
Random Sampling from a Search Engine’s Corpus∗

Ziv Bar-Yossef† Maxim Gurevich‡

August 23, 2006

Abstract

We revisit a problem introduced by Bharat and Broder almost a decade ago: how to sample
random pages from the corpus of documents indexed by a search engine, using only the search
engine’s public interface? Such a primitive is particularly useful in creating objective benchmarks
for search engines.

The technique of Bharat and Broder suffers from a well-recorded bias: it favors long docu-
ments. In this paper we introduce two novel sampling algorithms: a lexicon-based algorithm and
a random walk algorithm. Our algorithms produce biased samples, but each sample is accom-
panied by a weight, which represents its bias. The samples, in conjunction with the weights, are
then used to simulate near-uniform samples. To this end, we resort to four well-known Monte
Carlo simulation methods: rejection sampling, importance sampling, the Metropolis-Hastings
algorithm, and the Maximum Degree method.

The limited access to search engines force our algorithms to use bias weights that are only
“approximate”. We characterize analytically the effect of approximate bias weights on Monte
Carlo methods and conclude that our algorithms are guaranteed to produce near-uniform samples
from the search engine’s corpus. Our study of approximate Monte Carlo methods could be of
independent interest.

Experiments on a corpus of 2.4 million documents substantiate our analytical findings and
show that our algorithms do not have significant bias towards long documents. We use our
algorithms to collect fresh comparative statistics about the corpora of the Google, MSN Search,
and Yahoo! search engines.

1 Introduction

The latest round in the search engine size wars (cf. [36]) erupted in August 2005 after Yahoo!
claimed [33] to index more than 20 billion documents. At the same time Google reported only 8
billion pages in its index, but simultaneously announced [5] that its index is three times larger than

∗A preliminary version of this paper appeared in the proceedings of the 15th International World-Wide Web
Conference (WWW2006) [4].

†Department of Electrical Engineering, Technion, Haifa 32000, Israel. Email: zivby@ee.technion.ac.il. Sup-
ported by the European Commission Marie Curie International Re-integration Grant.

‡Department of Electrical Engineering, Technion, Haifa 32000, Israel and IBM Research Lab in Haifa, Haifa 31905,
Israel. Email: gmax@tx.technion.ac.il.

1

lesley
Text Box
CCIT Report #598
September 2006

its competition’s. This surreal debate underscores the lack of widely acceptable benchmarks for
search engines.

Current evaluation methods for search engines [20, 23, 11] are labor-intensive and are based on
anecdotal sets of queries or on fixed TREC data sets. Such methods do not provide statistical
guarantees about their results. Furthermore, when the query test set is known in advance, search
engines can manually adapt their results to guarantee success in the benchmark.

In an attempt to come up with reliable automatic benchmarks for search engines, Bharat and
Broder [6] proposed the following problem: can we sample random documents from the corpus of
documents indexed by a search engine, using only the engine’s public interface? Unlike the manual
methods, random sampling offers statistical guarantees about its test results. It is important that
the sampling is done only via the public interface, and not by requesting the search engine itself to
collect the sample documents, because we would like the tests to be objective and not to rely on
the goodwill of search engines. Furthermore, search engines seem to be reluctant to allow random
sampling from their corpus, because they do not want third parties to dig into their data.

Random sampling can be used to test the quality of search engines under a multitude of criteria:
(1) Overlap and relative sizes: we can find out, e.g., what fraction of the documents indexed by
Yahoo! are also indexed by Google and vice versa. Such size comparisons can indicate which search
engines have better recall for narrow-topic queries. (2) Topical bias: we can identify themes or
topics that are overrepresented or underrepresented in the corpus. (3) Freshness evaluation: we
can evaluate the freshness of the corpus, by estimating the fraction of “dead links” it contains. (4)
Spam evaluation: using a spam classifier, we can find the fraction of spam pages in the corpus. (5)
Security evaluation: using an anti-virus software, we can estimate the fraction of indexed documents
that are contaminated by viruses.

Random sampling can be used not only by third parties, but also by search service providers
themselves to test the quality of their search engines and to compare them against the competition.
The results of the comparison can then be used to improve the quality of the index. Although
providers have full access to their own indices, using the public interface has several benefits: (1) It
may be technically simpler to use this interface rather than to implement a procedure that directly
samples from the corpus. (2) Applying the same sampling procedure to both the provider’s own
corpus and the competitors’ corpora yields comparable results.

The Bharat-Broder approach Bharat and Broder proposed the following simple algorithm for
uniformly sampling documents from a search engine’s corpus. The algorithm successively formulates
“random” queries, submits the queries to the search engine, and picks uniformly chosen documents
from the result sets returned. In order to construct the random queries, the algorithm requires the
availability of a lexicon of terms that appear in web documents. Each term in the lexicon should
be accompanied by an estimate of its frequency on the web. Random queries are then formulated
by randomly selecting a few terms from the lexicon, based on their estimated frequencies, and then
taking their conjunction or disjunction. The lexicon is constructed in a pre-processing step by
crawling a large corpus of documents (Bharat and Broder crawled the Yahoo! directory).

As Bharat and Broder noted in the original article [6] and was later confirmed by subsequent studies
[12, 40], the method suffers from severe biases. The most significant bias is towards long, “content-

2

rich”, documents, simply because these documents match many more queries than short documents.
An extreme example is online dictionaries and word lists (such as the ispell dictionaries), which will
be returned as the result of almost any query. Worse than that, when queries are formulated as
conjunctions or disjunctions of unrelated terms, typically only dictionaries and word lists match the
queries. Another problem is that search engines do not allow access to the full list of results, but
rather only to the top k ones (where k is usually 1,000). Therefore, the Bharat-Broder algorithm
may be biased towards documents with high static rank, if the random queries it generates tend
to return more than k results. To alleviate this problem, Bharat and Broder used the estimated
term frequencies to choose queries that are unlikely to return more than k results. Yet, collecting
accurate term statistics is a major problem by itself, and thus if the estimated frequencies are off,
then the bias towards highly ranked documents could be unavoidable.

Our contributions We propose two novel algorithms for sampling pages from a search engine’s
corpus. Both algorithms use a lexicon to formulate random queries, but unlike the Bharat-Broder
approach, do not need to know term frequencies. The first algorithm, like the Bharat-Broder
algorithm, requires a pre-processing step to build the lexicon. The second algorithm is based on a
random walk on a virtual graph defined over the documents in the corpus. This algorithm does not
need to build the lexicon a priori, but rather creates it “on the fly”, as the random walk proceeds
from document to document.

Both algorithms share the same basic framework. The algorithm first produces biased samples.
That is, some documents are more likely to be sampled than others. Yet, each sample document x
is accompanied by a corresponding “weight” w(x), which represents the bias in the sample x. The
weights allow us to apply stochastic simulation methods on the samples and consequently obtain
uniform, unbiased, samples from the search engine’s corpus.1

A simulation method accepts samples taken from a trial distribution p and simulates sampling from
a target distribution π. In order to carry out the simulation, the simulator needs to be able to
compute a “bias weight” w(x) = π(x)/p(x), for any given instance x. The simulator uses these
weights to “promote” certain samples from p, while “demoting” other samples, thereby eliminating
the initial bias in the trial distribution. The simulation has some overhead, which depends on how
far p and π are from each other. In our case π is the uniform distribution over the search engine’s
corpus, while p is some other easy-to-sample-from distribution over the corpus. We employ four
Monte Carlo simulation methods: rejection sampling, importance sampling, the Metropolis-Hastings
algorithm, and the Maximum Degree method.

One technical difficulty in applying simulation methods in our setting is that the weights produced
by our samplers are only approximate. To the best of our knowledge, stochastic simulation with
approximate weights has not been addressed before. We are able to show that all four Monte Carlo
methods still work even when provided with approximate weights. The distribution of the samples
they generate is no longer identical to the target distribution π, but is rather only close to π. We
provide extensive theoretical analysis of the effect of the approximate bias weights on the quality
and the performance of the Monte Carlo methods. This study may be of independent interest.

1In fact, our algorithms are more general. They can be used to generate samples from any target distribution over
the corpus, not only the uniform one.

3

Pool-based sampler A query pool, or a lexicon, is a collection of queries. Our pool-based
sampler assumes knowledge of some query pool P. The terms constituting queries in the pool can
be collected by crawling a large corpus, like the Yahoo! [42] or ODP [15] directories. We stress
again that knowledge of the frequencies of these terms is not needed.

The degree of a document x in the corpus is the number of queries from the pool that it matches. The
“document degree distribution” is a distribution over the corpus, where each document is selected
proportionally to its degree. The inner subroutine of the pool-based sampler generates samples
from the document degree distribution. The corresponding bias weights are inverse-proportional
to the document degrees, and are thus easy to calculate. The outer subroutine of the pool-based
sampler then applies a Monte Carlo method (e.g., rejection sampling) on the samples from the
document degree distribution in order to simulate uniform samples.

How does the algorithm generate samples from the document degree distribution? The first solution
that comes to mind is as follows. The algorithm picks a random query from the pool, submits the
query to the search engine, and then selects a random document from the result set returned.
Indeed, documents with high degree match more queries, and are thus more likely to be sampled
than documents with low degree. However, the resulting sampling distribution is not exactly the
document degree distribution, as the chance of a document to be selected depends also on the
number of results returned on queries that this document matches. For example, if documents x
and x′ have both degree 1, but x matches a query q with 100 results, while x′ matches a query q′

with 50 results, then the probability of x′ to be sampled is twice as high as the probability of x to
be sampled.

To alleviate this problem, the algorithm does not select the query uniformly at random, but rather
proportionally to its cardinality. The cardinality of a query q is the number of results it has. It
can be shown that if the algorithm samples queries from the pool proportionally to their cardinali-
ties, then by selecting random documents from their result sets, the algorithm could have obtained
samples from the document degree distribution. Sampling queries according to their cardinality is
tricky, though, because we do not know a priori the cardinality of queries. What we do instead
is sample queries from the pool uniformly, and then simulate sampling from the cardinality distri-
bution. To this end, we use Monte Carlo methods again. Hence, Monte Carlo methods are used
twice: first to generate the random queries and then to generate the uniform documents.

To demonstrate how the pool-based sampler works, consider a corpus consisting of only 100 docu-
ments and a query pool with two queries q1 and q2, whose cardinalities are 99 and 2, respectively.
Suppose the result sets of q1, q2 share a single document x. The sampler chooses one of q1, q2

uniformly at random and then applies an acceptance-rejection procedure, in which q1 is accepted
with probability 99/100 and q2 is accepted with probability 2/100. If the query is accepted, it is
submitted to the search engine, and a random document is chosen from its result set. A second
acceptance-rejection procedure is applied on this document. If it is the document x, it is accepted
with probability 1/2, and otherwise it is accepted with probability 1. If the document is accepted,
it is output as a sample. It can be verified that all 100 documents in the corpus are equally likely
to be sampled.

We rigorously analyze the pool-based sampler and identify the important properties of the query
pool that make this technique accurate and efficient. We find that using a pool of exact phrase
queries of a certain length is much more preferable to using conjunctive or disjunctive queries, like

4

the ones used by Bharat and Broder.

Random walk sampler We present another sampler, which also uses a query pool, but does
not need to construct it a priori. This sampler performs a random walk on a virtual graph defined
over the documents in the corpus. The limit distribution of this random walk is the uniform
distribution over the documents, and thus if we run the random walk for sufficiently many steps,
we are guaranteed to obtain near-uniform samples from the corpus.

The graph is defined as follows: two documents are connected by an edge if and only if they match
the same query from the pool. This means that if one submits the shared query to the search
engine, both documents are guaranteed to belong to the result set. Running a random walk on this
graph is simple: we start from an arbitrary document, at each step choose a random query that
the current document matches, submit this query to the search engine, and move to a randomly
chosen document from the query’s result set.

The random walk as defined does not converge to the uniform distribution. In order to make it
uniform, we apply either the Metropolis-Hastings algorithm or the Maximum Degree method. We
provide careful analysis of the random walk sampler. Like the pool-based sampler, this sampler too
is guaranteed to produce near-uniform samples. However, theoretical analysis of its performance
suggests that it is less efficient than the pool-based sampler.

Experimental results To validate our techniques, we crawled 2.4 million English pages from
the ODP hierarchy [15], and built a search engine over these pages. We used a subset of these pages
to create the query pool needed for our pool-based sampler and for the Bharat-Broder sampler.

We ran our two samplers as well as the Bharat-Broder sampler on this search engine, and calculated
bias towards long documents and towards highly ranked documents. As expected, the Bharat-
Broder sampler was found to have significant bias. On the other hand, our pool-based sampler
had no bias at all, while the random walk sampler only had a small negative bias towards short
documents.

We then ran our pool-based sampler on Google [19], MSN Search [35], and Yahoo! [42]. As a query
pool, we used 5-term phrases extracted from English pages at the ODP hierarchy. The samples
collected enabled us to produce up-to-date estimates of the relative sizes of these search engines
as well as interesting statistics about their freshness, their domain name distribution, and their
coverage of dynamic URLs.

The rest of the paper is organized as follows. In Section 2 we review some related work. Section
3 overviews some tools from probability theory and statistics used in our analysis. In Section 4
we briefly review the four Monte Carlo simulation methods we use. In Section 5 we analyze the
effect of approximate bias weights on Monte Carlo simulation. In Section 6 we describe a formal
framework for studying search engine samplers. In Sections 7 and 8 we outline in detail our two
samplers. Section 9 includes our experimental results, and Section 10 some concluding remarks.

In order to avoid disturbing the flow of the paper, most proofs are postponed to the appendix.

5

2 Related work

Apart from Bharat and Broder, several other studies used queries to search engines to collect
random samples from their corpora. Queries were either manually crafted [9], collected from user
query logs [28], or selected randomly using the technique of Bharat and Broder [21, 12]. Assuming
search engine corpora are independent and uniformly chosen subsets of the web, estimates of the
sizes of search engines and of the indexable web have been derived. Due to the bias in the samples,
though, these estimates lack any statistical guarantees. Dobra and Fienberg [16] showed how to
avoid the unrealistic independence and uniformity assumptions, but did not address the sampling
bias. We believe that their methods could be combined with ours to obtain accurate size estimates.

Several studies [29, 24, 25, 3, 37] developed methods for sampling pages from the indexable web.
Such methods can be used to also sample pages from a search engine’s corpus. Yet, since these
methods try to solve a harder problem, they also suffer from various biases, which our method
does not have. It is interesting to note that the random walk approaches of Henzinger et al. [25]
and Bar-Yossef et al. [3] implicitly use importance sampling and the Maximum Degree method,
respectively, to make their samples near-uniform. Yet, the bias they suffer towards pages with high
in-degree is significant.

Anagnostopoulos, Broder, and Carmel [2] proposed an enhancement to index architecture that
could support random sampling from the result sets of broad queries. This is very different from
what we do in this paper: our techniques do not propose any changes to current search engine
architecture and do not rely on internal data of the search engine; moreover, our goal is to sample
from the whole corpus and not from the result set of a particular query.

A recent study by Broder el al. [10] presents an algorithm for accurately estimating the absolute
size of a search engine’s corpus, using the engine’s public interface. The cleverly crafted estimator
uses our techniques to generate uniform samples from the search engine’s corpus.

3 Preliminaries

In this section we outline our notations and conventions and review some tools from statistics that
will be handy in our analysis.

3.1 Conventions and notations

Sets are denoted by uppercase calligraphic letters: D,Q,P. Elements in sets are denoted by
lowercase Roman letters: x, y, q. Random variables are denoted by uppercase Roman letters:
X,Y,Q. Probability distributions are denoted by small italicized letters, Roman or Greek: p, q, π.

All probability spaces in this paper are discrete and finite. A probability distribution p on a finite
probability space U is a function p : U → [0, 1] s.t.

∑

x∈U p(x) = 1. The support of p is defined as:

supp(p) = {x ∈ U | p(x) > 0}.

6

A subset E of the probability space U is called an event. For an event E ⊆ U , we define p(E) to be
the probability of this event under p:

p(E) =
∑

x∈E

p(x).

A random variable with distribution p and range V is a function X : U → V. Unless stated
otherwise, when we refer to a random variable with distribution p, we mean the identity random
variable: V = U and X(x) = x, for all x ∈ U .

Given a predicate f : V → {0, 1}, f(X) is the following event:

f(X) = {x ∈ U | f(X(x)) = 1}.

The probability of the event f(X) under p is denoted Prp(f(X)).

When the range of the random variable is V = R, we can define the expectation of X under p:

Ep(X) =
∑

x∈U

p(x) X(x).

The variance of X is defined as:

varp(X) = Ep((X − Ep(X))2) = Ep(X
2) − (Ep(X))2.

The standard deviation of X is the square root of its variance:

σp(X) =
√

varp(X).

We define the mean deviation of a random variable X to be its expected absolute deviation from
its mean:

devp(X) = Ep(|X − Ep(x)|).

It follows from the Cauchy-Schwartz inequality that the mean deviation is always bounded by the
standard deviation:

Proposition 1. For any random variable X, devp(X) ≤ σp(X).

The normalized mean deviation of X is the mean deviation, normalized by the mean:

ndevp(X) =
devp(X)

Ep(X)
.

The covariance of two random variables (X,Y) with joint distribution p is defined as:

covp(X,Y) = Ep(XY) − Ep(X) Ep(Y).

Throughout, we assume knowledge of basic probability theory. Everything we use can be found in
any standard textbook on the subject.

7

3.2 Total variation distance

The total variation distance between two distribution p, q on the same space U is defined as:

||p − q|| =
1

2

∑

x∈U

|p(x) − q(x)|.

We use total variation distance, because it has some nice properties described below. Yet, other
statistical distance measures, like the Kullback-Leibler divergence could have been used as well.

The following is a standard characterization of the total variation distance:

Lemma 2. Let p, q be two distributions on the same probability space U . Then,

||p − q|| = max
E⊆U

|p(E) − q(E)|.

3.3 Wald’s identity

Suppose we invoke a sampler T times, where T is a random variable, and each invocation requires
n search engine queries in expectation. What is then the expected total number of search engine
queries made? As T is a random variable, simple linearity of expectation cannot be used in the
analysis. The following identity from statistical sequential analysis shows that the expectation
equals n · E(T).

Theorem 3 (Wald’s identity). Let X1,X2, . . . be an infinite sequence of independent and iden-
tically distributed random variables with mean µ. Let T be a random variable on {0, 1, 2, . . .}, for
which the event {T = k} is independent of Xk+1,Xk+2, . . . for all k (T is called a stopping time
random variable). We further assume E(T) < ∞. Then,

E(

T
∑

i=1

Xi) = µ E(T).

A proof of Wald’s identity can be found, e.g., in the textbook of Siegmund [38], Section 2.2.

4 Monte Carlo methods

We briefly review the four Monte Carlo simulation methods we use in this paper. For a more
elaborate overview, refer to the textbook of Liu [31].

