon a failure 

on the primary link e=(u,v)∈E. 

If the topology of the backup network must be a subgraph of 

the primary network G(V,E), we set Eb≠E (yet, it is possible 

to assign zero capacities to backup links, i.e.,  0
ebc =  for 

some eb∈Eb). On the other hand, when there is no restriction 

on the resulting topology (i.e., the subgraph constraint is not 

imposed and arbitrary topologies are allowed) we set 

Eb≠VµV. For each v∈V, we denote by O(v) the set of all 

links in Eb that emanate from v, and by I(v) the set of all links 

in Eb that enter that node, namely O(v)={vØl|vØl∈Eb} and 

I(v)={wØv|wØv∈Eb}. Finally, for every link e=uØv, let 

                                                           
1 Recall that an undirected link with a capacity ce represents two 

directed links such that each of the links can transfer at most ce 

flow units. Therefore, the total capacity of all links in the 

undirected representation and in the directed representation differs 

by a factor of 2. In particular, minimizing the total capacity of all 

links in the directed representation also minimizes the total 

capacity in the undirected representation.   
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se=u and te=v. Then, a corresponding linear program whose 

solution is an optimal splittable backup network that satisfies 

the hop-count and subgraph constraints can be formulated 

using the variables ( ){ } { }{ },h

e eb bf e c ,

be
c

 as specified in Fig. 7. 

The objective function (1) minimizes the total capacity 

allocated to the backup network Gb(V,Eb). Constraint (2) is 

the nodal flow conservation constraint of the backup flow 

(i.e., flow on the backup network). More specifically, 

equation (2) states that upon a failure of any primary link 

e=seØte, the total backup flow that enters into any node 

v∈V\{se, te} and has traversed paths (from se to v) of hop-

count h-1 must equal the total backup flow emanating out of 

that node through paths of hop count h. Equations (3) and (4) 

ensure that, for each primary link e∈E, the backup network 

reserves at least a total capacity of ce along the paths that 

connect the end-nodes of e; specifically, constraint (3) emits 

from the end-node se of each primary link e=seØte a backup 

flow of at least ce flow units; similarly, constraint (4) absorbs 

at the end node te of each primary link e=seØte, a total 

backup flow of at least ce flow units. Equation (5) ensures 

that, upon a failure of any primary link e∈E, the total flow 

rerouted over each backup link eb∈Eb is at most . 

Expression (6) rules out non-feasible flows that violate the 

hop restriction, and Expressions (7) and (8) restrict all 

variables to be non-negative. Finally, Expression (9) restricts 

the solution to be symmetrical; hence, it rules out all non-

feasible solutions that are not feasible for the (original) 

undirected network.  

Note that, since Equation (7) allows the variables ( ){ }h

ebf e  to 

take any non-negative value, the rerouted flow upon a failure 

of any link eœE can be split among several paths; hence, the 

solution (that consists of the variables { constitutes an 

optimal splittable backup network for the given hop–count 

restriction H.  All that is needed in order to transfer the 

backup flow unsplittably is to modify Equation (7) so that 

h variable 

})
e
bc

eac ( )h

eb
f e  would take either the value 0 or the 

value ce for each eœE, ebœEb and hœ[0,H]. Note that, by 

doing so, we obtain an integer program that constructs an 

imal unsplittable backup network while satisfying the 

given design constraints.  

opt

Both the linear program (that corresponds to the splittable 

e) and the integer program (that corresponds to the 

unsplittable case) can be solved by commercial software 

tools such as CPLEX or MOSEK  [3]. We now consider the 

nning time of each of these programs. To that end, it is 

important to note that the number of variables and 

constraints in Program Backup Network is polynomial in the 

network size. Indeed, the hop count restriction H is at most 

N-1; therefore, the number of variables 

cas

ru

( ){ } { }{ },h

e eb bf e c  and 

 number of constraints is in the order of Nthe 3
·M. Thus, since 

the complexity incurred by solving a linear program is 

polynomial in the number of constraints and the number of 

variables  [6], Program Backup Network has a polynomial 

running time for the splittable case. On the other hand, for 

the unsplittable case Program Backup Network is an integer 

program that has no polynomial solution in the general case.  

