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Abstract

In this paper a system for bandwidth extension of telephone-speech, aided by data em-

bedding, is presented. The proposed system uses the transmitted analog narrowband speech

signal as a carrier of the side information needed to carry out the bandwidth extension. The

upper-band of the wideband speech is reconstructed at the receiving end from two compo-

nents: a synthetic wideband excitation signal, generated from the narrowband telephone-

speech and a wideband spectral envelope, parametrically represented and transmitted as

embedded-data in the telephone-speech. We propose a novel data embedding scheme, in

which the scalar Costa scheme is combined with an auditory masking model allowing high

rate transparent embedding, while maintaining a low bit error rate. The signal is trans-

formed to the frequency domain via the discrete Hartley transform (DHT) and is partitioned

into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying

the DHT coefficients. In our simulations, high quality wideband speech was obtained from

speech transmitted over a telephone line (characterized by spectral magnitude distortion,

dispersion, and noise), in which side information data is transparently embedded at the rate

of 600 information bits/second and with a bit error rate of approximately 3 · 10−4. In a

listening test, the reconstructed wideband speech was preferred (at different degrees) over

conventional telephone speech in 92.5% of the test utterances.

Keywords and phrases: speech bandwidth extension, auditory masking, data embed-

ding, digital watermarking, scalar Costa scheme.
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1 Introduction

Public telephone systems reduce the bandwidth of the transmitted speech signal from an ef-
fective frequency range of 50Hz to 7KHz to the range of 300Hz to 3.4KHz. The reduced
bandwidth leads to a characteristic thin and muffled sound of the so called telephone speech.
Listening tests have shown that the speech bandwidth affects the perceived speech quality [1].
Artificially extending the bandwidth of the narrowband (NB) speech signal can result in both
higher intelligibility and higher subjective quality of the reconstructed wideband (WB) speech.
Usually, the information required for speech bandwidth extension (SBE)[2] is generated from
the received NB speech or transmitted separately. Typically, the latter method results in higher
quality of the reconstructed WB speech.

A unique SBE system in which the transmission from and to the talker’s handset is analog,
and hence particulary suitable for the public telephone system, is suggested in this paper. The
proposed scheme uses the speech signal as a carrier of the side information required for SBE,
by auditory-transparent data-embedding, eliminating the need of an additional channel for the
side information while providing high quality reconstructed WB speech. This SBE application
could be attractive for enhancement of the conventional public telephone system, requiring only
DSP hardware operating at the receive and transmit sides of the telephone connection.

The structure of the SBE system is shown in Figure 1. The input to the system is a WB
speech signal, denoted by sWB, which is fed in parallel into the SBE encoder and data-embedding
blocks. The SBE encoder extracts the highband (HB) spectral parameters which are embedded
in the telephone-band frequency range of the WB input signal (i.e., in the NB signal) by the
data-embedding block. The modified NB speech is transmitted over a telephone-channel. At
the receiver, adaptive equalization is applied to reduce the channel spectral distortion. The
embedded-data is extracted from the NB speech signal at the channel equalizer output, and
used by the SBE decoder to reconstruct WB speech, denoted by ŝWB.

Figure 1: Speech bandwidth extension (SBE) system description.

The authors of [3], motivated by Costa’s work [4], proposed a practical data embedding
scheme, known as the scalar Costa scheme (SCS). The capacity of SCS is typically higher than
other proposed schemes, e.g., schemes based on spread-spectrum (SS) [5][6] or quantization index
modulation (QIM) [7]. However, the general method in [3] does not take into consideration
human perception models, such as human visual or human auditory models. SS-based data
embedding techniques that use a perceptual model in the embedding process were reported
in [5][6]. However, the disadvantage of this techniques is low embedded data rate, which is a
consequence of the SS principle. The authors of [8] proposed a data embedding scheme for
speech, which is also a part of a SBE application. In the data-embedding encoder of [8] an
excitation signal is first generated by filtering the NB speech signal with its corresponding
linear prediction analysis filter to produce an excitation signal. Then, the excitation signal is
projected to a subspace, where data embedding is applied using the vectorial form of QIM [7].
The NB speech with embedded data is produced by back projecting the modified subspace signal
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to the excitation signal space, and then filtering the excitation signal with the corresponding
linear prediction synthesis filter. The effect of the linear prediction analysis/synthesis filtering
can be interpreted as noise shaping of the watermark signal which then follows the spectral
characteristics of the speech. In the data-embedding decoder the identical transformation from
the NB speech signal to the subspace signal is implemented, which follows data extraction.

In this paper we propose a novel combination of the SCS data-embedding method with
an auditory masking model. In the proposed embedding scheme, the signal in the frequency
domain is partitioned into subbands and the data embedding parameters for each adaptively
selected subband are computed from the auditory masking threshold function and a channel
noise estimate. An effective choice of the embedding domain, namely the discrete Hartley
transform (DHT), is suggested and is found to have an advantage over the more common
DCT and DFT domains. Data is embedded by modifying the DHT coefficients according to the
principles of the SCS. A maximum likelihood detector is employed at the decoder for embedded-
data presence detection and data-embedding quantization-step estimation. Partial details and
preliminary results of the proposed data embedding scheme were reported by us in [9], without
any consideration of the current application, i.e., speech bandwidth extension.

The telephone line causes amplitude and phase distortion combined with µ-law (or A-law)
quantization noise and additive white Gaussian noise (AWGN). In [10][8] techniques for data-
embedding in telephone-speech are proposed, but only the channel noise (PCM, µ-law, ADPCM,
AWGN) is treated, disregarding the spectral distortion caused by the channel. In this work,
we apply adaptive equalization to reduce the channel spectral distortion. Although the channel
model in our work includes spectral distortion and dispersion, the achievable data-rate is much
higher than the data-rate reported in [10][8]. For the AWGN channel model of [10], the achiev-
able BER in our simulations is lower than the one reported in [10], and at the same time the
achievable data-rate is much higher.

This paper is organized as follows. The SBE encoder and decoder structures are described
in Section 2. In Section 3 the main principles of SCS are briefly reviewed and the combination
of SCS with an auditory perceptual model is described. Results of subjective listening tests and
objective evaluations are presented in Section 4, followed by conclusions in Section 5.

2 Speech Bandwidth Extension

In this section the part of the system performing SBE is described. We first describe the
general principles of SBE systems in Section 2.1, and continue with the proposed SBE encoder
and decoder structures details in Sections 2.2 and 2.3, respectively.

2.1 Principles of Speech Bandwidth Extension

Most of the works on SBE [11][12] use linear prediction (LP) techniques [13]. By these tech-
niques, the WB speech generation at the receiving end is divided into two separate tasks. The
first task is the generation of a WB excitation signal, and the second task is to determine the WB
spectral envelope, represented by linear prediction coefficients (LPCs) or transformed versions
like line spectral frequencies (LSF). Once these two components are generated, WB speech is
regenerated by filtering the WB excitation signal with the WB linear prediction synthesis filter.