4.1 Basic framework

The basic question addressed in stochastic simulation is the following. There is a target distribution
π on a space U , which is hard to sample from directly. On the other hand, there is an easy-to-
sample-from trial distribution p on the same space U . Can we then somehow use the samples from

8

p to simulate sampling from π? A Monte Carlo simulator is a procedure, which given samples from
p generates samples from π. In order to carry out the simulation, the simulator requires access to
three “oracle procedures”, which we describe next.

The first procedure, getSamplep(), generates samples from the trial distribution p. Each invocation
returns a single sample X from p. Successive invocations generate independent and identically
distributed samples X1,X2,

The two other oracle procedures are used to calculate unnormalized forms of the distributions π
and p:

Definition 4 (Unnormalized form of a distribution). Let π be a distribution on a space U .
An unnormalized form of π is a function π̂ : U → [0,∞), which equals π up to a normalization
constant Zπ̂ > 0. That is,

∀x ∈ U , π̂(x) = π(x) · Zπ̂.

π̂(x) is a relative weight, which represents the probability of x to be chosen in the distribution π.
For example, if π is the uniform distribution on U , then all elements are equally likely to be selected.
Hence, the straightforward unnormalized form of π is: π̂(x) = 1, for all x ∈ U . The corresponding
normalization constant is Zπ̂ = |U|.

A Monte Carlo simulator needs two oracle functions, getWeightπ̂(x) and getWeightp̂(x), which
given an instance x ∈ U return the unnormalized weights π̂(x) and p̂(x), respectively. π̂ and
p̂ are any unnormalized forms of π and p. Note that the simulator does not need to know the
corresponding normalization constants Zπ̂ and Zp̂.

4.2 Rejection sampling

Rejection sampling, due to John von Neumann [41], is the most classical Monte Carlo method.
Rejection sampling makes two assumptions: (1) supp(π) ⊆ supp(p); and (2) there is a known
envelope constant C satisfying:

C ≥ max
x∈supp(p)

π̂(x)

p̂(x)
.

The procedure, described in Figure 1, repeatedly generates samples from the trial distribution p,
until a sample is “accepted”. To decide whether a sample X is accepted, the procedure applies an
acceptance-rejection procedure. The procedure accepts the sample X with the following acceptance
probability:

rrs(X) =
π̂(X)

C p̂(X)
.

We call rrs the acceptance function. Note that rrs(x) ∈ [0, 1], for all x ∈ supp(p), due to the
property of the envelope constant C.

Intuitively, rejection sampling uses the acceptance-rejection procedure to bridge the gap between
p and π. For example, when π is the uniform distribution and p is some non-uniform distribution,
then the procedure assigns high acceptance probabilities to instances that have low probability
in p and low acceptance probabilities to instances that have high probabilities in p. Thus, the

9

1:Function RejectionSampling(C)
2: while (true) do
3: X := getSamplep()

4: if (accept(C,X))
5: return X

1:Function accept(C,x)

2: rrs(x) := π̂(x)
C p̂(x)

3: toss a coin whose heads probability is rrs(x)
4: return true if and only if coin comes up heads

Figure 1: The rejection sampling procedure.

acceptance-rejection procedure smoothes the distribution p. A simple analysis shows that for any
π and p, the distribution of the accepted samples is exactly the target distribution π.

The expected number of samples from p needed in order to generate each sample of π is CZp̂/Zπ̂ ≥
maxx∈U π(x)/p(x). Hence, the efficiency of the procedure depends on two factors: (1) the similarity
between the target distribution and the trial distribution: the more similar they are the smaller is
maxx∈U π(x)/p(x); and (2) the gap between the envelope constant C and maxx∈U π̂(x)/p̂(x).

The main drawback of rejection sampling is the need to know the envelope constant C. A too high
value makes the procedure inefficient, while a too low value violates the envelope condition.

4.3 Importance sampling

Importance sampling [32] does not generate samples from the target distribution π, but rather
uses samples from p to directly estimate statistical parameters relative to the distribution π. For
simplicity, we assume the desired statistical parameter is Eπ(f(X)), where f is some real-valued
function, although the technique is applicable to other statistical parameters as well. Unlike rejec-
tion sampling, there is no need to know an “envelope constant”.

In order to estimate Eπ(f(X)), the importance sampling procedure (see Figure 2) generates n
independent samples X1, . . . ,Xn from the trial distribution p. If p = π, then clearly 1

n

∑n
i=1 f(Xi)

is an unbiased estimator of Eπ(f(X)). However, when p 6= π, the samples X1, . . . ,Xn are “weighted”
and the weights have to be accounted for in the estimation. The importance ratio at x, which is
defined as

w(x) =
π̂(x)

p̂(x)
,

is exactly the desired weight. Hence, 1
n

∑n
i=1 f(Xi)w(Xi) is an unbiased estimator of Eπ(f(X)),

modulo normalization. In order to get a correct estimator, we need to estimate also the ratio
between the normalization constants of π̂ and p̂. Hence, the final estimator is:

µ̂ =
1
n

∑n
i=1 f(Xi)w(Xi)

1
n

∑n
i=1 w(Xi)

.

10

1:Function ImportanceSampling(f ,n)
2: for i = 1 to n do
3: Xi := getSamplep()

4: w(Xi) := π̂(Xi)
p̂(Xi)

5: compute f(Xi)

6: output
1
n

∑

n

i=1
f(Xi)w(Xi)

1
n

∑

n

i=1
w(Xi)

Figure 2: The importance sampling procedure.

Remark. This is one of several possible importance sampling estimators. The estimator is biased
(i.e., its expectation is not necessarily Eπ(f(X))), however it is guaranteed to be close to the true
value with high probability, as long as n is sufficiently large. See more details in [26].

The efficiency of importance sampling depends on how close is the “shape” of p̂(x) to the “shape”
of f(x)π̂(x). An appropriately chosen p can lead to less samples than even sampling from π directly.
See more details in [30]. In this paper we rely on the Liu’s “rule of thumb” [30]. It states that the
number of samples from p, required to estimate Eπ(f(X)) with the same confidence level (variance)
as if using n independent samples from π, is at most n(1 + varp(π(X)/p(X))).

4.4 Markov Chain Monte Carlo methods

In some situations even generating i.i.d. samples from the trial distribution p is infeasible. Instead,
we are given a random walk that converges in the limit to p. Can we then transform this random
walk into a new random walk that converges to the target distribution π? This is the question
addressed by Markov Chain Monte Carlo (MCMC) methods. In this paper we focus on two of
these methods: the Metropolis-Hastings (MH) algorithm [34, 22] and the Maximum Degree (MD)
method (cf. [3, 8]).

A Markov Chain (a.k.a. random walk) on a finite state space U is a stochastic process in which
states of U are visited successively. The Markov chain is specified by a |U|×|U| probability transition
matrix P . P is a stochastic matrix, meaning that every row x of P specifies a probability distribution
Px on U . P induces a directed graph GP on U with non-negative edge weights. There is an edge
x → y in the graph if P (x, y) > 0 and the corresponding weight is P (x, y).

The Markov chain is called ergodic, if it satisfies two conditions: (1) it is irreducible, meaning that
the graph GP is strongly connected; and (2) it is aperiodic, meaning that the g.c.d. of the lengths
of directed paths connecting any two nodes in GP is 1.

A random walk process starts at some initial state x0 ∈ U . The initial state is chosen according to
an initial state distribution p0 on U (typically, the mass of the initial distribution is concentrated
on a single fixed state of U). The random walk then successively moves between states of U . After
visiting state x, the next state is chosen randomly according to the probability distribution Px.
This process goes on indefinitely.

Each step t of the random walk induces a probability distribution pt on the state space U . The

11

initial distribution is p0. Successive distributions are given by the recursive formula: pt = pt−1P .
Therefore, pt = p0P

t. A fundamental theorem of the theory of Markov chains states that if a
Markov chain is ergodic, then regardless of the initial distribution p0, the sequence of distributions
p0, p1, p2, . . . is guaranteed to converge to a unique limit distribution p. That is,

||pt − p||
t→∞
−→ 0.

Furthermore, the unique limit distribution p is also the unique stationary distribution of P :

pP = p.

A random walk sampler (see Figure 3) uses a Markov chain to generate samples from a distribution
which is close to p. The algorithm starts the random walk from any given initial state x0 and runs it
for B steps (B is called the “burn-in period”). The reached state xB is then returned as the sample.
By the above, the distribution of this sample is pB , and thus if B is sufficiently large, ||pB − p||
is small. (We discuss below how to choose a sufficiently large burn-in period.) To generate more
samples, the algorithm runs the random walk again and again. (There are more efficient sampling
procedures, which we mention below.)

1:Function RandomWalk(P , B, x0)
2: X := x0

3: for t = 1 to B do
4: Y := sample generated according to PX

5: X := Y
6: return X

Figure 3: A random walk sampler.

MCMC methods allow us to transform a given ergodic Markov chain P whose limit distribution is p
into a new Markov chain Pmcmc whose limit distribution is π. The two MCMC methods we consider
in this paper, MH and MD, use the same framework to perform the transformation. The MCMC
sampler (see Figure 4) runs a random walk similarly to the random walk sampler, except that it
applies an acceptance-rejection procedure at each step. The procedure is used to determine whether
the “proposed state” Y is “accepted” and thus will become the next step of the random walk or
not. The acceptance function rmcmc(x, y) depends on both the current state and the proposed state.
MH and MD differ in the choice of the acceptance function.

The acceptance-rejection procedure effectively modifies the transition probabilities of the random
walk and defines a new transition matrix Pmcmc. A careful choice of the acceptance function rmcmc

guarantees that the limit distribution of Pmcmc is the target distribution π.

4.4.1 The Metropolis-Hastings algorithm

The MH algorithm requires that the initial Markov chain P is not only ergodic but also satisfies
the following condition: for all states x, y ∈ U , P (x, y) > 0 ⇔ P (y, x) > 0. Also the supports
of the limit distribution p and of the target distribution π must equal the whole state space (i.e.,
supp(p) = supp(π) = U).

12

1:Function MCMC(P , B, x0)
2: X := x0

3: for t = 1 to B do
4: Y := sample generated according to PX

5: if (accept(P ,X,Y))
6: X := Y
7: return X

1:Function accept(P , x, y)
2: compute rmcmc(x, y) from π̂(x), π̂(y), p̂(x), p̂(y), P (x, y), and P (y, x).
3: toss a coin whose heads probability is rmcmc(x, y)
4: return true if and only if coin comes up heads

Figure 4: An MCMC sampler.

The acceptance function used by the MH algorithm is the following:

rmh(x, y) = min

{

π(y) P (y, x)

π(x) P (x, y)
, 1

}

.

Note that since π̂(y)
π̂(x) = π(y)

π(x) , oracle access to an unnormalized form of π suffices for computing this
acceptance function.

The probability transition matrix of the resulting Markov chain is:

Pmh(x, y) =

{

P (x, y) rmh(x, y), if x 6= y,
P (x, x) rmh(x, x) + 1 −

∑

z∈U P (x, z) rmh(x, z), if x = y.

It can be shown (see, e.g., [14]) that the limit distribution of this Markov chain is exactly π.

4.4.2 The Maximum Degree method

The MD method applies to arbitrary ergodic Markov chains. The supports of the limit distribution
p and of the target distribution π should satisfy supp(p) = supp(π) = U . Similarly to rejection
sampling, application of this method requires the availability of an “envelope constant” C. C must
satisfy the following condition:

C ≥ max
x∈U

p̂(x)

π̂(x)
.

The need for an envelope constant is the major disadvantage of the Maximum Degree method rela-
tive to the Metropolis-Hastings algorithm. However, if the envelope constant is chosen sufficiently
close to its lower bound, then the MD method can become significantly more efficient than the MH
algorithm.

The acceptance function used by the MD algorithm is the following:

rmd(x) =
p̂(x)

C π̂(x)
.

13

Remark. Notice the reversed roles of p̂(x) and π̂(x), comparing to the rejection sampling accep-
tance function. This is not accidental. Rejection sampling is similar (but not identical) to the
application of the MD method on a degenerate random walk, which converges in one step to the
limit distribution p (that is, all the rows of the transition matrix P equal p). The reversed roles
are due to the reversed semantics of acceptance in rejection sampling versus MCMC methods. In
rejection sampling, when the current state is accepted, the process stops and outputs the current
state. In MCMC methods, when a proposed state is accepted, then implicitly the current state is
rejected, and the process continues.

The probability transition matrix of the MD Markov chain is:

Pmd(x, y) =

{

P (x, y) rmd(x), if x 6= y,
P (x, x) rmd(x) + 1 − rmd(x), if x = y.

Again, it can proved that the limit distribution of this Markov chain is π.

Remark. To the best of our knowledge, the formulation above is the first application of the Max-
imum Degree method to arbitrary ergodic Markov chains and to arbitrary target distributions.
Previous studies [3, 8] applied the MD method only in the special case P is a simple random walk
on an undirected graph G and π is the uniform distribution over the vertices of G. The limit distri-
bution of the simple random walk is the degree distribution (i.e., each node is chosen proportionally
to its degree). In this case C must be set as an upper bound on the maximum degree of the graph,
and that is why the method is called “Maximum Degree”.

The acceptance function of the MD method has the peculiar property that it depends only on the
current state x and not on the proposed state y. This fact allows a more efficient implementation
of the MD sampler (see Figure 5). This sampler postpones the selection of the proposed state Y
to until after acceptance is achieved. Hence, rather than selecting a proposed state every time the
acceptance-rejection procedure is called, the proposed state is selected only once. Since in many
situations selection of a proposed state is costly, this amounts to significant savings in running time.

A further improvement is possible. Note that the number of steps the random walk spends at
each state x is a geometric random variable with a known success probability. Therefore, when the
sampler moves to a new state x, it can simulate the number of steps that it is going spend at the
state by generating an appropriate geometric random variable. It can then immediately select the
next state. This saves the need to perform the iterative coin tosses.

4.4.3 The burn-in period

How should we set the burn-in period B of a random walk in order to guarantee that the selected
sample has distribution which is close to the limit distribution? To this end, a rich pool of tech-
niques, ranging from algebraic to geometric, is available from the theory of Markov chains (see a
survey by Diaconis and Saloff-Coste [14] for a detailed review). In this paper we focus on a popular
technique, which is based on estimating the spectral gap of the Markov chain’s transition matrix.

Let P be the transition matrix of an ergodic Markov chain, whose limit distribution is p. For each
ε > 0, we define the ε-burn-in period (a.k.a. ε-mixing time) of the Markov chain as:

Tε(P) = min{t | for all initial distributions p0 and ∀t′ ≥ t, ||pt′ − p|| < ε}.

14

1:Function MD(P , B, x0, C)
2: X := x0

3: for t = 1 to B do
4: if (accept(P ,C,X))
5: Y := sample generated according to PX

6: X := Y
7: return X

1:Function accept(P , C, x)

2: rmd(x) := p̂(x)
C π̂(x)

3: toss a coin whose heads probability is rmd(x)
4: return true if and only if coin comes up heads

Figure 5: The Maximum Degree sampler.

That is, Tε(P) is the first step t, for which pt is guaranteed to be at most ε away from the limit
distribution p.

The spectral gap technique for bounding the burn-in period is applicable only to reversible Markov
chains. A Markov chain is called reversible, if for all states x, y ∈ U , p(x)P (x, y) = p(y)P (y, x). It
can be shown that a reversible Markov chain is equivalent to a random walk on a weighted and
undirected graph.

Let n = |U| and let λ1, . . . , λn be the eigenvalues of P , ordered from largest to smallest by absolute
value (i.e., |λ1| ≥ |λ2| ≥ · · · ≥ |λn|). The spectral gap of P is defined as the difference between its
first and the second eigenvalues:

α(P) = |λ1| − |λ2|.

The following is a folklore result in Markov Chain theory (see, for example, [39]), which bounds
the burn-in period in terms of the spectral gap:

Theorem 5. Let P be the transition matrix of a reversible Markov chain whose limit distribution
is p. Then, for every ε > 0,

Tε(P) ≤
1

α(P)

(

ln
1

pmin
+ ln

1

ε

)

,

where pmin = minx∈U p(x).

That is, the larger the spectral gap, the faster the convergence to the limit distribution.

It can be shown that if P is reversible, then also Pmh and Pmd are reversible, and thus we can
use the spectral gap technique to estimate the required burn-in periods of the MH and the MD
samplers.

4.4.4 Efficient random walk sampling

The naive method for generating multiple independent samples from (a distribution which is close
to) the limit distribution p of a Markov chain is to run a new random walk for each desired sample.

15

This incurs high overhead, if the required number of samples is large. It turns out that in some
situations it is possible to use a single random walk to generate multiple samples.

Aldous [1] (with further improvements by Gillman [17] and Kahale [27]) proposed an efficient pro-
cedure for generating dependent samples that can be used to perform accurate density estimations.

Suppose A ⊆ U is a subset of the state space. The density of A under a probability measure p is the
quantity p(A). For example, when p is the uniform distribution on U , the density of A is the ratio
|A|/|U|. Suppose that we are given an “oracle” procedure, which on input x ∈ U can determine
whether x ∈ A or not, and that we would like to use this procedure to estimate the density of A.
This type of estimation is very popular. One example from our domain is the estimation of the
relative overlap between two search engines.

Given a Markov chain P whose limit distribution is p, the most obvious method for estimating
p(A) would be to run n random walks, each for Tǫ(P) steps, and thereby obtain n i.i.d. samples
from (a distribution which is close to) p. The estimator for p(A) would then be the fraction of the
n samples that fall into A.

Aldous’s procedure is more efficient. Instead of running n walks, Aldous suggests running only a
single walk of length Tǫ(P)+n 1

α(P) , and use the last n 1
α(P) states visited as the samples, disregarding

the first Tǫ(P) steps as sample delay. As shown in [1, 17, 27], these n 1
α(p) dependent samples can

be used to produce an estimate for p(A), which is as good as the estimate obtained from the n
independent samples. Overall, the Aldous procedures saves a factor of log(1/pmin) in the number
of random walk steps over the naive procedure.

5 Approximate Monte Carlo methods

All Monte Carlo methods assume that the trial distribution p is known, up to normalization.
This assumption turns out to be very problematic in our setting, since the trial distributions we
construct depend on unknown internal data of the search engine. An approximate Monte Carlo
method employs an “approximate trial distribution” q rather than the true trial distribution p in
the acceptance function calculations. The mismatch between the trial samples (that are generated
from p) and the acceptance function (which is based on q) implies that the sampling distributions
of the resulting procedures are no longer guaranteed to equal the target distribution π. To the best
of our knowledge, no previous study addressed this scenario before.