Program Backup Network (G(V,E), Eb, H) 

Parameters: 

G(V,E) –  the primary network;  

Eb– the connectivity of the backup network;  

H – the hop-count limit. 

Minimize     (1) 

Subject to: 

 
b

e
e E

b
b

c
∈

∑

( ) ( )1

( ) ( )
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Fig. 7:  Constructing backup networks with minimum capacity. 

4.2. Fast Approximation Algorithms 
In the previous subsection, we have shown that that the 

running time of the proposed optimal construction schemes 

is polynomial in the input for the splittable case but may be 

intractable for the unsplittable case. Fortunately, in this 

subsection, we observe that Procedure QoS-Backup Network 

(Fig. 2) and Procedure Subgraph Backup Network (Fig. 4) 

can be used as alternative approximations for the 

construction of unsplittable backup networks. Specifically, 

these approximations establish unsplittable backup networks 

that satisfy either the subgraph constraint or the hop-count 

constraint; moreover, we show that both of them are operated 

in low polynomial time and produce backup networks with a 

total capacity of at most twice the optimum.  
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Procedure QoS-Backup Network and Procedure Subgraph 

Backup Network are shown to efficiently approximate the 

(corresponding) optimal solutions in the proof of Theorems 1 

and 2. Specifically, while both are shown to return an 

unsplittable backup network with a capacity of at most twice 

the optimum1, Procedure QoS-Backup Network is 

guaranteed to return a backup network that consists of solely 

2-hop protection paths and Procedure Subgraph Backup 

Network is guaranteed to return a backup network that 

satisfies the subgraph constraint. Moreover, it is easy to see 

that the execution times of Procedure QoS-Backup Network 

and Procedure Subgraph Backup Network are O(N) and 

O(M·N), respectively. Thus, these procedures can consider 

either the hop-count constraint or the subgraph constraint 

(but not both2), while providing attractive performance 

guarantees on both running time and allocated protection 

capacity.  

4.3. Construction Algorithms for Backup 

Networks: Slow & Optimal or Fast & Suboptimal?  
Limiting the running time of network algorithms that are 

frequently executed (e.g., routing protocols, scheduling and 

switching algorithms, web services, etc.) is usually of major 

practical importance. Accordingly, in such contexts 

heuristics and approximations improve their running time at 

the price of deteriorating the quality of the returned solution. 

Yet, in our context such a compromise is usually not 

required. First, the single computation of an optimal network 

is often followed by an installation and configuration process 

that can last for days. At the same time, the consequences of 

a poorly designed network may impose a prohibitive toll (as 

opposed, e.g., to an occasional packet that is not sent along 

the best path or scheduled in the best time slot) Therefore, 

unless the computation time of the construction algorithm is 

infeasible for practical purposes (e.g., days), the quality of 

the solution may well be favored over the computation time; 

hence, the optimal construction algorithms (specified in 

subsection 4.1), would be favored over the constant 

approximation schemes (specified in subsection 4.2). In the 

following, we indicate that Program Backup Network 

(specified in subection 4.1) can be applied to establish 

optimal backup networks (for typical primary networks) in 

the order of minutes.  

                                                           
1 Both procedures have shown to return an unsplittable backup 

network with a capacity of at most ( )
v V

C v
∈∑ ; This, together with 

Lemma 1 that establishes a lower bound of ( )1

2 v V
C v

∈
⋅∑  on the 

minimum capacity of any backup network, prove that the 

procedures return a solution that is within a factor of 2 away from 

the optimum. 

2 We have shown in Section 3.3 that the increase in the required 

protection capacity when both constraints are concurrently 

satisfied is prohibitive for practical purposes. Thus, although the 

procedures can satisfy only one of the two constraints, a unifying 

scheme for both constraints is of limited interest from a practical 

viewpoint.  

Following the lines of  [4], we generated3 random topologies 

with N nodes and invoked Program Backup Network over 

each topology. Then, we measured the time needed to 

construct an unsplittable backup network with a hop-count 

limit H=2; the program was implemented in Matlab 6.0 and 

run in a 2Ghz Intel 4 machine. Finally, we averaged the 

measurements over 150 runs for each N, Nœ{10, 15, 20, 25, 

30, 35, 40, 45, 50, 55, 60, 65, 70}. In Fig. 8 we depict the 

average running time versus network size (number of nodes). 

