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Abstract

Most coding techniques for color image compression employ a de-correlation ap-
proach - the RGB primaries are transformed into a de-correlated color space, such
as YUV or YCbCr, then the de-correlated color components are encoded separately.
Examples of this approach are the JPEG and JPEG2000 image compression stan-
dards. A different method, of a Correlation Based Approach (CBA) is presented
in this paper. Instead of de-correlating the color primaries, we employ the exist-
ing inter-color correlation to approximate two of the components as a parametric
function of the third one, called the base component. We then propose to encode
the parameters of the approximation function and part of the approximation er-
rors. We use the DCT (Discrete Cosine Transform) block transform to enhance the
algorithm’s performance. Thus the approximation of two of the color components
based on the third color is performed for each DCT subband separately. We use the
Rate-Distortion theory of subband transform coders to optimize the algorithm’s bits
allocation for each subband and to find the optimal color components transform to
be applied prior to coding. This pre-processing stage is similar to the use of the RGB
to YUV transform in JPEG and may further enhance the algorithm’s performance.
We introduce and compare two versions of the new algorithm and show that by us-
ing a Laplacian probability model for the DCT coefficients as well as down-sampling
the subordinate colors, the compression results are further improved. Simulation re-
sults are provided showing that the new CBA algorithms are superior to presently
available algorithms based on the common de-correlation approach, such as JPEG.

Key words: Color image compression, Inter-color correlation, Correlation Based
Approach, DCT block transform, Rate-Distortion model, Color components
transform, Optimal rates allocation

∗ Corresponding author. Tel.: +972-4-8294725; Fax: 972-4-8294799.
Email address: eugeny@tx.technion.ac.il (Evgeny Gershikov).

lesley
Text Box
CCIT Report #606       December 2006



1 Introduction

Recently a new algorithm for color image compression was introduced by Goff-
man and Porat [8]. This algorithm utilizes the high inter-color correlations be-
tween RGB color components of natural images ([6], [8], [11], [14], [18], [22])
without transforming them into another color domain. It does so by divid-
ing the image into square blocks, expanding two of the color primaries (the
dependent colors) as a polynomial function of the third (base) color for each
block. This way only the polynomial coefficients are encoded for each block
of the dependent colors, whereas the base color component is encoded by any
monochromatic compression technique. The choice of the base was examined
in [8] with general tendency to choose the Green. The conclusion in [8] was
that the new algorithm produces less color artifacts than the common de-
correlation approach at high compression ratios. The de-correlation approach
(such as JPEG [20] and JPEG2000 [10], [16]) consists of transforming the color
components into a de-correlated color space, then separately encoding each of
the obtained color components. This approach is the most common for color
images, however, it is not necessarily the optimal one. Additional examples of
this approach can be found in [12] and [21].
The algorithm by Goffman and Porat may be considered as an example of a
Correlation-Based Approach (CBA) to color image compression. In this work
we introduce two new algorithms based on this approach. We use the DCT
block transform [17] to enhance the compression performance. Thus the ex-
pansion of the dependent colors is done for each DCT subband instead of for
each image block. However, not only the expansion coefficients are coded, but
also the approximation errors for part of the subbands. Since the DCT block
transform is a special case of a subband transform, we propose to employ
the recently developed Rate-Distortion theory for subband transform coders
[4]. This theory allows us not only to find the optimal bits allocation for the
subbands in MSE (Mean Square Error) sense, but also the optimal Color Com-
ponents Transform (CCT) as an efficient pre-processing stage.
The structure of this paper is as follows. In Subsections 1.1, 1.2 and 1.3 we
review the Rate-Distortion theory for subband transform coders and the al-
gorithms for calculating the optimal subband rates and the corresponding
PCM quantization steps. In Sections 2 and 3 we introduce two versions of the
new algorithm and discuss how the Rate-Distortion theory is used in their
optimization. Section 4 deals with optimizing the color components trans-
form. Then in Section 5 down-sampling of the subordinate colors and use of
the Laplacian probability model for the DCT coefficients are described. This
model allows reduction of the algorithms’ complexity and provides lower cod-
ing distortion for the same transmission rate. Another potential improvement
of the algorithms’ performance is presented in Section 6. Simulation results of
the new algorithms and their comparison to JPEG as a representative of the
de-correlation approach are discussed in Section 7. Finally, conclusions and
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summary are given in Section 8.

1.1 Rate-Distortion theory of subband transform coders

In [4] a general subband transform coder for color images was considered,
based on the following steps.