We show that the sampling distribution of approximate rejection sampling and the limit distribu-
tions of approximate Metropolis-Hastings and of approximate Maximum Degree are all identical
to some distribution π′, for which we give a closed form formula. We then prove that π′ is close to
the target distribution π, as long as the trial distribution p and the approximate trial distribution
q are similar. We also prove that the estimations generated by approximate importance sampling
are close to the true values. All proofs are provided in Appendix A.

16

5.1 Approximate rejection sampling

Consider the following modified (“approximate”) form of rejection sampling. The procedure is
given the following three oracle procedures: (1) getSamplep(), which generates samples from p,
(2) getWeightπ̂(x), which calculates an unnormalized form of the target distribution π; and (3)
getWeightq̂(x), which calculates an unnormalized form of an “approximate trial distribution” q.
π, p, q are assumed to satisfy:

supp(π) ⊆ supp(p) ⊆ supp(q).

The approximate rejection sampling procedure works exactly like the standard procedure, except
that the acceptance function it uses is the following:

r′
rs

(x) =
π̂(x)

C q̂(x)
,

where C ≥ maxx∈supp(p)
π̂(x)
q̂(x) is an envelope constant.

The following theorem characterizes the sampling distribution of the approximate rejection sam-
pling procedure and analyzes its sample complexity:

Theorem 6. The sampling distribution of the approximate rejection sampling procedure is:

π′(x) = π(x)

p(x)
q(x)

Eπ

(

p(X)
q(X)

) .

The expected number of samples from p needed to generate each sample from π′ is:

CZq̂

Zπ̂ Eπ

(

p(X)
q(X)

) .

The following proposition shows that as long as the trial distribution p and the approximate trial dis-
tribution q are “similar” relative to the target distribution π (in the sense that the ratio p(X)/q(X)
has low variance when X is chosen according to π), then the sampling distribution of approximate
rejection sampling is close to the target distribution:

Proposition 7.

||π′ − π|| =
1

2
ndevπ

(

p(X)

q(X)

)

.

5.2 Approximate Importance Sampling

The approximate importance sampling procedure assumes oracle access to the approximate trial
distribution q. π, p, q are assumed to satisfy:

supp(π) ⊆ supp(p) ⊆ supp(q).

17

The approximate importance sampling procedure works exactly like the standard importance sam-
pling procedure, except that the following approximate importance ratios are used:

w′(x) =
π̂(x)

q̂(x)
.

The following theorem shows that as long as the ratio p(X)/q(X) is uncorrelated with the func-
tion f(X) whose expectation we need to estimate, then the estimate produced by approximate
importance sampling is close to the desired parameter:

Theorem 8. Let

µ̂′ =
µ̂′

1

µ̂′
2

=
1
n

∑n
i=1 f(Xi)w

′(Xi)
1
n

∑n
i=1 w′(Xi)

be the estimator produced by the approximate importance sampling procedure for the parameter
Eπ(f(X)). Then,

Ep(µ̂
′
1)

Ep(µ̂′
2)

= Eπ(f(X)) +
covπ

(

f(X), p(X)
q(X)

)

Eπ

(

p(X)
q(X)

) .

5.3 Approximate Metropolis-Hastings

Next, we discuss an approximate variant of the Metropolis-Hastings algorithm. Like in approximate
rejection sampling, we assume oracle access to an approximate trial distribution q. We assume that
supp(q) = supp(p) = supp(π) = U .

We also need to assume that the base Markov chain P is reversible (i.e., p(x)P (x, y) = p(y)P (y, x),
for all x, y ∈ U). When P is reversible, the acceptance function of the standard Metropolis-Hastings
algorithm can be rewritten as follows:

rmh(x, y) = min

{

π(y) P (y, x)

π(x) P (x, y)
, 1

}

= min

{

π(y) p(x)

π(x) p(y)
, 1

}

.

The approximate Metropolis-Hastings procedure is identical to the standard procedure, except that
it uses the following acceptance function:

r′
mh

(x, y) = min

{

π(y) q(x)

π(x) q(y)
, 1

}

.

Note that since π̂(y)
π̂(x) = π(y)

π(x) and q̂(x)
q̂(y) = q(x)

q(y) , this acceptance function can be computed using oracle
access to unnormalized forms of π and q.

The following theorem shows that the resulting Markov chain is ergodic and that its unique limit
distribution is π′.

Theorem 9. Let P ′
mh

be the transition matrix of the approximate Metropolis-Hastings algorithm.
Then, P ′

mh
forms an ergodic Markov chain and its unique limit distribution is π′.

It follows from Proposition 7 that the limit distribution of the approximate MH random walk is
close to the target distribution π as long as p and q are similar relative to π.

18

5.4 Approximate Maximum Degree

As before, we assume oracle access to an approximate trial distribution q and that supp(q) =
supp(p) = supp(π) = U . This time we do not need to assume that the base Markov chain P is
reversible.

Approximate MD is identical to the standard MD, except that the following modified acceptance
function is used:

r′
md

(x) =
q̂(x)

C π̂(x)
, where C ≥ max

x∈U

q̂(x)

π̂(x)
.

The following theorem shows that the resulting Markov chain is ergodic and that its unique limit
distribution equals π′.

Theorem 10. Let P ′
md

be the transition matrix of the approximate Maximum Degree procedure.
Then, P ′

md
forms an ergodic Markov chain. The unique limit distribution of P ′

md
is π′.

It follows from Proposition 7 that the limit distribution of the approximate MD random walk is
close to the target distribution π as long as p and q are close relative to π.

6 Formal framework

In this section we lay out the formal framework for the design and analysis of search engine samplers.

6.1 Search engines

Definition 11 (Search engine). A search engine is a 4-tuple 〈D,Q, results(·), k〉, where:

1. D is the document corpus indexed. Documents are assumed to have been pre-processed (e.g.,
they may be truncated to some maximum size limit).

2. Q is the space of queries supported by the search engine.

3. results(·) is a mapping that maps every query q ∈ Q to an ordered sequence of documents,
called results. The cardinality of q is the number of results: card(q) = |results(q)|.

4. k is the result limit. Only the top k results are actually returned to the user via the search
engine’s public interface.

A query q is said to be overflowing, if card(q) > k. It is said to be underflowing, if card(q) = 0. If
q neither overflows nor underflows, it is called valid.

A document x matches a query q, if x ∈ results(q). The set of queries that a document x matches
is denoted queries(x).

19

6.2 Search engine samplers

Definition 12 (Search engine sampler). Let π be a target distribution on a document corpus
D indexed by a search engine. A search engine sampler is a randomized procedure, which is given
access to three “oracle” procedures:

1. getWeightπ̂(x): returns the unnormalized weight of an instance x ∈ D under the target
distribution π.

2. getResults(q): returns the top k results from the search engine on the query q.

3. getDocument(x): returns the HTTP header and the content of the document x.

Each invocation of the sampler outputs a random document X from the corpus D. The distribution
of the sample X is called the sampling distribution and is denoted by η. Successive invocations of
the sampler produce independent samples from η.

If the unnormalized form of π is independent of the corpus D (e.g., when π is the uniform distri-
bution and π̂(x) = 1 for all x), then the same sampler can be used to sample from different search
engines. All that needs to be changed is the implementation of the procedure getResults(q).

When the sampling distribution η of the sampler equals exactly the target distribution π, then the
sampler is said to be perfect. Otherwise, it is biased. We discuss below the two main metrics for
measuring the quality of a sampler w.r.t. a given target distribution: the sampling recall and the
sampling bias.

Not all documents in D are practically reachable via the public interface of the search engine. Some
pages have no text content and others have very low static rank, and thus formulating a query that
returns them as one of the top k results may be impossible. Thus, search engine samplers usually
generate samples only from large subsets of D and not from the whole corpus D. The sampling recall
of a sampler with target π and sampling distribution η is defined as π(supp(η)). For instance, when
π is the uniform distribution, the sampling recall is | supp(η)|/|D|, i.e., the fraction of documents
that the sampler can actually return as samples. Ideally, we would like the recall to be as close to
1 as possible. Note that even if the recall is lower than 1, but supp(η) is sufficiently representative
of D, then estimators that use samples from supp(η) can produce accurate estimates of parameters
of the whole corpus D.

Since samplers sample only from large subsets of D and not from D in its entirety, it is unfair to
measure the bias of a sampler directly w.r.t. the target distribution π. Rather, we measure the bias
w.r.t. the distribution π restricted to supp(η). Formally, let πsupp(η) be the following distribution
on supp(η):

πsupp(η)(x) =
π(x)

π(supp(η))
, ∀x ∈ supp(η).

The sampling bias of the sampler is defined as the total variation distance between η and πsupp(η):

||η − πsupp(η)|| =
1

2

∑

x∈supp(η)

|η(x) −
π(x)

π(supp(η))
|.

20

For example, if a sampler generates truly uniform samples from a subset D′ of D that constitutes
80% of D, then its sampling recall is 0.8 and its sampling bias is 0.

The two most expensive resources of a search engine sampler are: (1) the amount of queries
submitted to the search engine; and (2) the amount of additional web pages fetched. Search engine
queries and web page fetches consume significant amount of time and require network bandwidth.
In addition, the rate at which a sampler can submit queries to the search engine is usually very
restricted, since search engines impose hard daily limits on the number of queries they accept from
any single user. We thus measure the complexity of search engine samplers in terms of their query
cost (expected number of calls to the subroutine getResults() per sample generated) and their
fetch cost (expected number of calls to the subroutine getDocument() per sample generated).

6.3 Query pools

Consider a search engine S, whose corpus is D and whose query space is Q.

Definition 13 (Query pool). A query pool is a fragment P ⊆ Q of the query space.

A query pool may be specified either explicitly as a set of queries, e.g.,

P = {[Java software], [”Michael Jordan” -basketball], [Car OR Automobile]},

or implicitly, e.g.,
P = All single-term queries.

Note that in the latter case in order to transform P into an explicit form, we need a list of all the
terms that occur in the corpus D. All the samplers we consider in this paper fix some query pool
P and use only queries from P in order to generate the sample documents from D.

Queries-documents graph Every query pool P naturally induces a bipartite graph BP on
P ×D. Its left side consists of all queries in P and its right side consists of all documents in D. A
query q ∈ P is connected to a document x ∈ D if and only if x ∈ results(q).2

The cardinality of a query q, denoted card(q), is its degree in BP . This is exactly the number of
documents in the result set of the query. The cardinality of a set of queries P ′ ⊆ P is defined as:

card(P ′) =
∑

q∈P ′

card(q).

For a document x, we denote by queriesP(x) the set of its neighbors in BP . These are exactly all the
queries in P that x matches. For example, if P is the pool of all single term queries, then queriesP(x)
is the set of all distinct terms that occur in the text of x. The degree of x is: degP(x) = |queriesP(x)|.
The degree of a set of documents D′ ⊆ D is defined as:

degP(D′) =
∑

x∈D′

degP(x).

2A similar graph was suggested by Davison [13] in a different context.

21

Note that card(P) is the sum of the degrees of all nodes on the left side of BP , while degP (D) is
the sum of the degrees of all nodes on the right side of BP . Both sums equal to the number of
edges in BP , and we thus obtain the following result:

Proposition 14. Let P be any query pool. Then, card(P) = degP(D).

Recall We say that a query pool P covers a document x, if degP (x) > 0. That is, at least one
query in P returns x as a result. Let DP be the collection of documents covered by P. Note that
a sampler that uses only queries from P can never reach documents outside DP .

For a distribution π on D, the recall of P w.r.t. π, denoted recallπ(P), is the probability that a
random document selected from π is covered by P. That is,

recallπ(P) = π(DP).

In the case π is the uniform distribution on D, recallπ(P) = |DP |/|D|.

Overflow and underflow probabilities Recall that a query q is valid if it neither overflows nor
underflows. The set of valid queries q ∈ P is denoted P+ and the set of invalid queries is denoted
P−. Given a distribution φ on P, we define the overflow probability of φ, denoted ovprob(φ), to be
the probability that a random query Q chosen from φ overflows:

ovprob(φ) = Pr
φ

(card(Q) > k).

Similarly, the underflow probability of φ, denoted unprob(φ), is the probability that Q underflows:

unprob(φ) = Pr
φ

(card(Q) = 0).

Local accessibility The samplers we use in this paper require “local accessibility” to the queries-
documents graph BP . By that we mean that the sampler needs efficient implementations of the
following procedures that compute incidences in the graph:

1. getIncidentDocsP(q): Given a query q ∈ P, returns all documents that are incident to q in
BP , i.e., results(q).

2. getIncidentQueriesP(x): Given a document x ∈ D, returns all queries that are incident to
x in BP , i.e., queriesP(x).

We next propose efficient implementations of the above procedures (other implementations may
be possible too). The implementation of the first procedure is trivial: just submit q to the search
engine and output all the results returned. The cost of this implementation is a single search engine
query. It has one caveat, though: it is applicable only to non-overflowing queries. If the given query
overflows, the procedure returns only the top k documents in the result set.

The implementation of the second procedure is slightly more tricky. In fact, only certain query
pools, which we call “admissible”, admit this implementation.

22

We say that a query pool is admissible, if we can compute queriesP(x) directly from the content
of x and without submitting queries to the search engine. If P is admissible, then the cost of
computing queriesP(x) is a single page fetch. We next argue that pools that consist solely of
standard term/phrase queries (e.g., [java], [“Michael Jordan”]) are admissible. Pools that contain
other types of queries, like complex Boolean queries or link queries (which ask for documents that
contain a link to a given URL), may not be admissible.

Suppose q is a term/phrase query. That is, q corresponds to a term or a phrase t. A document
x matches the query q if and only if x is indexed by the search engine under the term/phrase t.
Suppose we know x is included in the corpus D of documents indexed by the search engine. Can we
use the content of x alone to determine whether x is indexed under a given term/phrase t? Naively,
the answer is yes: x is indexed under t if and only if t occurs in the text of x. Thus, by inspection
of the content of x alone, one can determine whether x would belong to results(q). In practice,
however, this may not be that simple. For instance, when a document x is too long, the search
engine truncates it, and thus may not index x under terms that appear near its end. Conversely,
search engines index documents under terms that do not occur at their text at all (e.g., anchor text
terms). In general, the following factors may affect the choice of terms under which a document is
indexed:

1. How the search engine pre-processes the document (e.g., whether it truncates the document).

2. How the search engine tokenizes the document (e.g., whether it ignores HTML tags).

3. How the search engine indexes the document (e.g., whether it filters out stopwords or whether
it indexes also by anchor text terms).

Some of the above are not publicly available. Yet, most search engines follow standard IR method-
ologies and reverse engineering work (see, e.g., [7]) can be used to learn answers to the above
questions. We therefore assume from now on that determining whether a document x ∈ D matches
a term/phrase query q can be done by inspecting the content of x alone.

Remark. In our experiments, though, we do not totally rely on this assumption. When we submit
term/phrase queries to the search engine, we reject results that we would not have been determined
as matching the query based on their text content alone.

Suppose now that P consists solely of term/phrase queries. Why is it admissible? Given a document
x, we can compute queriesP(x) as follows: we fetch x, enumerate all the terms/phrases that occur
in x, and check which ones appear in P. If P is given explicitly, then checking whether a given
term/phrase appears in P is easy, assuming all the terms/phrases in P have been stored in a
suitable dictionary data structure, like a hash table. If P is given in implicit form, then we simply
have to check whether the predicate that defines P is satisfied by the given term/phrase.

We note that if P is given in implicit form, then pools that consist of even more complex Boolean
term/phrase queries (e.g., “all two-term conjunctions” or “all three-term disjunctions”) may be
admissible too. On the other hand, implicit pools may be inadmissible, even if they consist solely
of term/phrase queries. For example, if P is an explicit pool of term/phrase queries, then the
implicit pool P+, which consists of all the terms/phrases in P that return between 1 and k results,
is not admissible, because given a document x, we cannot know which of the terms/phrases that
occur in x overflow and which do not (unless we submit them to the search engine).

23

7 Pool-based sampler

In this section we describe our pool-based (PB) sampler. The sampler assumes knowledge of an
explicit and admissible query pool P. Such a pool can be constructed by crawling a large corpus of
web documents, such as the ODP directory [15], and collecting terms or phrases that occur in its
pages. We can run the PB sampler with any such pool, yet the choice of the pool may affect the
bias, the recall, and the query and fetch costs of the sampler. In the end of the section we provide
analysis of the impact of the choice of the query pool on the performance of the PB sampler.

Let π be a target distribution on the corpus D. We assume our sampler is given a black box
procedure getWeightπ̂(x) that computes an unnormalized form π̂ of π. We denote by qcost(π̂)
and by fcost(π̂) the worst-case number of search engine queries and page fetches, respectively, the
procedure uses to compute the weight π̂(x). As a running example, we think of π as the uniform
distribution on D. The unnormalized form we use is ∀x, π̂(x) = 1, and thus qcost(π̂) = fcost(π̂) = 0.

The PB sampler does not directly generate samples from the target distribution π. Instead, it
uses another sampler– the degree distribution sampler—that generates samples from the “docu-
ment degree distribution” (see definition below). An unnormalized form of the document degree
distribution can be efficiently computed. The PB sampler therefore applies a Monte Carlo method
(e.g., rejection sampling) on the samples from the degree distribution in order to generate samples
from π.

7.1 The outer procedure

Recall that the degree of a document x ∈ D is the number of queries it matches:

degP(x) = |queriesP(x)| = |{q ∈ P | x ∈ results(q)}|.

The distribution of documents by degree is called the document degree distribution:

dP (x) =
degP(x)

degP(D)
.

Note that the support of dP is exactly DP—the set of documents that are covered by P. The
document degree distribution has an unnormalized form, which is easy to compute:

d̂P(x) = degP(x).

Recall that P is an admissible query pool, and thus computing degP(x) = |queriesP(x)| can be done
by fetching only x and without submitting queries to the search engine.

Assume for the moment that we already have a sampler (DDSampler) that generates random doc-
uments sampled from the degree distribution dP (we show in the next subsection how to construct
such a sampler). Figure 6 shows the outer function of the PB sampler, which uses DDSampler as
a subroutine.

The PB sampler applies rejection sampling with trial distribution dP and target distribution
π. The unnormalized weights used for document x are π̂(x) (which is computed by calling the

24

1: Function PBSampler(SE,C)
2: while (true) do
3: X := random document generated by DDSampler(SE)

4: toss a coin whose heads probability is π̂(X)
C deg

P
(X)

5: if (coin comes up heads)
6: break
7: return X

Figure 6: The outer procedure of the PB sampler.

getWeightπ̂(x) procedure) and d̂P(x) = degP(x). Recall that the latter can be computed by a
single page fetch. An envelope constant C satisfying

C ≥ max
x∈DP

π̂(x)

degP(x)

must be given to the PB sampler as input. In the case π is the uniform distribution on D, π̂(x) = 1
for all x ∈ D while degP(x) ≥ 1 for all x ∈ supp(dP) = DP . Therefore, in this case an envelope
constant of C = 1 will do. The resulting acceptance probability (Line 4) is simply 1/degP(X).