The generation of the WB excitation signal and the WB spectral envelope can be done by
solely using the received NB speech signal [12][14]. The implicit assumption of such an approach
is that there is correlation between the low and high frequencies of the speech signal. In [12],
a dual codebook in which part of the codebook contains NB codewords and the other part
contains highband (HB) codewords is proposed. A chosen NB codeword, which is the most
similar to the input NB spectral envelope, points to a HB codebook. From this HB codebook,
a HB codeword is chosen. In [14], a statistical approach based on a hidden Markov model is
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used, which takes into account several features of the NB speech. Another approach is to code
and transmit side information about the HB portion of the speech signal. The WB speech is
then reconstructed at the encoder from the NB speech, and the received side information. This
approach is hybrid, because it artificially regenerates the high-frequency excitation information
from the NB speech signal, and obtains the high-frequency envelope information from the side
information [8][15][16][17]. Some systems, e.g. [18], make use of both correlation between the
low and high frequencies of the speech signal and side information, for the generation of the
HB portion of the speech signal. The quality of WB speech generated by the hybrid approach
is usually significantly better than the quality of WB speech generated by the NB speech only
based approach.

In this work we use the hybrid approach, with the side information being embedded in the
NB speech, like [8]. However, our proposed SBE and data-embedding schemes are different
from the schemes suggested in [8].

2.2 SBE Encoder Structure

The SBE encoder extracts the HB spectral parameters that will be embedded in the NB speech
signal. The parameters include a gain parameter and spectral envelope parameters for each
frame of the original WB speech signal.

The structure of the SBE encoder is shown in Figure 2. The input to the SBE encoder is
the original WB speech signal, denoted by sWB. The WB speech signal is fed in parallel into
three branches. We first describe the structure of each branch and in the sequel provide the
details of the main blocks.

Upper Branch In this branch, the WB speech is passed through a 2:1 decimation system
(composed of a low pass filter and a 2:1 down-sampler), obtaining a NB speech signal, denoted
by sNB. A time-domain LP analysis is performed on the NB signal, and the NB excitation
(or residual) signal is obtained by inverse filtering the NB speech signal by the analysis filter.
The NB excitation signal, denoted by eNB is then used for WB excitation regeneration at the
encoder. The encoder reconstructed WB excitation signal is denoted by êWB.

Middle Branch In this branch, the WB signal is analyzed by applying, like [8], a selective LP
analysis [19] to its HB, in the range 3-8KHz. The selective LP coefficients, aHB, are converted
into the LSF [20] representation, ωHB. The selective LSFs are quantized using a vector quan-
tizer. The LSFs codebook index is one of the transmitted parameters via data embedding. The
quantized selective LSFs are transformed into WB LPCs, denoted by âWB, which correspond
to the reconstructed WB spectral envelope. For the purpose of determining an appropriate HB
gain parameter, the WB LPCs are used to synthesize the WB reconstructed speech signal at
the encoder, denoted by s̃WB. In comparison, in [8] the selective LP coefficients are converted
into the cepstral domain and are quantized by a vector quantizer.

Lower Branch In the lower branch, the HB gain parameter, denoted by gHB, is computed
by minimizing the spectral distance between the original and synthesized WB speech signals,
in the 3-8KHz frequency range. After computing the gain, it is quantized, and the quantized
gain index is transmitted.

The transmitted information in each analysis frame thus includes the LSF codebook index
and the gain index (i.e., the indices of the parameters ω̂HB and ĝHB, marked by dashed lines).

In the next subsections, the details of the main SBE encoder blocks are given.
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Figure 2: SBE Encoder structure.

2.2.1 Wideband Excitation Generation Block

The WB excitation can be artificially generated from the NB excitation signal by one of the
methods described in [21]. The NB excitation signal is the output of inverse filtering by the
LP analysis filter, applied to the NB speech signal. As shown in Figure 3, the NB excitation
signal, eNB, is first passed through a 1:2 interpolation system (composed of a low pass filter
and a 1:2 up-sampler) to the WB speech sampling rate. It is known that rectifiers and limiters
typically expand the bandwidth of a signal. In our case, the interpolated NB excitation is
passed through a full-wave rectifier, which performs sample by sample rectification [21]. The
interpolated NB excitation is combined with the HB portion of the rectified signal, to produce an
artificially extended WB excitation, denoted by ẽWB. This artificially extended WB excitation
has a downward tilt in the high-frequencies due to the rectification operation. The tilt can be
flattened by a whitening filter that performs inverse filtering. The filter is obtained by an LP
analysis of the artificially extended WB excitation, ẽWB. The output of the whitening filter,
which is the reconstructed WB excitation signal, is denoted by êWB.

Figure 3: Artificial WB excitation generation.

2.2.2 Selective LP, LPC to LSF conversion, and LSF Quantization Blocks

Spectral LP, suggested by Makhoul [19], is a spectral modelling technique in which the signal
spectrum is modelled by an all-pole spectrum. In selective (spectral) LP, an all-pole model is
applied to a selected portion of the spectrum.
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In the case of SBE, the selective LP technique is applied to the HB of the original WB
speech, and the spectral envelope of the HB is computed. If, alternatively, a time domain LP
analysis is performed on the HB speech, one would need to apply to the WB speech a sharp
highpass filter and down-sampling. The filtering operation is costly and is completely eliminated
by working in the frequency domain, using the selective LP technique.

To compute the HB spectral envelope, selective LP on the 3-8KHz frequency range is per-
formed on each frame. The selective LPCs are subsequently converted to LSFs and are quantized
using an LSF codebook. An LSF vector quantizer (VQ) codebook was designed by the LBG
algorithm [22].

2.2.3 Wideband LPC Codebook and Wideband Synthesis Blocks

The problem of WB spectral envelope computation is stated as follows: Given the selective
LPCs (or equivalently LSFs) in the frequency range of 3-8KHz, the task is to find WB LPCs in
the frequency range 0-8KHz such that an appropriately defined spectral distance between the
selective and WB spectral envelopes will be minimal in the HB frequency range of 3-8KHz.

The spectral envelope shape has no importance in the 0-3KHz range since the reconstructed
WB speech, generated at the decoder, uses the transmitted NB speech in that frequency range.
Hence, the method suggested here for WB spectral envelope computation is based on creating
a 0-3KHz spectral envelope by a symmetric folding (mirroring) of the spectral envelope at the
frequency range 3-6KHz (in the DFT domain) about the frequency 3KHz. The folding operation
is followed by WB LPCs computation using spectral LP. To generate the WB LPC codebook,
for each codeword of the given HB LSF codebook, the spectral envelope is reconstructed, and
then the symmetric folding operation followed by WB LPCs computation using spectral LP is
performed, resulting in a corresponding WB LPC codeword. The generation of the WB LPC
codebook is done once, in the design stage. The HB LSF codebook is used for determining the
LSF index for a given HB LSF vector. The same index is used to extract the corresponding
WB envelope parameters from the WB LPC codebook. The SBE encoder and decoder store
the same WB LPC codebook, and use it to generate the WB spectral envelope from a given
index of a quantized HB LSF vector.