• Pre-processing: apply a CCT to the RGB color components of the given
image. Denoting the RGB components in vector form as x = [R G B]T

and the new color components as x̃ = [C1 C2 C3]T , this stage can be
written as:

x̃ = Mx (1)

for some 3 × 3 CCT matrix M.
• Apply a subband transform, such as DCT or DWT (Discrete Wavelet Tree)

or any filter bank decomposition to each color component. The subband
transform is usually assumed to be non-expansive, i.e., it transforms a signal
of length N to a signal with the same length.

• Quantize the coefficients of each subband of each color component. A uni-
form scalar quantizer was considered. We refer to this stage as applying the
PCM (Pulse Code Modulation) scheme.

• Post-processing: encode the quantized coefficients in a lossless manner, such
as run-length coding, delta modulation or entropy coding.

At high rates R the Rate-Distortion behavior of the basic PCM scheme applied
to a random signal x with variance σ2

x is [7], [19]

d(R) = ε2σ2
x2

−2R, (2)

where ε2 is a constant dependent upon the distribution of x. This is only
an approximate behavior or model, however, based on (2) the R-D (Rate-
Distortion) model of a general monochromatic subband coder with B subbands
can be expressed as

dSC({Rb}) =
B−1∑

b=0

ηbGbdb(Rb) =
B−1∑

b=0

ηbGbσ
2
bε

22−2Rb . (3)

Here db(Rb) is the MSE of subband b (b ∈ 0, 1, ..., B − 1), σ2
b is its variance, Gb

is its energy gain [19], Rb is the rate allocated to it, and ηb is its sample rate.
The sample rate of a subband is equal to the relative part of the number of
coefficients in it from the total number of samples in the subband transformed
signal. For a uniform subband transform, such as the block DCT ηb = 1

B
.

Consider now a color image. The coding algorithm described in the beginning
of this section may be regarded as applying a CCT to the image, followed
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by monochromatic subband coding of each of the new color components. The
Rate-Distortion model of this algorithm is

d ({Rbi},M) =
1

3

3∑

i=1

B−1∑

b=0

ηbGbσ
2
biε

2
i e

−aRbi

(
(MMT )−1

)

ii
, (4)

where a = 2ln2 and σ2
bi and Rbi remain the same, but for subband b of color

component i (i ∈ 1, 2, 3). Note that standard entropy coding is assumed here in
the post-processing stage or alternatively this stage is not taken into account.
Minimizing the expression of Equation (4) under the rate constraint

3∑

i=1

B−1∑

b=0

ηbRbi = R, (5)

as well as non-negativity constraints for the rates lead to the optimal subband
rates allocation. If we denote the set of non zero (or active) rates in the color
component i by Acti, i.e., Acti , {b ∈ [0, B − 1] | Rbi > 0}, then the active
optimal rates are given by

Rbi =
R

3∑
j=1

ξj

+
1

a
ln




ε2
i Gbσ

2
bi

(
(MMT )−1

)

ii

∏3
k=1

[(
ε2

kGMAk(MMT )−1
)

kk

]
ξk

3∑
j=1

ξi




, (6)

where

ξi ,
∑

b∈Acti

ηb, GMAi ,
∏

b∈Acti

(Gbσ
2
bi)

ηb
ξi . (7)

The rate constraint of (5) and the optimal rates of (6) do not account for down-
sampling of some of the color components as, for example, is done in JPEG
[20]. To do so a down-sampling factor αi is introduced for color component
i, so that if the down-sampling is by a factor of 2 horizontally and vertically
then:

αi =





1 full component

0.25 down-sampled component.

Thus the rate constraint becomes:

3∑

i=1

αi

B−1∑

b=0

ηbRbi = R, (8)
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and the solution for the rates is:

Rbi =
R

3∑
j=1

αjξj

+
1

a
ln




ε2

i
Gbσ

2

bi((MMT )−1)
ii

αi

∏3
k=1

(
((MMT )−1)

kk
ε2

k
GMAk

αk

)
αkξk

3∑
j=1

αjξj




(b ∈ Acti). (9)

There is still a question of how the active rates are determined. The iterative
algorithm introduced in [4] for this purpose is described in the next subsection.

1.2 Determining the active subbands

The following algorithm can be used to find the active subbands iteratively:

(1) Assume all the subbands are active and calculate the rates.
(2) While some Rbi < 0

• Set Acti = {b ∈ [0, B − 1]| Rbi > 0}
• Calculate new rates.

(3) Check that the Lagrange multipliers µbi ≥ 0, where:

µbi =





a
3
ηb

(
(MMT )−1

)

ii
ε2

i

(
G0σ

2
0ie

−aR0i − Gbσ
2
bi

)
b /∈ Acti

0 b ∈ Acti
.