We next analyze the recall and the bias of the PB sampler, under the assumption that DDSampler
generates samples from dP :

Proposition 15. Suppose the sampling distribution of DDSampler is exactly the degree distribution
dP . Then, the sampling recall of the PB sampler is:

recallπ(P) = π(DP)

and it is a perfect sampler, i.e., it has a sampling bias of 0.

Proof. Let η be the sampling distribution of the PB sampler. We first show that supp(η) =
DP ∩ supp(π). Clearly, supp(η) ⊆ DP , because the PB sampler cannot output documents that are
not covered by P. Also, supp(η) ⊆ supp(π), because only documents that have non-zero probability
under π can be accepted by the acceptance-rejection procedure. Therefore, supp(η) ⊆ DP∩supp(π).

To show containment in the other direction, consider any document x ∈ DP ∩ supp(π). This means
that: (1) degP(x) > 0; and (2) π̂(x) > 0. The first condition implies that x has a positive probability
to be selected by DDSampler. The second condition implies that x has a positive probability to be
accepted by the acceptance-rejection procedure. Therefore, x has an overall positive probability to
be returned by the PB sampler and thus DP ∩ supp(π) ⊆ supp(η).

We can now calculate the recall of the PB sampler:

recallπ(PB) = π(supp(η)) = π(DP ∩ supp(π)) = π(DP) = recallπ(P).

Next, we analyze the sampling bias of the PB sampler. To this end, we need to calculate the
distance between η and the distribution obtained by restricting π to supp(η), i.e., πsupp(η). The

25

main thing to observe is that the unnormalized form π̂ of π also gives an unnormalized form of
πsupp(η). Let Zπ̂ be the normalization constant of π̂. Define

Zπ̂supp(η)
= Zπ̂ · π(DP).

Hence, for every x ∈ supp(η), we have:

πsupp(η)(x) =
π(x)

π(supp(η))
=

π̂(x)

Zπ̂ · π(DP ∩ supp(π))
=

π̂(x)

Zπ̂ · π(DP)
=

π̂(x)

Zπ̂supp(η)

.

Therefore, π̂ is indeed an unnormalized form of πsupp(η). So the right way to view the PB sampler
is as a rejection sampling procedure with πsupp(η) (and not π) as the target distribution and with
dP as the trial distribution. Note that supp(πsupp(η)) ⊆ DP = supp(dP) and hence the necessary
pre-condition of rejection sampling is met. It now follows from the analysis of rejection sampling
that η = πsupp(η).

We note that one could implement the PB sampler with other Monte Carlo methods as well. We
chose to present here rejection sampling, due to its simplicity.

7.2 Degree distribution sampler

Next, we describe DDSampler—the sampler that samples documents from the degree distribution.
To this end, we need to sample queries from the query pool according to the query cardinality
distribution. Recall that the cardinality of a query is the number of documents in its result set.
The distribution of queries by cardinality is defined as:

cP(q) =
card(q)

card(P)
.

In Figure 7 we describe the degree distribution sampler. For the time being, we make two unre-
alistic assumptions: (1) There is a sampler QCSampler that samples queries from the cardinality
distribution cP . (This seems unrealistic, because we do not know a priori the cardinalities of all the
queries in P, and so it is not clear how to sample queries proportionally to their cardinalities.) (2)
No query in P overflows. (This is unrealistic, because it is not clear how to create a large explicit
pool of queries that does not have even a single overflowing query.) We later show how to remove
these assumptions.

1: Function DDSampler(SE)
2: Q := random query generated by QCSampler(SE)
3: submit Q to the search engine SE
4: results(Q) := results returned from SE
5: X := document chosen uniformly at random from results(Q)
6: return X

Figure 7: The degree distribution sampler.

26

The sampler is very similar to the Bharat-Broder sampler, except that it samples random queries
proportionally to their cardinalities. Since no query overflows, all documents that match a query are
included in its result set. It follows that the probability of a document to be sampled is proportional
to the number of queries in P that it matches:

Proposition 16. Suppose the sampling distribution of QCSampler is the query cardinality distri-
bution and that P has no overflowing queries. Then, the sampling distribution of DDSampler is
dP .

Proof. Let p be the sampling distribution of DDSampler, and let X denote a random document
selected by DDSampler. Let Q denote a random query chosen from the cardinality distribution cP .
To calculate p(x), we expand over all choices for Q:

p(x) = Pr
p

(X = x) =
∑

q∈P

Pr
p,cP

(X = x|Q = q) · Pr
cP

(Q = q).

Note that given Q = q, the probability that X = x is 0 if x 6∈ results(q) and is 1/ card(q) otherwise.
Hence, the only terms left in the sum are ones that belong to queriesP(x):

∑

q∈P

Pr
p,cP

(X = x|Q = q) · Pr
cP

(Q = q) =
∑

q∈queriesP (x)

1

card(q)
·

card(q)

card(P)

=
|queriesP(x)|

card(P)
=

degP(x)

card(P)
.

Since card(P) = degP(D) (Proposition 14), then the LHS of the last expression equals degP (x)
degP (D) =

dP(x).

We next address the unrealistic assumption that none of the queries in P overflows. Rather than
using P, which is likely to have overflowing queries, we use the query pool P+ (recall that P+ is
the set of valid queries in P). P+ does not have any overflowing queries by definition.

In the next subsection we show an efficient implementation of QCSampler that generates samples
from cP+ (the cardinality distribution of P+) rather than from cP . Since P+ has no overflowing
queries, then by Proposition 16, the sampling distribution of DDSampler in this case equals the
degree distribution dP+ induced by P+.

Let us now return to the outer function of the PB sampler. That function assumed DDSampler
generates samples from dP . What happens if instead it generates samples from dP+? Note that
now there is a mismatch between the trial distribution used by the PB sampler (i.e., dP+) and the
unnormalized weights it uses (i.e., degP(x)).

One possible solution could be to try to compute the unnormalized weights of dP+ , i.e., d̂P+(x) =
degP+

(x). However, this is impossible to do efficiently, because P+ is no longer an admissible query
pool. Instead, we opt for a different solution: we leave the outer function of the PB sampler as is;
that is, the trial distribution will be dP+ but the unnormalized weights will remain those of dP (i.e.,
degP(x)). This means that the PB sampler is in fact an approximate rejection sampling procedure,
and we can thus use Theorem 6 to bound its sampling bias.

27

Theorem 18 below bounds the recall and the bias of the PB sampler. The upper bound on the bias
is given in terms of a property of documents, which we call the validity density:

Definition 17 (Validity density). Let P be a query pool. The validity density of a document
x ∈ DP relative to P is:

vdensityP(x) =
degP+

(x)

degP(x)
.

That is, the validity density of x is the fraction of valid queries among the queries from P that x
matches. The bias of the PB sampler is bounded by half the normalized mean deviation of the
validity density of documents, where documents are weighted by the target distribution. Hence, if
all documents have more-or-less the same validity density, then we can expect the PB sampler to
be accurate.

Theorem 18. The sampling recall of the PB sampler is equal to:

recallπ(P+) = π(DP+).

The sampling bias of the PB sampler is at most:

1

2
ndevπP+

(vdensityP(X)),

where πP+ is the restriction of π to DP+ ∩ supp(π).

For the proof, see Appendix B.

Why should the mean deviation (or, equivalently, the variance) of the validity density be small?
Typically, the validity density of a document is related to the fraction of popular terms occurring
in the document. The fraction of popular terms in documents written in the same language (or
even in documents written in languages with similar statistical profiles) should be about the same.

Another factor that affects the variance of the validity density is the fraction of invalid queries among
the queries in the pool. If invalid queries are rare, then the validity density of most documents will
be close to 1, implying the variance of the validity density is small. This is formalized by Theorem
19 below.

To state the theorem, we first need to define a distribution over queries, with respect to which we
measure the overflow probability. For every document x ∈ D, we define the “weight” of x to be its
probability under the target distribution πP+ , i.e., πP+(x). The weight of a query is the sum of all
the weights it “absorbs” from the documents it is connected to:

wP(q) =
∑

x∈results(q)

πP+(x)

degP(x)
.

Note that each document x distributes its weight πP+(x) among all the queries it is connected to.
Thus, its contribution to one query q is only πP+(x)/degP(x). It follows that the sum of all query
weights equals the sum of all document weights:

wP(P) =
∑

q∈P

wP(q) =
∑

x∈D

πP+(x) = 1.

28

We can thus view wP as a probability distribution over P. We call this distribution the query
weight distribution.

Theorem 19. The sampling bias of the PB sampler is at most:

ovprob(wP)

1 − ovprob(wP)
.

That is, if the overflowing queries in the pool have a relatively low mass under the query weight
distribution (i.e., they are few in number and they do not overflow by “much”), then the bias of
the sampler is low. The proof of the theorem appears in Appendix B.

7.3 Cardinality distribution sampler

We are left to show how to efficiently sample queries from P according to the cardinality distribution
cP+ . Sampling queries uniformly from P is easy, since we have P in explicit form. But how do we
sample queries from P+ proportionally to their cardinalities? This seems impossible to do, because
we do not know a priori which queries belong to P+ and what are the cardinalities of these queries.

Our most crucial observation is that an unnormalized form of cP+ can be computed efficiently.
Given a query q ∈ P, a corresponding unnormalized weight is the following:

ĉP+(q) =

{

card(q), if card(q) ≤ k,
0, if card(q) > k.

ĉP+(q) can be computed by submitting q to the search engine and counting the number of matches
it has.

Remark. Since we need to know card(q) exactly only when q does not overflow, then we can compute
card(q) by physically counting the number of results returned by the search engine on the query q.
We do not need to rely on the number of results reported by the search engine, which is notoriously
inaccurate.

Now, since we know cP+ in unnormalized form, we can apply rejection sampling with the uniform
distribution on P as the trial distribution and with cP+ as the target distribution. This will give
us samples from cP+ .

The query cardinality sampler (QCSampler) is depicted in Figure 8. The sampler applies rejection
sampling with the cardinality distribution cP+ as the target distribution and with the uniform
distribution on P (which we denote by uP) as the trial distribution. The unnormalized form used
for the target distribution is ĉP+ , as described above. The unnormalized form used for the trial
distribution is:

∀q ∈ P, ûP(q) = 1.

Since for every q ∈ P, ĉP+(q) ≤ k, then

max
q∈P

ĉP+(q)

ûP(q)
≤ k,

and thus the sampler uses the envelope constant C = k.

The following now follows directly from the correctness of rejection sampling:

29

1: Function QCSampler(SE)
2: k := SE.result limit
3: while (true) do
4: Q := uniformly chosen query from P
5: submit Q to the search engine SE
6: card(Q) := number of results returned from SE
7: if (card(Q) > k)
8: W := 0
9: else
10: W := card(Q)
11: toss a coin whose heads probability is W

k

12: if (coin comes up heads)
13: break
14: return Q

Figure 8: The cardinality distribution sampler.

Proposition 20. The sampling distribution of QCSampler is cP+ .

7.4 Cost analysis

We now analyze the query cost and the fetch cost of the PB sampler.

Theorem 21. The query cost of the PB sampler is at most:

C · degP+
(DP+)

Zπ̂ · π(DP+) · (1 − ovprob(wP))
·

(

|P|

|P+|
·

k

avgq∈P+
card(q)

+ qcost(π̂)

)

.

The fetch cost of the PB sampler is at most:

C · degP+
(DP+)

Zπ̂ · π(DP+) · (1 − ovprob(wP))
· (1 + fcost(π̂)).

The proof can be found in Appendix B.

The above expressions may seem hard to parse, so we would like to simplify and interpret them,
at least for the case π is the uniform distribution on D.

When π is uniform, Zπ̂ = |D| and π(DP+) = |DP+ |/|D|. Therefore, the term Zπ̂ · π(DP+) is |DP+ |.
Also, an envelope constant C = 1 can be used in this case. It follows that

C · degP+
(DP+)

Zπ̂ · π(DP+)
=

degP+
(DP+)

|DP+ |
= avgx∈DP+

degP+
(x).

Also, qcost(π̂) = fcost(π̂) = 0 in this case. Therefore, the query cost is:

avgx∈DP+
degP+

(x) ·
1

1 − ovprob(wP)
·
|P|

|P+|
·

k

avgq∈P+
card(q)

.

30

Thus, the query cost is the product of four components: (1) The average degree of documents that
are covered by the valid queries in P; (2) The inverse of the “validity probability” of queries, when
selected proportionally to their weights; (3) The ratio between the total number of queries in P
and the valid queries in P; and (3) The ratio between the maximum cardinality of valid queries
(i.e., k) and the average cardinality of valid queries.

Similarly, the fetch cost in this case is:

avgx∈DP+
degP+

(x) ·
1

1 − ovprob(wP)
.

7.5 Choosing the query pool

We next review the parameters of the query pool that impact the PB sampler.

Pool’s recall The sampler’s recall equals the recall of P+—the pool of valid queries among the
queries in P. Therefore, we would like pools whose valid queries cover most of the documents in the
corpus D. In order to guarantee such high recall, the pool must consist of enough terms/phrases
that are not too popular (and thus would not overflow), but yet almost every document in D
contains at least one of them. We can obtain such a collection of terms/phrases by crawling a large
corpus of web documents, such as the ODP directory.

Validity density deviation The bias of the PB sampler is bounded by the normalized mean
deviation of the validity density of documents, where documents are weighted by the target dis-
tribution. That is, in order to keep the bias low, we need to make sure that all documents have
roughly similar validity densities. If the query pool has few overflowing queries and the queries that
do overflow do not overflow by much, then we should expect most documents to have a validity
density that is close 1, implying that the variance of the validity density is small. Obtaining such
a pool whose recall is still high may be tricky. A pool consisting of conjunctions or disjunctions of
terms, for example, may be problematic, because such queries are likely to overflow. We thus opted
for exact phrase queries. Our experiments indicate that phrases of length at least 5 are unlikely to
overflow. If the phrases are collected from a sufficiently large and representative corpus, then the
corresponding recall is still reasonable.

Average degree The query and fetch costs depend on the average degree of documents that are
covered by the valid queries in the pool. Hence, we would like to find pools for which the degree of
documents grows moderately with the document length. Exact phrase queries are a good example,
because then the degree of documents grows linearly with the document length. Conjunctions or
disjunctions of m terms are poor choices, because there the growth rate is exponential in m.

Overflow and underflow probabilities High density of overflowing queries in the pool has two
negative effects: (1) it potentially increases the sampling bias of the sampler; and (2) it increases
the query and fetch costs. High density of underflowing queries does not impact the sampling

31

bias, but may increase the query cost. We therefore would like to keep the overflow and underflow
probabilities as small as possible.

Average cardinality The query cost depends also on the ratio between the maximum cardinality
of valid queries (k) and the average cardinality of valid queries. We would like thus the average
cardinality to be as close as possible to k. Of course, this may interfere with the overflow probability:
if the cardinality is too high, many queries will simply overflow.

8 Random walk based sampler

We propose two variants of a random walk sampler. One is based on the Metropolis-Hastings
algorithm and another on the Maximum Degree method. Both samplers perform a random walk
on a virtual graph whose nodes are the documents indexed by the search engine.

Like the pool-based sampler, this sampler too selects its queries from a fixed admissible query
pool P. However, here the pool may be implicit rather than explicit, and thus does not require a
pre-processing step for constructing the query pool.

Let π be a target distribution on the corpus D. For technical reasons, we need to postulate in
this section that supp(π) = D, i.e., all documents have non-zero probability under π. As with
the pool-based sampler, we assume access to an oracle procedure getWeightπ̂(x) that computes
an unnormalized form π̂ of π. qcost(π̂) and fcost(π̂) denote, respectively, the worst-case query and
fetch costs of this oracle procedure.

8.1 Document graph

The random walk sampler performs a random walk on a virtual graph GP , which we call the
document graph.3 GP is obtained from the queries-documents graph BP defined in Section 6.3. GP

is an undirected weighted graph whose vertex set is D—the documents indexed by the search engine.
Two documents x, y are connected by an edge in GP if and only if they share a neighboring query
q in the graph BP . The edge weight is the number of such shared neighbor queries, where each
query is normalized by its cardinality. In other words, (x, y) is an edge if and only if queriesP(x) ∩
queriesP(y) 6= ∅. The weight of the edge (x, y) is:

weightP(x, y) =
∑

q∈queriesP (x)∩queriesP (y)

1

card(q)
.

The degree of a document x in GP is defined as:

degGP
(x) =

∑

y∈D

weightP(x, y).

We next observe that the degree of a document x in the graph GP coincides with its degree in the
graph BP :

3The random walk is actually performed on GP+
, which is derived from the pool of valid queries in P . See details

below.

32

Proposition 22. For every document x ∈ D,

degGP
(x) = |queriesP(x)| = degP(x).

Proof. For every triple (x, y, q), where x, y ∈ D are documents and q ∈ P is a query, define the
predicate A(x, y, q) to be 1 if and only if both x and y belong to results(q). Now, we use the
predicate A to rewrite the degree of a document x:

degGP
(x) =

∑

y∈D

weightP(x, y)

=
∑

y∈D

∑

q∈queriesP (x)∩queriesP (y)

1

card(q)

=
∑

y∈D

∑

q∈P

A(x, y, q)

card(q)

=
∑

q∈P

1

card(q)

∑

y∈D

A(x, y, q).

If q ∈ queriesP(x), then
∑

y∈D A(x, y, q) = |results(q)| = card(q). However, if q 6∈ queriesP(x), then
∑

y∈D A(x, y, q) = 0. Hence, we have:

∑

q∈P

1

card(q)

∑

y∈D

A(x, y, q) =
∑

q∈queriesP (x)

1

card(q)
· card(q) = |queriesP(x)| = degP(x).

8.2 Skeleton of the random walk sampler

The random walk sampler runs a random walk on the document graph GP+ (like the pool-based
sampler, it ignores invalid queries). The transition matrix P of a simple random walk on this graph
is the following:

P (x, y) =
weightP+

(x, y)

degP+
(x)

.

That is, having visited a node x in the graph, a neighbor y is chosen proportionally to the weight of
the edge connecting x and y. It can be shown that this random walk is a reversible Markov chain
whose limit distribution is the document degree distribution dP+ (recall definition from Section 7.1).
In order to transform this simple random walk into a Markov chain that converges to the target
distribution π, an MCMC algorithm is applied. In this paper we focus on the Metropolis-Hastings
and the Maximum Degree methods.