2.2.4 Gain Estimation and Gain Quantization Blocks

The computation of the HB gain is done to minimize the spectral distance between the spectral
envelopes of the original WB speech signal and the reconstructed WB speech signal, in the
3-8KHz frequency range. The spectral difference between these spectral envelopes originates
from two main reasons. First, the artificially extended WB excitation is not identical to the
original WB excitation. Second, the WB LPCs obtained from the HB quantized LSFs introduce
spectral distortion between the two spectral envelopes.

The HB gain factor, denoted by gHB, should minimize the spectral distance between the HB
frequency region of the original WB spectral envelope, |SWB(ω)| and the HB frequency region

of the reconstructed WB speech spectral envelope,
∣

∣

∣
S̃WB(ω)

∣

∣

∣
, multiplied by the HB gain. The

error measure for computing the gain factor g is defined by

EgHB
,

1

ω1 − ω0

∫ ω1

ω0

(

|SWB(ω)| − gHB

∣

∣

∣
S̃WB(ω)

∣

∣

∣

)2
dω (1)

The gain factor is found by setting

∂EgHB

∂gHB
= 0. (2)
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By solving (2), the gain factor is equal to

gHB =

∫ ω1

ω0
|SWB(ω)|

∣

∣

∣
S̃WB(ω)

∣

∣

∣
dω

∫ ω1

ω0

∣

∣

∣
S̃WB(ω)

∣

∣

∣

2
dω

(3)

The computed HB gain is quantized for transmission, using a scalar nonuniform quantizer.

2.3 SBE Decoder Structure

The SBE decoder generates the reconstructed WB speech from the received NB speech signal
and the embedded side information. The ensuing description of the decoder structure refers
to Figure 4. The side information in each speech frame includes the gain index and the LSF
codebook index. In the lower branch, the WB excitation signal is generated from the NB speech
signal, using the technique used in the SBE encoder (Figure 3). In the middle branch, the WB
LPCs are computed by using the LSF codebook index as a pointer to the corresponding WB
LPC codebook. The WB artificial excitation together with the gain parameter and the WB
LPCs are used to synthesize the WB speech signal. The HB part of the synthesized WB speech
signal is filtered by a HPF, and combined with the interpolated NB speech signal, to produce
the reconstructed WB speech signal, ŝWB.

Figure 4: SBE decoder structure.

The input signal to the decoder, denoted by s̃NB in Figure 4, is the output of the channel
equalizer. It is desirable that the input to the SBE decoder be as close as possible to the
original NB speech signal generated at the input to the telephone channel. Although the NB
speech signal which is the output of the channel equalizer is close to the original NB speech, it
is not identical to it because of three reasons. First, a residual spectral distortion exists after
channel equalization. Second, noise in the transmission channel, which is amplified by channel
equalization gets added to the received signal. Third, the existence of embedded data in the
NB speech acts like added noise.

3 Perceptual Model-Based Data Embedding

A data embedding (also known as data hiding or digital watermarking) system should satisfy the
following requirements. It should embed information transparently, meaning that the quality
of the host signal is not degraded, perceptually, by the presence of embedded data. It should
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be robust, meaning that the embedded data could be decoded reliably from the watermarked
signal, even if it is distorted or attacked. The data embedding rate is also of importance in
some applications.

In speech and audio coding, a human auditory perception model is used and the irrelevant
signal information is identified during signal analysis by incorporating several psychoacoustic
principles, such as absolute hearing thresholds, masking thresholds and critical band frequency
analysis. Perceptual characteristics of speech and audio coding are incorporated in all modern
audio coding standards, such as MPEG audio coders [23]. In data-embedding, the human
auditory perception model is used to construct the watermark signal that could be added to
the host signal, without affecting the human listener. Auditory perception rules have also been
incorporated in SS-watermarking systems [6].

In this section, a method for perceptual model-based data-embedding in speech signals,
which combines the SCS technique [3] for data embedding with an auditory masking model,
is presented. The proposed encoder performs data embedding in the frequency domain, in
separate subbands, utilizing a masking threshold function (MTF). The use of subband masking
thresholds (SMTs), derived from the MTF, for the computation of SCS parameters for each
subband, is described. Afterwards, the motivation for choosing the discrete Hartley transform
(DHT) as the embedding domain is explained. Methods for selecting the subbands for data
embedding are also described.

It should be noted that the proposed data-embedding technique, which combines an auditory
masking model, is demonstrated here for speech signals but could also be used, with appropriate
modifications, for data embedding in audio signals.

We begin the description of the proposed perceptual model-based data-embedding method
by presenting the SCS principles in Section 3.1, followed by the description of the subband SCS
parameter determination process in Section 3.2. The reasoning for choosing the DHT as the
data-embedding domain is given in Section 3.3, and several methods for selecting subbands for
data embedding are given in Section 3.4. Finally, the embedded-data decoding process is given
in Section 3.6.

3.1 Scalar Costa Scheme Principles

A general model for data communication by data embedding is described in Figure 5. The
binary representation of a message m, denoted by a sequence b, is encoded into a coded se-
quence d using forward error-correction channel-coding, such as block codes or convolutional
codes. The data embedding encoder embeds the coded data d into the host signal x producing
the transmitted signal s, which is a sum of the host signal x and the watermark signal w. A
deliberate or an unintentional attack, denoted by v, may modify the signal s into a distorted
signal r and impair data transmission. The data embedding decoder aims to extract the em-
bedded data from the received signal r. In blind data-embedding systems, the host signal x is
not available at the decoder.

Data Embedding According to SCS [3], the transmitted signal elements are additively com-
posed of the host signal and the watermark signal, i.e.,

sn = xn + wn = xn + αqn. (4)

The watermark signal elements are given by wn = αqn, where α is a scale factor and qn is the
quantization error of the host signal element quantized according to the data dn

qn = Q∆

{

xn − ∆

(

dn

D
+ kn

)}

−
(

xn − ∆

(

dn

D
+ kn

))

. (5)
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Figure 5: A general model for data communication by data embedding

Q∆{·} in (5) denotes scalar uniform quantization with a step-size ∆, and kn ∈ [0, 1) denote the
elements of a cryptographically secure pseudo-random sequence k. For simplicity, it is assumed
in the following that the sequence k is not in use, i.e. kn ≡ 0. The alphabet size is denoted
by D. In this paper a binary SCS is utilized, i.e., a SCS with an alphabet size of D = 2,
and dn ∈ D = {0, 1}, are elements of the data sequence d. The noise elements are given by
vn = rn − sn, and the watermark-to-noise ratio (WNR) is defined as

WNR = 10 log10

(

σ2
w

σ2
v

)

[dB], (6)

where σ2
w, σ2

v are the variances of the watermark and noise signals elements, respectively. SCS
embedding depends on two parameters: the quantizer step-size ∆ and the scale factor α. For a
given watermark power σ2

w, and under the assumption of fine quantization, these two parameters
are related via

σ2
w =

α2∆2

12
. (7)

In [3] an analytical expression that approximates the optimum value of α, in the sense of
maximizing the capacity of SCS, is given by

αSCS,approx =

√

σ2
w

σ2
w + 2.71σ2

v

. (8)

(7) and (8) lead to ∆SCS,approx =
√

12(σ2
w + 2.71σ2

v).