Here σ2
0i and R0i are the variance and rate, respectively, of subband 0 of

component i. This subband can be any subband that can be assumed to be
active always. Usually we would choose the subband with the maximal energy
(variance) for that component, e.g., the DC subband for the DCT.
Once the optimal rates have been determined, there is still the question of
the size of the PCM quantization steps to choose to achieve these rates. The
quantization steps algorithm proposed in [1] is given next.

1.3 Determining the optimal PCM steps

The algorithm consists of the following stages:

• Calculate the optimal rates R∗

bi (using (6) or (9)).
• Set some initial quantization steps ∆bi and calculate the resulting rates Rbi.

The rate Rbi is the entropy of subband b of color component i.
• Update the quantization steps according to:

∆new
bi = ∆bi2

−(R∗

bi
−Rbi)
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until the optimal rates R∗

bi are sufficiently close, i.e., E (|R∗

bi − Rbi|) < ε for
some small constant ε. E() stands here for statistical mean.

This algorithm provides a means of how to deal with the active subbands. The
coefficients of the non-active subbands are zeroed.

2 The basic CBA algorithm

We begin this section with the introduction of the basic framework for the CBA
algorithms. Given a color image in the RGB domain denoted x = [R G B]T

at each pixel, we first apply a CCT to the color components to obtain x̃ =
[C1 C2 C3]T = Mx as in Equation (1). This stage is optional, i.e., the
C1, C2, C3 components can be simply the original R, G, B (possibly with
some order change). Then we apply the DCT block transform on each of the
new color components and group the DCT coefficients into B subbands. For
example, for a DCT block size of 8 × 8, B = 64. We denote the subband
b, (b ∈ {0, 1, ..., B − 1}) coefficients of the color component i by ybi. Now
without loss of generality we approximate C2 and C3 in each subband as a
function of C1. In [8] Goffman and Porat suggested to use linear approximation
for the dependent colors in each image block. The motivation for this is that
the color components in the image domain are highly correlated in a small
neighborhood whereas high correlations suggest a linear dependency. The same
is true, however, for the DCT subbands - the inter-color correlations are high.
Thus we suggest approximating C2 and C3 in subband b according to:

ŷb2 = τb1 · yb1 + τb0

ŷb3 = βb1 · yb1 + βb0,
(10)

for some constant expansion coefficients τb0, τb1, βb0, βb1. We use the least squares
(LS) or MSE criterion to find these coefficients, i.e., we look for τb0, τb1 mini-
mizing

E
[
(yb2 − ŷb2)

2
]

= E
[
(yb2 − τb1 · yb1 − τb0)

2
]

(11)

and the same for βb0, βb1 with yb3 replacing yb2 and β replacing τ . Equation
(11) can be rewritten as:

E
[
(yb2 − ŷb2)

2
]

= var (yb2 − τb1 · yb1) + E2 [(yb2 − τb1 · yb1 − τb0)] , (12)

where var() stands for variance. Thus τb1 only minimizes the variance of the
approximation error eb2 , yb2− ŷb2, and τb0 will have to be chosen to bring the
error mean E (eb2) = E (yb2 − τb1 · yb1 − τb0) to zero. The optimal coefficients
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are thus:

τb1 =
cov (yb1, yb2)

var(yb1)

τb0 = E (yb2 − τb1 · yb1) = E(yb2) −
cov (yb1, yb2)

var(yb1)
· E(yb1),

(13)

and similarly:

βb1 =
cov (yb1, yb3)

var(yb1)

βb0 = E (yb3 − βb1 · yb1) = E(yb3) −
cov (yb1, yb3)

var(yb1)
· E(yb1).

(14)

Here cov() stands for covariance. The meaning of Equation (13) for τb1 is that

τb1 =

∑
k

E
[(

yk
b1 − E(yb1)

) (
yk

b2 − E(yb2)
)]

∑
k

E
[(

yk
b1 − E(yb1)

)2
] , (15)

where k is an index running on all the subband b coefficients, yk
b1, for example,

is the kth coefficient for C1 and E(yb1) is the mean value of the subband b
coefficients for C1.

2.1 How good is the LS approximation of C2 and C3?

The MSE of C2 or C3 can be expressed as:

dCi =
1

B

B−1∑

b=0

dbi, (i = 2, 3). (16)

This expression, in fact, is the same as used in Equation (3) with energy gains
Gb = 1 due to the orthogonality of the DCT and ηb = 1

B
due to its uniformity.