The skeleton of the random walk sampler is described in Figure 9. The sampler runs a simple
random walk on the graph GP+ augmented with an acceptance-rejection procedure. Having visited
a node X in the graph, the function sampleNeighbor selects a random neighbor Y with probability

P (X,Y) =
weightP+

(X,Y)

degP+
(X) (the implementation of this function is described below). An acceptance-

rejection procedure is then applied on X and Y in order to determine whether Y should be accepted

33

as the next step of the random walk. The choice of the acceptance function depends on the particular
MCMC method used. The two acceptance functions we employ are:

rmh(x, y) = min

{

π(y) P (y, x)

π(x) P (x, y)
, 1

}

= min

{

π(y) degP+
(x)

π(x) degP+
(y)

, 1

}

; and

rmd(x) =
d̂P+(x)

C π̂(x)
=

degP+
(x)

C π̂(x)
,

where

C ≥ max
x∈DP+

degP+
(x)

π̂(x)

is an envelope constant.

1:Function RWSampler(SE, B, x0)
2: X := x0

3: for t = 1 to B do
4: Y := sampleNeighbor(SE, X)
5: if (accept(X,Y))
6: X := Y
7: return X

1:Function accept(x, y)
2: compute rmcmc(x, y)
3: toss a coin whose heads probability is rmcmc(x, y)
4: return true if and only if coin comes up heads

Figure 9: Skeleton of the random walk sampler.

In order to implement the random walk sampler, we need to address four issues: (1) how to select
the start node x0? (2) how to set the length of the burn-in period B? (3) how to implement the
neighbor sampling procedure? and (4) how to calculate the acceptance functions rmh and rmd?

8.3 Selecting the start node

The graph GP+ is not necessarily connected. When we choose the start node x0 from some connected
component F of GP+ , then the random walk will never reach nodes outside F . This implies that
the Markov chain we produce will not necessarily converge to the target distribution π, but rather
to the distribution πF obtained by restricting π to F :

πF (x) =
π(x)

π(F)
, for all x ∈ F.

Therefore, the recall of the sampler in this case will be at most π(F). In order to maximize recall,
we would like the start node to belong to the component that has the highest mass under π. We
do not have any rigorous technique for making such a selection. On the other hand, we speculate
that for sufficiently rich query pools, GP+ is expected to have a giant connected component, and

34

thus almost any document chosen as a start node will do. Our experimental results (see Section
9.3) support this speculation, as the largest connected component of GP+ in a small search engine
that we built constituted close to 99% of the nodes.

8.4 Setting the burn-in period

As shown in Section 4.4.3, the main factor that determines the length of the burn-in period is the
spectral gap of the underlying transition matrix. Thus, in order to set B, we need an estimate of
the spectral gaps of the transition matrices Pmh and Pmd obtained by applying the MH and the
MD methods, respectively, on the simple random walk on GP+ .

We experimentally estimated these gaps for a small search engine that we built. The results,
discussed more thoroughly in Section 9.3, provide the following estimates:

α(Pmd) ≥
1

20, 000
, α(Pmh) ≥

1

20, 000
.

As the connectivity of GP+ in larger search engines is expected to be similar to the connectivity of
GP+ in the small search engine, we expect similar bounds to be applicable also to random walks
on real search engines. See more details in Section 9.3.

8.5 Sampling neighbors

We now address the problem of sampling neighbors according to the transition matrix P (x, y).
The naive method to select such a random neighbor would be the following: given a document x,
find all valid queries q ∈ queriesP+

(x) that match x, choose one of them at random, submit the
query to the search engine, and then pick one of its results at random. The only problem with this
algorithm is that we do not know how to compute the set queriesP+

(x) efficiently, since P+ is not
an admissible query pool.

The solution to the above problem emanates from the following observation: queriesP+
(x) is a

subset of queriesP(x), which we can compute efficiently, since P is an admissible query pool. So we
can simply select random queries from queriesP (x) until hitting a valid query. This random valid
query will be uniform in queriesP+

(x). The neighbor sampling procedure, described in Figure 10,
implements this idea.

The following proposition proves the correctness of the neighbor sampling procedure:

Proposition 23. Let x be any document in DP+ and let Y be the random neighbor selected by the
procedure sampleNeighbor, when given x as input. Then, for every neighbor y of x in the graph
GP+ ,

Pr(Y = y) =
weightP+

(x, y)

degP+
(x)

.

Proof. To calculate Pr(Y = y), we expand over all possibilities for the random query Q chosen from

35

1: Function sampleNeighbor(SE, x)
2: queriesP(x) := getIncidentQueries

P
(x)

3: while (true) do
4: Q := query chosen uniformly from queriesP(x)
5: submit Q to the search engine SE
6: if (Q neither overflows nor underflows)
7: break
8: results(Q) := results returned from SE
9: Y := document chosen uniformly at random from results(Q)
10: return Y

Figure 10: The neighbor sampling procedure.

queriesP+
(x). Obviously, Pr(Q = q) = 0 for all q /∈ queriesP+

(x).

Pr(Y = y) =
∑

q∈queriesP+
(x)

Pr(Y = y|Q = q) · Pr(Q = q).

For fixed q and y, Pr(Y = y|Q = q) = 1
card(q) , if q ∈ queriesP+

(y), and Pr(Y = y|Q = q) = 0,

otherwise. Pr(Q = q) = 1
|queriesP+

(x)| = 1
degP+

(x) . Therefore,

∑

q∈queriesP+
(x)

Pr(Y = y|Q = q) · Pr(Q = q)

=
∑

q∈queriesP+
(x)∩queriesP+

(y)

1

card(q)
·

1

degP+
(x)

=
weightP+

(x, y)

degP+
(x)

.

8.6 Calculating the acceptance functions

Next, we address the issue of how to calculate the acceptance functions of the MH and the MD
samplers.

The acceptance function of the MH algorithm is:

rmh(x, y) = min

{

π(y) degP+
(x)

π(x) degP+
(y)

, 1

}

.

The acceptance function of the MD method is:

rmd(x) =
degP+

(x)

C π̂(x)
, where C ≥ max

x∈DP+

degP+
(x)

π̂(x)
.

36

The problem is that we cannot compute the degrees degP+
(x) and degP+

(y) efficiently, since P+ is
not an admissible query pool. What we do instead is apply perturbed acceptance functions:

r′
mh

(x, y) = min

{

π(y) degP(x)

π(x) degP(y)
, 1

}

and

r′
md

(x) =
degP(x)

C ′ π̂(x)
, where C ′ ≥ max

x∈DP+

degP(x)

π̂(x)
.

(Note that when π is the uniform distribution, C ′ should be an upper limit on the maximum degree
of documents.)

r′
mh

(x, y) and r′
md

(x) can be computed efficiently, because P is an admissible query pool. The
problem is that now the acceptance functions and the base Markov chain P on which they are
applied are mismatching, and thus the limit distributions are no longer guaranteed to equal the
target distribution π. This scenario is the one captured by the approximate Metropolis-Hastings
and the approximate Maximum Degree procedures, described in Section 5.

Before we analyze the sampling bias and sampling recall of the resulting samplers, let us identify
the exact form of the target distribution, trial distribution, and approximate trial distribution
employed by the approximate MH and MD procedures.

Let F be the connected component of GP+ to which the start vertex x0 of the random walk belongs.
Let dF be the restriction of the degree distribution dP+ to F :

dF (x) =
dP+(x)

dP+(F)
, for all x ∈ F.

As the random walk can never reach nodes outside F , then dF , rather than dP+ , is the limit distri-
bution of the simple random walk on GP+ that starts at x0 ∈ F . Therefore, the trial distribution
is dF .

Similarly, as the random walk can never reach nodes outside F , the real target distribution when
applying the MH and the MD samplers with x0 ∈ F is the restriction of π to F , i.e., πF . Indeed,
it can be easily verified that the restriction of the unnormalized form of π to F constitutes an
unnormalized form of πF .

Finally, the approximate trial distribution used by the two procedures is the restriction of the
degree distribution dP to F :

qF (x) =
dP (x)

dP(F)
, for all x ∈ F.

Since supp(π) = D, supp(dP+) = DP+ , supp(dP) = DP , and F ⊆ DP+ ⊆ DP ⊆ D, then supp(πF) =
supp(dF) = supp(qF) = F . Therefore, πF , dF , qF satisfy the requirements of the approximate MH
and MD procedures. Furthermore, the simple random walk on F constitutes a reversible Markov
chain, as GP+ is an undirected graph. Therefore, the necessary pre-condition of the approximate
MH procedure is met.

37

Applying Theorems 10 and 9, we know that the random walks performed by the approximate MH
and MD procedures have the following limit distribution η:

η(x) = πF (x)

dF (x)
qF (x)

EπF

(

dF (X)
qF (X)

) .

The following theorem bounds the sampling bias and the sampling recall of the MH and MD
samplers:

Theorem 24. Let ε > 0. Suppose we run the MH sampler (resp., the MD sampler) with a burn-
in period B that guarantees the approximate MH Markov chain (resp., approximate MD Markov
chain) reaches a distribution, which is at distance of at most ε from the limit distribution. Then,
the sampling bias of the MH sampler (resp., MD sampler) is at most:

1

2
ndevπF

(vdensityP(X)) + ε.

The sampling recall of the MH sampler (resp., MD sampler) is at least:

π(F) · (1 −
1

2
ndevπF

(vdensityP(X)) − ε).

The proof appears in Appendix C.

8.7 Optimized MD sampler

As discussed in Section 4.4.2, the special form of the acceptance function of the MD sampler allows
for an optimized implementation. Since the acceptance function depends only on the current state
x and not on the proposed state y, then rather than selecting a new proposed neighbor Y every
time the acceptance-rejection procedure is invoked, we can select the neighbor only once, after
acceptance is achieved. Further optimization is possible by selecting a priori the number of steps
the random walk is going to spend at the state x, without actually performing the iterative coin
tosses.

In this spirit, we describe in Figure 11 an optimized version of the MD sampler. Note that the fact
the proposed neighbor is chosen only once results in significant savings in the number of search
engine queries made. We analyze these savings below.

8.8 Cost analysis

We now provide rough analysis of the query and fetch costs of the MH and MD samplers. Rigorous
analysis is postponed to future work.

The costs are given in terms of the length of the burn-in period B. The basic analysis given is the
same for both MH and MD. The actual costs may be different, though, due to differences in the
required burn-in periods. We also provide analysis of the optimized MD sampler, which is much
more efficient.

38

1: Function OptimizedMDSampler(SE, B, x0, C)
2: X := x0

3: t = 0
4: while (t < B) do

5: delay := generate a geometric random variable whose success parameter is: deg
P

(x)
C′ π̂(x)

6: t := t + delay
7: if (t ≥ B) break
8: Y := sampleNeighbor(SE,X)
9: X := Y
10: t := t + 1
11: return X

Figure 11: The optimized Maximum Degree sampler.

Query cost Search engine queries are made in two places: (1) in the sampleNeighbor procedure;
and (2) (possibly) in the getWeightπ̂ procedure in order to compute the unnormalized target
weights. The sampleNeighbor procedure is called B times. When called with a document x as
input, the procedure repeatedly selects random queries from queriesP(x) until hitting a valid query.
Therefore, the expected number of queries made in such a call is:

|queriesP(x)|

|queriesP+
(x)|

=
degP(x)

degP+
(x)

=
1

vdensity(x)
.

In order to figure out the total number of queries made along the random walk by the sampleNeigh-
bor procedure, we need to know the distributions of the random documents encountered along the
walk. We do not know these distributions exactly, but we know that they tend to the limit distri-
bution η. For the purpose of the cost analysis, therefore, we simply assume that they all equal η.
In this case, the expected number of queries made by the sampleNeighbor procedure throughout
the execution becomes:

B · Eη

(

1

vdensity(X)

)

.

As η is close to the target distribution πF , then the number of such queries made is approximately
equal to:

B · EπF

(

1

vdensity(X)

)

.

The procedure getWeightπ̂ is called once for every candidate neighbor y. The number of such
candidates selected is at most B. Each invocation of the procedure makes at most qcost(π̂) search
engines queries. Therefore, the total number of queries made by getWeightπ̂ is at most B ·qcost(π̂).

We conclude that the query cost of the MH and MD samplers is approximately at most:

B ·

(

EπF

(

1

vdensity(X)

)

+ qcost(π̂)

)

.

In the case π is the uniform distribution, qcost(π̂) = 0, and thus the query cost becomes:

B · EπF

(

1

vdensity(X)

)

.

39

Fetch cost Also page fetches are made only in the sampleNeighbor procedure and in the getWeightπ̂

procedure. In sampleNeighbor(x) only x is fetched, in order to compute queriesP(x). In getWeightπ̂(x),
at most fcost(π̂) pages are fetched in order to compute π̂(x). As each of the procedures is invoked
B times, the fetch cost is at most:

B · (1 + fcost(π̂)).

When π is the uniform distribution, fcost(π̂) = 0, and thus the fetch cost is only B.

Cost analysis for the optimized MD sampler The number of calls to the sampleNeighbor
and getWeightπ̂ procedures made in the optimized MD sampler is much smaller than B. This
translates into direct savings in the query and fetch costs.

An MD random walk can be viewed as performing a simple random walk on F and augmenting
it with different “delays” at the different nodes visited along the walk. Let B′ be the number of
simple random walk steps performed during the MD random walk. Note that B′ is not a fixed
parameter, like B, but is rather a random variable, which depends on the delays made at the nodes
encountered along the random walk. The number of calls to sampleNeighbor and to getWeightπ̂

is B′. Thus, in order to estimate the query and fetch costs of the optimized MD sampler, we need
to calculate the expectation of B′.

When visiting a node x, the delay is a geometric random variable whose expectation is the following:

E(delay(x)) =
C ′π̂(x)

degP(x)
.

For example, when π is the uniform distribution, then π̂(x) = 1 and C ′ is an upper limit on the
maximum degree. Therefore, the expected delay is approximately the ratio between the maximum
degree and the degree of x.

In order to figure out the expectation of B′, we need to know the distributions of the random
documents encountered along the simple random walk on F . As before, we do not know these
distributions, but we know that they approach the degree distribution dF on F . We thus assume
in the analysis below that the distributions of all these nodes is dF . Hence, the expected delay of
a random node encountered along the random walk is:

EdF
(delay(X)) = EdF

(

C ′ π̂(X)

degP(X)

)

=
∑

x∈F

degP+
(x)

degP+
(F)

· C ′ ·
Zπ̂F

· πF (x)

degP(x)

= C ′ ·
Zπ̂F

degP+
(F)

· EπF
(vdensity(X)).

The total number of steps performed by the random walk is B. B can be viewed as the sum of the
delays of the B′ nodes encountered during the simple random walk. The delays are assumed to be
i.i.d. random variables with expectation EdF

(delay(X)). Thus, using Wald’s identity, we obtain:

B ≈ E(B′) · EdF
(delay(X)).

40

Therefore,

E(B′) ≈
B

EdF
(delay(X))

= B ·
degP+

(F)

C ′ · Zπ̂F

·
1

EπF
(vdensity(X))

.

As we’ve shown before, the expected number of search engine queries made at sampleNeighbor when
called with document x as input is 1/ vdensity(x). The documents on which the B′ invocations
of sampleNeighbor are executed are roughly distributed according to dF . Therefore, the expected
number of queries made in each call is approximately:

EdF

(

1

vdensity(X)

)

=
∑

x∈F

degP+
(x)

degP+
(F)

·
degP(x)

degP+
(x)

=
degP(F)

degP+
(F)

.

Each call to getWeightπ̂ makes at most qcost(π̂) queries. We can therefore estimate the query cost
of the optimized MD sampler as:

B ·
degP+

(F)

C ′ · Zπ̂F

·
1

EπF
(vdensity(X))

·

(

degP(F)

degP+
(F)

+ qcost(π̂)

)

.

When π is the uniform distribution, this expression can be further simplified. In this case, (1) C ′

is an upper limit on the maximum degree maxx∈F degP(x); (2) Zπ̂F
= |F |; and (3) qcost(π̂) = 0.

Therefore, the query cost simplifies to:

B ·
degP(F)

maxx∈F degP(x) · |F |
·

1

EπF
(vdensity(X))

= B ·
avgx∈F degP(x)

maxx∈F degP(x)
·

1

EπF
(vdensity(X))

.

This query cost is lower by a factor of roughly maxx∈F degP(x)/ avgx∈F degP(x) than the query
cost of the standard MD sampler.

A similar analysis for the fetch cost of the optimized MD sampler shows that it is approximately:

B ·
degP+

(F)

C ′ · Zπ̂F

·
1

EπF
(vdensity(X))

· (1 + fcost(π̂)) .

9 Experimental results

We conducted four sets of experiments: (1) pool measurements: estimation of parameters of se-
lected query pools; (2) spectral gap estimations: measurement of the spectral gaps of the transition
matrices used by the random walk samplers; (3) evaluation experiments: evaluation of the bias of
our samplers and the Bharat-Broder (BB) sampler; and (4) exploration experiments: measurements
of real search engines.

9.1 Experimental setup

In order to conduct the first three sets of experiments, we built a home-made search engine over
a corpus of 2.4 million documents obtained from the Open Directory Project (ODP) [15]. The
ODP directory crawl consisted of 3 million pages, of which we kept only the ones that we could

41

successfully fetch and parse, that were in text, HTML, or pdf format, and that were written in
English. Each page was given a serial id, stored locally, and indexed by single terms and phrases.
Only the first 10,000 terms in each page were considered. Exact phrases were not allowed to cross
boundaries, such as paragraph boundaries. We used static ranking by document id to rank query
results. Different experiments used different values of the result limit k. See more details below.

In our exploration experiments, conducted in April-May 2006, we submitted 395,000 queries to
Google, 448,000 queries to MSN Search, and 370,000 queries to Yahoo!. Due to legal restrictions on
automatic queries, we used the Google, MSN, and Yahoo! Web Search APIs, which are, reportedly,
served from older and smaller corpora than the corpora used to serve human users. These APIs
are limited to submitting only a few thousands of queries a day, which limited the scale of the
experiments we could perform.

The first three sets of experiments were performed on a dual Intel Xeon 2.8GHz processor worksta-
tion with 2GB RAM and two 160GB disks. The exploration experiments were conducted on seven
machines of varying configurations.

9.2 Pool measurements

In the first set of experiments, we wanted to measure the pool parameters that impact the quality
and the efficiency of our samplers. In order to get a variety of results, we measured four different
query pools: a single terms pool and three pools of exact phrases of lengths 3, 5, and 7. (We
measured only four pools, because each measurement required substantial disk space and running
time.)

In order to construct the pools, we split the ODP data set into two parts: a training set, consisting
of every fifth page (when ordered by id), and a test set, consisting of the rest of the pages. The
pools were built only from the training data, but the measurements were done only on the test
data. In order to determine whether a query is overflowing, we set a result limit of k = 20.

