
Improved Sphere-Packing Bound Targeting Codes of

Short to Moderate Block Lengths and Applications

Gil Wiechman Igal Sason

Technion – Israel Institute of Technology
Haifa 32000, Israel

{igillw@tx, sason@ee}.technion.ac.il

September 2, 2006

Abstract

This paper derives an improved sphere-packing (ISP) bound targeting codes of short to moderate

block lengths. We first review classical results, i.e., the 1959 sphere-packing (SP59) bound of Shannon

for the Gaussian channel, and the 1967 sphere-packing (SP67) bound for discrete memoryless channels.

A recent improvement on the SP67 bound, as suggested by Valembois and Fossorier, is also discussed.

These concepts are used for the derivation of a new bound (referred to as the ISP bound) which is

uniformly tighter than the SP67 bound and its recent improved version. Under a mild condition, the

ISP bound is applicable to general memoryless channels, and some of its applications are exemplified. Its

tightness is studied by comparing it with bounds on the ML decoding error probability, and computer

simulations of iteratively decoded turbo-like codes. The paper also presents a technique which performs

the entire calculation of the SP59 bound in the logarithmic domain, thus facilitating the exact calculation

of the SP59 bound for moderate to large block lengths without the need for asymptotic approximations.

It is shown that the ISP bound suggests an interesting alternative to the SP59 bound, especially for

digital modulations of high spectral efficiency.

Index terms – Block codes, list decoding, maximum-likelihood decoding, phase shift keying
modulation, sphere-packing bounds.
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1 Introduction

The introduction of turbo-like codes which closely approach the Shannon capacity limit with
moderate block lengths stirred up new interest in studying the limits of code performance as a
function of the block length (see, e.g., [4, 7, 8, 9, 12, 16, 18, 19]).

The 1959 sphere-packing (SP59) bound of Shannon [13] serves for the evaluation of the
performance limits of block codes whose transmission takes place over an AWGN channel. The
bound is expressed in terms of the block length and rate of the code; it does not take into
account the modulation used, but only assumes that the signals are of equal energy. This lower
bound on the decoding error probability is used as a reference for quantifying the sub-optimality
of codes with their practical decoding algorithms; by comparing computer simulations for the
performance obtained by turbo-like codes over a wide range of rates and block sizes, it was ex-
emplified in the literature that the gap between the sphere-packing bounds and the performance
of these codes under efficient iterative decoding algorithms can be reduced below 1 dB.

The 1967 sphere-packing (SP67) bound, derived by Shannon, Gallager and Berlekamp [14],
provides a lower bound on the decoding error probability of block codes as a function of their
block length and code rate, and it applies to arbitrary discrete memoryless channels. Like the
random coding bound of Gallager [5], the SP67 bound decays to zero exponentially with the
block length. Further, the error exponent of the SP67 bound is a monotonic decreasing and
convex function of the rate which is positive at rates below the channel capacity. This error
exponent is tight at the portion of the rate region between the critical rate (Rc) and the channel
capacity; for this important rate region, the error exponents of the SP67 and the random coding
bounds coincide [14, Part 1].

The SP67 bound fails to provide informative results for codes of small to moderate block
lengths. This is due to the original focus in [14] on asymptotic analysis. In their paper [18],
Valembois and Fossorier revisited the SP67 bound in order to improve its tightness for codes
of short to moderate block lengths, and also to extend its validity to memoryless continuous-
output channels (e.g., the binary-input AWGN channel). The motivation for the study in
[18] was strengthened by the outstanding performance of codes defined on graphs even with
moderate block lengths. The remarkable improvement in the tightness of the SP67 bound was
exemplified in [18] for the case of BPSK signaling over the AWGN channel, and it was shown
that a tightened version of the SP67 bound provides an interesting alternative to the SP59
bound [13].

In this work, we derive an improved sphere-packing bound (referred to as the ISP bound)
which further enhances the tightness of this bounding technique for codes of short to moderate
block lengths. Under a mild condition, the validity of this new bound is extended to general
memoryless channels, and it is applied to M-ary PSK block coded modulation schemes whose
transmission take place over an AWGN channel. The tightness of the ISP bound is studied by
comparing it with the random coding upper bound of Gallager [5], the tangential-sphere bound
of Poltyrev [6, 10], classical and recent sphere-packing bounds (see [13, 14, 18]), as well as its
comparison with computer simulations of iteratively decoded turbo-like codes. The tightness
of the ISP bound for the Gaussian channel is also examined by calculating the regions of code
lengths and rates for which this bound outperforms the SP59 bound and the capacity-limit
bound (CLB). To this end, we present a technique to perform the entire calculation of the
SP59 bound in the logarithmic domain; this technique circumvents numerical difficulties, and
facilitates an exact calculation of the SP59 bound for moderate to large block lengths without
the need for the asymptotic approximations in [13].

The paper is structured as follows: Section 2 reviews the concepts used in the derivation
of the SP67 bound [14, Part 1], and its recent improvements in [18] targeting codes of short
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to moderate block lengths. Section 3 introduces the ISP bound which further enhances the
tightness of the bound in [18] and extends its validity for memoryless channels; the derivation
of this bound relies on concepts and notation presented in Section 2. Section 4 starts by
reviewing the SP59 bound of Shannon [13], and presenting the numerical algorithm used in [18]
for calculating this bound. The numerical instability of this algorithm for moderate to large
block lengths motivates the derivation of a new algorithm in Section 4 for the exact calculation
of the SP59 bound, irrespectively of the block length. Section 5 provides numerical results
which serve to compare the tightness of the ISP bound in Section 3 with the SP59 bound of
Shannon [13] and the recent sphere-packing bound in [18]. The tightness of the ISP bound is
exemplified in Section 5 for M-ary phase-shift-keying (PSK) block coded modulation schemes
whose transmission takes place over the AWGN channel, and also for the binary erasure channel
(BEC). We conclude our discussion in Section 6. Technical calculations are relegated to the
appendices.

2 The 1967 Sphere-Packing Bound and Improvements

In this section, we outline the main steps in the derivation of the SP67 bound. We then survey
the improvements to the bound, as suggested in [18], which also extend the validity of the bound
to memoryless discrete-input continuous-output channels. This serves as a preparatory stage
for presenting an improved sphere-packing bound in the next section which further enhances the
tightness of the sphere-packing bounding technique for codes of short to moderate block lengths,
and extends its use to general memoryless channels. For a comprehensive tutorial review of
classical sphere-packing bounds (i.e., the SP59 and SP67 bounds) and recent improvements in
[18], the reader is referred to [12, Chapter 5].

2.1 The 1967 Sphere-Packing Bound

Let us consider a block code C which consists of M codewords each of length N , and denote
its codewords by x1, . . . ,xM . Assume that C is transmitted over a discrete memoryless channel
(DMC) and the decoding is performed by a list decoder; for each received sequence y, the
decoder outputs a list of at most L integers belonging to the set {1, 2, . . . ,M} which correspond
to the indices of the codewords. A list decoding error is declared if the index of the transmitted
codeword does not appear in the list. In [14], the authors derive a lower bound on the decoding
error probability of an arbitrary block code with M codewords of length N , and an arbitrary list
decoding scheme whose size is limited to L. The particular case where L = 1 clearly provides
a lower bound on the performance under optimal ML decoding.

Let Ym denote the set of output sequences y for which message m is on the decoding list,
and define Pm(y) , Pr(y|xm). The probability of list decoding error when message m is sent
is given by

Pe,m =
∑

y∈Yc
m

Pm(y) . (1)

For the block code and list decoder under consideration, let Pe,max designate the maximal
value of Pe,m where m ∈ {1, 2, . . . ,M}. Assuming that the codewords are equally likely to be
transmitted, the average decoding error probability is given by

Pe =
1

M

M∑

m=1

Pe,m. (2)
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Referring to a list decoder of size at most L, the code rate (in nats per symbol use) is defined

as R ,
ln(M

L )
N

.
The derivation of the SP67 bound is divided into three main steps. The first step is the

derivation of upper and lower bounds on the error probability of a code consisting of two
codewords only. The authors prove in [14] the following theorem:

Theorem 2.1 (Upper and Lower Bounds on the Pairwise Error Probability). [14,
Theorem 5]: Let P1(y) and P2(y) be two probability assignments on a discrete set of sequences,
Y1 and Y2 be disjoint decision regions for these sequences, Pe,1 and Pe,2 be given by (1), and
assume that P1(y)P2(y) 6= 0 for at least one sequence y. Then, for all s ∈ (0, 1)

Pe,1 >
1

4
exp
(
µ(s) − sµ′(s) − s

√
2µ′′(s)

)
(3)

or

Pe,2 >
1

4
exp
(
µ(s) + (1 − s)µ′(s) − (1 − s)

√
2µ′′(s)

)
(4)

where
µ(s) , ln

(∑

y

P1(y)1−sP2(y)s
)

0 < s < 1. (5)

Furthermore, for an appropriate choice of Y1 and Y2

Pe,1 ≤ exp
(
µ(s) − sµ′(s)

)

and
Pe,2 ≤ exp

(
µ(s) + (1 − s)µ′(s)

)
.

The function µ is non-positive and convex over the interval (0, 1). The convexity of µ is strict

unless P1(y)
P2(y) is constant over all the sequences y for which P1(y)P2(y) 6= 0. Moreover, the

function µ is strictly negative over the interval (0, 1) unless P1(y) = P2(y) for all y.

The initial motivation given for Theorem 2.1 is the calculation of bounds on the error
probability of a two-word code. However, it is valid for any pair of probability assignments P1

and P2 and decision regions Y1 and Y2 which form a partitioning of the output vector space.
In the continuation of the derivation of the SP67 bound in [14], this theorem is used in order

to keep control of the size of a decision region of a particular codeword without directly referring
to other codewords. To this end, an arbitrary probability tilting measure fN is introduced in
[14] over all N -length sequences of channel outputs, requiring that it is factorized in the form

fN(y) =

N∏

n=1

f(yn) (6)

for an arbitrary output sequence y = (y1, . . . , yN ); the size of the set Ym is defined as

F (Ym) ,
∑

y∈Ym

fN (y). (7)

Next, [14] relies on Theorem 2.1 in order to relate the conditional error probability Pe,m and
F (Ym) for fixed composition codes; this is done by associating Pr(y|xm) and fN(y) with P1(y)
and P2(y), respectively. Theorem 2.1 is applied as described above to derive a parametric lower
bound on the size of the decision region Ym or the conditional error probability Pe,m. Using a
simple upper bound on the smallest size of the set Ym where m ∈ {1, . . . ,M}, and by upper
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bounding the conditional error probability of the corresponding codeword by Pe,max, a lower
bound on the maximal error probability is obtained. Next, the probability assignment f , fs

is optimized in [14], so as to get the tightest (i.e., maximal) lower bound within this form while
considering a code whose composition minimizes the bound (so that the bound holds for all
fixed composition codes). A solution for this min-max problem, as provided in [14], leads to
the following theorem which gives a lower bound on the maximal block error probability of an
arbitrary fixed composition block code (for a more detailed review of these concepts, see [12,
Section 5.3]).