Data Extraction In the decoder, data extraction is applied to a signal y, whose elements
are computed from the received signal elements rn by

yn = Q∆ {rn} − rn. (9)

Since |yn| ≤ ∆/2, yn is expected to be close to zero if dn = 0 was embedded, and close to ±∆/2
if dn = 1. Hence, for proper detection of binary SCS data-embedding, a hard decoding rule
should assign

d̂n =

{

0 |yn| < ∆/4
1 |yn| ≥ ∆/4

. (10)

Soft-input decoding algorithms, e.g., a Viterbi decoder like the one used for decoding convolu-
tional codes, can be used here too to decode the most likely transmitted sequence b̂, from the
signal y.
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Figure 6: A schematic drawing of a speech signal power spectrum estimate, |X(ω)|2, divided into 4
subbands; MTF - T (ω); The SMTs - Tmin,m, are marked by the horizontal solid lines. AWGN source
power spectrum estimate |V (ω)|2 is marked by the dashed line. The WNR in the first subband (WNR1)
is also marked.

3.2 Determination of Subband SCS Parameters

The following description is supported by Figure 6. The MTF is computed by the MPEG-1
masking model [23], which is designated for MTF computation for audio signals in general,
and for speech signals in particular. The MTF, {T (k); 0 ≤ k ≤ N/2}, with k denoting a
discrete frequency index, is calculated for each frame of length N . The positive frequency band
is divided into M subbands (M < N/2). The subbands could be uniform or non-uniform. The
subband masking threshold (SMT) in each subband is set to the minimum of the MTF value
in that subband

Tmin,m = min
k∈m’th subband

T (k); m = 1, 2, . . . , M. (11)

The maximal embedding distortion (watermark variance) according to (4) and (5) is α2∆2/4,
while the average embedding distortion is α2∆2/12 (7). Distortion in the m’th subband that
is greater than the SMT, Tmin,m (11), may be audible. It is required therefore that the sub-
band maximal embedding-distortion will be bounded from above by the SMT. By equating the
subband maximal embedding-distortion with the SMT

10 log10[α
2
m∆2

m/4] = Tmin,m [dB], (12)

the subband average embedding-distortion can be expressed in terms of Tmin,m by

σ2
w,m =

α2
m∆2

m

12
=

10Tmin,m/10

3
. (13)

Assuming that a channel-noise model or estimation is given, and denoting the model or esti-
mation of noise variance in the m’th subband by σ2

v,m, the value of the subband scale factor,
αm, is given by (8)

αm =

√

σ2
w,m

σ2
w,m + 2.71σ2

v,m

. (14)
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Formally, the subband quantization-step value is given now, from (13), by

∆∗

m =
2

αm
10Tmin,m/20. (15)

However, to improve the robustness of the quantization-step detection in the decoder, as well
as to reduce the computational complexity of the detection, the applied subband quantization
step is selected to be one of a finite pre-defined set of quantization-step values, denoted by

{∆0, ∆1, . . . ,∆J−1}. (16)

The set of quantization steps is sorted in an ascending order. This set of quantization steps
will also be known at the decoder. The quantization-step in the m’th subband is obtained
by quantizing the above computed ∆∗

m (15) in the log domain (motivated by the logarithmic
sensitivity to sound pressure level of the human listener) yielding

∆m = 10
Dm
20 , (17)

where

Dm , c

⌊

Tmin,m + 20 log10[2/αm]

c

⌋

, (18)

and the constant c is the quantization step of ∆∗

m in [dB]. Note that for WNRm > 10[dB],
αm

∼= 1, simplifying (18), used for the computation of ∆∗

m by (17), to

Dm
∼= c

⌊

Tmin,m + 6.02

c

⌋

. (19)

Note that if α = 1, SCS is equivalent to dither modulation [7].

3.3 Choice of Data-Embedding Domain

For each type of host signal there is a need to decide on the appropriate embedding domain.
The use of a frequency domain auditory masking model naturally leads to the choice of the
frequency domain representation of a sound signal as the embedding domain. In other words,
the frequency domain coefficients of the host signal are modified according to (4),(5). Several
alternative transformations were examined, as follows:

Discrete Fourier Transform The discrete Fourier transform (DFT) of the signal frame x,
is defined by

Fk =
1√
N

N−1
∑

n=0

xne(−j 2π
N

nk); k = 0, . . . , N − 1. (20)

Discrete Cosine Transform The discrete Cosine transform (DCT) of the signal frame x,
is defined by

Ck = β(k)
N−1
∑

n=0

xn cos

(

(2n + 1)kπ

2N

)

; k = 0, . . . , N − 1 (21)

where

β(k) =

{

1/
√

N, k = 0

2/
√

N, 1 ≤ k ≤ N − 1
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Discrete Hartley Transform The discrete Hartley transform (DHT) [24] of the signal frame
x, is defined by

Xk =
1√
N

N−1
∑

n=0

xncas

(

2π

N
nk

)

; k = 0, . . . , N − 1, (22)

where cas(x) , cos(x) + sin(x). As for the DFT, the transform elements are periodic in k with
period N .

The DHT coefficients are used here for data embedding, as this transform is preferred by us
over the other two frequency-domain representations: the DFT and the DCT.

The DHT is preferred here over the DFT because the latter is a complex transform, while
the DHT is a real one, and there are fast algorithms for the computation of the DHT [25],
similar to the those used for the computation of the DFT.

The DFT is commonly used for computing the MTF [23]. Yet, the need for complex arith-
metic can be completely eliminated by using the direct relation between the DFT and DHT,
given by

Re{Fk} =
1

2
[XN−k + Xk] ; Im{Fk} =

1

2
[XN−k − Xk] , (23)

and

|Fk|2 =
1

2

[

X2
k + X2

N−k

]

, (24)

where Xk and Fk denote the DHT and DFT of a signal frame x, respectively. Therefore, in
the proposed scheme the DHT is calculated to obtain a representation of the signal for data
embedding, followed by the direct computation of the MTF.

Although the DCT is also a real transform, it does not provide the same simplicity in
computing the MTF as the DHT. Formally, let ΦF , ΦC and ΦX define the transformation
matrices, such that

F = ΦFx (25)

C = ΦCx (26)

X = ΦXx (27)

where x is a column vector containing the frame elements, and the elements of the transformed
vectors F, C and X are defined in (20),(21) and (22), respectively. If it is required to transform
the MTF, computed by a DFT, to the DCT domain, the MTF T (a vector whose elements are
defined in dB) can be inverse transformed into the vector t by

t = Φ−1
F 10T/20. (28)

Then, the MTF in the DCT domain, denoted by TC , can be computed by

TC = 10 log10

(

|ΦCt|2
)

[dB] (29)

Therefore, computation of TC require the computation of the MTF by a DFT, followed by the
transformation of the MTF to the DCT domain. This operations could be completely avoided
by using the DHT domain for the MTF calculation.