Similarly, dbi denotes here the MSE of the subband b of the color component
i. If we denote the correlation coefficient of C1 and C2 and the correlation
coefficient of C1 and C3 in subband b by ρb12 and ρb13, respectively, then using
the coefficients of (13) and (14) results in the MSE distortions:

dbi = var(ybi)
(
1 − ρ2

b1i

)
, (i = 2, 3). (17)

Thus, the greater the inter-color correlations in subband b is, the smaller the
MSE of this subband becomes for approximated DCT coefficients with the
same variance.
It is well known that the DCT concentrates most of the image energy in the DC
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and low frequency subbands, thus greatly increasing their variances relative
to the other subbands. It turns out that simply performing LS approximation
for these subbands of C2 and C3 results in too large MSE distortions since
the correlations ρb1i in (17) have to be very high (e.g., above 0.95) to provide
for reasonable distortion. This is not the case in general and thus we suggest
coding the approximation errors in addition to the expansion coefficients for
the subbands with high variances. How exactly these subbands are chosen as
well as how the errors are compressed is the subject of Subsection 2.3. Note
that the dbi of (17) is also the variance of the approximation error of the
subband due to the effect of the zero order expansion coefficient τb0 or βb0

that zeroes the error’s mean value. Thus

var (ebi) = var(ybi − ŷbi) = var(ybi)
(
1 − ρ2

b1i

)
, (i = 2, 3). (18)

Next we discuss the encoding of the expansion coefficients.

2.2 Coding the expansion coefficients

We suggest to use PCM with a uniform scalar quantizer (and different step
size) for each of the coefficients. It turns out that a small number of bits can
be allocated to each coefficient, e.g., 2 bits to the τb0 and βb0 coefficients and
3 bits to τb1 and βb1. There is still correlation between the same coefficients of
different subbands and thus one can employ delta modulation, for example,
then entropy coding in the post-quantization stage. However, with such a
small bits budget allocated to the coefficients, basic quantization should be
sufficient.
The dynamic range of the coefficients is not predefined. Thus we employ two
thresholds with any coefficient above the upper threshold or below the lower
threshold being forced by the value of the corresponding threshold. Assuming
that the coefficient being encoded (one of τb0, βb0, τb1 and βb1) has mean µ
and standard deviation σ, the lower and upper thresholds are chosen to be
µ − Kσ and µ + Kσ, respectively. K is a constant that can be chosen to be
K = 8 as in [9].

2.3 Coding the approximation errors

The approximation errors have been defined above as, for example, eb2 ,

yb2 − τb1 · yb1 − τb0 for C2. We have, however, to introduce a correction here:
the expansion coefficients used eventually in the calculation of these errors are
the coefficients after quantization and reconstruction (i.e., τ̂b1 instead of τb1).
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Thus the errors to be coded are:

êb2 , yb2 − τ̂b1 · yb1 − τ̂b0

êb3 , yb3 − β̂b1 · yb1 − β̂b0.
(19)

We propose to code the approximation errors using a uniform scalar quantizer
for each subband. Then for each subband of C2 or C3, the MSE distortion
will be actually a quantization error. As a result, we are able to use the theory
mentioned in Subsection 1.1. The theoretical variances of the subbands, when
the optimal expansion coefficients are used without quantization, are equal
to the MSE distortions of Equation (17). Clearly, the quantization of the
coefficients will increase the MSE distortions and generally the variances as
well, however, substituting the real error variances σ2

bi in (6), the optimal
subband rates can be calculated. The determination of the active subbands as
well as the PCM steps for them is performed according to Subsections 1.2 and
1.3. Note that for non-active subbands only the expansion coefficients are sent
and the approximation errors are all regarded as zero. Thus for these subbands
the MSE distortions are due to the LS approximation and the PCM errors in
the expansion coefficients themselves. In fact, due to the lack of correlation
between the LS errors ybi − ŷbi and the PCM errors ebi − êbi the total MSE
distortion for each non-active subband is the sum of the MSE errors of the
two stages. As for the active subbands, the LS approximation only determines
the variance of the coded error there whereas the subband MSE is equal to
the MSE of the PCM scheme applied to its êbi.

Post-quantization coding of the approximation errors

The number of bits required to encode the approximation errors after the quan-
tization stage can be reduced using the inter-subband correlation by techniques
similar to the ones used in JPEG. Thus we suggest coding the DC subband
using delta modulation and size-value representation of the differences. Huff-
man codes are used for the sizes combined with VLI (Variable Length Integer)
codes for the values. The AC subbands are coded using zigzag scan, run length
coding and once again Huffman coding (of size and run-length pairs) along
with VLI codes for the values.

2.4 Summary of the stages of the algorithm

(1) Apply a CCT M to the RGB color components of the image to obtain
the new color components C1, C2, C3.

(2) Apply the DCT block transform to each color component Ci, i ∈ {1, 2, 3}.
(3) Find the expansion coefficients τb1, τb0 and βb1, βb0 for each of the DCT

subbands.
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(4) Quantize the expansion coefficients and output them as part of the com-
pressed image data. Then reconstruct them to obtain τ̂b1, τ̂b0 and β̂b1, β̂b0.