All our measurements were made w.r.t. the uniform target distribution. We measured the fol-
lowing parameters: (1) the pool’s size (total number of queries); (2) the fraction of overflowing
queries; (3) the fraction of underflowing queries; (4) the average cardinality of valid queries;
(5) the recall of valid queries (i.e., |DP+ |/|D|); (6) the average degree of documents relative
to valid queries (i.e., avgx∈DP+

degP+
(x)); (7) the average degree of documents relative to all

queries (i.e., avgx∈DP+
degP(x)); (8) the normalized mean deviation of the validity density (i.e.,

ndevπP+
(vdensity(X))); (9) the overflow probability of the query weight distribution (i.e., ovprob(wP)).

The results of our measurements are tabulated in Table 1.

The measurements show that fraction of overflowing queries, average document degree, normalized
mean deviation of validity density, and overflow probability improve as phrase length increases,
while fraction of underflowing queries, recall, and average cardinality get worse. The results indi-
cate that a phrase length of 5 achieves the best tradeoff among the parameters. It has very few
overflowing queries (about 0.5%), while maintaining a recall of about 89%. The fraction of over-
flowing queries among 3-term phrases is a bit too high (3%), while the recall of the 7-term phrases
is way too low (about 64%). The fraction of overflowing queries among single terms is surprisingly
small. The explanation is that many of the terms are misspellings, technical terms, or digit strings.

42

Parameter Single Phrases Phrases Phrases
terms (3) (5) (7)

Pool’s size 2.6M 97.5M 155.9M 151.1M
Fraction of overflowing queries 11.4% 3% 0.4% 0.1%
Fraction of underflowing queries 40.3% 56% 76.2% 82.1%
Average cardinality of valid queries 4.7 3.6 2.2 1.7
Recall of valid queries 61.9% 96.8% 88.6% 64.5%
Average document degree (valid queries) 5.1 77 47.1 37.1
Average document degree (all queries) 293.4 246.8 75.9 51.3
Normalized mean deviation of validity density 0.8 0.34 0.34 0.4
Overflow probability of query weight distribution 0.98 0.7 0.43 0.3

Table 1: Results of pool parameter measurements.

The overflow probability of single terms, though, is very high.

Since the ODP data set is presumably representative of the web, we expect most of these mea-
surements to represent the situation on real search engines. The only exceptions are the fraction
of overflowing and underflowing queries and the average cardinality of valid queries, which are dis-
torted due to the small size of the ODP data set. We thus measured these parameters on the Yahoo!
search engine. The results are given in Table 2. It is encouraging to see that for 5-term phrases,
the fraction of overflowing queries remains relatively low, while the fraction of underflowing queries
goes down dramatically. The elevated fraction of overflowing queries among 3-term phrases is more
evident here.

Parameter Single Phrases Phrases Phrases
terms (3) (5) (7)

Fraction of overflowing queries 49.3% 18% 3.3% 1%
Fraction of underflowing queries 5.4% 4.3% 10.3% 14.7%
Average cardinality of valid queries 104.1 107.6 47.9 20.6

Table 2: Pool parameter measurements on Yahoo!.

Assuming the above measurements represent the situation on real search engines, we can use
Theorems 18 and 21 to derive estimates of the sampling bias, sampling recall, query cost, and fetch
cost for the pool-based sampler. The results are given in Table 3. In the estimations we used the
measurements on the Yahoo! search engine, and thus set k = 1, 000.

Parameter Single Phrases Phrases Phrases
terms (3) (5) (7)

Sampling bias 0.4 0.17 0.17 0.2
Sampling recall 61.9% 96.8% 88.6% 64.5%
Query cost 5407.4 3070 1996.6 3052
Fetch cost 255 256.7 82.6 53

Table 3: Estimated bias, recall, and cost of the pool-based sampler.

43

9.3 Spectral gap estimations

We wanted to estimate the burn-in periods of the two random walk samplers: the MH sampler and
the MD sampler. By Theorem 5, the main factor that determines the burn-in period is the spectral
gap of the random walk’s transition matrix. In order to obtain an accurate estimate of the spectral
gaps w.r.t. a real search engine SE, we would have had to construct the adjacency matrix of the
document graph GP+ corresponding to SE, transform this matrix into the two transition matrices
Pmh and Pmd, and then estimate the spectral gaps of these matrices.4 However, since we did not
have full access to the corpus of real search engines, we could not explicitly construct the matrices
Pmh and Pmd.

Our only option then was to estimate the spectral gaps of the matrices corresponding to our
home-made ODP search engine. Since the ODP corpus is a diverse set of documents, presumably
representing the whole web, we expect the document graph of the ODP search engine to have similar
connectivity properties as the document graph of real search engines. Spectral gap is a “structural”
property of a transition matrix, which depends only on the connectivity in the document graph,
and not on the size of the graph. Therefore, estimations of the spectral gaps corresponding to
the ODP search engine could be representative of the spectral gaps corresponding to real search
engines.

In order to make the connectivity of the document graph of the ODP search engine as similar
as possible to the connectivity of the document graphs in larger search engines, we set in this
experiment k = 80 as the result limit and used a pool of 3-term exact phrases. These settings made
the graph more dense, similarly to document graphs that are based on very large corpora.

We constructed the two matrices Pmh and Pmd corresponding to the largest connected component
of the document graph. This component contained 98.7% of the documents in the corpus, resulting
in two matrices of dimensions 2.37 million by 2.37 million.

Since the matrices were so large, we could not compute their eigenvalues exactly. The largest
eigenvalue of any transition matrix is always 1, since the matrix is stochastic. We thus had to
estimate only the second largest eigenvalue. To this end, we applied the power iteration method
(cf. [18]). We obtained the following lower bounds on the two spectral gaps:

α(Pmd) ≥
1

20, 000
, α(Pmh) ≥

1

20, 000
.

We note that the actual gaps could be larger, yet figuring them out exactly would have required
many more iterations of the power method. The fact the two bounds are identical does not mean
that the actual spectral gaps of the two Markov chains are identical. In reality, one of them may
be much higher than the other.

Plugging in the above estimates in the formula for the burn-in period (Theorem 5) and assuming
πmin = 1

2·1010 , as in major search engines, and ε = 0.1, we obtained:

Tε(Pmh) = Tε(Pmd) ≤
1

α(T)

(

ln
1

πmin
+ ln

1

ε

)

≈ 520, 000.

4In order to get more precise estimates of the required burn-in periods, the spectral gaps of the transition matrices
P

′
mh and P

′
md, rather than Pmh and Pmd, should have been calculated. This is left for future work.

44

We can now use the cost analysis from Section 8.8 to estimate the query costs of the MH and the
MD samplers. To this end, we: (1) assume that GP+ is connected (and thus F = DP+); (2) employ
the estimates for EπP+

(vdensity(X)) = 1−ovprob(wP) and for avgx∈DP+
degP (x) derived from our

pool measurements. Plugging in the numbers into the formulae given in Section 8.8, we expect the
query cost of the MH sampler to be roughly 1, 730, 300 queries per sample, while the query cost of
the optimized MD sampler (executed with C ′ = 10, 000) to be roughly 42, 800 queries per sample.

We conclude that both the MH sampler and the MD sampler are significantly less efficient than
the pool-based sampler. The cost of the MH sampler is prohibitive. The cost of the optimized MD
sampler is much lower, and thus this sampler might be of practical use, if the desired number of
samples is small. Recall the big advantage of this approach over the pool-based sampler: it does
not need any pre-processing step to create an explicit query pool.

We stress that the above cost estimates are based on our theoretical analysis, which is pessimistic
by nature. Our evaluation experiments described below indicate that in practice it may be possible
to run the random walks for far fewer steps than is required by the theoretical bounds, yet obtain
good samples.

9.4 Evaluation experiments

In order to estimate the biases of our samplers and of the BB sampler, we ran them on the ODP
search engine. In this controlled environment we could compare the sampling results against the
real data.

The corpus of our ODP search engine consisted of the test set only. A result limit of k = 5 was
used in order to have an overflow probability comparable to the one on Yahoo!.

We ran five samplers: (1) the PB sampler with rejection sampling; (2) the PB sampler with
importance sampling; (3) the MH sampler; (4) the MD sampler; and (5) the BB sampler. All the
samplers used a query pool of 5-term phrases extracted from the ODP training set. In order to
have a common basis, we allowed each sampler to submit exactly 5 million queries to the search
engine.

Running the random walk samplers with the burn-in period dictated by the spectral gap estimations
would have been useless, since we would have gotten very few samples from the 5 million queries
submitted. We therefore opted for a short burn-in period of 1,000 steps for the MH sampler and
10,000 steps for the MD sampler (these settings turned out to produce a comparable number of
samples to what the PB sampler produced). This enabled us to evaluate whether the shortened
burn-in period actually caused the random walk samplers to produce biased samples.

Since each sampler has a different query cost, the samplers produced varying number of samples
using the 5 million queries. Table 4 shows the actual number of samples generated by each sampler.
The BB sampler generated the most samples, yet these samples are highly biased.

In Figure 12, we show the distribution of samples by document size. We ordered the documents
in the corpus by size, from largest to smallest, and split them into 10 equally sized deciles. Truly
uniform samples should distribute evenly among the deciles. The results show the overwhelming
difference between our samplers and the BB sampler. The BB sampler generated a huge number

45

Sampler # of queries # of samples
PB + Rejection Sampling 5M 3,276
PB + Importance Sampling 5M 319,682
RW-MH 5M 4,234
RW-MD 5M 7,761
BB 5M 1,129,820

Table 4: Number of samples generated by each sampler when run over the ODP search engine with
5 million queries.

of samples at the top decile (more than 50%!). Our samplers, on the other hand, had no or little
bias. The two PB samplers essentially show no bias, while the RW samplers have small negative
bias towards very short documents, possibly due to the shortened burn-in period.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10

Deciles of documents ordered by size

P
e

rc
e

n
t
o

f
d

o
c
u

m
e

n
ts

 f
ro

m
 s

a
m

p
le

PB + Rejection Sampling

PB + Importance Sampling

RW-MH

RW-MD

BB

Figure 12: Distribution of samples by document size.

Figure 13 addresses bias towards highly ranked documents. We ordered the documents in the
corpus by their static rank, from highest to lowest, and split into 10 equally sized deciles. The first
decile corresponds to the most highly ranked documents. The results indicate that none of our
samplers had any significant bias under the ranking criterion. Surprisingly, the BB sampler had
bias towards the 4th, 5th, and 6th deciles. When digging into the data, we found that documents
whose rank (i.e., id) belonged to these deciles had a higher average size than documents with lower
or higher rank. Thus, the bias we see here is in fact an artifact of the bias towards long documents.
A good explanation is that our 5-term exact phrases pool had a low overflow probability in the
first place, so very few queries overflowed. Note that the ranking bias of the BB sampler is created
only by overflowing queries.

We have several conclusions from the above experiments: (1) the 5-term phrases pool, which has

46

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

1 2 3 4 5 6 7 8 9 10

Deciles of documents ordered by rank

P
rc

e
n
t

o
f

d
o
c
u
m

e
n
ts

 f
ro

m
 s

a
m

p
le

 .

PB + Rejection Sampling

PB + Importance Sampling

RW-MH

RW-MD

BB

Figure 13: Distribution of samples by document rank.

small overflow probability, made an across-the-board improvement to all the samplers (including
BB). This was evidenced by the lack of bias towards highly ranked documents. (2) The BB sampler
suffers from a severe bias towards long documents, regardless of the query pool used. (3) Our pool-
based samplers seem to give the best results, showing no bias in any of the experiments. (4) The
random walk samplers have small negative bias towards short documents. Possibly by increasing
the burn-in period of the random walk, this negative bias could be alleviated.

9.5 Exploration experiments

We used our most successful sampler, the PB sampler, to generate uniform samples from three
major search engines: Google, MSN Search, and Yahoo!. Before describing the results of the
experiment, we elaborate on the assumptions made in these experiments and on the procedure we
used to test whether a given URL is indexed by a given search engine.

9.5.1 Assumptions and setup

The limit k on the number of returned results is 1,000 for Google and Yahoo!, and 250 for MSN
Search. As a query pool, we used 5-term phrases extracted from English pages at the ODP data
set. The pool contained over 600M phrases. During our experiments, we made the following
assumptions: (1) The first 10, 000 terms in each document are indexed. (2) The corpora did not
change during our experiments.

47

When calculating the cardinality of a query, we did not rely on the number of results reported by
the search engine, since this number is notoriously inaccurate. Instead, we explicitly fetched the
entire list of available results, and calculated its size.

When submitting queries to the search engines, we specifically indicated not to filter out duplicate
results and not to perform any other filtering (language, domain, date, etc. . .). Note that duplicate
results are filtered out by default, and thus our measurements do not directly reflect duplicate-free
corpora but rather the complete “raw” corpora. We choose to make our measurements against the
raw corpora in order to prevent different filtering mechanisms employed by search engines from
biasing our measurements. Comparing duplicate-free corpora proves even more difficult because
each search engine may choose a different “representative” from a set of duplicate pages, thus
defeating our URL testing method.

Some documents are indexed by terms that do not appear in their content, e.g., according to anchor
text. Since our samplers have access only to the terms that appear in the document, we rejected
samples whose content did not contain the query terms. Similarly, to avoid bias due to index depth,
we rejected sampled documents for which the query terms were not found among their first 10,000
terms.

In order to compute queriesP(x), for a given document x, we first tried to retrieve the cached
version of x from the search engine. If the cached page was not available, we downloaded the page
from the web and computed queriesP(x) according to the downloaded version. When any error was
encountered while downloading the page, the corresponding sample was dropped.

Note that as a result of dropping some of the samples (either due to fetching errors or due to the
absence of the query terms at the first 10,000 terms of the document), the query cardinalities,
which were calculated assuming all query results are valid, were not always accurate. Since the
frequency of sample drops was low, we speculate that this did not have any significant effect on our
measurements.

9.5.2 URL testing

A basic ingredient in our exploration experiments was a procedure, which given a URL u and search
engine SE, determines whether SE indexes u or not. Implementing such a procedure that produces
accurate results, while interacting only with the public interface of the search engine, turns out to
be tricky. The procedure we employed, which combines ideas from previous studies, is described
below.

First, we brought the given URL into a canonical form, by converting hex-encoded characters
(%XX) to a standard iso-8859-1 characters, converting double slash (//) to a single one, dropping
/index.html from the URL’s tail, etc.

For each URL tested, we submitted up to seven different queries to the search engine, in order
to determine whether the URL is indexed by the search engine. The first query was the URL
itself. The second query was “inurl:URL”. The last five queries were phrases, from 8 to 14 terms
long, extracted randomly from the first 10,000 terms of the document. We sequentially submitted
these seven queries to the search engine until we found the URL among the first 100 results (after

48

canonization). If the URL was found by any of the queries, we assumed it is indexed by the search
engine. Otherwise, it was assumed not to be indexed.

Obviously, this heuristic procedure is prone to some error. That is, its result is not guaranteed to
correctly determine whether a URL is indexed or not.

If a URL was sampled from a search engine, but our procedure failed to find it in the same search
engine, we dropped the sample. 5% of samples from Google, and less than 1% of samples from
MSN Search and Yahoo! were dropped.

9.5.3 Corpus size

Table 5 tabulates the measured relative overlap of the Google, MSN Search, and Yahoo! corpora.
We note that since our query pool consisted mostly of English language phrases, our results refer
mainly to the English portions of these corpora.

Samples from ↓ Google MSN Search Yahoo!
indexed by →

Google 37.2% 45.8%

MSN Search 51.2% 52.8%

Yahoo! 35.6% 30.9%

Table 5: Relative overlap of Google, MSN Search, and Yahoo!.

Using Liu’s “rule of thumb” (see Section 4.3) and the Chernoff bound, we estimate the overlap
results stated above to be within an absolute error of 4.5% from the real values with a confidence
level of 95%. There could be an additional absolute error of up to 17%, due to the sampling bias
of the PB sampler.

In Figure 14 we show the relative corpus sizes of the three search engines, as derived from the
relative overlap estimates.

9.5.4 Top-level domain name distribution

Figure 15 shows the domain name distributions in the three corpora. Note that there are some
minor differences between the different search engines. For example, Yahoo! has some bias towards
the .com domain, while Google has negative bias towards the .info domain.

49

Google = 1

Yahoo! = 1.28

MSN Search = 0.73

Figure 14: Relative corpus size of Google, MSN Search, and Yahoo!.

0%

10%

20%

30%

40%

50%

60%

co
m or

g
ne

t
uk ed

u de au go
v ca us it no es ie

in
fo

Top level domain name

P
e

rc
e

n
t

o
f

d
o

c
u

m
e

n
ts

 f
ro

m
 s

a
m

p
le

 .

Google

MSN Search

Yahoo!

Figure 15: Top-level domain name distribution of pages in Google, MSN Search, and Yahoo!
corpora.

50

9.5.5 Corpus freshness

We evaluated the freshness of the three corpora. First, we checked the percentage of pages indexed
that are still valid. Figure 16 shows the percentage of dead pages (ones returning a 4xx HTTP
return code) in the three corpora. Note that the Google corpus contains significantly more dead
pages than Yahoo! and MSN Search.

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Google MSN Search Yahoo!

P
e
rc

e
n
t
o
f
d
e
a
d
 p

a
g
e
s

Figure 16: Percentage of inaccessible pages in the Google, MSN Search, and Yahoo! corpora.

Next, we tried to determine to what degree each of the three corpora reflects the current content
of indexed web pages. To this end, we assumed that when the cached copy of the document
is up-to-date, the index is up-to-date too and vice versa. We compared the two versions of the
sampled document: (1) the cached document, and (2) the actual document fetched from the web.
These measurements were performed on samples of HTML documents only, for which we were able
to fetch both the cached copy and the document itself. Fetching of both document versions was
performed simultaneously.

Figure 17 shows, for each value 0 ≤ p ≤ 100, the fraction of samples, for which at most p percent
of the lines in the cached version are different from the web version. The Yahoo! results look
rather bad especially for low p values. After looking at the data, we found that some of the cached
documents stored by Yahoo! were slightly pre-processed.

To provide a more objective measure of freshness, we measured text-only difference, which would
ignore all formatting or other non-essential differences between the two document versions. We
compared the bag-of-words representations of the two versions of each sample document. Figure
18 shows, for each value 0 ≤ p ≤ 100, the fraction of samples, for which at most p percent of the
words in the cached version are different from the web version.

We can see that about 55% - 60% of the documents are “fresh” in all three search engines, while
Google’s freshness is the lowest and MSN’s is the highest.

51

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Percent of lines changed

P
e
rc

e
n
t

o
f

s
a

m
p
le

s
 (

c
u
m

u
la

ti
v
e
)

Google

MSN Search

Yahoo!

Figure 17: Raw HTML freshness of the Google, MSN Search, and Yahoo! corpora.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

Percent of words changed

P
e
rc

e
n
t

o
f

s
a
m

p
le

s
 (

c
u
m

u
la

ti
v
e
)

Google

MSN Search

Yahoo!

Figure 18: Text freshness of the Google, MSN Search, and Yahoo! corpora.