3.4 Selecting Subbands for Data Embedding

We have considered various approaches for selecting the subbands for data embedding. Con-
straints regarding a fixed or variable embedding-rate affect the number of subbands in each
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frame which are used for data embedding. Further constraints can dictate a fixed or dynamic
subband-selection. Table 1 describes the possible options for fixed/variable embedding-rate and
fixed/dynamic subband-selection.

Fixed embedding rate Variable embedding rate

Fixed subband selection yes no

Dynamic subband selection yes yes

Table 1: Subband selection options

For example, in some applications a fixed embedding-rate is required. In that case one can
select in advance the subbands (fixed subband-selection) that will be used for data embedding,
and continue to embed data in these subbands even if the WNR in any of the selected subbands
is low. This may result, of course, in a high bit-error-rate (BER). A better option, is to
dynamically select a fixed number of subbands, but choose those with the maximal estimated
WNR over all subbands. The dynamic approach would obviously result in better performance
than a fixed subband selection.

Another option is to have a variable embedding-rate with dynamic subband selection. In this
mode, data is embedded in a specific subband only if the estimated WNR in that subband is
greater than a given threshold, that is set according to the allowed BER value. If the actual
WNR caused by channel noise, matches the estimated WNR, a target BER value can be ensured.
However, as the target BER value is lowered, the attainable data rate is lowered too.

3.5 Composition of Subband Coefficients

The m’th subband coefficients are composed of coefficients from positive and negative frequen-
cies, since the same SMT (11) applies for the corresponding positive and negative frequencies.
For example, the m’th subband is composed of the following positive and negative frequency co-
efficients [Xkm,start

, Xkm,start+1, . . . , Xkm,end
, X(N−km,end), X(N−km,end+1), . . . , X(N−km,start)], where

km,start and km,end are the m’th subband positive frequency boundaries, and 0 < km,start <
km,end < N

2 . If it is decided to embed data in the m’th subband, the DHT coefficients are mod-
ified according to the SCS embedding rule shown in (4),(5), with the parameters {αm,∆m}.
If alternatively, the DFT coefficients are used for data embedding, the embedding can be per-
formed by modifying the real and imaginary parts of the positive frequencies coefficients, and
the negative frequencies coefficients are generated by the constraint FN−k = F̄k, since the in-
verse transformed signal is real. The DHT coefficients are all real and hence not constrained as
the DFT coefficients. Therefore, different data can be embedded in the positive and negative
frequencies DHT coefficients, providing the same total of N real coefficients that can be used
for data embedding. After data embedding, the DHT coefficients are inverse transformed to
obtain the transmitted signal.

3.6 Decoding of Embedded Data

There are many types of both deliberate and unintentional attacks, which can affect data-
embedding systems. A specific unintentional attack, which is caused by transmitting a speech
signal with embedded-data over a telephone channel, is considered in this paper. When a
speech signal with embedded-data is transmitted over the telephone channel, the first step in
the decoder is to compensate the spectral distortion introduced by the channel, using an adaptive
equalizer, detailed in subsection 3.6.1. Afterwards, frame synchronization is carried out, based
on the computed cross-correlation between the stored training signal and the equalizer output
signal. The maximum value of the cross-correlation function is searched for, and it’s position
is used for determining the start position of the first frame. The DHT is then applied to each
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frame of the equalized and frame-synchronized signal in order to transform it to the embedding
domain.

The next decoding step is the blind detection of embedding-parameters. Blind detection is
needed when the decoder does not know the encoding parameters. In the discussed scheme,
detection of embedding-parameters include detection of embedded-data presence in each sub-
band, and the detection of the SCS quantization-step. Detection of embedded-data presence
in each subband is needed when the encoder chooses dynamically the subbands for data em-
bedding. The subband SCS parameters are also computed dynamically, according to the MTF,
and therefore the subband SCS quantization-step needs also to be determined. Since one of a
finite set of step values is used (see (16)), determination of the quantization-step is treated as
a detection problem, instead of an estimation problem. A combined maximum likelihood (ML)
detection of embedded-data presence and quantization-step is proposed in Section 3.6.2.

The result of a detection error in the subband embedded-data presence detection or in the
quantization-step detection, is a high BER in the subband where the detection error occurred.
Therefore, the embedding-parameters detection performance has great influence on the robust-
ness. In order to improve the detection performance, the use of a parameter protection code
(PPC) is suggested in Section 3.6.3.

The final step in the decoder includes extraction of the channel coded data according to
hard decoding (10) or soft decoding rule followed by error correction decoding, which results in
the decoded embedded data.

3.6.1 Channel equalization

The speech signal transmitted over the telephone line is distorted and noisy, compared to
the original speech signal. Trying to operate the decoder on the distorted speech signal would
result in a very high BER. As a solution, a channel equalizer is used to compensate the channels’
spectral distortion. In data communication literature, there is a variety of algorithms for channel
equalization [26][27][28]. In the development stages of this work, several adaptive algorithms
were examined for channel equalization, such as the NLMS and RLS algorithms. An equalizer
that performs better, in terms of a lower MSE, will usually result in a lower BER in data
decoding. Therefore, the RLS algorithm was preferred although it has higher complexity than
the NLMS algorithm.

The NLMS and RLS equalization algorithms typically use a pseudo-random white noise
training sequence. Since listening to a white noise signal would certainly annoy the listener at
the start of a phone conversation, the training stage of the equalization is done in our system
in a way that doesn’t annoy the listener. This is achieved by replacing the white noise training
signal with a musical signal. The musical training signal can be chosen from one of the listeners
favorite pieces of music. One demand from the ’musical’ equalization is that the training signal
occupies the full telephone band, and thus be similar in this aspect to the white noise training
signal. Simulation results are reported in Section 4.3.1

Blind equalization algorithms that avoid the need for a training signal are used for equalizing
data communication channels, but to the knowledge of the authors there is no blind equalization
algorithm that would perform well in our scenario, where data is implicitly embedded in a much
stronger analog host signal.

3.6.2 Maximum Likelihood Detection of Embedding Parameters

If dynamic subband selection is applied, the decoder has no prior knowledge of either the subband
embedded-data presence or the quantization-step. Therefore, the decoder needs to detect these
embedding-parameters. The detection stages are:
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Step 1: Quantization-Step Determination If data is embedded in a particular subband,
the quantization-step used in the embedding is one of a set of quantization step values (sorted in
ascending order), {∆0,∆1, . . . ,∆J−1}, as discussed in subsection 3.2. A test set of quantization-
steps is chosen from the above set, and the test set indices are denoted by G. The minimal
and maximal values of the quantization-steps to be tested are denoted by ∆min and ∆max,
respectively

Two methods are suggested for the selection of the largest quantization-step to be tested,
∆max. In the first method, the largest tested quantization-step is set to be the quantization-
step obtained by applying (17) with the MTF computed at the decoder. In the second method,
Tmin,m is substituted by 3σ2

x,m computed at the decoder, and the largest tested quantization-
step is computed by applying (17). The latter approach enables a complexity reduction, since
there is no need to compute the MTF at the decoder.