Theorem 2.2 (Sphere-Packing Lower Bound on the Maximal Decoding Error Prob-
ability for Fixed Composition Codes). [14, Theorem 6]: Let C be a fixed composition code

of M codewords and block length N . Assume that the transmission of C takes place over a
DMC, and let P (j|k) be the set of transition probabilities characterizing this channel (where
j ∈ {1, . . . , J} and k ∈ {1, . . . ,K} designate the channel input and output alphabets, respec-
tively). For an arbitrary list decoder where the size of the list is limited to L, the maximal

error probability (Pe,max) satisfies

Pe,max ≥ exp

[
−N

(
Esp

(
R − ln 4

N
− ε
)

+

√
8

N
ln
( e√

Pmin

)
+

ln 4

N

)]

where R ,
ln
(

M
L

)

N
is the rate of the code, Pmin designates the smallest non-zero transition

probability of the DMC, the parameter ε is an arbitrarily small positive number, and the
function Esp is given by

Esp(R) , sup
ρ≥0

(
E0(ρ) − ρR

)
(8)

E0(ρ) , max
q

E0(ρ,q) (9)

E0(ρ,q) , − ln

(
J∑

j=1

[ K∑

k=1

qkP (j|k)
1

1+ρ

]1+ρ

)
. (10)

The maximum in the RHS of (9) is taken over all probability vectors q = (q1, . . . , qK), i.e., over
all q with K non-negative components summing to 1.

The reason for considering fixed composition codes is that the optimal probability dis-
tribution fs depends on the composition of the codewords. The derivation of the improved
sphere-packing bound in Section 3 is based on the observation that for a wide class of channels,
the optimal probability assignment fs and the lower bound on the error probability are inde-
pendent of the codeword composition. Therefore, it is possible to adopt the technique used for
deriving Theorem 2.2 towards the derivation of a lower bound on the maximal error probability
of an arbitrary block code.

The next step in the derivation of the SP67 bound is the application of Theorem 2.2 towards
the derivation of a lower bound on the maximal error probability of an arbitrary block code. This
is performed by lower bounding the maximal error probability of the code by the maximal error
probability of its largest fixed composition subcode. Since the number of possible compositions
is polynomial in the block length, one can lower bound the rate of the largest fixed composition
subcode by R−O

(
lnN
N

)
where R is the rate of the original code. Clearly, the rate loss caused by

considering this subcode vanishes when the block length tends to infinity; however, it loosens
of the bound for short to moderate length codes. Finally, the bound on the maximal error
probability is transformed into a bound on the average error probability by considering an
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expurgated code which contains half of the codewords of the original code with the lowest
decoding error probability. This finally leads to the SP67 bound [14].

Theorem 2.3 (The 1967 Sphere-Packing Bound for Discrete Memoryless Channels).
[14, Theorem 2]: Let C be an arbitrary block code whose transmission takes place over a DMC.
Assume that the DMC is specified by the set of transition probabilities P (j|k) where k ∈
{1, . . . ,K} and j ∈ {1, . . . , J} designate the channel input and output alphabets, respectively.
Assume that the code C forms a set of M codewords of length N (i.e., each codeword is a
sequence of N letters from the input alphabet), and consider an arbitrary list decoder where
the size of the list is limited to L. Then, the average decoding error probability of the code C
satisfies

Pe(N,M,L) ≥ exp

{
−N

[
Esp

(
R − O1

( ln N

N

))
+ O2

( 1√
N

)]}

where R ,
ln
(

M
L

)

N
, the error exponent Esp(R) is introduced in (8), and the terms

O1

( lnN

N

)
=

ln 8

N
+

K ln N

N
(11)

O2

( 1√
N

)
=

√
8

N
ln
( e√

Pmin

)
+

ln 8

N

scale like lnN
N

and the inverse of the square root of N , respectively (hence, they vanish as we let
N tend to infinity), and Pmin denotes the smallest non-zero transition probability of the DMC.

2.2 Improvements on the 1967 Sphere-Packing Bound Introduced in [18]

In [18], Valembois and Fossorier revisit the derivation of the SP67 bound, this time with the
intention of making the bound useful for codes with short to moderate block lengths. They
present four modifications to the classical derivation in [14] which improve the pre-exponent
of the SP67 bound. The new bound derived in [18] is also valid for memoryless channels with
continuous output (as opposed to the SP67 bound which is only valid for DMCs). It is applied
to the binary-input AWGN channel, and it is also compared with the SP59 bound which is valid
for any set of equal energy signals transmitted over the AWGN channel; this comparison shows
that the recent bound in [18] provides an interesting alternative to the SP59 bound, especially
for high code rates. In this section, we review the improvement suggested in [18] and present
the resulting bound.

The first modification suggested in [18] is the addition of a free parameter in the derivation
of the lower bound on the decoding error probability of two-word codes; this free parameter is
used in conjunction with Chebychev’s inequality, and it is later optimized in order to get the
tightest bound within this form.

A second improvement presented in [18] is related to a simplification in [14] where the
second derivative of the function µ, as is defined in (5), is upper bounded by e√

Pmin
. This

bound results in no asymptotic loss, but it can loosen the bound for short to moderate code
lengths. By using the exact value of µ′′ instead, the tightness of the resulting bound is further
improved in [18]. This modification also makes the bound suitable to memoryless channels with
continuous output, as it is no longer required that Pmin is positive. It should be noted that
this causes a small discrepancy in the derivation of the bound; the derivation of a lower bound
on the error probability which is uniform over all fixed composition codes relies on finding the
composition which minimizes the lower bound. This optimization problem is solved in [14] for
the case where the upper bound on µ′′ is applied and the same composition is used [18], without
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checking whether it is still that minimizing composition. However, as we see in the next section,
for a wide class of channels the value of the bound is independent of the code composition and
therefore the VF bound stays valid. This class of channels includes all memoryless binary-input
output-symmetric (MBIOS) channels; in particular, it includes the binary symmetric channel
(BSC), and the binary-input AWGN channel considered in [18].

A third improvement in [18] concerns the particular selection of the value of ρ ≥ 0 which
leads to the derivation of Theorem 2.3. In [14], ρ is set to be the value ρ̃ which minimizes
the error exponent of the SP67 bound (i.e., the upper bound on the error exponent). This
choice emphasizes the similarity between the error exponents of the SP67 lower bound and the
Gallager random coding upper bound, hence proving that the error exponent of the SP67 bound
is tight for all rates above the critical rate of the channel. In order to tighten the bound for the
finite length case, [18] chooses the value of ρ to be ρ∗ which provides the tightest possible lower
bound on the decoding error probability. The asymptotic accuracy of the original SP67 bound
implies that as the block length tends to infinity, ρ̃ → ρ∗; however, for codes of finite block
length, this simple observation tightens the bound with almost no penalty in the computational
cost of the resulting bound.

The fourth observation made in [18] concerns the final stage in the derivation of the SP67
bound. In order to get a lower bound on the maximal error probability of an arbitrary block
code, the derivation in [14] considers the maximal error probability a fixed composition subcode
of the original code. In [14], a simple lower bound on the size of the largest fixed composition
subcode is given; namely, the size of the largest fixed composition subcode is not less than
the size of the entire code divided by the number of possible compositions. Since this number
of compositions is equal at most to the number of possible ways to divide N symbols into K

types, this value is given by
(
N+K−1

K−1

)
. To simplify the final expression of the SP67, [14] applies

the upper bound
(
N+K−1

K−1

)
≤ NK . Since this expression is polynomial is the block length N ,

there is no asymptotic loss to the error exponent. However, by using the exact expression
for the number of possible compositions, the bound in [18] is tightened for codes of short to
moderate block lengths. Applying these four modifications in [18] yields an improved lower
bound on the decoding error probability of block codes transmitted over memoryless channels
with finite input alphabets. As mentioned above, these modifications also extend the validity
of the new bound to discrete-time memoryless channels with continuous outputs. However, the
requirement of a finite input alphabet still remains, as it is required in order to apply the bound
to arbitrary block codes, and not only to fixed composition codes. The VF bound [18] is given
in the following theorem:

Theorem 2.4 (Improvement on the 1967 Sphere-Packing Bound for Discrete Memo-
ryless Channels). [18, Theorem 7]: Under the assumptions and notation used in Theorem 2.3,
the average decoding error probability satisfies

Pe(N,M,L) ≥ exp
{
−NẼsp(R,N)

}

where

Ẽsp(R,N) , sup
x>

√
2

2

{
E0(ρx) − ρx

(
R − O1

( ln N

N
,x
))

+ O2

( 1√
N

,x, ρx

)}
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and

R ,
ln
(

M
L

)

N

O1

( ln N

N
,x
)

,
ln 8

N
+

ln
(
N+K−1

K−1

)

N
−

ln
(
2 − 1

x2

)

N
(12)

O2

( 1√
N

,x, ρ
)

, x

√√√√ 8

N

K∑

k=1

qk,ρν
(2)
k (ρ) +

ln 8

N
−

ln
(
2 − 1

x2

)

N

ν
(1)
k (ρ) ,

∑J
j=1 βj,k,ρ ln

βj,k,ρ

P (j|k)∑J
j=1 βj,k,ρ

ν
(2)
k (ρ) ,

∑J
j=1 βj,k,ρ ln2 βj,k,ρ

P (j|k)∑J
j=1 βj,k,ρ

−
[
ν

(1)
k (ρ)

]2

βj,k,ρ , P (j|k)
1

1+ρ ·
(
∑

k′
qk′,ρP (j|k′)

1
1+ρ

)ρ

where qρ , (q1,ρ, . . . , qK,ρ) designates the input distribution which maximizes E0(ρ,q) in (9),
and the parameter ρx is determined by solving the equation

R − O1

( ln N

N
,x
)

= − 1

ρx

∑

k

qk,ρxν
(1)
k (ρx) +

x

ρx

√√√√ 2

N

K∑

k=1

qk,ρν
(2)
k (ρ).

3 An Improved Sphere-Packing Bound

In this section, we derive an improved lower bound on the decoding error probability which
utilizes the sphere-packing bounding technique. This bound is referred to as the improved
sphere-packing (ISP) bound, and its validity is extended to a wide class of discrete-time mem-
oryless channels.

To keep the notation simple, we derive the ISP bound under the assumption that the
communication takes place over a DMC. This assumption allows us to follow the first steps of
the proof of the SP67 bound in [14]. However, the derivation of the bound is justified later for
a wider class of memoryless channels with discrete or continuous input and output alphabets.
Some remarks are given at the end of the derivation. In the continuation of this section, the
bound is particularized for M-ary PSK block coded modulation schemes with coherent detection
over the AWGN channel.

3.1 Derivation of the New Sphere-Packing Bound

We start our analysis by following the derivation of the SP67 bound, as given in [14], where we
take advantage of the improvements suggested in [18]. We show that under a mild condition
on memoryless communication channels, the derivation of the sphere-packing bound can be
modified so that the intermediate step of bounding the maximal error probability for fixed
composition codes can be skipped. This allows the tightening of the sphere-packing bound,
and also the extension of its validity to the case where the channel input as well as the channel
output are continuous. We begin the derivation by introducing the modified lower bound on
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the decoding error probability for a code book of two codewords, as presented in [18]; although
this part simply follows the idea in [18] and the analysis in [14], this preparatory stage for the
derivation of the bound for a general code is introduced here since it does not appear explicitly
in [18] (though it is straightforward in light of the analysis in [14] and the suggested modification
in [18]). The novelty here is by moving directly to the derivation of the sphere-packing bound
for a general block code, assuming a list decoder of size L, without the need to derive the bound
first for fixed composition codes (thus differing from the derivation of the sphere-packing bounds
in [14, 18]).