Note that the running time is increased linearly with the 

number of nodes; hence, from practical point of view, it 

scales very efficiently with N. Moreover, for networks with 

less than 70 nodes the backup network is constructed in a 

time smaller than a minute. 
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4.4. Coping with Correlated Failures 

Fig. 8:  Running time increases linearly with network size 

It has been reported  [11] that nearly 30% of all link failures 

are correlated. Accordingly, in this subsection we extend our 

work to a framework where a failure of one primary link 

affects other primary links. To that end, we assign to each 

primary link eœE a failure correlated set F(e)ŒE such that, 

upon a failure of the link e, all links in F(e) fail. Then, given 

a primary network G(V,E) and a correlated set F(e) for each 

eœE, our goal is to design an optimal backup network that 

considers the design constraints such that, upon a failure of a 

link eœE, the backup network provides protection against the 

failures of all links in F(e)»{e}. 

Our solution for the above problem is to extend Program 

Backup Network (specified in Fig. 7) to deal with correlated 

failures. To that end, note that when no correlation among 

the failures exists (and only single failures can take place), 

the bypass paths can intersect each other and share the same 

amount of capacity, provided they are used for the failures of 

different primary links in the network. On the other hand, for 

correlated failures each backup link ebœEb must be able to 

carry the backup flows induced by all link failures in the 

correlated set F(e). Hence, if a set of primary links (say, e1, 

e2,…, ek) concurrently fail and their associated backup flows 

cross the same link eb∈Eb then, it is required that 

                                                           
3The construction is specified in Section 5 under the Power-Law 

topology model.  
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( ) ( ) ( )1 2 ...b b b b ke e e e ebf f e f e f e c= + + ≤ . Thus, we only have to 

modify Equation (5) in Program Backup Network that 

restricts the backup capacities { } to be large enough to 

carry the rerouted traffic caused by single failures to be large 

enough to carry the rerouted traffic caused by correlated 

failures. More specifically, by replacing Equation (5) with 

the restriction 

be
c

( )
( ) { }

( )
( ) { } 0

b

H
h

ee e
he F e e e F e e

b bf f ce
′ ′ =∈ ∪ ∈ ∪

′ =∑ ∑ ∑ e′ ≤  for 

each primary link eœE and backup link ebœEb, every backup 

link eb has sufficient capacity  to carry all backup flows 

induced by the failure of the correlated set F(e) and the link 

e; hence, the resulting backup network can protect against 

correlated failures while minimizing the allocated protection 

capacity.  

be
c

5. HOW EFFECTIVE IS THE PROPOSED 

APPROACH? 
In this section, we show that the total capacity that must be 

allocated to protect a primary network is minor compared to 

the capacity of the primary network. To that end, we evaluate 

the ratio between the total capacity of a primary network and 

the total capacity of a corresponding optimal backup 

network. Clearly, a large value for this ratio indicates that, by 

proper design, it is possible to allocate a single unit of 

protection capacity against a large amount of capacity in the 

primary network, thus implying that the proposed approach 

induces only a small overhead in terms of capacity. 

Given a primary network G(V,E) and the corresponding 

optimal unsplittable backup network Gb(V,Eb), let ρ(G) be 

the ratio between the total capacity of Gb(V,Eb) and the total 

capacity of G(V,E) i.e.,  

  ( )
b

e

e E

e

e E

c

G
c

ρ ∈

∈

∑
∑

. 

In the following we analytically show that, for both Waxman 

topologies  [15] and Power-Law topologies  [4], the expected 

value of this ratio is large. Note that, since the total 

protection capacity of splittable backup networks is never 

larger (and is usually smaller) than that of unsplittable 

backup networks, the bound ρ(G) holds also for the splittable 

case.  