The smallest tested quantization-step can be set to ∆min = ∆0. In order to reduce com-
putational complexity, the smallest tested quantization-step can also be set to the smallest
quantization-step possible for a given test set size {|G| = G; G > 0}. The test set size G is
chosen according to an assumed possible range of quantization step values, measured in dB.

Step 2: Computation of the Demodulated DHT Coefficients Using the test set G

of quantization steps, (9) is applied to the received subband DHT coefficients Rm,k, to obtain
Y g

m,k. Explicitly, Y g
m,k is computed by

Y g
m,k = Q∆g {Rm,k} − Rm,k; g ∈ G, (30)

where Rm,k is the k’th DHT coefficient of the received signal in the m’th subband, and Y g
m,k is

computed by (30) from the received DHT coefficient by using each one of the quantization-steps,
∆g, in the test set G.

Step 3: Computation of Log-Likelihood Ratios In this step, two possible hypotheses are
defined, and the log-likelihood ratios (LLRs) are computed from Y g

m,k. For notational simplicity,

Y g
m,k is replaced by Y , in the next paragraph. The two hypotheses are

• H0: Y in (30) is computed with the correct quantization-step.

• H1: Y is computed with the incorrect quantization-step.

The PDFs of the two above hypotheses, p(Y |H0) and p(Y |H1), are known at the decoder.
Details of computation of the PDFs p(Y |H0) and p(Y |H1) are given in [3]. The hypotheses are
under the assumption that the embedded-data is present in the subband. Computing Y with
the incorrect quantization-step is equivalent to the computation of Y in a subband without
embedded-data, since the computation of Y with an incorrect quantization-step will result in
uniformly distributed values of Y [3]. Therefore, if embedded-data is absent in a given subband,
the demodulated values Y , computed by (30), will have the PDF p(Y |H1).

The LLR, for each quantization-step of the test set G, is computed by

Lg
m , log

(

∏

k∈m’th subband p(Y g
m,k|H0)

∏

k∈m’th subband p(Y g
m,k|H1)

)

; g ∈ G. (31)

The computation of the LLR Lg
m in the above equality is under the assumption that Y g

m,k are
statistically independent in the index k. This assumption can be justified in the case of fine
quantization. The LLR, Lg

m, is a measure of the validity of the assumption that ∆g is the
quantization step used in the encoder, given that embedded-data is present in that subband.

There are cases when the computation of the LLR will result in a high value, although
the tested quantization step ∆g is not the quantization step used in the encoder, denoted by
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∆∗. One such case happens when the tested quantization step value is large compared to the
standard deviation of the subband coefficients distribution. The fine quantization assumption
is invalid in this case. To avoid this, one of the previously described methods for the selection
of the largest quantization-step to be tested, ∆max, can be applied. Another case is when the
quantization grid of the tested quantization step, ∆g, and the grid of the quantization step
used in the encoder, ∆∗, partly coincide by obeying 2n∆g = ∆∗; {n = 1, 2, . . .}. Since with
zero noise the extracted coded data (10) is equal to zero, the Hamming distance between the
extracted coded data and a parameter protection code, described in subsection 3.6.3, provides
an additional measure of likelihood for the tested quantization step.

Step 4: Embedded-Data Presence Detection The maximal LLR from (31), denoted by

Lg∗
m , is used in the following subband embedded-data presence detection rule

Im =

{

1; Lg∗
m > T

0; Lg∗
m ≤ T

, (32)

where T is a decision threshold. The detector decides that embedded-data is present in the
m’th subband if Im = 1, and that it is absent if Im = 0.

Setting the decision threshold, T , to a value higher than zero will result in a lower false
positive detection probability and in a higher false negative detection probability. The setting
of T = 0 was used in our simulations.

Step 5: Quantization-Step Detection This final step is executed if Im = 1 in the previous
step. The quantization-step in the m’th subband is determined as the quantization-step value
that maximizes the LLR, i.e.,

∆̂m = ∆g∗ , (33)

where
g∗ = arg max

g∈G

Lg
m. (34)

3.6.3 Parameter Protection Code

The parameter protection code (PPC) can be used to improve the embedded-data presence and
quantization-step detection. The PPC is a fixed code, of length Np, known to the encoder and
the decoder, and is denoted by {pn; 0 ≤ n ≤ Np − 1}. The PPC is appended to the coded
data, and embedded in each subband where data is embedded.

For each subband, the decoder computes by hard decoding (10) the decoded PPC, p̂g
n, for

each tested quantization step {∆g; g ∈ G}. The decoder computes the Hamming distance,
denoted by dg

p, between the decoded PPC and the original PPC:

dg
p =

Np−1
∑

n=0

|pn − p̂g
n|; g ∈ G. (35)

As in Section 3.6.2, two possible hypotheses are defined:

• H0: The decoded PPC is computed with the correct quantization-step.

• H1: The decoded PPC is computed with the incorrect quantization-step.

The uncoded BER1, given hypothesis H0, is denoted by PH0

e , and the uncoded BER, given

1
Uncoded BER is the normalized Hamming distance between the embedded bits, d, and the extracted bits, d̂.

The coded BER is the normalized Hamming distance between the information bits and the decoded information
bits.
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hypothesis H1, is denoted by PH1

e . It is assumed that the decoder has prior knowledge on
the probability PH0

e , which is dependent on the channel conditions. It is also assumed that
PH1

e = 1/2. The probability that the distance between the original and decoded PPC is equal
to dp is given by

P (dp|H0) =

(

Np

dp

)

(PH0

e )dp(1 − PH0

e )(Np−dp), (36)

and

P (dp|H1) =

(

Np

dp

)

(PH1

e )Np . (37)

The PPC LLR is defined by

P g
m , log

(

P (dp|H0)

P (dp|H1)

)

= log

(

(PH0

e )dp(1 − PH0

e )(Np−dp)

(PH1
e )Np

)

(38)

Basically, steps 4-5 of the previous section can now be performed, by replacing the LLRs cal-
culated from Y values (31), by the LLRs calculated from the PPC (38). A better option is to
combine the two LLRs, as described below.

Combining the LLRs The LLRs calculated from Y values in (31), denoted Lg
m, and the

LLRs calculated from the PPC in (38), denoted P g
m, can be combined for the data-embedding

presence and quantization-step detection. There are many ways of combining the above LLRs.
A simple combination is to sum the two values,

Lg
m,combined = Lg

m + P g
m, (39)

and to use the combined LLR for embedding-parameters detection.

4 Experimental Results

The experimental results reported here are divided into three parts. First, in Section 4.1, we
demonstrate the bandwidth extension of telephone-speech, then we detail the telephone channel
equalization in Section 4.2, and finally we describe the data-embedding experimental results in
Section 4.3.