Decoding Error Probability for Two Codewords We start the analysis by considering
the decoding error probability of a codebook of two codewords, x1 and x2, whose transmission
takes place over a DMC. Define Pm(y) , P (y|xm) (where m = 1, 2). Following the notation in
[14], we define the log-likelihood ratio (LLR) as

D(y) = ln

(
P2(y)

P1(y)

)

and the probability distribution

Qs(y) =
P1(y)1−sP2(y)s∑
y′ P1(y′)1−sP2(y′)s

for any 0 < s < 1. Based on the introduction of the function µ in (5), it can be easily verified
that (see [14])

µ′(s) = EQs

(
D(y)

)
(13)

µ′′(s) = VarQs

(
D(y)

)
(14)

P1(y) = exp
(
µ(s) − sD(y)

)
Qs(y) (15)

P2(y) = exp
(
µ(s) + (1 − s)D(y)

)
Qs(y) (16)

where EQ and VarQ stand, respectively, for the statistical expectation and variance w.r.t. a
probability distribution Q. Let us define the set

Yx
s ,

{
y : |D(y) − µ′(s)| ≤ x

√
2µ′′(s)

}
, x > 0. (17)

In the original derivation of the SP67 bound in [14], x was set to one; this free parameter is
introduced in [18] in order to tighten the bound for finite-length block codes. By applying
Chebyshev’s inequality to (17), and relying on the equalities in (13) and (14), we get

∑

y∈Yx
s

Qs(y) > 1 − 1

2x2
(18)

where this result is meaningful only for x >
√

2
2 .

Let Y1 and Y2 be the decoding regions of the two codewords x1 and x2, respectively. Let also
Ac designate the complementary of a set A. We now bound the conditional error probability
given that the first codeword x1 is transmitted, and get

Pe,1 =
∑

y∈Yc
1

P1(y)

≥
∑

y∈Yc
1

TYx
s

P1(y)

=
∑

y∈Yc
1

TYx
s

exp
(
µ(s) − sD(y)

)
Qs(y)
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where the last transition follows from (15). For every y ∈ Yx
s , we get from (17)

µ′(s) − x
√

2µ′′(s) ≤ D(y) ≤ µ′(s) + x
√

2µ′′(s)

and therefore

Pe,1 ≥ exp
(
µ(s) − sµ′(s) − s x

√
2µ′′(s)

) ∑

y∈Yc
1

TYx
s

Qs(y) , x >

√
2

2
. (19)

Following the same steps w.r.t. the conditional error probability of the second codeword and
using (16), gives

Pe,2 ≥ exp
(
µ(s) + (1 − s)µ′(s) − (1 − s) x

√
2µ′′(s)

) ∑

y∈Yc
2

T

Yx
s

Qs(y) , x >

√
2

2
. (20)

Since the sets Y1 and Y2 form a disjoint partitioning of the set of output vectors YN , then

∑

y∈Yc
1

TYx
s

Qs(y) +
∑

y∈Yc
2

TYx
s

Qs(y) =
∑

y∈Yx
s

Qs(y)

and therefore, at least one of the sums in the LHS of this equality is necessarily not below half
of the value of the RHS of this equality. From (18), at least one of these two sums should be
not less than 1

2

(
1 − 1

2x2

)
. By combining this result with (19) and (20), then for every s ∈ (0, 1)

Pe,1 >

(
1

2
− 1

4x2

)
exp
(
µ(s) − sµ′(s) − s x

√
2µ′′(s)

)
(21)

or

Pe,2 >

(
1

2
− 1

4x2

)
exp
(
µ(s) + (1 − s)µ′(s) − (1 − s) x

√
2µ′′(s)

)
. (22)

Lower Bound on the Decoding Error Probability of General Block Codes Let us now
consider a block code C of length N with M codewords, denoted by {xm}M

m=1; assume that the
transmission takes place over a DMC with transition probabilities P (j|k), where k ∈ {1, . . . ,K}
and j ∈ {1, . . . , J} designate the channel input and output alphabets, respectively. To this end,
we rely on the result of the previous section which is valid for any pair of probability measures
(P1 and P2). Let fN be an arbitrary probability measure defined over the set of length-N
sequences of the channel output, and which can be factorized as in (6). We refer to the pair of
probability measures given by

P1(y) , Pr(y|xm), P2(y) , fN (y) (23)

where xm is an arbitrary codeword of the code C. Let Ym be the decision region of the codeword
xm, and let its size be defined as in (7). By combining (5) and (23), we define

µ(s,m, fN ) , ln

(
∑

y

Pr(y|xm)1−sfN (y)s

)
, 0 < s < 1. (24)

By associating Ym and Yc
m with the two decision regions for the probability measures P1 and

P2, respectively, we obtain from (19), (20) and the above setting that

Pe,m >

(
1

2
− 1

4x2

)
exp
(
µ(s,m, fN ) − sµ′(s,m, fN ) − s x

√
2µ′′(s,m, fN )

)
(25)
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or

F (Ym) >

(
1

2
− 1

4x2

)
exp
(
µ(s,m, fN ) + (1− s)µ′(s,m, fN )− (1− s) x

√
2µ′′(s,m, fN )

)
(26)

where x >
√

2
2 .

Let us denote by qm
k the fraction of appearances of the letter k in the codeword xm. By

assumption, the communication channel is memoryless and the function fN is a probability
measure which is factorized according to (6). Hence, for every m ∈ {1, 2, . . . ,M}, the function
µ(s,m, fN ) in (24) is expressible in the form

µ(s,m, fN ) = N

K∑

k=1

qm
k µk(s, f) (27)

where

µk(s, f) , ln




J∑

j=1

P (j|k)1−sf(j)s


 , 0 < s < 1. (28)

Substituting (27) in (25) and (26), then for every s ∈ (0, 1)

Pe,m >

(
1

2
− 1

4x2

)
exp

{
N

(
∑

k

qm
k

(
µk(s, f) − sµ′

k(s, f)
)
− s x

√
2
∑

k qm
k µ′′

k(s, f)

N

)}
(29)

or

F (Ym) >

(
1

2
− 1

4x2

)
exp

{
N

(
∑

k

qm
k

(
µk(s, f) + (1 − s)µ′

k(s, f)
)
− (1 − s) x

√
2
∑

k qm
k µ′′

k(s, f)

N

)}
.

(30)

For s ∈ (0, 1), we choose the function f to be fs, as is given in [14, Eqs. (4.18)-(4.20)]. Namely,
for 0 < s < 1, let qs = {q1,s, . . . , qK,s} satisfy the inequalities

∑

j

P (j|k)1−sα
s

1−s

j,s ≥
∑

j

α
1

1−s

j,s ; ∀k (31)

where

αj,s ,

K∑

k=1

qk,sP (j|k)1−s. (32)

The function fs is given by

fs(j) =
α

1
1−s

j,s

J∑

j′=1

α
1

1−s

j′,s

, j ∈ {1, . . . , J}. (33)

Note that the input distribution qs is independent of the code C, as it only depends on the
channel statistics. By multiplying both sides of (31) by qk,s and summing over k (where∑

k qk,s = 1), we get
∑

k

{
qk,s

∑

j

P (j|k)1−sα
s

1−s

j,s

}
≥
∑

j

α
1

1−s

j,s .

11



Examining the LHS of the above inequality gives

∑

k

{
qk,s

∑

j

P (j|k)1−sα
s

1−s

j,s

}
=

∑

j

{
α

s
1−s

j,s

∑

k

qk,sP (j|k)1−s

}

=
∑

j

α
1

1−s

j,s (34)

where the last equality follows from (32). Let us now assume that for every 0 < s < 1, the
support of qs consists of the entire input alphabet. By our assumption, qk,s 6= 0 for any k, thus
by combining (31) and (34), we obtain that for all values of k

∑

j

P (j|k)1−sα
s

1−s

j,s =
∑

j

α
1

1−s

j,s . (35)

Note that this equality holds for all values of k due to our assumption that qk,s 6= 0 for all k;
otherwise, this equality may not hold for those values of k for which qk,s is zero. From (28),
since f in general is allowed to depend on the parameter s (as we examine the validity of the
bound for any individual value of s ∈ (0, 1)), we get

µk(s, fs) = ln
∑

j

P (j|k)1−sfs(j)
s

(a)
= ln

∑

j

P (j|k)1−sα
s

1−s

j,s − s ln
∑

j

α
1

1−s

j,s

(b)
= (1 − s) ln

∑

j

α
1

1−s

j,s

(c)
= (1 − s) ln



∑

j

[
∑

k

qk,sP (j|k)1−s

] 1
1−s


 (36)

where (a) follows from the definition of fs in (32) and (33), (b) follows from (35), and (c)
follows from (32). Under the setting s = ρ

1+ρ
, since the conditions on qs in (31) are identical

to the conditions on the input distribution q = qs which maximizes E0(
s

1−s
,q) as stated in [5,

Theorem 4], then

µk(s, fs) = (1 − s) ln



∑

j

[
∑

k

qk,sP (j|k)
1

1+ s
1−s

]1+ s
1−s




= −(1 − s) E0

(
s

1 − s
,qs

)

= −(1 − s) E0

(
s

1 − s

)
, 0 < s < 1 (37)

where E0 is given by (9). From (37), since µk is independent of k (let its common value for all
k be denoted by µ0(s, fs)), then from (29) and (30), it follows that for 0 < s < 1

Pe,m >

(
1

2
− 1

4x2

)
exp

{
N

(
µ0(s, fs) − sµ′

0(s, fs) − s x

√
2µ′′

0(s, fs)

N

)}
(38)
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or

Fs(Ym) >

(
1

2
− 1

4x2

)
exp

{
N

(
µ0(s, fs) + (1 − s)µ′

0(s, fs) − (1 − s) x

√
2µ′′

0(s, fs)

N

)}
(39)

where Fs(Ym) ,
∑

y∈Ym
fs,N(y). Similarly yo [14], we relate Fs(Ym) to the number of code-

words M and the size of the decoding list L by observing that

M∑

m=1

Fs(Ym) =

M∑

m=1

∑

y∈Ym

fs,N(y) ≤ L.

The last inequality holds since each y ∈ YN appears in at most L subsets {Ym}M
m=1 and also∑

y fs,N(y) = 1. It follows that for each s ∈ (0, 1), there exists an index ms ∈ {1, 2, . . . ,M}
such that Fs(Yms) ≤ L

M
. Substituting this in (38) and (39), and upper bounding Pe,ms by the

maximum over m of Pe,m (this maximal error probability is denoted by Pe,max) implies that for
0 < s < 1

Pe,max >

(
1

2
− 1

4x2

)
exp

{
N

(
µ0(s, fs) − sµ′

0(s, fs) − s x

√
2µ′′

0(s, fs)

N

)}
(40)

or

L

M
>

(
1

2
− 1

4x2

)
exp

{
N

(
µ0(s, fs) + (1 − s)µ′

0(s, fs) − (1 − s) x

√
2µ′′

0(s, fs)

N

)}
. (41)

A lower bound on the maximum error probability can be obtained from (40) by substituting
any value of s ∈ (0, 1) for which the inequality in (41) does not hold. In particular we choose a
value s = sx such that the inequality in (41) is replaced by equality, i.e.,

L

M
= exp(−NR)

=

(
1

2
− 1

4x2

)
exp

{
N
(
µ0(sx, fsx) + (1 − sx) µ′

0(sx, fsx)

−(1 − sx) x

√
2µ′′

0(sx, fsx)

N

)}
(42)

where R ,
ln(M

L )
N

designates the code rate in nats per channel use. Note that the existence of a
solution s = sx to equation (42) can be demonstrated in a similar way to the arguments in [14,
Eqs. (4.28)–(4.35)] for the non-trivial case where the sphere-packing bound does not reduce to
the trivial inequality Pe,max ≥ 0. This particular value of s is chosen since for large enough N ,
the RHS of (40) is monotonically decreasing while the RHS of (41) is monotonically increasing
for s ∈ (0, 1); thus, this choice is optimal for large enough N . This particular choice of sx also
allows to get a simpler representation of the bound on Pe,max. Rearranging equation (42) gives

µ′
0(sx, fsx) = − 1

1 − sx

[
R + µ0(sx, fsx) +

1

N
ln

(
1

2
− 1

4x2

)]
+ x

√
2µ′′

0(sx, fsx)

N
.