(5) Find the approximation errors êb2 and êb3 according to (19), and calculate
their variances.

(6) Calculate the optimal rates according to (6) substituting there the se-
lected CCT matrix M and the variances of the approximation errors.
Use the algorithm to find the active subbands according to Subsection
1.2.

(7) Quantize the approximation errors using uniform quantizers with PCM
steps determined according to Subsection 1.3.

(8) Use post-quantization coding similar to the one used in JPEG. Adaptive
Huffman codes are employed in the entropy coding and are sent with the
image data. This stage is of course lossless and does not affect the image
distortion.

This algorithm uses 2 coefficients for C2 and 2 coefficients for C3, thus we will
refer to it as CBA-2-2.

3 Enhanced CBA algorithm

Examining the approximation errors êbi coded for the same subband b of C2
and C3, significant correlations can still be noted. This implies that, for exam-
ple, êb2 can be coded ’as is’ and êb3 can be expanded using êb2. For simplicity,
linear approximation can once again be used in this second stage expansion.
Denoting the new expansion coefficients δb1 and δb0, we can easily derive the
optimal values for these coefficients

δb1 =
cov (êb2, êb3)

var (êb2)
, δb0 = E (êb3) −

cov (êb2, êb3)

var (êb2)
· E (êb2) , (20)

where êb3 is approximated by δb1 · êb2 + δb0. If we neglect the PCM errors in
the first stage expansion coefficients, we can write:

δb1 =
cov (yb2 − τb1 · yb1 − τb0, yb3 − βb1 · yb1 − βb0)

var (yb2 − τb1 · yb1 − τb0)

=
var(yb1) · cov(yb2, yb3) − cov(yb1, yb2) · cov(yb1, yb3)

var(yb1) · var(yb2) · (1 − ρ2
b12)

.

(21)

Then the theoretical MSE of this approximation for C3 becomes:

db3 = var(yb3)

(
1 − ρ2

b12 − ρ2
b13 − ρ2

b23 + 2 · ρb12 · ρb13 · ρb23

1 − ρ2
b12

)
, (22)
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which when compared to (17) is smaller by a factor of var(yb3)
(ρb23−ρb12ρb13)2

1−ρ2

b12

or by a relative portion of (ρb23−ρb12ρb13)
2

(1−ρ2

b12)(1−ρ2

b13)
. Note that ρb23 is defined similarly

to ρb12 or ρb13 as the inter-color correlation of C2 and C3 in subband b.
There is a more efficient way to achieve the same MSE distortion for C3 in
one stage approximation. While C2 is still approximated using C1, we suggest
that C3 is expanded using C1 and C2 in each subband, so that ŷb3 of (10) is
replaced by:

ŷb3 = βb2 · yb2 + βb1 · yb1 + βb0. (23)

This expansion requires only three coefficients instead of four in the two stage
approximation and the expressions for the optimal coefficients in LS sense
become:

βb2 =
ρb23 − ρb12 · ρb13

(1 − ρ2
b12)

·

√√√√var(yb3)

var(yb2)

βb1 =
ρb13 − ρb12 · ρb23

(1 − ρ2
b12)

·

√√√√var(yb3)

var(yb1)

βb0 = E (yb3) − βb2 · E (yb2) − βb1 · E (yb1) .

(24)

The variance of the approximation error of subband b of C3 in this expansion
is given by the expression of (22), similar to the relation between Equations
(17) and (18). As a result, we can write:

var (eb3) = var(yb3 − ŷb3)

= var(yb3)

(
1 − ρ2

b12 − ρ2
b13 − ρ2

b23 + 2 · ρb12 · ρb13 · ρb23

1 − ρ2
b12

)
.

(25)

Practically, the decoder will not have the original C2 component, but the
reconstructed one. Thus the reconstructed C2 component should be used in the
calculation of the coefficients in (24). Note that the treatment of C2 remains
the same as in Section 2.
The stages of the enhanced CBA algorithm become:

(1) Apply a CCT M to the RGB color components of the image to obtain
the new color components C1, C2, C3.

(2) Apply the DCT block transform to each color component Ci, i ∈ {1, 2, 3}.
(3) Find the expansion coefficients τb1, τb0 and βb2, βb1, βb0 for each of the

DCT subbands. Use the original color components in this stage.
(4) Quantize the expansion coefficients. Then reconstruct them to obtain

τ̂b1, τ̂b0 and β̂b2, β̂b1, β̂b0.
(5) Find the approximation errors:

êb2 , yb2 − τ̂b1 · yb1 − τ̂b0

êb3 , yb3 − β̂b2 · yb2 − β̂b1 · yb1 − β̂b0,
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and calculate their variances.
(6) Calculate the optimal rates according to (6) substituting there the se-

lected CCT matrix M and the variances of the approximation errors.
Use the algorithm to find the active subbands according to Subsection
1.2.