Subjective listening tests were performed using utterances from the TIMIT database. The
subjective tests include a mean opinion score (MOS) evaluation of reconstructed WB speech, a
MOS evaluation of NB speech with embedded data, and a preference test between the recon-
structed WB speech and the conventional telephone speech. Objective experiments were done
using the same database. The results were evaluated by averaging over 625 sentences, having a
total duration of more than 34 minutes of speech.

Channel Models Three channel models were used in our simulations: (i) Telephone chan-
nel model based on the ”ITU-T V.56bis” standard [29], which causes amplitude and phase
distortion, combined with PCM quantization noise and AWGN. (ii) PCM channel model that
contains µ-law quantization noise (8 bits/sample), without the telephone channel, and (iii)
AWGN channel model with a SNR of 35dB.

4.1 Speech Bandwidth Extension

In our evaluation of the SBE system, we applied an energy-based voice activity detector (VAD)
in the SBE encoder to determine in which frames the reconstruction of WB speech should
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be performed. In those frames, the SBE encoder computes the HB parameters, and the HB
parameters are embedded in the NB speech, as described earlier.

For each input WB signal frame, identified by the VAD as containing speech, the encoder
computes and transmits the indices of the HB gain and spectral envelope parameters. The
allocation of 12 information bits in a data-embedded subband is divided into 4 bits for the
gain index and 8 bits for the LSF index. The NB LP analysis window is of length of 32msec
(256 samples at 8KHz sampling rate), but the analysis is updated every 16msec (i.e. with 50%
overlap), so that there are two HB updates in each 32msec. A rectangular window is used for
extracting frames for data embedding. The DHT coefficients of each non-overlapping frame
of 32msec are partitioned into subbands as described in Section 4.3. To support the required
SBE side-information, 24 information bits are used in each frame (12 bits in each of the two
selected subbands for embedding), resulting in a coded-data rate of 64 bits (two subbands, with
32 bits in each) for each frame. That is, 20 bits are used in each of those two subbands for error
correction/protection.

4.1.1 SBE Experiment Results

The proposed SBE system was evaluated by both subjective and objective measures. A sub-
jective MOS test was conducted on 2 sets of 10 sentence long utterances. The first set included
WB speech utterances taken from the TIMIT database recordings. The second set comprised
reconstructed WB speech utterances generated by passing the first set thorough the complete
system (i.e. data embedding, telephone channel, equalization, data extraction and HB recon-
struction). 12 non-professional listeners listened to the utterances and rated them on a [1-5]
scale: 1-bad, 2-poor, 3-fair, 4-good, 5-excellent. The MOS of the original WB speech was 4.133
and the MOS of the reconstructed WB speech was 3.775. The MOS of the original WB speech
utterances is lower than the maximum score of 5 since TIMIT database recordings are intended
for the development and evaluation of automatic speech recognition systems, and do not really
have excellent quality. The reconstructed WB speech has lower quality than the original WB
speech because of two reasons. First, the NB part of the reconstructed speech is noisy, because
of the transmission and equalization of the NB speech. Second, the reconstructed HB part is
generated from an artificial excitation and the decoded HB parameters.

As in other works [8][17], objective results were evaluated by the log spectral distance (LSD)
measure. The objective tool for perceptual evaluation of speech quality (PESQ) [30] in its WB
version could perhaps be used for quality evaluation, but an operational WB PESQ software
for a 16KHz sampling rate is not at our disposal. The averaged LSD obtained, supported by
a side-information rate of 600 bits/sec and measured over the 3.4-7KHz range, was 2.8dB for
the simulated telephone channel model. In comparison, in [17], a different structure of the
SBE system, which does not use data-embedding, is proposed. In the SBE of [17], the power
spectrum is directly vector quantized, in the log domain, requiring a side information rate of 500
bits/sec. The average LSD reported in [17] is 3.6dB, measured over the 3-8KHz range. In the
SBE of [8], an LSD of approximately 2.9dB, measured over the 3.4-7KHz range, is supported
by a data-rate of 300 bits/sec. However, the result in [8] was obtained with a PCM channel
model. With this simplified channel model our suggested system achieved an LSD of 2.6dB at
the expense of a higher side information rate. For the AWGN channel model our suggested
system obtained an LSD of 2.7dB. The LSD comparison above is under the restriction of not
having the same underlying data and applied LSD measure as [8] and [17].

Results obtained for a sample sentence are shown in Figure 7. The original WB speech
signal spectrogram is shown in Figure 7(a). The spectrogram of the speech signal filtered by the
telephone channel is shown in Figure 7(b) and the reconstructed WB speech signal spectrogram
is shown in Figure 7(c). The spectra and spectral envelope of a sample frame of the original
and reconstructed WB signals is shown in Figure 8. It can be observed that the NB parts of
the spectral envelopes are almost identical, as expected. The difference between these spectral
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envelopes is due to imperfect channel equalization. It can also be seen that the HB parts differ
more because of the artificial reconstruction process, but this difference was hardly noticed in
informal listening.
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Figure 7: Spectrograms of (a) original WB signal, (b) NB signal, (c) reconstructed WB signal.

Effect of BER on Reconstructed WB Speech Quality In this experiment the data
needed for SBE is transmitted by an external side-information channel, and is not embedded
in the NB speech. Uniformly distributed random errors were inserted to the side-information
bitstream. The channel model is also removed and the SBE encoder and decoder operate in
cascade. The LSD as a function of the inserted BER is shown in Figure 9. It can be seen that a
BER below 10−3 doesn’t practically affect the LSD that is achieved by the SBE algorithm. At
this BER the LSD is 2.5dB. With a telephone channel model, we obtained a BER of 3.1 · 10−4

and only a somewhat higher LSD value of 2.8dB, showing that the effect of embedded data noise,
channel noise, and remaining spectral distortion after equalization amounts in our system in an
increase of 0.3dB only in LSD.

4.2 Telephone Channel Equalization

The RLS algorithm was applied with 256 taps for equalizing the telephone channel. The length
of the training sequence is 215 samples, which is approximately 4 seconds long at a sampling
rate of 8KHz. Equalization using a musical training signal was also successfully experimented,
utilizing part of a classical music piece of Smetana. The averaged LSD obtained with musical
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Figure 8: Spectra and spectral envelopes (with a -25 dB offset for display purposes) of original
WB speech signal (solid line) and reconstructed WB speech signal (dotted line) produced by
SBE decoder.

equalization was 2.8dB, about the same LSD as in the case of a white noise training signal.

4.3 Perceptual Model-Based Data Embedding

As discussed earlier, the computation of the MTF is based on MPEG’s psycho-acoustic model
[23]. The standard supports several common sampling frequencies of audio signals. Some
modifications in the masking model implementation were made in order to suit the case of
speech signals sampled at 8KHz.