Substituting s = sx and the last equality into (40) yields that

Pe,max > exp

{
N

(
µ0(sx, fsx)

1 − sx

+
sx

1 − sx

(
R +

1

N
ln
(1

2
− 1

4x2

))

−sx x

√
8µ′′

0(sx, fsx)

N
+

1

N
ln
(1

2
− 1

4x2

))}
.

13



By applying (37) and defining ρx , sx

1−sx
we get

Pe,max > exp

{
−N

(
E0(ρx) − ρx

[
R − ln 4

N
+

ln
(
2 − 1

x2

)

N

]

+sx x

√
8µ′′

0(sx, fsx)

N
+

ln 4

N
−

ln
(
2 − 1

x2

)

N

)}
.

Note that the above lower bound on the maximal error probability holds for an arbitrary block
code of length N and rate R. The selection of ρx is similar to the selection in [18] and gives
the tightest lower bound within this form.

In order to transform the lower bound on the maximum error probability into a lower
bound on the average error probability, we expurgate the original block code. In this standard
approach, we look at the expurgated code which is comprised of the M

2 codewords with the
lowest error probability. The average error probability of the original code is not below one-half
of the maximal word error probability of the expurgated code. Since the rate of the expurgated
code is R′ = R− ln 2

N
nats per channel use (the reduction in the rate by ln 2

N
follows from reducing

the size of the code by one-half), we get a lower bound on the average error probability of the
original code which reads

Pe > exp

{
−N

(
E0(ρx) − ρx

[
R − ln 8

N
+

ln
(
2 − 1

x2

)

N

]

+sx x

√
8µ′′

0(sx, fsx)

N
+

ln 8

N
−

ln
(
2 − 1

x2

)

N

)}

where R′− ln 4
N

is replaced in the RHS of the bound above by R− ln 8
N

, ρx = sx

1−sx
and sx ∈ (0, 1)

is implicitly given as a solution of the equation

R − ln 8

N
+

ln
(
2 − 1

x2

)

N
= −µ0(sx, fsx) − (1 − sx)µ′

0(sx, fsx) + (1 − sx) x

√
2µ′′

0(sx, fsx)

N
.

Finally, we optimize over the parameter x ∈ (
√

2
2 ,∞) in order to get the tightest lowest bound

of this form.
The derivation above only relies on the fact that the channel is memoryless, but does not

rely on the fact that the input or output alphabets are discrete. As mentioned in Section 2.2,
the original derivation of the SP67 bound in [14] relies on the fact that the input and output
alphabets are finite in order to bound the second derivative of µ by e√

Pmin
, where Pmin designates

the smallest non-zero transition probability of the channel. This requirement was relaxed in [18]
to the requirement that only the input alphabet is finite; to this end, the second derivative of
the function µ is calculated, thus the above upper bound on this second derivative is replaced by
its exact value. However, the requirement for a finite input alphabet remains in [18] due to the
fact that the derivation still relies on considering a fixed composition subcode of the original
code, and therefore requires that the number of possible compositions for a given length N

is finite. The derivation in this section circumvents the use of fixed composition codes, and
as a by product, it also relaxes the requirement of a finite input alphabet. The validity of
the derivation for memoryless continuous-input and continuous-output channels is provided in
the continuation (see Remark 3.4). This leads to the following theorem, which provides an
improved sphere-packing lower bound on the error probability of block codes transmitted over
memoryless channels.
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Theorem 3.1 (An Improved Sphere-Packing (ISP) Bound for Memoryless Chan-
nels). Let C be an arbitrary block code consisting of M codewords, each of length N . Assume
that C is transmitted over a memoryless channel which is specified by the transition proba-
bilities (or densities) P (j|k) where k ∈ K and j ∈ J designate the channel input and output
alphabets, respectively. Assume an arbitrary list decoder where the size of the list is limited
to L. If the support of qs which satisfies the inequalities in (31) consists of the entire input
alphabet for all 0 < s < 1, then the average decoding error probability satisfies

Pe(N,M,L) ≥ exp
{
−NẼsp(R,N)

}

where

Ẽsp(R,N) , sup
x>

√
2

2

{
E0(ρx) − ρx

(
R − O1

( 1

N
,x
))

+ O2

( 1√
N

,x, ρx

)}
(43)

and the function E0 is introduced in (9),

R ,
1

N
ln
(M

L

)

O1

( 1

N
,x
)

,
ln 8

N
−

ln
(
2 − 1

x2

)

N
(44)

O2

( 1√
N

,x, ρ
)

, s(ρ) x

√
8

N
µ′′

0

(
s(ρ)

)
+

ln 8

N
−

ln
(
2 − 1

x2

)

N
. (45)

Here, s(ρ) ,
ρ

1+ρ
, the parameter ρx in the RHS of (43) is determined by solving the equation

R − O1

(
1

N
, x

)
= −µ0

(
s(ρ), fs(ρ)

)
−
(
1 − s(ρ)

)
µ′

0

(
s(ρ), fs(ρ)

)
+
(
1 − s(ρ)

)
x

√
2µ′′

0

(
s(ρ), fs(ρ)

)

N
(46)

and the functions µ0(s, f) and fs are defined in (28) and (33), respectively.

Remark 3.1. The requirement that the support of the input distribution qs which maximizes
the sphere-packing error exponent consists of the entire input alphabet for all s ∈ (0, 1) is
crucial. It is basically what in essence makes the difference between the VF bound in [18] and
the ISP bound here. This assumption allows us to show in (36) that µk(s, fs) is independent of
k (i.e., it is independent of the symbol in the channel input) and thus allows us to represent the
bound in (38) and (39) independently of the composition qm of the codeword xm. In case that
the support of the input distribution qs does not satisfy the above condition, the lower bound
on the maximum block error probability becomes a function of the codeword index ms which
in turn is a function of the probability distribution fs, and therefore requires the intermediate
step of the derivation of the bound for fixed composition codes as in [14, 18]. This mutual
dependency does not allow us in general to complete the proof for the general case.

Remark 3.2. In light of the previous remark, the ISP bound differs from the VF bound [18]

(see Theorem 2.4) in the sense that the term
log (N+K−1

K−1 )
N

is removed from O1(
ln N
N

, x). Therefore,
the shift in the rate of the error exponent of the ISP bound behaves asymptotically like O1

(
1
N

)

instead of O1

(
lnN
N

)
(see (11), (12) and (44)). This difference indicates a tightening of the

pre-exponent of the ISP bound (as compared to the SP67 and VF bounds) which is expected to
be especially pronounced for small to moderate block lengths and when the size of the channel
input alphabet is increased.

Remark 3.3. The rate loss as a result of the expurgation of the code by removing half of the
codewords with the largest error probability was ignored in [18]. The term ln 4

N
, as it appears

in the term O1(
ln N
N

, x) of [18, Theorem 7], should be therefore replaced by ln 8
N

(see (44)).
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Remark 3.4. Under the mild condition discussed in Remark 3.1, the ISP bound is also ap-
plicable to continuous-input memoryless channels. In contrast to (12) which depends on the
size of the channel input alphabet (K)) and requires it to be finite, the parallel expression in
(44) which corresponds to the ISP bound is not subject to this requirement. This inherent
difference stems from Remark 3.1. When the ISP bound is applied to a continuous-input
memoryless channel, the distribution of the channel input, as used for the derivation of the
bound for a DMC, is replaced by the probability density function of the continuous channel
input. Similarly, the transition probability of a DMC is replaced by a transition density func-
tion for a memoryless channel with continuous input or output alphabets, and the sums are
replaced by integrals. Note that these densities may include Dirac delta functions which appear
at the points where the corresponding input distribution or the transition density function of
the channel are discontinuous.

Discussion on Theorem 3.1 In the following, we refer to another possibility of tightening
the ISP bound for codes of short to moderate block lengths. To this end, note that in the final
step of the derivation of the ISP bound, we move from a lower bound on the maximal error
probability to a lower bound on the average error probability. Similarly to the derivation of
the SP67 bound [14], this is done by expurgating half of the codewords and applying the fact
that the maximal error probability of the expurgated code, composed of half of the codewords
whose error probabilities are lowest, is not greater than twice the average error probability of
the entire code. The decision to consider a code composed of exactly half of the codewords is
arbitrary, and one may consider an expurgated code which includes an arbitrary fraction α of
the codewords with the lowest error probabilities (where 0 < α < 1). In this case, the average
error probability of the entire code is at least a fraction 1−α of the maximal error probability of

the expurgated code, and the rate of the expurgated code is decreased by
ln( 1

α)
N

. This modifies

the final form in Theorem 3.1; more explicitly, the expressions O1

(
1
N

, x
)

and O2

(
1√
N

, x
)

in

(44) and (45), respectively, are converted to

O1

( 1

N
,x
)

,
ln
(

4
α

)

N
−

ln
(
2 − 1

x2

)

N
(47)

O2

( 1√
N

,x, ρ
)

, sxx

√
8

N
µ′′

0

(
s(ρ)

)
+

ln
(

4
1−α

)

N
−

ln
(
2 − 1

x2

)

N
. (48)

Note that (47) and (48) coincide with (44) and (45), respectively, for the case where α = 1
2 .

To exemplify the effect of the parameter α, we refer to a block code of length N = 150 bits
and rate 0.9 bits

channel use which is transmitted over the AWGN channel using BPSK modulation.
In Figure 1, we plot the ISP bound for this scenario, where we set α to 1

4 , 1
2 and 3

4 . Firstly,
it can be observed that the choice α = 1

2 is relatively good for the range of energy per bit to
one-sided spectral noise density shown in Fig. 1 (and in fact, it is the best choice among these
three values of α for the intermediate range of Eb

N0
which is not depicted in this figure). It can

be also observed that for high block error probabilities, the smallest value of α = 1
4 gives the

tightest lower bound among the bounds which correspond to the above three values of α; on
the other hand, for low block error probabilities, the larger values of α give more appealing
results (note that, however, the bound is useless for α → 1−). This is due to the fact that the
value ρx (see (46)) is monotonically increasing as the value of Eb

N0
is increased, and is zero for all

values of Eb
N0

for which the shifted code rate (see the LHS of (46)) is above the corresponding

channel capacity (thus, the communication is not reliable). For low values of Eb
N0

(which yield
high error probabilities), the optimal ρx is very small; therefore, the fact that the rate of the
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expurgated code is smaller than the code rate of the original code has little affect on the bound,
but the factor 1 − α becomes larger as the value of α is decreased. This therefore implies that
this bounding technique favors smaller values of α as the value of Eb

N0
decreases. On the other

hand, for large enough values of Eb
N0

(which correspond to lower error probabilities), the optimal
ρx becomes larger and eventually the penalty for the decreased code rate of the expurgated
code caused by selecting a small value of α outweighs the advantage of the larger factor 1 − α;
hence, in the high SNR regime, this bounding technique favors large values of α (i.e., values of
α closer to 1). For moderate values of Eb

N0
, the tradeoff between the rate of the expurgated code

and the value of the factor 1 − α dictates the optimal choice of the expurgation parameter.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
lo

c
k
 e

rr
o

r 
p

ro
b

a
b

ili
ty

α = 1/4

α = 1/2

α = 3/4

4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2
10

−12

10
−11

10
−10

10
−9

10
−8

E
b
/N

0
 [dB]

B
lo

c
k
 e

rr
o
r 

p
ro

b
a
b
ili

ty

α = 1/4

α = 1/2

α = 3/4

Figure 1: A comparison of the improved sphere-packing (ISP) lower bound from Section 3 for
different values of the expurgation parameter α. The examined code is of block length N = 150
bits and rate 0.9 bits

channel use . The two plots refer to BPSK modulated signals whose transmission

takes place over the AWGN channel, for lower (left plot) and higher (right plot) values of Eb
N0

.