52

9.5.6 Percentage of dynamic pages

In this experiment we calculated the percentage of dynamic pages in the three corpora. We deem
a page “dynamic” if its URL contains the characters “?” or “&” or if the URL ends with one of
the following filename extensions: .php, .php3, .asp, .cfm, .cgi, .pl, .jsp, .exe, .dll.
Figure 19 shows substantial differences among the search engines in terms of the percentage of
dynamic pages in their corpora: Google has the highest percentage, while MSN has the lowest.
This may indicate Google is doing a better job in crawling “deep web” dynamic content.

0%

5%

10%

15%

20%

25%

30%

35%

40%

Google MSN Search Yahoo!

P
e

rc
e

n
t
o

f
d

y
n

a
m

ic
 p

a
g

e
s

Figure 19: Percentage of dynamic pages in the Google, MSN Search, and Yahoo! corpora.

10 Conclusions

We presented two novel search engine samplers. The first, the pool-based sampler, uses a pre-
prepared pool of queries to generate random queries. Random documents are then selected from
the results of these queries. The sampler employs a Monte Carlo method, like rejection sampling,
to guarantee that the distribution of the samples is close to the target distribution. We show that
the sampler works, even if the sampling “weights”, which are needed by the Monte Carlo method,
are only approximate.

We provided full analysis of the sampler and identified the query pool parameters that impact its
bias and performance. We then estimated these parameters on real data, consisting of the English
pages from the ODP hierarchy, and showed that a pool of 5-term phrases achieves the best tradeoff
between accuracy and performance.

Our second sampler runs a random walk on a graph defined over the indexed documents. Its primary
advantage is that it does not need a pre-prepared query pool. This sampler employs a Markov Chain
Monte Carlo method, like the Metropolis-Hastings algorithm or the Maximum Degree method, to
guarantee that the random walk converges to the target distribution. Theoretical bounds on the
convergence rate of the random walk are quite high, yet practical evidence suggests that the random
walk produces only slightly biased samples much before reaching the theoretical bounds.

Our experimental results bare bias towards pages in the English language, since the query pool we

53

used consisted primarily of English phrase queries. We note that this bias is a limitation of our
experimental setup and not of the techniques themselves. The bias could be eliminated by using a
more comprehensive query pool.

Although we tested our samplers on web search engines only, we speculate that they may be
applicable in a more general setting. For example, for sampling from databases, deep web sites,
library records, medical data, etc.

As the query and fetch cost of our samplers are quite high, it remains as an open problem to design
much more efficient search engine samplers.

References

[1] D. Aldous. On the Markov chain simulation method for uniform combinatorial distributed
and simulated annealing. Probability in the Engineering and Informational Sciences, 1:33–46,
1987.

[2] A. Anagnostopoulos, A. Broder, and D. Carmel. Sampling search-engine results. In Proceedings
of the 14th International World Wide Web Conference (WWW), pages 245–256, 2005.

[3] Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz. Approximating aggregate
queries about Web pages via random walks. In Proceedings of the 26th International Conference
on Very Large Databases (VLDB), pages 535–544, 2000.

[4] Z. Bar-Yossef and M. Gurevich. Random sampling from a search engine’s index. In Proceedings
of the 15th International World Wide Web Conference (WWW), pages 367–376, 2006.

[5] J. Battelle. John Battelle’s searchblog. http://battellemedia.com/archives/001889.php,
2005.

[6] K. Bharat and A. Broder. A technique for measuring the relative size and overlap of public
Web search engines. In Proceedings of the 7th International World Wide Web Conference
(WWW7), pages 379–388, 1998.

[7] N. Blachman. Google guide. http://www.googleguide.com.

[8] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing markov chain on a graph. SIAM Rev.,
46(4):667–689, 2004.

[9] E. T. Bradlow and D. C. Schmittlein. The little engines that could: Modeling the performance
of World Wide Web search engines. Marketing Science, 19:43–62, 2000.

[10] A. Broder, M. Fontoura, V. Josifovski, R. Kumar, R. Motwani, S. Nabar, R. Panigrahy,
A. Tomkins, and Y. Xu. Estimating corpus size via queries. In Proceedings of the 2006
ACM CIKM International Conference on Information and Knowledge Management, 2006. To
appear.

[11] F. Can, R. Nuray, and A. B. Sevdik. Automatic performance evaluation of Web search engines.
Information Processing and Management, 40:495–514, 2004.

54

[12] M. Cheney and M. Perry. A comparison of the size of the Yahoo! and Google indices. Available
at http://vburton.ncsa.uiuc.edu/indexsize.html, 2005.

[13] B. D. Davison. The potential of the metasearch engine. In Proceedings of the Annual Meeting
of the American Society for Information Science and Technology (ASIST), volume 41, pages
393–402, 2004.

[14] P. Diaconis and L. Saloff-Coste. What do we know about the Metropolis algorithm? J. of
Computer and System Sciences, 57:20–36, 1998.

[15] dmoz. The open directory project. http://dmoz.org.

[16] A. Dobra and S. E. Fienberg. How large is the World Wide Web? Web Dynamics, pages
23–44, 2004.

[17] D. Gillman. A Chernoff bound for random walks on expander graphs. SIAM J. on Computing,
27(4):1203–1220, 1998.

[18] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press,
3rd edition, 1996.

[19] Google Inc. Google. http://www.google.com.

[20] M. Gordon and P. Pathak. Finding information on the World Wide Web: the retrieval effec-
tiveness of search engines. Information Processing and Management, 35(2):141–180, 1999.

[21] A. Gulli and A. Signorini. The indexable Web is more than 11.5 billion pages. In Proceedings
of the 14th international conference on World Wide Web (WWW) - Special interest tracks and
posters, pages 902–903, 2005.

[22] W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[23] D. Hawking, N. Craswel, P. Bailey, and K. Griffiths. Measuring search engine quality. Infor-
mation Retrieval, 4(1):33–59, 2001.

[24] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. Measuring index quality
using random walks on the Web. In Proceedings of the 8th International World Wide Web
Conference, pages 213–225, May 1999.

[25] M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On near-uniform URL
sampling. In Proceedings of the 9th International World Wide Web Conference, pages 295–
308, May 2000.

[26] T. C. Hesterberg. Advances in Importance Sampling. PhD thesis, Stanford University, 1988.

[27] N. Kahale. Large deviation for Markov chains. Combinatorics, Probability and Computing,
6:465–474, 1997.

[28] S. Lawrence and C. L. Giles. Searching the World Wide Web. Science, 5360(280):98, 1998.

55

[29] S. Lawrence and C. L. Giles. Accessibility of information on the Web. Nature, 400:107–109,
1999.

[30] J. S. Liu. Metropolized independent sampling with comparisons to rejection sampling and
importance sampling. Statistics and Computing, 6:113–119, 1996.

[31] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, 2001.

[32] A. Marshal. The use of multi-stage sampling schemes in Monte Carlo computations. In
M. Meyer, editor, Symposium on Monte Carlo Methods, volume 21, pages 123–140, New York,
1956. Wiley.

[33] T. Mayer. Our blog is growing up - and so has our index. Available at http://www.

ysearchblog.com/archives/000172.html, 2005.

[34] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state
calculations by fast computing machines. J. of Chemical Physics, 21:1087–1091, 1953.

[35] Microsoft Corporation. MSN Search. search.msn.com.

[36] G. Price. More on the total database size battle and Googlewhacking with Yahoo. Available
at http://blog.searchenginewatch.com/blog/050811-231448, 2005.

[37] P. Rusmevichientong, D. Pennock, S. Lawrence, and C. L. Giles. Methods for sampling pages
uniformly from the World Wide Web. In Proceedings of AAAI Fall Symposium on Using
Uncertainty within Computation, 2001.

[38] D. Siegmund. Sequential Analysis - Tests and Confidence Intervals. Springer-Verlag, 1985.

[39] A. J. Sinclair and M. R. Jerrum. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82:93–133, 1989.

[40] J. Véronis. Yahoo: Missing pages? (2). http://aixtal.blogspot.com/2005/08/

yahoo-missing-pages-2.html, 2005.

[41] J. von Neumann. Various techniques used in connection with random digits. In John von
Neumann, Collected Works, volume V. Oxford, 1963.

[42] Yahoo! Inc. Yahoo! http://www.yahoo.com.

A Approximate Monte Carlo methods – Proofs

A.1 Approximate rejection sampling

Theorem 6 (restated) The sampling distribution of the approximate rejection sampling procedure
is:

π′(x) = π(x)

p(x)
q(x)

Eπ

(

p(X)
q(X)

) .

56

The expected number of samples from p needed to generate each sample from π′ is:

CZq̂

Zπ̂ Eπ

(

p(X)
q(X)

) .

Proof. We start by finding a closed form expression for π′. Let X denote a random sample from p.
Let Z be a 0-1 random variable, which is 1 with probability r′

rs
(X) and 0 otherwise. Z corresponds

to the outcome of the coin toss in the acceptance-rejection procedure of approximate rejection
sampling. The procedure returns X as a sample if and only if Z = 1. Therefore, π′ is the distribution
of X conditioned on the event “Z = 1”. In other words, for all x ∈ supp(π),

π′(x) = Pr(X = x|Z = 1).

By Bayes rule,

Pr(X = x|Z = 1) =
Pr(Z = 1|X = x) · Pr(X = x)

Pr(Z = 1)
=

r′
rs

(x) p(x)

Pr(Z = 1)
.

Expanding over all possibilities for X, we have:

Pr(Z = 1) =
∑

y∈supp(π)

Pr(Z = 1|X = y) · Pr(X = y) =
∑

y∈supp(π)

r′
rs

(y) p(y).

Hence,

Pr(X = x|Z = 1) =
r′
rs

(x) p(x)
∑

y∈supp(π) r′
rs

(y) p(y)
.

Recalling the definition of r′
rs

, we have:

π′(x) = Pr(X = x|Z = 1) =

π̂(x)
Cq̂(x) p(x)

∑

y∈supp(π)
π̂(y)

Cq̂(y) p(y)
=

π(x)Zπ̂

Cq(x)Zq̂
p(x)

∑

y∈supp(π)
π(y)Zπ̂

Cq(y)Zq̂
p(y)

=
π(x)p(x)

q(x)
∑

y∈supp(π) π(y)p(y)
q(y)

= π(x)

p(x)
q(x)

Eπ

(

p(X)
q(X)

) .

We now turn to calculating the cost of the approximate rejection sampling procedure. The proce-
dure generates samples from p until the acceptance-rejection procedure accepts. The probability of
acceptance is Pr(Z = 1), and thus the number of samples generated from p is a geometric random
variable whose probability of success is Pr(Z = 1). Its expectation is 1/Pr(Z = 1). Let us then
calculate this probability:

Pr(Z = 1) =
∑

y∈supp(π)

r′
rs

(y) p(y) =
∑

y∈supp(π)

π(y)Zπ̂

Cq(y)Zq̂

p(y)

=
Zπ̂

CZq̂

·
∑

y∈supp(π)

π(y)
p(y)

q(y)

=
Zπ̂

CZq̂

· Eπ

(

p(X)

q(X)

)

.

57

Proposition 7 (restated)

||π′ − π|| =
1

2
ndevπ

(

p(X)

q(X)

)

.

Proof.

||π′ − π|| =
1

2

∑

x∈supp(π)

∣

∣π′(x) − π(x)
∣

∣ =
1

2

∑

x∈supp(π)

∣

∣

∣

∣

∣

∣

π(x)

p(x)
q(x)

Eπ

(

p(X)
q(X)

) − π(x)

∣

∣

∣

∣

∣

∣

=
1

2
·

1

Eπ

(

p(X)
q(X)

) ·
∑

x∈supp(π)

π(x)

∣

∣

∣

∣

p(x)

q(x)
− Eπ

(

p(X)

q(X)

)
∣

∣

∣

∣

=
1

2
·

1

Eπ

(

p(X)
q(X)

) · devπ

(

p(X)

q(X)

)

=
1

2
ndevπ

(

p(X)

q(X)

)

.

A.2 Approximate importance sampling

Theorem 8 (restated) Let

µ̂′ =
µ̂′

1

µ̂′
2

=
1
n

∑n
i=1 f(Xi)w

′(Xi)
1
n

∑n
i=1 w′(Xi)

be the estimator produced by the approximate importance sampling procedure for the parameter
Eπ(f(X)). Then,

Ep(µ̂
′
1)

Ep(µ̂
′
2)

= Eπ(f(X)) +
covπ

(

f(X), p(X)
q(X)

)

Eπ

(

p(X)
q(X)

) .

Proof. Since X1, . . . ,Xn are i.i.d. random variables, it suffices to analyze the expectations of f(X)w′(X)
and w′(X), where X ∼ p.

Ep(f(X)w′(X)) =
∑

x∈U

p(x) f(x)
π̂(x)

q̂(x)

=
Zπ̂

Zq̂

∑

x∈U

π(x) f(X)
p(x)

q(x)

=
Zπ̂

Zq̂

Eπ

(

f(X)
p(X)

q(X)

)

.

58

Ep(w
′(X)) =

∑

x∈U

p(x)
π̂(x)

q̂(x)
=

Zπ̂

Zq̂

∑

x∈U

π(x)
p(x)

q(x)

=
Zπ̂

Zq̂

Eπ

(

p(X)

q(X)

)

.

Therefore,

Ep(µ̂
′
1)

Ep(µ̂′
2)

=
Ep(f(X)w′(X))

Ep(w′(X))
=

Zπ̂

Zq̂
· Eπ

(

f(X) p(X)
q(X)

)

Zπ̂

Zq̂
· Eπ

(

p(X)
q(X)

)

=
covπ

(

f(X), p(X)
q(X)

)

+ Eπ(f(X)) Eπ

(

p(X)
q(X)

)

Eπ

(

p(X)
q(X)

)

= Eπ(f(X)) +
covπ

(

f(X), p(X)
q(X)

)

Eπ

(

p(X)
q(X)

) .

A.3 Approximate Metropolis-Hastings

Theorem 9 (restated) Let P ′
mh

be the transition matrix of the approximate Metropolis-Hastings
algorithm. Then, P ′

mh
forms an ergodic Markov chain and its unique limit distribution is π′.

Proof. The transition matrix of approximate MH is:

P ′
mh

(x, y) =

{

P (x, y) r′
mh

(x, y), if x 6= y,
P (x, x) r′

mh
(x, x) + 1 −

∑

z∈U P (x, z) r′
mh

(x, z), if x = y.

Recall that:

r′
mh

(x, y) = min

{

π(y) q(x)

π(x) q(y)
, 1

}

.

Since π(x) > 0 and q(x) > 0 for all x ∈ U , then r′
mh

(x, y) > 0 for all x, y ∈ U . It follows that
whenever P (x, y) > 0, then also P ′

mh
(x, y) > 0. This implies that the Markov chain graph GP ′

mh

corresponding to P ′
mh

contains all the edges of the Markov chain graph GP corresponding to P .
Since P is ergodic, we know that GP is strongly connected and aperiodic. As strong connectedness
and aperiodicity are invariant under addition of edges, it follows that also GP ′

mh

must be strongly
connected and aperiodic, and thus P ′

mh
is ergodic.

As P ′
mh

is ergodic, the fundamental theorem of Markov chains tell us that it has a unique limit
distribution η. Furthermore, η is the unique stationary distribution of P ′

mh
. We use this fact to

calculate a closed form expression for η. It will then be evident that η = π′.

59

Let R be the following |U| × |U| matrix:

R(x, y) = P (x, y) r′
mh

(x, y).

Let D be the following |U| × |U| diagonal matrix:

D(x, y) =

{

0, if x 6= y,
∑

z∈U R(x, z), if x = y.

Let I be the |U| × |U| identity matrix. Using R, D, and I we can express P ′
mh

as follows:

P ′
mh

= R + I − D.

Therefore,
π′P ′

mh
= π′R + π′ − π′D.

Thus, in order to show that π′ is a stationary distribution of P ′
mh

, it suffices to prove that

π′R = π′D.

For any given x, y ∈ U , there are three possible situations, depending on whether π(y) q(x)
π(x) q(y) equals 1,

is greater than 1, or is less than 1. We define three predicates φ1, φ2, φ3 specifying these situations:

φ1(x, y) =

{

1, if π(y) q(x)
π(x) q(y) = 1,

0, otherwise.

φ2(x, y) =

{

1, if π(y) q(x)
π(x) q(y) > 1,

0, otherwise.

φ3(x, y) =

{

1, if π(y) q(x)
π(x) q(y) < 1,

0, otherwise.

It is easy to verify that for every x, y ∈ U , the following hold:

1. φ1(x, y) + φ2(x, y) + φ3(x, y) = 1.

2. φ1(x, y) = φ1(y, x).

3. φ2(x, y) = φ3(y, x) and φ3(x, y) = φ2(y, x).

4. If φ1(x, y) = 1 or φ2(x, y) = 1, then r′
mh

(x, y) = 1.

5. If φ1(x, y) = 1 or φ3(x, y) = 1, then r′
mh

(x, y) = π(y) q(x)
π(x) q(y) .

We now use these predicates to break R and D into pieces. For each i = 1, 2, 3, let Ri be the
following matrix:

Ri(x, y) = R(x, y) φi(x, y).

Clearly,
R = R1 + R2 + R3.

60

For each i = 1, 2, 3, let Di be a diagonal matrix whose diagonal elements are the following:

Di(x, x) =
∑

z∈U

Ri(x, z).

It can be easily verified that since R = R1 + R2 + R3, then also:

D = D1 + D2 + D3.

In order to prove that π′R = π′D, we will prove that:

π′R1 = π′D1, π′R2 = π′D3, π′R3 = π′D2. (1)

Before we prove these equalities, we observe the following characterizations of R1, R2, R3. For
i = 1, 2,

Ri(x, y) = P (x, y) r′
mh

(x, y) φi(x, y) = P (x, y) φi(x, y),

while for i = 1, 3,

Ri(x, y) = P (x, y) r′
mh

(x, y) φi(x, y) = P (x, y)
π(y) q(x)

π(x) q(y)
φi(x, y).

(Note that R1 has two equivalent characterizations.)

We can now prove the equalities in Equation (1). Let i ∈ {1, 2}. Using the characterization of
R1, R2 and the definition of π′, we have for every x ∈ U ,

(π′Ri)(x) =
∑

y∈U

π′(y) Ri(y, x)

=
∑

y∈U

π(y)

p(y)
q(y)

Eπ

(

p(X)
q(X)

) P (y, x) φi(y, x).

As P is a reversible Markov chain, P (y, x) = P (x, y)p(x)
p(y) . Furthermore, recall that φi(y, x) =

φj(x, y), where if i = 1, then j = 1, and if i = 2, then j = 3. Therefore,

(π′Ri)(x) =
∑

y∈U

π(y)

p(y)
q(y)

Eπ

(

p(X)
q(X)

) P (x, y)
p(x)

p(y)
φj(x, y)

=
∑

y∈U

p(x)

Eπ

(

p(X)
q(X)

) P (x, y)
π(y)

q(y)
φj(x, y).