Since the telephone channel has a large attenuation in the frequency ranges of 0-300Hz and
3400-4000Hz, the full band is partitioned into M = 8 non-uniform subbands, as follows: From
each frame containing 256 DHT coefficients, the positive and negative frequency coefficients
of the first subband, (0-312.5Hz, with the start and end indices of the first subband positive
frequency boundaries equal to k0,start = 0 and k0,end = 10, respectively), and of the positive and
negative frequency coefficients of the last subband, (3343.75-4000Hz, with the start and end
indices of the last subband positive frequency boundaries equal to k7,start = 107 and k7,end =
128, respectively), are not used for data-embedding. The frequency range 343.75-3312.5Hz
(with the corresponding start and end indices of the positive frequency boundaries equal to
k1,start = 11 and k1,end = 106) is divided into 6 equal width subbands, with each subband
containing 32 coefficients from the positive and negative frequencies as described in Section
3.5. From the six subbands, two subbands having the maximal estimated subband WNR were
dynamically chosen for data-embedding in each frame, which is detected as containing speech
by the VAD. The subband embedded-data is divided into two parts: error corrected coded data
and parameter protection code (PPC). A (23,12) Golay block code [28] is used as the error
correction code (ECC) for the coded data part, and the PPC part contains a PPC of length
Np = 9, p = [1, 1, 0, 1, 1, 0, 1, 0, 1]. Thus, each data embedded subband contains 12 information
bits, out of the allocated 32 bits. The average information embedding rate obtained was 600bps.
This rate is obtained by multiplying the embedded 24 information bits per frame by the number
of frames per second (8000/256) and then by the average VAD rate (0.8).
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Figure 9: Effect of BER in side information on the SBE LSD.

4.3.1 Data-Embedding Experiments Results

Data Embedding Robustness Robustness of the full system that includes the combined
LLRs (39) is described here. Using more than 106 information bits, the simulation resulted in
the uncoded BER was 9.6 · 10−4 and the coded BER (following ECC using Golay code) was
3.3 ·10−4. Detection errors occur when a wrong quantization step is detected in a subband with
embedded data, or when a subband without embedded data is detected as containing data. The
detection error rate is defined by the ratio of detection errors to the total number of subbands
with embedded data. The detection error rate was approximately 4.6 · 10−4. The utilization
of a different ECC is not expected to change significantly the coded BER, since this BER is
dominated by the detection error rate.

The embedding scheme of [10] is robust to µ-law quantization noise. In the case of AWGN
channel model with a SNR equal to 35dB and an embedding-rate of 216 bits/sec the achievable
BER in [10] was 10−3. In the proposed system the embedding-rate is 600 bits/sec and the
achievable BER was 3.2 · 10−4 for the same channel model. For the PCM channel model the
achievable BER by our system was 1 · 10−4.

Data Embedding Transparency Data embedding transparency was evaluated both sub-
jectively and objectively. A subjective MOS test was conducted again on 2 sets of 10 utterances.
The first set included NB speech utterances, obtained by a 2:1 decimation of the WB database
utterances. The second set comprised the same set of NB speech samples with embedded-data.
Both sets were taken before transmission over any channel. 12 non-professional listeners listened
to the samples and rated them on a [1-5] scale. The MOS of the NB speech was 3.7 and the
MOS of the NB speech with embedded data was 3.625. The small difference between the MOS
results demonstrate the transparency of the proposed data embedding scheme. Transparency
was evaluated objectively by the PESQ tool for a 8KHz sampling rate. The evaluation results
are assumed to be equivalent to a MOS scale of [0-4.5]. Similar to the subjective transparency
test, the comparison is between the NB speech and the NB speech with embedded-data. The
PESQ score result, averaged over 625 sentences, was approximately 3.9.

The authors of [10] conducted a subjective test, in which they asked participants to compare

21



the NB speech and the NB speech with embedded data by a four grade scale: 1-the two signals
are quite different; 2-the two signals are similar, but the difference is easy to see; 3-the two signals
sound very similar, little difference exists; 4-the two signals sound identical. The subjective test
result was 3.07.

A ”nearly imperceptible watermark” was reported in [8], while no numerical objective or
subjective measures were given.

4.3.2 Subjective Comparison of Reconstructed WB Speech and Telephone Speech

In order to examine the complete scheme of bandwidth extension of telephone speech aided
by data embedding, an A-B preference test was conducted by the same 12 non-professional
listeners as in the previous MOS tests. The participants were asked to compare the quality
of A-B utterance pairs, and to rate if the quality of one is much better, better, or the same,
compared to the other utterance. Conventional telephone speech utterance without embedded
data was compared to the reconstructed WB signal, created by the complete scheme. The
results are summarized in Table 2. Note that the proposed system achieved 92.5% preference,
at different degrees, over the conventional telephone speech.

Preference Same
Reconstructed WB speech (set A) Telephone speech (set B)
A is better A is much better B is better B is much better

% 3.33 67.5 25 3.33 0.83

Table 2: A-B preference test for the reconstructed WB speech and the conventional telephone
speech.

5 Conclusion

We have presented a system for bandwidth extension of telephone-speech aided by data em-
bedding. The proposed system uses the transmitted NB speech signal as a carrier of the side
information needed to carry out the bandwidth extension, thus eliminating the need for an
additional channel. We have also proposed a novel data embedding scheme, in which the scalar
Costa scheme is combined with an auditory masking model allowing high rate transparent em-
bedding at a low bit error rate. The embedded data payload can also be used for purposes
other than SBE. For example, text and graphics can be transmitted as embedded-data during
an ongoing conversation. Subjective tests showed that the WB speech output of the suggested
SBE system was preferred (at different degrees) over conventional telephone speech in 92.5%
of the test utterances. In another listening test the MOS of the NB speech was 3.7 and the
MOS of the NB speech with embedded data was 3.625. The small difference between the MOS
results demonstrate the transparency of the proposed data embedding scheme. In simulations,
the embedded data rate was 600 information bits/second with a bit-error-rate of approximately
3 · 10−4. The averaged LSD obtained, measured over the 3.4-7KHz range, was 2.8dB. Further
details regarding the suggested SBE system supported by data-embedding can be found in [31].

Future work may be directed to various components of the proposed system:
Embedding-rate improvements: (i) It was shown in [3], that binary SCS capacity is limited

for high WNRs due to the binary alphabet of embedded-data letters. Throughout this work
binary SCS was utilized. Since the experimental average subband WNR is high, approximately
18dB, the rate can be increased by applying D-ary SCS, with D > 2. (ii) Lattice Costa scheme
[32], which employs lattice quantization instead of scalar quantization, can also be used for
embedding-rate improvement. (iii) In the suggested application, only two subbands are used
for data embedding in each frame. The encoder chooses these subbands as the ones with the
highest estimated WNR for each frame. The embedding rate could be increased by dynamically
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choosing also the number of subbands for data-embedding, from the set of subbands into which
the transformed signal frames are divided.

Blind channel equalization: The examined algorithms for channel equalization make use of
a training sequence for the adaption stage. If blind channel equalization could be used, this
stage could be avoided. Developing a blind channel-equalization algorithm for data embedding
systems appears to be a challenge.
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