(7) Quantize the approximation errors of C2 using uniform quantizers with
PCM steps determined according to Subsection 1.3. Then reconstruct C2
to be used at the next stage.

(8) Find the new expansion coefficients βb2, βb1, βb0 for C3 using C1 and the
reconstructed C2.

(9) Quantize the new C3 coefficients and reconstruct them. Output the quan-
tized coefficients for C2 and C3.

(10) Find the new approximation errors êb3 similar to Step 5.
(11) Apply the PCM scheme to the new approximation errors of C3 similar

to Step 7 for C2.
(12) Use post-quantization coding similar to the one used in JPEG both for

C2 and C3.

Note that the first two stages and the last stage are the same as for the simpler
algorithm of Section 2. The enhanced algorithm uses 2 coefficients for C2 and
3 coefficients for C3, thus it will be referred here as CBA-2-3.

4 The optimal CCT transform

Considering the subband coder, described here in the beginning of Section 1.1,
the target function, minimized by the optimal CCT was found to be [3]:

f(M) =
3∏

k=1

(
(MMT )−1

)

kk

B−1∏

b=0

(σ2
bk)

ηb . (26)

The same target function can be used for the CBA algorithms when the ap-
proximation error variances are substituted for σ2

bk. These variances can be
expressed by the variances of the subbands of C2 and C3 according to Equa-
tion (18) for CBA-2-2 and according to Equations (18) and (25) for CBA-2-3.
To express these variances through the image data, we define the subband b
covariance matrix Λb in the RGB domain:

Λb , E
[(

Yb − µYb

) (
Yb − µYb

)T
]

µYb
, E [Yb] , (27)

where Yb , [ybR ybG ybB]T is a vector of the R, G, B DCT coefficients for
subband b. Now we can write

var(ybi) = miΛbmi
T (28)
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and

ρbij =
miΛbmj

T

√
(miΛbmi

T ) (mjΛbmj
T )

, i 6= j (29)

where mi stands for row i of M. Using these expressions, the error variances
σ2

bk can be written as:

σ2
bk = mkΛbmk

T −

(
m1Λbmk

T
)

m1Λbm1
T

(k = 2, 3) (30)

for CBA-2-2. Similarly, σ2
bk for CBA-2-3 can be derived. We consider a constant

C1 component chosen to be Y of the YUV color space and not compressed.
Thus, only the CCT matrix rows corresponding to C2 and C3 are optimized
and the CCT target function becomes:

f(M) =
3∏

k=2

(
(MMT )−1

)

kk

B−1∏

b=0

(σ2
bk)

ηb . (31)

The optimal CCT, i.e., the one minimizing f(M) will be used for the CBA
algorithms.

5 Down-sampling the approximation errors and Laplacian rates

5.1 Down-sampling the approximation errors

In JPEG [20] the YUV color components transform is employed and the
chrominance components U and V are sometimes down-sampled to provide
for less MSE distortion for the same image rate. We propose the same proce-
dure in the case of the approximation errors of the CBA algorithms. However,
the down-sampling is to be performed in the image domain, thus the following
changes in the algorithms of the previous sections are performed:

• The optimal rates are calculated according to (9) instead of (6).
• Prior to quantization the errors are transformed to image domain by inverse

DCT, down-sampled there, for example, by a factor of 2 in each direction
and then transformed back to DCT domain.

The performance of the CBA algorithms with and without down-sampling is
shown in Tables 1 and 2. The PSPNR (Peak Signal to Perceptible Noise Ratio)
here is a subjective distortion measure defined similar to the definition of the
PSNR (Peak Signal to Noise Ratio). It is calculated according to:

PSPNR , 10log10
2552

WMSE
, (32)

13



Image
PSNR [dB] PSPNR [dB] Rate

[bpp]CBA-2-2 DS CBA-2-2 CBA-2-2 DS CBA-2-2

Lena 30.03 27.23 41.69 38.97 0.038

Baboon 30.03 25.75 44.09 38.53 0.075

Peppers 29.97 28.19 40.63 39.24 0.101

Tree 29.98 28.62 44.34 42.63 0.081

House 30.03 28.84 46.59 45.20 0.083

Jelly
Beans

30.00 27.75 45.10 42.88 0.085

Fruit 29.99 26.62 41.61 37.54 0.057

Mean 30.00 27.57 43.44 40.71

Table 1
PSNR and PSPNR results for CBA-2-2 with down-sampling (DS) vs. CBA-2-2
without down-sampling at the same compression rate. The rate is calculated for the
C2 and C3 components only.