3.2 Application of the New Bound to M-ary PSK Block Coded Modulation

In this section, we apply the ISP bound to the case where the codewords of a block code
are modulated by an M-ary PSK scheme, transmitted over a complex AWGN channel and
coherently detected. For simplicity of notation, we treat the channel inputs and outputs as two
dimensional real vectors. Let M = 2k (where k ∈ N) be the modulation parameter, denote the
input to the channel by X = (x1, x2) where the possible input values are given by

Xk = (cos θk, sin θk) , θk ,
(2k + 1)π

M
, k = 0, 1, . . . ,M − 1. (49)

We denote the channel output by Y = (y1, y2) where Y = X + N, and N = (n1, n2) is a
Gaussian random vector with i.i.d. components each with zero-mean and variance σ2. The
conditional pdf of the channel output, given the transmitted symbol Xk, is given by

pY|X(Y|Xk) =
1

2πσ2
e
− (y1−cos θk)2+(y2−sin θk)2

2σ2

=
1

2πσ2
e
−‖Y−Xk‖2

2σ2 , Y ∈ R
2 (50)

where ‖·‖ designates the L2 norm.
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Due to the symmetry of the channel, then for every 0 < s < 1, the optimal input distribution
which maximizes the error exponent of the sphere-packing bound is given by qk,s = 1

M
for

k ∈ {0, 1, . . . ,M − 1} and s ∈ (0, 1). Hence, the ISP bound derived in Section 3.1 can be
applied to lower bound the decoding error probability of M-ary PSK block coded modulated
schemes whose transmission takes place over the AWGN channel. To this end, we derive in
Appendix A the function µ0(s, fs) defined in (36) and calculate its first and second derivatives
w.r.t. s. The final expressions for these functions are given below.

µ0(s, fs) = (1 − s) ln (θ(s))

µ′
0(s, fs) = − ln(θ(s)) + (1 − s)

(
β(s) + γ(s)

θ(s)

)

µ′′
0(s, fs) = −2

β(s) + γ(s)

θ(s)
+ (1 − s)

[
β′(s) + γ′(s)

θ(s)
−
(

β(s) + γ(s)

θ(s)

)2
]

where θ(s), β(s), γ(s), β′(s) and γ′(s) are introduced in Appendix A (see (A.1), (A.4), (A.5),
(A.7) and (A.8), respectively).

The ISP bound is calculated by applying the equations above to Theorem 3.1. The above
expressions can also be applied towards the calculation of the VF bound for this scenario. In
Section 5, we present some numerical results which compare the tightness of the VF, ISP and
SP59 bounds for M-ary PSK modulated signals transmitted over the AWGN channel.

4 The 1959 Sphere-Packing Bound of Shannon and Improved
Algorithms for Its Calculation

The 1959 sphere-packing (SP59) bound derived by Shannon [13] provides a lower bound on the
decoding error probability of an arbitrary block code whose transmission takes place over an
AWGN channel. We begin this section by introducing the SP59 bound in its original form, along
with asymptotic approximations derived in [13] which facilitate the estimation of the bound
for large block lengths. We then review a theorem, introduced by Valembois and Fossorier
[18], presenting a set of recursive equations which simplify the calculation of the bound. Both
the original formula for the SP59 bound in [13] and the recursive method in [18] perform the
calculation of the bound in the probability domain; this leads to various problems of over and
under flows when calculating the exact value of the bound for codes with block lengths of
N = 1000 or more. In this section, we present a theorem which facilitates the calculation of the
SP59 bound in the logarithmic domain. This virtually eliminates the possibility of numerical
errors in the calculation.

4.1 The 1959 Sphere-Packing Bound and Asymptotic Approximations [13]

Consider a block code C of length N , and rate R nats per channel use per dimension. It is
assumed that all the codewords are mapped to signals with equal energy (e.g. PSK modulation);
hence, all the signals representing codewords lie on an N -dimensional sphere centered at the
origin, but finer details of the modulation used are not taken into account. This assumption
implies that every Voronoi cell (i.e., the convex region containing all the points which are closer
to the considered signal than to any other code signal) is a polyhedric cone which is limited by
at most exp(NR)−1 hyper planes intersecting at the origin. As a measure of volume, Shannon
introduces the solid angle of a cone which is defined to be the area of the sphere of unit radius
which is cut out by the cone. Since the Voronoi cells partition the space R

N , the sum of their
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solid angles must be the area of an N -dimensional sphere of unit radius. The derivation of the
SP59 bound relies on two main observations:

• Among the cones of a given solid angle, the lowest probability of error is given by the circular
cone whose axis connect the code signal with the origin.

• It is best to share the total solid angle equally among the exp(NR) Voronoi regions.

As a corollary of these two observations follows the argument that the average Voronoi cell of
any code cannot be better than a circular cone centered around the code signal with solid angle
equal to exp(−NR) of the solid angle of R

N . The solid angle of a circular cone is given by the
following lemma.

Lemma 4.1 (Solid Angle of a Circular Cone [13]). The solid angle of a circular cone of
half angle θ in R

N is given by

ΩN (θ) =
2π

N−1
2

Γ(N−1
2 )

∫ θ

0
(sin φ)N−2 dφ .

In particular, the solid angle of R
N is given by

ΩN(π) =
2π

N
2

Γ(N
2 )

.

Theorem 4.1 (The 1959 Sphere-Packing (SP59) Bound [13]). Assume the transmission
of an arbitrary block code of length N and rate R takes place over an AWGN channel with
noise spectral density N0

2 . Then, under ML decoding, the error probability is lower bounded by

Pe(ML) > PSPB(N, θ,A) , A ,

√
2Es

N0

where Es is the average energy per symbol, θ ∈ [0, π] satisfies the inequality 2−NR ≤ ΩN (θ)
ΩN (π) ,

PSPB(N, θ,A) ,
(N − 1)e−

NA2

2

√
2π

∫ π
2

θ

(sin φ)N−2 fN (
√

NA cos φ) dφ

+Q(
√

NA). (51)

and

fN (x) ,
1

2
N−1

2 Γ(N+1
2 )

∫ ∞

0
zN−1 exp

(
−z2

2
+ zx

)
dz , ∀ x ∈ R, N ∈ N. (52)

By assumption, the transmitted signal is represented by a point which lies on the N -
dimensional sphere of radius

√
NEs and which is centered at the origin, and the Gaussian

noise is additive. The value PSPB(N, θ,A) in the RHS of (4.1) designates the probability that
the received vector falls outside the N -dimensional circular cone of half angle θ whose main
axis passes through the origin and the signal point which is represented by the transmitted
signal. Hence, this function is monotonically decreasing in θ. The tightest lower bound on the
decoding error probability is therefore achieved for θ1(N,R) which satisfies

ΩN

(
θ1(N,R)

)

ΩN (π)
= exp(−NR).

The calculation of θ1(N,R) can become quite tedious. In order to simplify the calculation of

the SP59 bound, [13] provides asymptotically tight upper and lower bounds on the ratio ΩN (θ)
ΩN (π) .
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Lemma 4.2 (Bounds on the Solid Angle [13]). The solid angle of a circular cone of half
angle θ in the Euclidean space R

N satisfies the inequality

Γ(N
2 )(sin θ)N−1

2Γ(N+1
2 )

√
π cos θ

(
1 − tan2 θ

N

)
≤ ΩN (θ)

ΩN (π)
≤ Γ(N

2 )(sin θ)N−1

2Γ(N+1
2 )

√
π cos θ

.

Corollary 4.1 (SP59 Bound (Cont.)). If θ∗ satisfies the equation

Γ(N
2 )(sin θ∗)N−1

2Γ(N+1
2 )

√
π cos θ∗

(
1 − tan2 θ∗

N

)
= exp(−NR) (53)

then ΩN (θ∗)
ΩN (π) ≥ exp(−NR), and therefore

Pe(ML) > PSPB(N, θ∗, A). (54)

The use of θ∗ instead of the optimal value θ1(N,R) causes some loss in the tightness of the

SP59 bound. However, due to the asymptotic tightness of the bounds on ΩN (θ)
ΩN (π) , the loss in

the tightness of the bound in Corollary 4.1 vanishes asymptotically as N → ∞. In [18], it was
numerically observed that the loss is marginal even for relatively small values of N and R. It
was observed that the loss is smaller then 0.01 dB whenever the dimension of the code NR is
greater than 20, and it becomes smaller then 0.001 dB when the dimension of the code exceeds
60.

For large block lengths, the calculation of the SP59 becomes extremely difficult due to over
and under flows in the floating point operations. However, [13] presents some asymptotic formu-
las which give a very accurate estimation of the bound for large enough block lengths. These
approximations allow the calculation to be made in the logarithmic domain which virtually
eliminates the possibility of floating point errors.

Theorem 4.2. [13]: Defining

G(θ) ,
A cos θ +

√
A2 cos2 θ + 4

2

EL(θ) ,
A2 − AG(θ) cos θ − 2 ln

(
G(θ) sin θ

)

2

then

PSPB(N, θ,A) ≥
√

N − 1

6N(A + 1)
e

−(A+1)2+3
2 e−N EL(θ). (55)

This lower bound is valid for any block length N . However, the ratio of the left and
right terms in (55) stays bounded away from one for all N . A more accurate approximation
of PSPB(N, θ,A) is given by the next theorem, but without a determined inequality. As a
consequence, the following approximation is not a proven theoretical lower bound on the error
probability. For N > 1000, however, its numerical values become almost identical to those of
the exact bound, thus giving a useful estimation for the lower bound.

Theorem 4.3. [13]: Using the notation of Theorem 4.2, if θ > cot−1(A), then

PSPB(N, θ,A) ≈ α(θ)e−NEL(θ)

√
N

where

α(θ) ,

(√
π (1 + G(θ)2) sin θ

(
AG(θ) sin2 θ − cos θ

))−1
.
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4.2 An Algorithm for Calculating the 1959 Sphere-Packing Bound [18]

In [18, Section 2], Valembois and Fossorier review the SP59 bound and suggest a recursive
algorithm to simplify its calculation. This algorithm is presented in the following theorem:

Theorem 4.4 (Recursive Equations for Simplifying the Calculation of the SP59
Bound). [18, Theorem 3]: The set of functions {fN} introduced in (52) can be expressed in
the alternative form

fN (x) = PN (x) + QN (x) exp(
x2

2
)

∫ x

−∞
exp(− t2

2
) dt , x ∈ R, N ∈ N (56)

where PN and QN are two polynomials, determined by the same recursive equation for all
N ≥ 5

PN (x) =
2N − 5 + x2

N − 1
PN−2(x) − N − 4

N − 1
PN−4(x) ,

QN (x) =
2N − 5 + x2

N − 1
QN−2(x) − N − 4

N − 1
QN−4(x) (57)

with the initial conditions

P1(x) = 0, Q1(x) = 1

P2(x) =

√
2

π
, Q2(x) =

√
2

π
x

P3(x) =
x

2
, Q3(x) =

1 + x2

2

P4(x) =

√
2

π

2 + x2

3
, Q4(x) =

√
2

π

3x + x3

3
.