We first present our analysis for Waxman topologies  [15]. In 

this model, a pair of nodes is located at the diagonally 

opposite corners of a square area of unit dimension. Then,  

N-2 nodes are uniformly spread over the square. Finally, a 

link between each two nodes u and v, is introduced with the 

following probability, which depends on the distance δ(u,v) 
between them:   

 ( ) ( ),
, exp

2

u v
p u v

δ
α

β

⎡ ⎤−
= ⋅ ⎢

⋅⎣ ⎦
,⎥    (*) 

where α and β are parameters in the range (0,1].   

We assume (for both the Waxman and the Power-Law 

models) that the capacities of all links in the constructed 

network have the same order of magnitude, which is the 

typical case. Indeed, in optical networks, there are a few 

standard sizes of bandwidth for optical links, each with a 

transmission capability between several hundreds of 

Mbit/sec to a few Gbit/sec1. 

Theorem 3:  Assuming a Waxman topology, the expected 

ratio between the total capacity of a primary network and 

that of the corresponding optimal backup network is Ω(Ν) 
i.e., E[ρ(G)]=Ω(Ν).  

Proof: In the proof of Theorem 1, we have shown that 

Procedure QoS-Backup Network constructs, for any given 

primary network G(V,E), an unsplittable backup network 

with a total capacity of at most .( )
v V

C v
∈∑ 2 In particular, for 

any given primary network G(V,E), it holds that 

( ) ( )
;

ee E

v V

c
G

C v
ρ ∈

∈

≥ ∑
∑

 thus, since  and minee E
c M c

∈
≥ ⋅∑

( ) maxv V
C v N c

∈
≤ ⋅∑  for M=|E|, cmin mineœE{ce} and 

cmax maxeœE{ce}, each primary network G(V,E) must satisfy 

  ( ) ( )
min

max

.
ee E

v V

c M c
G

N cC v
ρ ∈

∈

⋅
≥ ≥

⋅
∑

∑
  (2) 

Assume now that G(V,E) is a primary network of a Waxman 

topology. In the following, we employ (2) to show that the 

expected value of ρ(G) is  Ω(Ν). Το that end, define for each 

pair of nodes vi,vjœV, an indicator Ii,j, which is 1 if link (vi,vj) 

exists in G(V,E), and is 0 otherwise; note that, by definition, 

P{Ii,j=1}=p(vi,vj), where the latter is given by (*). Then, the 

total number of links M can be written as a sum of indicators 

i.e., 
)

,
( ,

.
i j

i j
v v V V

M I
∈ ×

= ∑  Therefore, [ ]
)

,

( ,

][
V Vi j

i j

v v

E M E I
×∈

= =∑  

[ ] { } { }[ ] { }
) ) )

, , ,

( , ( , ( ,

0 0 1 1
i j i j i j

i j i j i j i j

v v V V v v V V v v V V

E I P I P I P I
∈ × ∈ × ∈ ×

, 1 .= = ⋅ = + ⋅ = = =∑ ∑ ∑

Finally, note that, since the distance between any two nodes 

in the square area is at most 2 , it holds that 

{ } ( ) ( ) 1

,

,

2
1 , exp i j

i ji j

v v
P I p v v e βδ

β
α

−−

⋅

⎡ ⎤ α= = = ⋅ ≥ ⋅⎢ ⎥⎣ ⎦
 for each 

vi,vjœV. Hence,   

 [ ] { } ( )
1

)

,

( ,

1 1 .
i j

i j

v v V V

E M P I N N e βα
−

∈ ×
= = ≥ ⋅ − ⋅ ⋅∑

                                                          

 (3) 

We are finally ready to derive the expected value of ρ(G). 

Since N is a predefined parameter in the construction of the 

network, it holds according to (2) that  

 
1 E.g., most links between backbone routers are either OC48 or 

OC192 (with line rates of 2.48 Gbit/s and 9.95 Gbit/s, respectively) 

whereas the links between access routers and backbone routers are 

either OC3 or OC12 (with line rates of 155.52 Mbit/s and 622 

Mbit/s, respectively). As such, all link capacities in a typical 

optical network have the same order of magnitude.  