By multiplying and dividing each term by q(x)
π(x) , we obtain:

(π′Ri)(x) =
∑

y∈U

π(x)

p(x)
q(x)

Eπ

(

p(X)
q(X)

) P (x, y)
π(y) q(x)

π(x) q(y)
φj(x, y).

61

Using the definition of π′ and the characterization for R1, R3, we have:

(π′Ri)(x) = π′(x)
∑

y∈U

Rj(x, y) = π′(x) Dj(x, x) = (π′Dj)(x).

This proves that π′R1 = π′D1 and π′R2 = π′D3. We are left to prove that π′R3 = π′D2. Using the
characterization of R3 and the definition of π′, we have for every x ∈ U ,

(π′R3)(x) =
∑

y∈U

π′(y) R3(y, x)

=
∑

y∈U

π(y)

p(y)
q(y)

Eπ

(

p(X)
q(X)

) P (y, x)
π(x) q(y)

π(y) q(x)
φ3(y, x)

=
∑

y∈U

π(x)

p(y)
q(x)

Eπ

(

p(X)
q(X)

) P (y, x) φ3(y, x).

Using the reversibility of P and the fact φ3(y, x) = φ2(x, y), we have:

(π′R3)(x) =
∑

y∈U

π(x)

p(y)
q(x)

Eπ

(

p(X)
q(X)

) P (x, y)
p(x)

p(y)
φ2(x, y)

=
∑

y∈U

π(x)

p(x)
q(x)

Eπ

(

p(X)
q(X)

) P (x, y)φ2(x, y).

By the definition of π and the characterization of R2, we have:

(π′R3)(x) = π′(x)
∑

y∈U

P (x, y) φ2(x, y) = π′(x)
∑

y∈U

R2(x, y) = π′(x)D2(x, x) = (π′D2)(x).

This shows that π′R3 = π′D2.

A.4 Approximate Maximum Degree

Theorem 10 (restated) Let P ′
md

be the transition matrix of the approximate Maximum Degree
procedure. Then, P ′

md
forms an ergodic Markov chain. The unique limit distribution of P ′

md
is π′.

Proof. The transition matrix of approximate MD is:

P ′
md

(x, y) =

{

P (x, y) r′
md

(x), if x 6= y,
P (x, x) r′

md
(x) + 1 − r′

md
(x), if x = y.

Since q̂(x) > 0 for all x ∈ U , it can be seen from the above expression that for all x 6= y ∈ U ,
P ′

md
(x, y) > 0 if and only if P (x, y) > 0. Furthermore, if P ′

md
(x, x) = 0, then also P (x, x) = 0 (the

converse is not necessarily true). We conclude that the Markov chain graph GP ′
md

corresponding
to P ′

md
contains all the edges of the Markov chain graph GP corresponding to P (the only possible

62

extra edges in GP ′
md

are self loops). As P is ergodic, and ergodicity is invariant under addition of
edges to the Markov chain graph, we conclude that also P ′

md
is ergodic.

We next prove that π′ is a stationary distribution of P ′
md

. This would imply that π′ is also the
unique limit distribution of P ′

md
.

Let Q be the following |U| × |U| diagonal matrix:

Q(x, y) =

{

0, if x 6= y,
q̂(x)

C π̂(x) , if x = y.

Let I be the |U| × |U| identity matrix. Using Q and I we can express P ′
md

in terms of P :

P ′
md

= QP + I − Q.

Since η is a stationary distribution of P ′
md

, we have: ηP ′
md

= η. Therefore,

η(QP + I − Q) = η.

Hence,
ηQP = ηQ.

Let η′ = ηQ
||ηQ||1

be the normalized form of ηQ. Note that also η′ is a fixed point of P : η′P = η′.

Furthermore, η′ is a non-negative vector, whose entries sum to 1. Therefore, η′ is in fact a stationary
distribution of P . However, as P is ergodic, p is the unique stationary distribution of P . We thus
conclude:

ηQ

||ηQ||1
= η′ = p.

Hence,
η

||ηQ||1
= pQ−1. (2)

Thus, η and pQ−1 are equal, up to a scalar factor. Recall that η is a probability distribution, and
thus ||η||1 = 1. Therefore, we must have:

η =
pQ−1

||pQ−1||1
.

Let us further expand this formula. For each x ∈ U , we have:

(pQ−1)(x) =
∑

y∈U

p(y) Q−1(y, x) = p(x)
C π̂(x)

q̂(x)
= π(x)

p(x)

q(x)
·
C Zπ̂

Zq̂

.

Therefore,

||pQ−1||1 =
∑

x∈U

|(pQ−1)(x)| =
∑

x∈U

π(x)
p(x)

q(x)
·
C Zπ̂

Zq̂

=
C Zπ̂

Zq̂

∑

x∈U

π(x)
p(x)

q(x)
=

C Zπ̂

Zq̂

Eπ

(

p(X)

q(X)

)

.

63

We conclude that for all x ∈ U ,

η(x) =
(pQ−1)(x)

||pQ−1||1
= π(x)

p(x)

q(x)
·
C Zπ̂

Zq̂

·
Zq̂

C Zπ̂

·
1

Eπ

(

p(X)
q(X)

) = π(x)

p(x)
q(x)

Eπ

(

p(X)
q(X)

) = π′(x).

B Pool-based sampler – Proofs

B.1 Analysis of sampling recall and sampling bias

Theorem 18 (restated) The sampling recall of the PB sampler is equal to:

recallπ(P+) = π(DP+).

The sampling bias of the PB sampler is at most:

1

2
ndevπP+

(vdensityP(X)),

where πP+ is the restriction of π to DP+ ∩ supp(π).

Proof. The analysis of the recall of the PB sampler is identical to the recall analysis shown in the
proof of Proposition 15. We therefore omit the details.

Let η be the sampling distribution of the PB sampler. Similarly to the proof of Proposition 15, it
can be shown that:

supp(η) = DP+ ∩ supp(π).

Hence, the restriction of π to supp(η), i.e., πsupp(η), is exactly πP+ . The sampling bias of the PB
sampler is therefore the distance ||η − πP+ ||.

We note that the scenario we face here is exactly the one captured by Theorem 6: we have a rejection
sampling procedure whose trial distribution does not match the unnormalized trial weights. The
target distribution in this case is π̂P+ and the trial distribution is dP+ . Let us denote the distribution
induced by the trial weights by q. We next calculate a closed form expression for q.

The support of q is the same as the support of dP+ , because only documents that are sampled
from dP+ are assigned an unnormalized trial weight. Hence, supp(q) = supp(dP+) = DP+ . For
each x ∈ DP+ the unnormalized trial weight is degP(x). Therefore, the normalization constant is:
Zq̂ =

∑

x∈DP+
degP(x) = degP(DP+). Therefore, for every document x ∈ DP+ we have:

q(x) =
degP (x)

degP(DP+)
.

Applying Theorem 6, we bound the bias of the PB sampler as follows:

||η − πP+ || ≤
1

2
ndevπP+

(

dP+(X)

q(X)

)

.

64

For each x ∈ DP+ , we have:

dP+(x)

q(x)
=

degP+
(x)

degP+
(DP+

)

degP (x)
degP (DP+

)

= vdensityP(x)
degP(DP+)

degP+
(DP+)

.

Therefore,

ndevπP+

(

dP+(X)

q(X)

)

= ndevπP+

(

vdensityP(X) ·
degP(DP+)

degP+
(DP+)

)

= ndevπP+
(vdensityP(X)) ,

where the latter equality follows from the fact the normalized mean deviation is invariant under
multiplication by a scalar.

Theorem 19 (restated) The sampling bias of the PB sampler is at most:

ovprob(wP)

1 − ovprob(wP)
.

Proof. In order to prove the theorem, we prove that

1

2
· ndevπP+

(vdensityP(X)) ≤
ovprob(wP)

1 − ovprob(wP)
.

Let µ = EπP+
(vdensityP(X)). Then,

1

2
· ndevπP+

(vdensityP(X)) =
EπP+

(| vdensityP(X) − µ|)

2µ
.

For a document x ∈ DP+ , we define the invalidity density of x as:

invdensityP(x) = 1 − vdensityP(x).

Then,
EπP+

(| vdensityP(X) − µ|)

2µ
=

EπP+
(|1 − invdensityP(X) − µ|)

2µ
.

By the triangle inequality, for every x ∈ DP+ ,

|1 − invdensityP(x) − µ| ≤ 1 − µ + invdensityP(x) = 1 − µ + 1 − vdensityP(x).

Hence,

EπP+
(|1 − invdensityP(X) − µ|)

2µ
≤

EπP+
(1 − µ + 1 − vdensityP(X))

2µ

=
1 − µ + 1 − EπP+

(vdensityP(X))

2µ
(3)

=
1 − µ + 1 − µ

2µ
=

1 − µ

µ
.

65

Next, we relate µ = EπP+
(vdensityP(X)) to ovprob(wP).

EπP+
(vdensityP(X)) =

∑

x∈DP+

πP+(x) ·
degP+

(x)

degP(x)
=

∑

x∈DP+

πP+(x)

degP(x)

∑

q∈queriesP+
(x)

1

=
∑

q∈P+

∑

x∈results(q)

πP+(x)

degP(x)
=

∑

q∈P+

wP(q) = wP(P+)

Since underflowing queries in P have zero weight, then

wP(P+) = 1 − wP(P−) = 1 − Pr
wP

(Q ∈ P−)

= 1 − Pr
wP

(card(Q) > k) = 1 − ovprob(wP).

Substituting back in Equation 3, we have:

1

2
· ndevπP+

(vdensityP(X)) ≤
1 − (1 − ovprob(wP))

1 − ovprob(wP)
=

ovprob(wP)

1 − ovprob(wP)
.

B.2 Analysis of query and fetch costs

Theorem 21 (restated) The query cost of the PB sampler is at most:

C · degP+
(DP+)

Zπ̂ · π(DP+) · (1 − ovprob(wP))
·

(

|P|

|P+|
·

k

avgq∈P+
card(q)

+ qcost(π̂)

)

.

The fetch cost of the PB sampler is at most:

C · degP+
(DP+)

Zπ̂ · π(DP+) · (1 − ovprob(wP))
· (1 + fcost(π̂)).

Proof. Search engine queries are made in two of the subroutines of the PB sampler: (1) In DDSam-
pler, which selects a random document from the results of the query Q that it gets from QCSam-
pler; and (2) In QCSampler, in order to determine the cardinality of the selected random query Q.
Queries can also be possibly made in the getWeightπ̂(x) procedure, when calculating the target
weight π̂(x) of a document x. Note that DDSampler needs the results of a query Q only after Q has
already been processed by QCSampler and thus has already been submitted to the search engine.
Therefore, by careful data management, we can keep the results already returned for Q in memory,
and hence avoid the additional search engine queries in DDSampler. We assume, then, from now
on that DDSampler does not submit queries to the search engine.

In order to analyze the total number of queries made by PBSampler, we define the following random
variables: (1) T is the number of iterations made in the loop of the outer procedure. Note that T
determines exactly the number of calls to the getWeightπ̂(x) procedure as well as the number of

66

calls to the QCSampler procedure. (2) Si (for i = 1, 2, . . .) is the number of iterations made in the
loop of QCSampler during its i-th invocation. The total number of queries submitted to the search
engine by the PB sampler is at most

∑T
i=1 Si + T · qcost(π̂).

The query cost of PBSampler is then E(
∑T

i=1 Si) + E(T) · qcost(π̂). In order to analyze the first
term, we resort to Wald’s identity. Note that the conditions of Wald’s identity are met: S1, S2, . . .
are i.i.d. random variables and the event {T = i} is independent of Si+1, Si+2, Hence, the query
cost of the PB sampler is E(T) · E(S) + E(T) · qcost(π̂) = E(T) · (E(S) + qcost(π̂)), where S is the
random number of iterations in a single invocation of QCSampler.

In order to bound E(T), we analyze the parameters of the rejection sampling applied at the outer
procedure:

1. The target distribution is πP+ . As shown in the proof of Proposition 15, the corresponding
normalization constant is: Zπ̂P+

= Zπ̂ · π(DP+).

2. The trial distribution is dP+ .

3. As shown in the proof of Theorem 18, the trial weight distribution is q. Its normalization
constant is: Zq̂ = degP(DP+).

As shown in the proof of Theorem 18,

EπP+

(

dP+(X)

q(X)

)

=
degP(DP+)

degP+
(DP+)

· EπP+
(vdensityP(X)).

In Theorem 19 we showed:

EπP+
(vdensityP(X)) = 1 − ovprob(wP).

Therefore, applying Theorem 6, we have:

E(T) =
C · Zq̂

Zπ̂P+
· EπP+

(

dP+
(X)

q(X)

)

=
C · degP(DP+)

Zπ̂ · π(DP+) ·
degP (DP+

)

degP+
(DP+

) · (1 − ovprob(wP))

=
C · degP+

(DP+)

Zπ̂ · π(DP+) · (1 − ovprob(wP))
(4)

Next, we bound the expected number of iterations made in the loop of QCSampler. To this end,
we analyze the parameters of the rejection sampling applied at QCSampler:

1. The target distribution is cP+ and its normalization constant is: ZĉP+
= card(P+).

2. The trial distribution is the uniform distribution on P and its normalization constant is:
ZûP

= |P|. The trial weight distribution is identical to the trial distribution in this case.

67

3. The envelope constant is C = k.

By the analysis of rejection sampling, we have:

E(S) =
k · |P|

card(P+)
=

|P|

|P+|
·

k

avgq∈P+
card(q)

. (5)

Combining the expressions derived at Equations 4 and 5, the total query cost of the PB sampler is
at most:

E(T) · (E(S) + qcost(π̂)) =

C · degP+
(DP+)

Zπ̂ · π(DP+) · (1 − ovprob(wP))
·

(

|P|

|P+|
·

k

avgq∈P+
card(q)

+ qcost(π̂)

)

.

Next, we analyze the fetch cost of the PB sampler. Pages are fetched in two of the sampler’s
procedures: (1) In the outer procedure, in order to compute the degrees of documents; and (2) In
the getWeightπ̂(x) procedure, in order to compute the target weight of documents. The number of
fetches is determined directly by the number of iterations in the outer procedure, which we denoted
by T . Therefore, the fetch cost is at most E(T) · (1 + fcost(π̂)). Using the analysis of E(T) above,
the fetch cost is at most:

C · degP+
(DP+)

Zπ̂ · π(DP+) · (1 − ovprob(wP))
· (1 + fcost(π̂)).

C Random walk based sampler – Proofs

Theorem 24 (restated) Let ε > 0. Suppose we run the MH sampler (resp., the MD sampler)
with a burn-in period B that guarantees the approximate MH Markov chain (resp., approximate MD
Markov chain) reaches a distribution, which is at distance of at most ε from the limit distribution.
Then, the sampling bias of the MH sampler (resp., MD sampler) is at most:

1

2
ndevπF

(vdensityP(X)) + ε.

The sampling recall of the MH sampler (resp., MD sampler) is at least:

π(F) · (1 −
1

2
ndevπF

(vdensityP(X)) − ε).

Proof. By Theorems 10 and 9, the limit distributions of the MH and the MD samplers are equal
to:

η(x) = πF (x)

dF (x)
qF (x)

EπF

(

dF (X)
qF (X)

) .

68

By Proposition 7, the distance between this limit distribution and the target distribution πF is
bounded as follows:

||η − πF || ≤
1

2
ndevπF

(

dF (X)

qF (X)

)

.

Now, for every x ∈ F ,

dF (x)

qF (x)
=

degP+
(x)

degP+
(F)

degP (x)
degP (F)

= vdensityP(x) ·
degP(F)

degP+
(F)

.

Since normalized mean deviation is invariant under multiplication by scalars, we therefore have:

||η − πF || ≤
1

2
ndevπF

(vdensity(X)).

Consider now the distribution η′ obtained after running the approximate MH Markov chain (resp.,
MD Markov chain) for B steps. η′ is the distribution of samples generated by the procedure. Since
B ≥ Tε(P

′
mh

) (resp., B ≥ Tε(P
′
md

)), then

||η′ − η|| ≤ ε.

Therefore, by the triangle inequality,

||η′ − πF || ≤
1

2
ndevπF

(vdensity(X)) + ε. (6)

We next show that this gives also an upper bound on the sampling bias, i.e., on ||η′supp(η′)−πsupp(η′)||.

||η′supp(η′) − πsupp(η′)|| =
1

2

∑

x∈supp(η′)

∣

∣

∣

∣

η′(x) −
π(x)

π(supp(η′))

∣

∣

∣

∣

≤
1

2

∑

x∈supp(η′)

∣

∣η′(x) − πF (x)
∣

∣+
1

2

∑

x∈supp(η′)

∣

∣

∣

∣

πF (x) −
π(x)

π(supp(η′))

∣

∣

∣

∣

(7)

Let us bound each of the two above sums separately. To bound the first one, we resort to Equation
6:

1

2

∑

x∈supp(η′)

∣

∣η′(x) − πF (x)
∣

∣ = ||η′ − πF || −
1

2

∑

x∈F\supp(η′)

πF (x)

= ||η′ − πF || −
1

2
(1 − πF (supp(η′))). (8)

69

As for the second sum,

1

2

∑

x∈supp(η′)

∣

∣

∣

∣

πF (x) −
π(x)

π(supp(η′))

∣

∣

∣

∣

=
1

2

∑

x∈supp(η′)

∣

∣

∣

∣

πF (x) −
πF (x)

πF (supp(η′))

∣

∣

∣

∣

=
1

2

(

1

πF (supp(η′))
− 1

)

∑

x∈supp(η′)

πF (x)

=
1

2

(

1

πF (supp(η′))
− 1

)

· πF (supp(η′))

=
1

2
(1 − πF (supp(η′))) (9)

Combining Equations (6)–(9), we have:

||η′supp(η′) − πsupp(η′)|| ≤ ||η′ − πF || −
1

2
(1 − πF (supp(η′))) +

1

2
(1 − πF (supp(η′)))

= ||η′ − πF || ≤
1

2
ndevπF

(vdensity(X)) + ε.

This gives us the desired upper bound on the sampling bias. We now turn to bounding the recall of
the MH and MD samplers. Using Equation (6) and the characterization of total variation distance
given in Lemma 2, we have:

|η′(supp(η′)) − πF (supp(η′))| ≤
1

2
ndevπF

(vdensity(X)) + ε.

Since η′(supp(η′)) = 1, then this implies:

π(supp(η′)) = π(F) · πF (supp(η′)) ≥ π(F) · (1 −
1

2
ndevπF

(vdensity(X)) − ε).

This gives us the lower bound on the recall of the MH and MD samplers.

70

	…/2