where WMSE (Weighted Mean Square Error) for each color component is
calculated similarly to the MSE of (3) as:

WMSE =
B−1∑

b=0

ηbWbGbdb. (33)

Here db denotes the MSE of subband b, Gb is its energy gain, ηb is its sample
rate and Wb is its visual perception weight. Our choice of the WMSE is ac-
cording to the JPEG2000 algorithm [19]. Also we consider 256x256 size images
displayed on a screen as 12cm × 12cm size images.
It can be concluded from the tables that down-sampling improves the per-
formance of the CBA-2-2 algorithm by 2.43dB PSNR and 2.73dB PSPNR on
average, while the performance gain of CBA-2-3 is even greater: 3.05dB PSNR
and 3.22dB PSPNR on average.
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Image
PSNR [dB] PSPNR [dB] Rate

[bpp]CBA-2-3 DS CBA-2-3 CBA-2-3 DS CBA-2-2

Lena 29.95 27.33 41.83 39.12 0.039

Baboon 29.99 25.39 43.89 38.30 0.075

Peppers 29.97 28.18 40.86 39.66 0.105

Tree 29.96 28.33 44.18 42.24 0.078

House 30.04 27.44 46.10 43.30 0.063

Jelly
Beans

30.03 27.20 45.12 43.01 0.084

Fruit 29.97 24.74 42.02 35.80 0.062

Mean 29.99 26.94 43.43 40.21

Table 2
PSNR and PSPNR results for CBA-2-3 with down-sampling (DS) vs. CBA-2-3
without down-sampling at the same compression rate. The rate is calculated for the
C2 and C3 components only.

5.2 Laplacian rates

The distribution of the coefficients of the block DCT was analyzed in [13].
It has been found that this distribution can be modelled as Laplacian. Em-
ploying this probability model, we can approximately calculate the subband
rates without the use of histograms. Given a subband b of color component i
having a variance σ2

bi and quantized with a step ∆bi, the rate of the subband
is approximated by [2]:

Rbi = −
(
1 − e−0.5µbi∆bi

)
log2

(
1 − e−0.5µbi∆bi

)
− e−0.5µbi∆bi (log2 kbi − 1)

+
µbi∆bi

kbi

log2(e),
(34)
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where

kbi , e0.5µbi∆bi − e−0.5µbi∆bi , µbi ,

√
2

σ2
bi

. (35)

The benefit of using Equation (34) for the rates calculation is the reduced
complexity of the algorithms [2]. As for the performance, it is also increased
on average as seen from Table 3 by about 0.5-0.6dB PSNR and 0.4-0.6dB
PSPNR.

Mean PSNR [dB] Mean PSPNR [dB]

CBA-2-2 LR DS CBA-2-2 DS CBA-2-2 LR DS CBA-2-2 DS

30.02 29.54 43.25 42.89

CBA-2-3 LR DS CBA-2-3 DS CBA-2-3 LR DS CBA-2-3 DS

30.00 29.43 43.81 43.23

Table 3
Mean PSNR and PSPNR results for the images of Tables 1 and 2 for CBA-2-2 and
CBA-2-3 with Laplacian rates (LR) and down-sampling (DS) compared to the same
algorithms with real rates and down-sampling at the same compression rate. The
rate is calculated for the C2 and C3 components only.

6 The zero order coefficients

In Stage 4 of the CBA-2-2 algorithm (Subsection 2.4) we have proposed trans-
mitting both the first order τb1, βb1 coefficients and the zero order τb0, βb0 co-
efficients. However, as we saw in the discussion following Equation (12), it is
the first order coefficients that minimize the variances of the approximation
errors, thus allowing better compression of the errors. The zero order coeffi-
cients on the other hand only bring the mean value of the errors to zero. If we
consider a non-active subband, the effect of this is that minimal variance of
the LS approximation error is equivalent to minimal MSE distortion for the
subband (disregarding the influence of the PCM errors of the coefficients) and
thus sending the zero order coefficients may be useful. On the other hand, the
non-active subbands contain a small portion of the energy of the image and
their contribution to the total MSE distortion is not significant. For an active
subband it is the error variance that is important and resetting the error’s
mean may only allow better performance in the post-quantization stage of
Subsection 2.3.
Thus we propose another version of the algorithm of Section 2 that uses only
the τb1, βb1 coefficients found according to Equations (13) and (14). A compar-
ison of this algorithm denoted CBA-1-1 and the CBA-2-2 algorithm is shown
in Table 4 for various images. Note that both down-sampling and Laplacian
rates have been used here for both algorithms. The conclusion from Table 4
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Image
PSNR [dB] PSPNR [dB]