2 Recall that C(v) denotes the maximum capacity of a link incident 

on v. 
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 ( ) min min

max max

1 .
M c c

E G E E M
N c N c

ρ ⋅⎡ ⎤ ⎡⎡ ⎤ ≥ = ⋅ ⋅⎣ ⎦ ⎢ ⎥ ⎢⋅⎣ ⎦ ⎣
⎤
⎥⎦

  (4) 

Moreover, since we assume that all link capacities have the 

same order of magnitude, there exists some positive constant 

k such that min

max

c
k

c
≥ ; hence, it holds according to (4) that,  

      ( ) [ ] [ ]min

max

1 1 .
c kE G E M E M k E M

N c N N
ρ ⎡ ⎤⎡ ⎤ ≥ ⋅ ⋅ ≥ ⋅ ⋅ = ⋅⎣ ⎦ ⎢ ⎥⎣ ⎦

 

This, together with (3) and the fact that k, α and β are all 

independent of N, establish that  

     ( ) [ ] ( ) ( )
1

1k kE G E M N N e N
N N

βρ
−⎡ ⎤

⎡ ⎤ ≥ ⋅ ≥ ⋅ ⋅ − ⋅ ⋅ = Ω⎢ ⎥⎣ ⎦
⎣ ⎦

.α  

Thus, the theorem is established.  à 

We turn to present our analysis for the Power-Law topology 

model  [4], in which the node degrees follow a power-law 

distribution. Specifically, the probability p(d) of having a 

node with a degree d is proportional to the value of that 

degree raised by some negative constant power  i.e., 

p(d)∂d−α for some α>0. It was observed in  [4] that a typical 

value corresponding to practical network topologies is αº2. 

Accordingly, we assume in our analysis that p(d)∂d−2. We 

now present the expected ratio ρ(G)  for this model. 

Theorem 4: Assuming a Power-Law topology, the expected 

ratio between the total capacity of a primary network and 

that of the corresponding optimal backup network is Ω(lnΝ) 
i.e., E[ρ(G)]=Ω(lnΝ). 

Proof: Let dv denote the degree of node vœV in the primary 

network G(V,E). Then, the total number of links M (in the 

primary network) can be written as 1

2 vv V
M d

∈
= ⋅∑ . Thus, it 

holds that the expected value of M is bounded by   

                 [ ] [ ]1 1

2 2
.vv V v V

E M E d E d
∈ ∈

⎡ ⎤= ⋅ = ⋅⎣ ⎦∑ ∑ v  (5) 

Next, since all node degrees are distributed identically 

according to the power-law distribution p(d)∂d−2, it follows 

that p(dv=n)∂n−2 for each vœV, and let β be a positive 

constant such that p(dv=n)= βÿn−2. Hence, it holds that 

[ ] ( ) ( )2

1 1

1N N

v vn n
E d n p d n n n

n
β β−

= =
= ⋅ = = ⋅ ⋅ = ⋅∑ ∑ 1

N

n=∑  for each 

vœV. Since 
1

n
 is a monotonically decreasing function, it 

holds that 
1

1

1

1 1
N

N

n
dx

n x

+

=
≥ ⋅∑ ∫  (see for example  [2]); hence, it 

holds that [ ] (
1

1

1

1 1
ln 1

N
N

v n
E d dx N

n x
β β β

+

=
= ⋅ ≥ ⋅ ⋅ = ⋅ +∑ ∫ )  for 

each vœV. In particular, according to (5) it follows that,

  

                 [ ] [ ] ( )1 1

2 2
ln 1vv V

E M E d N Nβ
∈

= ⋅ ≥ ⋅ ⋅ ⋅ +∑ . (6) 

We are finally ready to upper-bound the expected value of 

ρ(G). We have shown in (2) that, for any given primary 

network G(V,E), it holds that ( ) min

max

.
M c

G
N c

ρ ⋅
≥

⋅
 Therefore, 

since N is a predefined parameter and cmin, cmax are in the 

same order of magnitude there exists some positive constant 

k where min

max

c
k

c
≥  such that,  

 ( ) [ ]min

max

.
M c M kE G E E k E M
N c N N

ρ ⋅⎡ ⎤ ⎡ ⎤⎡ ⎤ ≥ ≥ ⋅ = ⋅⎣ ⎦ ⎢ ⎥ ⎢ ⎥⋅ ⎣ ⎦⎣ ⎦
 

This, together with (6) and the fact that β and k are 

independent of N establishes that,               

      ( ) [ ] ( )1

2
ln( 1) ln .k kE G E M N N N

N N
ρ β⎡ ⎤ ≥ ⋅ ≥ ⋅ ⋅ ⋅ ⋅ + = Ω⎡ ⎤⎣ ⎦⎣ ⎦  

Thus, the theorem is established.  à 

Remark: Theorems 3 and 4 readily extend to hold also for 

unsplittable backup networks that satisfy either a hop count-

limit of h (h≥2) over the bypass paths or unsplittable backup 

networks that satisfy the subgraph constraint. Indeed, 

according to Section 3, these constraints involve only O(1) 