By observing the recursive equations for PN and QN in (57), it can be noticed that the
coefficients of the higher powers of x vanish exponentially as N increases. When performing
the calculation using double-precision floating point numbers, these coefficients cause underflows
when N is larger than several hundreds, and are replaced by zeros. Examining the expression
for PSPB(N, θ,A) in (51), we observe that fN (x) (and therefore the polynomials PN (x) and
QN (x)) is evaluated at x ∼ O(

√
N). Hence, the replacement of the coefficients of the high

powers of x by zeros causes a considerable inaccuracy in the calculation of PSPB in (51). To
exemplify the effect of these underflows, we study the coefficients of P750(x) as calculated using
double precision floating point numbers. In this case, the coefficients of all the powers higher
than 400 have caused underflows and have been replaced by zeros. The left plot of Figure 2
shows the coefficients of P750(x). Since fN (x) is evaluated at x ∼ O(

√
N), one should examine

the coefficients of P̃750(x) , P750(
√

750 x) which are plotted in the right plot of Figure 2.
It can be seen that the dominant coefficients are those multiplying the powers of x between
400 and 520 which, as mentioned above, have been replaced by zeros due to underflows. This
demonstrates the inaccuracy due to underflows in the coefficients of the high powers. To avoid
this loss of dominant coefficients, it is possible to modify the recursive equations (57) in order
to calculate the polynomials P̃N (x) , PN (

√
N x) and Q̃N (x) , Q(

√
N x). However, as can be

observed from the right plot of Figure 2, these coefficients become extremely large and cause
overflows when N approaches 1000.

Considering the integrand in the RHS of (51), reveals another difficulty in calculating the
SP59 bound for large values on N . For these values, the term fN(

√
NA cos φ) becomes very

large and causes overflows, while the value of the term (sin φ)N−2 becomes very small and causes
underflows; this causes a “0 · ∞” phenomenon when evaluating the integrand at the RHS of
(51).
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Figure 2: Coefficients of the polynomials P750(x) (right plot) and P̃750(x) = P750(
√

750 x) (left
plot). Since the polynomials are even, only the coefficients multiplying the even powers of x

have been plotted. It can be observed that in the right plot, the coefficients of powers of x

between 400 and 520 are dominant. These coefficients have caused underflows in the calculation
of P750(x) in the left plot.

4.3 A Log-Domain Approach for Computing the 1959 Sphere-Packing Bound

In this section, we present a method which enables the entire calculation of the integrand in the
RHS of (51) in the log domain, thus circumventing the numerical over and under flows which
become problematic in the calculation of the SP59 bound for large block lengths. We begin our
derivation by representing the set of functions {fN} defined in (52) as a sum of exponents.

Proposition 4.1. The set of functions {fN} in (52) can be expressed in the form

fN (x) =
N−1∑

j=0

exp
(
d(N, j, x)

)
, x ∈ R, N ∈ N

where

d(N, j, x) ,
x2

2
+ ln Γ

(
N

2

)
− ln Γ

(
j

2
+ 1

)
− ln Γ(N − j)

+(N − 1 − j) ln
(√

2 x
)
− ln 2

2

+ ln

[
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]
,

N ∈ N, x ∈ R

j = 0, 1 . . . , N − 1
(58)

and

Γ(a) ,

∫ ∞

0
ta−1e−tdt , Re(a) > 0 (59)

γ̃(x, a) ,
1

Γ(a)

∫ x

0
ta−1e−tdt , x ∈ R, Re(a) > 0 (60)

designate the complete and incomplete Gamma functions, respectively.

Proof. The proof is given in Appendix B.
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Remark 4.1. It should be noted that the exponents d(N, j, x) in (58) can be readily calculated
by using standard mathematical functions. The function which calculates the natural logarithm
of the Gamma function is implemented in the MATLAB software by gammaln, and in the
Mathematica software by LogGamma. The function γ̃(a, b) is implemented in MATLAB by
gammainc(x,N) and in Mathematica by GammaRegularized(N,0,x).

In order to perform the entire calculation of the function fN in the log domain, we employ
the function

max ∗(x1, . . . , xm) , ln

(
m∑

i=1

exi

)
, m ∈ N, x1, . . . , xm ∈ R (61)

which is commonly used in the implementation of the log-domain BCJR algorithm. The function
max ∗ can be calculated in the log domain using the recursive equation

max ∗(x1, . . . , xm+1) = max ∗(max ∗(x1, . . . , xm), xm+1

)
, m ∈ N \ {1}, x1, . . . , xm+1 ∈ R

with the initial condition

max ∗(x1, x2) = max(x1, x2) + ln
(
1 + e−|x1−x2|

)
.

By combining Proposition 4.1 and the definition of the function max ∗ in (61), we get a method
of calculating the set of functions {fN} in the log domain.

Corollary 4.2. The set of functions {fN} defined in (52) can be rewritten in the form

fN (x) = exp
[
max ∗(d(N, 0, x), d(N, 1, x), . . . , d(N,N − 1, x)

)]
(62)

where d(N, j, x) is introduced in (58).

By combining (51) and (62), one gets the following theorem which provides an efficient
algorithm for the calculation of the SP59 bound in the log domain.

Theorem 4.5 (Log domain calculation of the SP59 bound). The term PSPB(N, θ,A) in
the RHS of (4.1) can be rewritten as

PSPB(N, θ,A) =

∫ π
2

θ

exp

[
ln(N − 1) − NA2

2
− 1

2
ln(2π) + (N − 2) ln sin φ

+ max ∗
(
d(N, 0,

√
NA cos φ), . . . , d(N,N − 1,

√
NA cos φ)

)]
dφ

+Q(
√

NA) , N ∈ N, θ ∈ [0,
π

2
], A ∈ R

+

where d(N, j, x) is defined in (58).

Using Theorem 4.5, it is possible to calculate the exact value of the SP59 lower bound for
very large block lengths. Figure 3 shows a comparison of the exact value of the SP59 bound and
its asymptotic value as given in Theorems 4.5 and 4.3, respectively. This comparison is shown
for a code rate of 0.5 bits per channel use per dimension and block lengths of N = 102, 103 and
104. The calculations of the exact and asymptotic expressions were done using θ∗ from (53);
due to the large block lengths, the loss incurred by using this suboptimal value is negligible.
It is observed that the asymptotic expression is indeed quite accurate for the two larger block
lengths of N = 1, 000 and 10, 000, and its accuracy is improved by increasing the block length
and the SNR.
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Figure 3: A comparison of the asymptotic and exact expressions for the SP59 bound (see
Theorems 4.3 and 4.5, respectively). The examined block lengths are N = 100, 1000 and
10, 000 for a code rate of 0.5 bits per channel use per dimension.

5 Numerical Results

This section presents some numerical results which serve to demonstrate the improved tightness
of the ISP bound derived in Section 3. We consider performance bounds for M-ary PSK block
coded modulation with coherent detection over an AWGN channel, and for the binary erasure
channel (BEC).

5.1 Performance Bounds for M-ary PSK Block Coded Modulation over the
AWGN Channel

The ISP bound is particularized in Section 3.2 to M-ary PSK block coded modulation schemes
whose transmission takes place over the AWGN channel, and where the received signals are
coherently detected. The calculations of the function µ and its derivatives (see Appendix A) are
useful for the calculation of the VF bound [18] as well. The SP59 bound reviewed in Section 4
provides a lower bound on the decoding error probability of M-ary PSK signaling over the
AWGN channel, as a particular case of equi-energy signals. In the following, we exemplify
the use of these lower bounds for the considered case. They are also compared to Gallager’s
random-coding upper bound [5] and the tangential-sphere upper bound [10] when applied to
random block codes. This serves for the study of the tightness of the ISP bound (see Section 3)
as compared to other upper and lower bounds. The numerical results shown in this section
indicate that the recent variants of the SP67 bound provide an interesting alternative to the
SP59 bound which is commonly used in the literature as an ultimate measure of performance for
codes transmitted over the AWGN channel (see, e.g., [4, 7, 8, 9, 12, 16, 18, 19]). The advantage
of the ISP bound over the VF bound in [18] is also exemplified in this section.

Fig. 4 presents a comparison of the SP59 bound [13], the VF bound [18], and the ISP
bound derived in this paper (see Section 3). The comparison refers to block codes of length
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Figure 4: A comparison between upper and lower bounds on the ML decoding error probability
for block codes of length N = 500 bits and code rate of 0.8 bits

channel use . This figure refers to BPSK
modulated signals whose transmission takes place over an AWGN channel. The compared
bounds are the 1959 sphere-packing (SP59) bound of Shannon [13], the Valembois-Fossorier
(VF) bound [18], the improved sphere-packing (ISP) bound derived in Section 3, the random-
coding upper bound of Gallager [5], and the tangential-sphere upper bound (TSB) of Poltyrev
[6, 10] when applied to fully random block codes with the above block length and rate.

500 bits and rate 0.8 bits
channel use , which are BPSK modulated and transmitted over an AWGN

channel. The plot also depicts the random-coding upper bound on the error probability, the
tangential-sphere bound (TSB) [6, 10], and the capacity limit bound (CLB).1 It is observed
from this figure that even for relatively short block lengths, the ISP bound outperforms the
SP59 bound for block error probabilities below 10−1. For a block error probability of 10−5, the
ISP bound provides a gain of about 0.2 dB and 0.3 dB over the SP59 bound and the VF bound,
respectively. For these code parameters, the TSB provides a tighter upper bound on the block
error probability of random codes than Gallager’s random-coding bound; e.g., the gain of the
TSB over Gallager’s bound is about 0.2 dB for a block error probability of 10−5. Note that the
random coding bound of Gallager is tighter than the TSB for large enough block lengths, as
the latter bound does not reproduce the random coding error exponent for the AWGN channel
[10]. However, this figure exemplifies the advantage of the TSB over the random coding bound
of Gallager, when particularized to random block codes of relatively short block lengths; this
advantage is especially pronounced for low code rates where the gap between the error exponents
of these two bounds is reduced (see [12, p. 67]), but it is also reflected from Figure 4 for BPSK
modulation with a code rate of 0.8 bits

channel use . The gap between the TSB and the ISP bound, as
upper and lower bounds respectively, is less than 1.2 dB for all block error probabilities lower
than 10−1. Also, the ISP bound is more informative than the CLB for block error probabilities
below 3 × 10−3.

1Although the CLB refers to the asymptotic case where the block length tends to infinity, it is plotted in [18]
and here as a reference, in order to examine whether the improvement in the tightness of the ISP is for rates
above or below capacity.
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Figure 5: A comparison between upper and lower bounds on the ML decoding error probability,
referring to short block codes which are QPSK modulated and transmitted over the AWGN
channel. The compared lower bounds are the 1959 sphere-packing (SP59) bound of Shannon
[13], the Valembois-Fossorier (VF) bound [18], and the improved sphere-packing (ISP) bound
derived in Section 3; the compared upper bounds are the random-coding upper bound of Gal-
lager [5] and the tangential-sphere bound (TSB) of Poltyrev [10]. The upper plot refers to
block codes of length N = 1024 which are encoded by 768 information bits (so the rate is
1.5 bits

channel use), and the lower plot refers to block codes of length N = 300 which are encoded by

270 bits whose rate is therefore 1.8 bits
channel use .