increase in the (minimum) protection capacity.  

The above results demonstrate the major benefit in the 

construction of a dedicated backup network for a primary 

network. Specifically, they indicate that, at a minor price of 

extra capacity, it is possible to allocate to each primary link a 

single 2-hop bypass path, thus enabling an efficient 

mechanism for protection that also satisfies rigid QoS 

requirements1 for the rerouted traffic. 

6. CONCLUSIONS  
Fast restoration schemes allocate resources for protection 

either on demand (i.e., upon the arrival of a connection 

request) or during the configuration phase of the network. 

While the first approach incurs considerable overhead in 

terms of connection set-up time, the second approach 

requires allocating protection resources for any possible 

pattern of connection requests hence usually calls for 

substantial over-provisioning. The restoration approach 

described in this study overcomes both drawbacks. Indeed, it 

computes and allocates all protection resources during the 

configuration phase, and at the same time it consumes only a 

small amount of protection resources. Another fundamental 

advantage of the proposed approach is its ability to recover 

from failures without overloading other links on the primary 

network. This turns to be of a major practical importance 

when considering the findings of  [5], according to which 

80% of link overloads are due to link failures. Moreover, the 

proposed approach frees the primary network from any 

restoration considerations, e.g., it allows employing standard 

and simple routing algorithms. 

Motivated by these results, we considered three major design 

requirements, namely: (i) bypass paths should have a 

bounded hop-count; (ii) rerouted traffic should be split 

among a bounded number of bypasses; and (iii) the topology 

of the backup network should be a subgraph of the primary 

network. We rigorously quantified the increase in protection 

capacity due to each combination of the above constraints. 

The obtained results provide several important insights and 

                                                           
1 Specifically, the rerouted traffic is carried unsplittably and 

exclusively over 2-hop protection paths. 
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design rules, namely: (i) from a practical viewpoint, it may 

be unfeasible to concurrently incorporate the subgraph and 

hop-count constraints; (ii) all other combinations of design 

constraints can be efficiently incorporated in the backup 

network at a small price; and (iii) when unsplittable routing 

must be supported, hop-count limits can be incorporated at 

no price. 

We have also considered several efficient construction 

algorithms for backup networks. Specifically, for each 

possible combination of design constraints, we presented a 

corresponding optimal construction algorithm. For the cases 

where the computational complexity of the optimal 

algorithm is significant, we established alternative constant 

approximation schemes with low polynomial running time. 

Finally, we showed how to modify the optimal construction 

algorithms to protect against correlated failures.  

Several important directions for future research follow from 

our study. First, throughout our study we focused on the 

worst-case ratio ρ(H,U,S) for quantifying the increase in 

protection capacity for a combination of design  

constraints (H,U,S). While we have shown that 

ρ(H+,U+,S+)=Ω(Ν) and ρ(H+,U−,S+)=Ω(Ν), nothing is known 

yet about the value of these ratios in typical cases; in 

particular, preliminary simulation results indicate that these 

ratios are substantially smaller in practice. Next, while our 

study mainly focused on the single link failure model, it may 

be interesting to investigate properties of backup networks 

that provide protection against multiple (uncorrelated) 

failures; in particular, it is important to investigate whether 

such backup networks still induce tolerable overhead in 

terms of protection capacity. Finally, we would like to 

incorporate design considerations that reflect specific 

application requirements; for example, when traffic is 

rerouted over multiple bypass paths, it is essential in delay-

sensitive applications (e.g., voice or video) to limit the delay 

differences (i.e., the delay-jitter) between the bypasses.  
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