Fig. 5 presents a comparison of the SP59, VF and ISP bounds where QPSK modulated
signals are considered. The two plots in this figure refer to codes of short block lengths. The
plots also depict the random-coding upper bound on the block error probability, the TSB of
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Poltyrev [10], and the CLB. It can be observed from these two plots that even for relatively short
block lengths, the ISP bound outperforms the SP59 bound for all error probabilities below 10−1

(this result is consistent with the upper plot of Fig. 9). In the upper plot of Fig. 5, referring to
a block length of 1024 bits (i.e., 512 QPSK symbols) and a rate of 1.5 bits

channel use , it is observed
that for a block error probability of 10−5, the ISP bound provides a gain of about 0.2 dB and
0.3 dB over the SP59 and the VF bounds, respectively. The gap between the ISP lower bound
and the random-coding upper bound is 0.85 dB for all block error probabilities lower than 10−1.
In the lower plot of Fig. 5, referring to a block length of 300 bits and a rate of 1.8 bits

channel use ,
the ISP bound improves significantly the SP59 bound and the VF bound (for a block error
probability of 10−5, the improvement in the tightness of the ISP over the SP59 and VF bounds
is 0.7 dB and 1 dB, respectively). Additionally, the ISP bound is more informative than the
CLB for block error probabilities below 10−3, where the SP59 and VF bound outperform the
capacity-limit only for block error probabilities of 3 × 10−6 and 2 × 10−8, respectively. For
random block codes of block length N = 300 and rate 1.8 bits

channel use which are QPSK modulated
with Gray’s mapping and transmitted over the AWGN channel, the TSB [10] is tighter than
the random coding bound (see the lower plot in Fig. 5 and the explanation referring to Fig. 4).
The gap between the ISP bound and the TSB in this plot is about 1.7 dB for a block error
probability of 10−5 (as compared to gaps of 2.4 dB (2.7 dB) between the TSB and the SP59
(VF) bound).

Figure 6 presents a comparison of the bounds for codes of block length 5580 bits and
information block length of 4092, where both QPSK (upper plot) and 8-PSK (lower plot)
constellations are considered. The modulated signals correspond to 2790 and 1680 symbols,
respectively, and the code rates for these constellations are equal to 1.467 and 2.2 bits per
channel use, respectively. For this larger block length and for both constellations, both of the
SP67-based bounds (i.e., the VF and the ISP bounds) outperform the SP59 for all block error
probabilities below 10−1; the ISP bound gives a gain of 0.1 dB and 0.2 dB over the VF bound
for the QPSK and 8-PSK constellations, respectively. For both modulations, the gap between
the ISP lower bound and the random-coding upper bound of Gallager does not exceed 0.4 dB.
In [3], Divsalar and Dolinar design codes with the considered parameters by using concatenated
Hamming and Accumulator codes. They also present computer simulations of the performance
of these codes under iterative decoding, when the transmission takes place over the AWGN
and several common modulation schemes are applied. For an error probability of 10−4, the gap
between the simulated performance of these codes under iterative decoding, and the ISP lower
bound, which gives an ultimate lower bound on the error probability of optimally designed
codes under ML decoding, is approximately 1.4 dB for QPSK and 1.6 dB for 8-PSK signaling.
This provides an indication on the performance of codes defined on graphs and their iterative
decoding algorithms, especially in light of the feasible complexity of the decoding algorithm
which is linear in the block length. To conclude, it is reflected from the results plotted in Fig. 6
that a gap of about 1.5 dB between the ISP lower bound and the performance of the iteratively
decoded codes in [3] is mainly due to the imperfectness of these codes and their sub-optimal
iterative decoding algorithm; this conclusion follows in light of the fact that for random codes
of the same block length and rate, the gap between the ISP bound and the random coding
bound is reduced to less than 0.4 dB.

While it was shown in Section 3 that the ISP bound is uniformly tighter than the VF
bound (which in turn is uniformly tighter than the SP67 bound [14]), no such relations are
shown between the SP59 bound and the recent improvements on the SP67 bound (i.e., the
VF and ISP bounds). Fig. 7 presents regions of code rates and block lengths for which the
ISP bound outperforms the SP59 bound and the CLB; it refers to BPSK modulated signals
transmitted over the AWGN and considers block error probabilities of 10−4, 10−5 and 10−6.
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Figure 6: A comparison of upper and lower bounds on the ML decoding error probability for
block codes of length N = 5580 bits and information block length of 4092 bits. This figure refers
to QPSK (upper plot) and 8-PSK (lower plot) modulated signals whose transmission takes place
over an AWGN channel; the rates in this case are 1.467 and 2.200 bits

channel use , respectively. The
compared bounds are the 1959 sphere-packing (SP59) bound of Shannon [13], the Valembois-
Fossorier (VF) bound [18], the improved sphere-packing (ISP) bound derived in Section 3, and
the random-coding upper bound of Gallager [5].

It is reflected from this figure that for any rate 0 < R < 1, there exists a block length N(R)
such that the ISP bound outperforms the SP59 bound for block lengths larger than N(R) (the
same property holds for the VF bound, but that the value of N(R) depends on the considered
SP67-based bound, and is significantly larger in the latter case). It is also observed that the
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Figure 7: Regions in the two-dimensional space of code rate and block length, where a bound is
better than the two others for three different targets of block error probability (Pe). The figure
compares the tightness of the 1959 sphere-packing (SP59) bound of Shannon [13], the improved
sphere-packing (ISP) bound derived in Section 3, and the capacity-limit bound (CLB). The plot
refers to BPSK modulated signals whose transmission takes place over the AWGN channel, and
the considered code rates lie in the range between 0.1 and 1 bits

channel use .

value N(R) is monotonically decreasing with R, and it approaches infinity as we let R tend to
zero. An intuitive explanation for this behavior can be given by considering the capacity limits
of the binary-input and the energy constraint AWGN channels. For any value 0 ≤ C < 1,

denote by
Eb,1(C)

N0
and

Eb,2(C)
N0

the values of Eb
N0

required to achieve a channel capacity of C

bits per channel use for the binary-input and unconstrained-input AWGN channel, respectively
(note that in the Gaussian regime, the un-constrained input distribution is also Gaussian).

For any 0 ≤ C < 1, clearly
Eb,1(C)

N0
≥ Eb,2(C)

N0
; however, the difference between these values is

monotonically increasing with the capacity C, and, on the other hand, this difference approaches
zero as we let C tend to zero. Since the SP59 bound only constrains the signals to be of equal
energy, it gives a measure of performance for the energy constraint AWGN channel, where
the SP67-based bounds consider the actual modulation and therefore refer to the binary-input
AWGN channel. As the code rates become higher, the difference in the ultimate performance
between the two channels is larger, and therefore the SP67 based techniques outperform the
SP59 bound for smaller block lengths. For low code rates, the difference between the channels
is smaller, and the SP59 outperforms the SP67 based bounding techniques even for larger block
lengths due to the superior bounding technique which is specifically tailored for the AWGN
channel. Fig 8 presents the regions of code rates and block lengths for which the VF bound
(upper plot) and the ISP bound (lower plot) outperform the CLB and the SP59 bound when
the the signals are BPSK modulated and transmitted over the AWGN channel; block error
probabilities of 10−4, 10−5 and 10−6 are examined. This figure is focused on high code rates,
where the performance of the SP67 based bounds and their advantage over the SP59 bound is
most appealing. From Figure 8, we have that for a code rate of 0.75 bits per channel use and
an error probability of 10−6, the VF bound becomes tighter than the SP59 for block lengths
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Figure 8: Regions in the two-dimensional space of code rate and block length, where a bound
is better than the two others for three different targets of block error probability (Pe). The
figure compares the tightness of the 1959 sphere-packing (SP59) bound of Shannon [13], the
capacity-limit bound (CLB), and the Valembois-Fossorier (VF) bound [18] (upper plot) or the
improved sphere-packing (ISP) bound derived in Section 3 (lower plot). The plots refer to
BPSK modulated signals whose transmission takes place over the AWGN channel, and the
considered code rates lie in the range between 0.70 and 1 bits

channel use .

exceeding 870 bits while the ISP bound reduces this value to 617 bits; moreover, when increasing
the rate to 0.8 bits per channel use, the respective minimal block lengths reduce to 550 and
350 bits for the VF and ISP bounds, respectively. Fig 9 shows the regions of code rates and
block lengths where the ISP outperform the CLB and SP59 bounds for QPSK (upper plot)
and 8-PSK (lower plot) modulations. Comparing the lower plot of Fig. 8 which refers to BPSK
modulation with the upper plot of Fig. 9 which refers to QPSK modulation, one can see that
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Figure 9: Regions in the two-dimensional space of code rate and block length, where a bound is
better than the two others for three different targets of block error probability (Pe). The figure
compares the tightness of the 1959 sphere-packing (SP59) bound of Shannon [13], the improved
sphere-packing (ISP) bound derived in Section 3, and the capacity-limit bound (CLB). The
plots refer to QPSK (upper plot) and 8-PSK (lower plot) modulated signals whose transmission
takes place over the AWGN channel; the considered code rates lie in the range between 1.4 and
2 bits

channel use for the QPSK modulated signals and between 2.1 and 3 bits
channel use for the 8-PSK

modulated signals.

the two graphs are virtually identical (when accounting for the doubling of the rate which is
due to the use of both real and imaginary dimensions in the QPSK modulation). This is due to
the fact that QPSK modulation posses no additional constraints on the channel and in fact, the
real and imaginary planes can be serialized and decoded as in BPSK modulation. However, this
property does not hold when replacing the ISP bound by the VF bound; this is due to the fact
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the the VF bound considers a fixed composition subcode of the original code and the increased
size of the alphabet causes a greater loss in the rate for QPSK modulation. When comparing
the two plots of Fig. 9, it is evident that the block lengths for which the ISP bound becomes
better than the SP59 bound decreases as the spectral efficiency of the modulation is increased
(when normalizing the rate to units of information bits per code bit). An intuitive justification
for this phenomenon is attributed to the fact that referring to the constellation points in (49),
the mutual information between the code symbols in each dimension of the QPSK modulation is
zero, while as the spectral efficiency of the PSK modulation is increased, the mutual information
between the real and imaginary parts of each signal point is increased; thus, as the spectral
efficiency is increased, this posses a stronger constraint on the possible positioning of the equal-
energy signal points on the N -dimensional sphere. This intuition may suggest an explanation
for the reason why as the spectral efficiency is increased, the advantage of the ISP bound which
is exemplified for the M-ary PSK modulated signals over the SP59 bound which refers to the
un-constrained input distribution holds even for smaller block lengths. This effect is expected
to be more subtle for the VF bound since the increased alphabet size increases the reduction
in the rate (by the quantity in (12)), which therefore causes the bound to be looser.

5.2 Performance Bounds for the Binary Erasure Channel
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Figure 10: A comparison of the improved sphere-packing (ISP) lower bound from Section 3 and
the exact decoding error probability of random binary linear block codes under ML decoding
where the transmission takes place over the BEC (see [2, Eq. (3.2)]). The code rate examined
is 0.75 bits

channel use and the block lengths are N = 1024, 2048, 4096, 8192 and 16384 bits.

In recent years, the BEC has been the focus of much attention in the field of iterative
decoding techniques. The simplicity of this channel and the absolute reliability of the known
values at the output lend themselves to a one-dimensional analysis of turbo-like codes and the
performance of their iterative decoding algorithms in the case where the codes are transmitted
over the BEC (see, e.g., [15]). For the asymptotic case where we let the block length tend
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to infinity, several families which achieve the capacity of the BEC under iterative decoding
have been constructed; these include low-density parity-check (LDPC), repeat-accumulate (RA)
and accumulate-repeat-accumulate (ARA) codes. These discoveries motivate a study of the
performance of iteratively decoded codes defined on graphs for moderate block lengths (see,
e.g., [11]). In Figure 10, we compare the ISP lower bound and the exact block error probability
of random linear block codes transmitted over the BEC as given in [2, Eq. (3.2)]). The figure
refers to codes of rate 0.75 bits per channel use and various block lengths. It can be observed
that for a block length of 1024 bits, the difference in the channel erasure probability for which
the random coding bound and the ISP bound achieve an error probability of 10−5 is 0.037
while for a block length of 16384 bits, this gap is decreased to 0.008. This yields that the ISP
bound is reasonably tight, and also suggests that this bound can be used in order to assess the
imperfectness of turbo-like codes even for moderate block lengths.

6 Summary

This paper presents an improved sphere-packing (ISP) bound targeting codes of short to mod-
erate block lengths, and it exemplifies some of its applications. The derivation of the ISP
bound was stimulated by the remarkable performance and moderate complexity of turbo-like
codes with short to moderate block lengths. We were motivated by recent improvements on the
sphere-packing bound of [14] for finite block lengths, as suggested by Valembois and Fossorier
in [18].

We first review the classical sphere-packing bounds, i.e., the 1959 sphere-packing bound
(SP59) derived by Shannon for the Gaussian channel [13], and the 1967 sphere-packing (SP67)
bound derived by Shannon, Gallager and Berlekamp for discrete memoryless channels [14]. The
ISP bound, introduced in Section 3, is uniformly tighter than the classical SP67 bound [14] and
the bound in [18]. Under a mild condition, the validity of the ISP bound is extended to general
memoryless channels (even with continuous input and output alphabets); the basic observation
which enables the derivation of the ISP bound is explained in Remark 3.1 (see p. 15).

We apply the ISP bound to M-ary PSK block coded modulation schemes whose transmission
takes place over the AWGN channel and the received signals are coherently detected. The
tightness of the ISP bound is exemplified by comparing it with upper and lower bounds on
the ML decoding error probability and also with computer simulations of turbo-like codes
under iterative decoding. The paper also presents a new algorithm which performs the entire
calculation of the SP59 bound in the logarithmic domain, thus facilitating the exact calculation
of the SP59 bound for all block lengths without the need for asymptotic approximations. It is
shown that the ISP bound suggests an interesting alternative to the SP59 bound, where the
latter is specialized for the AWGN channel.

High rate turbo-product codes with moderate block lengths (see [1]) exhibit a gap of 0.75–
0.95 dB w.r.t. the information-theoretic limitation provided by the ISP bound. Based on
numerical results in [17] for the ensemble of uniformly interleaved (1144, 1000) turbo-block
codes whose components are random systematic linear block codes, the gap in Eb

N0
between

the ISP lower bound and an upper bound under ML decoding is 0.9 dB for a block error
probability of 10−7. These results exemplify the strength of the sphere-packing bounds for
assessing the theoretical limitations of block codes and the power of iteratively decoded codes
(see also [4, 7, 8, 12, 18]).

The ISP bound is especially attractive for block codes of high rate in terms of the range of the
block lengths where this bound outperforms the SP59 bound and the capacity limit bound (see
Figs. 5–9). Its effectiveness is especially pronounced for modulations of high spectral efficiency,
due to the enhancement of its tightness as the size of the input alphabet is increased.
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Appendices

Appendix A: Calculations Related to the VF and ISP Bounds
for M-Ary PSK Modulated Schemes over the AWGN Channel

This appendix presents some technical calculations which yield the expressions for the function
µ0 defined in (36) and its derivatives. These expressions serve for the application of the VF
bound in [18] and the ISP bound derived in Section 3 to block coded M-ary PSK modulation
schemes transmitted over the AWGN channel and coherently detected.

From symmetry considerations, it is clear that the input distribution is uniform (i.e., qk,s =
1
M

for k ∈ {1, . . . ,M} and s ∈ (0, 1).) Since the support of the vector q includes all the input
alphabet, then from (36), the function µk(s, fs) is independent of k. In the case of a continuous
output alphabet, the sums in (36) are replaced by integrals, and the transition probabilities are
replaced by transition probability density functions. Hence, we get by substituting (50) into
(36) that

µ0(s, fs) = (1 − s) ln (θ(s))

where

θ(s) ,

∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2

(
1

M

M−1∑

k=0

e
(1−s) 〈Y,Xk−X0〉

σ2

) 1
1−s

dY. (A.1)

This can be rewritten in the form

µ0(s, fs) = (1 − s) ln



∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2

(
1

M

M−1∑

k=0

e
− (1−s) (‖Y−Xk‖2−‖Y−X0‖2)

2σ2

) 1
1−s

dY


 .

By observing that

‖Y − Xk‖2 − ‖Y − X0‖2 = −2〈Y,Xk − X0〉

which holds since ‖Xl‖2 = 1 for every l ∈ {0, 1, . . . ,M − 1}, we get

µ0(s, fs) = (1 − s) ln



∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2

(
1

M

M−1∑

k=0

e
(1−s) 〈Y,Xk−X0〉

σ2

) 1
1−s

dY


 . (A.2)

We now turn to calculate the derivative of µ0 in (A.2) with respect to s while holding fs

constant, which gives

d

ds
µ0(s, fs) = − ln



∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2

(
1

M

M−1∑

k=0

e
(1−s) 〈Y,Xk−X0〉

σ2

) 1
1−s

dY




+(1 − s)

∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2
d

ds



(

1

M

M−1∑

k=0

e
(1−s) 〈Y,Xk−X0〉

σ2

) 1
1−s


 dY

∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2

(
1

M

M−1∑

k=0

e
(1−s) 〈Y,Xk−X0〉

σ2

) 1
1−s

dY

.
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To calculate d
ds



(

1
M

M−1∑

k=0

e
(1−s) 〈Y,Xk−X0〉

σ2

) 1
1−s


, we apply the equality

d

ds

(
g(s)h(s)

)
= h′(s) g(s)h(s) ln

(
g(s)

)
+ h(s) g(s)h(s)−1 g′(s). (A.3)

Straightforward calculus finally gives the equality

d

ds
µ0(s, fs) = − ln(θ(s)) + (1 − s)

(
β(s) + γ(s)

θ(s)

)

where θ(s) is introduced in (A.1) and

β(s) ,

∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2
1

(1 − s)2
ln

(
1

M

M−1∑

k=0

e
(1−s) 〈Y,Xk−X0〉
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)

·
(

1

M
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k=0

e
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σ2

) 1
1−s

dY (A.4)

γ(s) ,

∫∫

R2

1

2πσ2
e
− ‖Y−X0‖2

2σ2
1

1 − s

(
1

M

M−1∑

k=0

〈Y,X0 − Xk〉
σ2

e
(1−s) 〈Y,Xk−X0〉
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(
1
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M−1∑

k=0

e
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σ2

) s
1−s

dY. (A.5)

Since the equality θ′(s) = β(s) + γ(s) holds for all s, then it gives

d2

ds2
µ0(s, fs) = − d

ds
ln(θ(s)) − β(s) + γ(s)

θ(s)
+ (1 − s)

∂

∂s

(
β(s) + γ(s)

θ(s)

)

= −2
β(s) + γ(s)

θ(s)
+ (1 − s)

[
β′(s) + γ′(s)

θ(s)
−
(

β(s) + γ(s)

θ(s)

)2
]

. (A.6)

We now calculate β′(s), and get

β′(s) =
2β(s)

1 − s
+

γ(s)

1 − s
+
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dY . (A.7)
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By calculating the derivative of the function γ in (A.5) with the aid of (A.3) gives

γ′(s) =
γ(s)
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Finally, the substitution of (A.1), (A.4), (A.5), (A.7) and (A.8) in (A.6) gives an explicit
expression for the second derivative of µ0.

Appendix B: Proof of Proposition 4.1

From the definition of fN in (52), it follows that

fN(x) =
1

2
N−1

2 Γ(N+1
2 )

∫ ∞
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2
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From the binomial formula, we get

fN (x) =
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We now examine the integral in the RHS of (B.1). For odd values of j, we get
∫ ∞

−x

uj exp

(
−u2

2

)
du =

∫ x

−x

uj exp

(
−u2

2

)
du +

∫ ∞

x

uj exp

(
−u2

2

)
du

=

∫ ∞

x

uj exp

(
−u2

2

)
du

=

∫ ∞

0
uj exp

(
−u2

2

)
du −

∫ x

0
uj exp

(
−u2

2

)
du (B.2)
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where the second equality follows since the integrand is an odd function and the domain of first
integral is symmetric around zero. For even values of j, we get

∫ ∞

−x

uj exp

(
−u2

2

)
du =

∫ ∞

0
uj exp

(
−u2

2

)
du +

∫ 0

−x

uj exp

(
−u2

2

)
du

=

∫ ∞

0
uj exp

(
−u2

2

)
du +

∫ x

0
uj exp

(
−u2

2

)
du (B.3)

where the second equality holds since the integrand is an even function. Combining (B.2) and
(B.3) gives that for j ∈ {0, 1, . . . , N − 1}

∫ ∞

−x

uj exp

(
−u2

2

)
du =

∫ ∞

0
uj exp

(
−u2

2

)
du + (−1)j

∫ x

0
uj exp

(
−u2

2

)
du

(a)
=

∫ ∞

0
(2t)

j−1
2 e−t dt + (−1)j

∫ x2

2

0
(2t)

j−1
2 e−t dt

= 2
j−1
2

∫ ∞

0
t

j−1
2 e−t dt




1 + (−1)j

∫ x2

2

0
t

j−1
2 e−t dt

∫ ∞

0
t

j−1
2 e−t dt




= 2
j−1
2 Γ

(
j + 1

2

) [
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]

where (a) follows by substituting t , u2

2 and the functions Γ and γ̃ are defined in (59) and (60),
respectively. Substituting the last equality in (B.1) and also noting that

(
N − 1

j

)
=

Γ(N)

Γ(N − j) Γ(j + 1)
, N ∈ N, j ∈ {0, 1, . . . , N − 1}

we get

fN(x) =
e

x2

2

2
N−1

2 Γ(N+1
2 )

N−1∑

j=0

{
Γ(N)

Γ(N − j) Γ(j + 1)
xN−1−j 2

j−1
2

·Γ
(

j + 1

2

) [
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]}

=
N−1∑

j=0





e
x2

2

Γ(N − j)

Γ(N)

Γ
(

N+1
2

)
Γ
(

j+1
2

)

Γ(j + 1)

xN−1−j

2
N−j

2

[
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]


(a)
=

N−1∑

j=0





e
x2

2

Γ(N − j)

2N−1 Γ
(

N
2

)
√

π

2−j
√

π

Γ
(

j
2 + 1

) xN−1−j

2
N−j

2

[
1 + (−1)j γ̃

(
x2

2
,
j + 1

2

)]


(b)
=

N−1∑

j=0

exp
(
d(N, j, x)

)

where (a) follows from the equality

Γ(2u) =
22u−1

√
π

Γ(u) Γ

(
u +

1

2

)
, u 6= 0,−1

2
,−1,−3

2
, . . .

and (b) follows from the definition of d(N, j, x) in (58).
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