Rate [bpp]
CBA-1-1 CBA-2-2 CBA-1-1 CBA-2-2

Girl 30.03 29.78 44.77 44.37 0.061

Hats 30.02 28.68 41.65 41.00 0.040

Fruits 30.00 29.86 42.68 42.50 0.091

Frog 30.02 29.47 40.14 39.17 0.051

Landscape 30.03 29.17 41.26 40.22 0.025

Parrots 30.05 29.55 42.21 41.61 0.047

Monarch 29.96 29.85 44.33 44.14 0.076

Mean 30.01 29.48 42.43 41.86

Table 4
PSNR and PSPNR results for CBA-1-1 vs. CBA-2-2 at the same compression rate.
Both algorithms use down-sampling and Laplacian rates. The rate is calculated for
the C2 and C3 components only.

is that the CBA-1-1 algorithm is superior to CBA-2-2 with an average perfor-
mance gain of 0.53dB PSNR and 0.57dB PSPNR.
A similar version of the CBA-2-3 algorithm can be introduced using only the
τb1 coefficients for C2 and βb1, βb2 for C3. We denote this version as CBA-1-2
as it uses one expansion coefficient for C2 and two for C3. A comparison of
this algorithm with the original CBA-2-3 (using down-sampling and Laplacian
rates for both algorithms) is given in Table 5. It can be seen that once again
CBA-1-2 is superior, with gains of 0.48dB PSNR and 0.64dB PSPNR.

7 Simulation and comparison

In this section we compare the CBA algorithms to the popular JPEG algo-
rithm as a representative of the de-correlation approach. First we consider the
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Image
PSNR [dB] PSPNR [dB]

Rate [bpp]
CBA-1-2 CBA-2-3 CBA-1-2 CBA-2-3

Girl 29.97 29.86 45.02 44.67 0.065

Hats 29.96 28.06 42.29 40.32 0.041

Fruits 29.95 29.89 42.99 42.65 0.095

Frog 29.96 29.63 39.98 39.46 0.055

Landscape 30.05 29.82 41.31 40.64 0.025

Parrots 30.01 29.43 41.86 41.40 0.047

Monarch 30.01 29.86 44.34 44.12 0.077

Mean 29.99 29.51 42.54 41.90

Table 5
PSNR and PSPNR results for CBA-1-2 vs. CBA-2-3 at the same compression rate.
Both algorithms use down-sampling and Laplacian rates. The rate is calculated for
the C2 and C3 components only.

case of no down-sampling (DS) of the color components. A comparison of the
basic CBA-2-2, CBA-2-3 algorithms and JPEG is shown in Fig. 1. Better vi-
sual quality can be observed for the images produced by the CBA algorithms
when compared to JPEG images. Also quantitative gains of more than 2dB
and up to almost 3dB can be measured both in the PSNR and the PSPNR
for the CBA-2-2 algorithm [5]. The performance is lower for the CBA-2-3 al-
gorithm, but still much higher than JPEG’s.
When employing down-sampling of the chrominance information in JPEG

and of the subordinate colors in the CBA algorithms, smaller gains in the
PSNR and PSPNR should be expected. Since this is likely to be the more
practical case today, a comparison of the CBA algorithms and JPEG with
down-sampling is of interest. Such a comparison is provided in Fig. 2. We
consider the best algorithms according to the previous sections: CBA-1-1 and
CBA-1-2. It can be seen that JPEG introduces color artifacts, especially visi-
ble in the parts marked in red. Those artifacts are less pronounced in the CBA
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Fig. 1. Lena and Cat images - from top to bottom: original, compressed by JPEG
and compressed by the CBA-2-2 and CBA-2-3 algorithms (without DS for all).
PSNR for the Lena image: 30.38 (JPEG), 32.78 (CBA-2-3) and 33.00 (CBA-2-2).
PSPNR: 43.95 (JPEG), 45.89 (CBA-2-3) and 46.05 (CBA-2-2) at 0.109bpp.
PSNR for the Cat image: 32.18dB for JPEG and 35.02dB for CBA-2-3 and CBA-2-2.
PSPNR: 44.15dB (JPEG), 46.12dB (CBA-2-3) and 46.97dB (CBA-2-2) at 0.066bpp.
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Fig. 2. Landscape, Tree and House images - from top to bottom: original and 3
compressed versions: by JPEG, by CBA-1-1 and by CBA-1-2 (with DS for all).
PSNR for the Landscape image: 32.24 (CBA-1-1), 33.28 (CBA-1-2) and 30.17
(JPEG). PSPNR: 43.08 (CBA-1-1), 44.31 (CBA-1-2) and 40.87 (JPEG) at 0.028bpp.
PSNR for the Tree image: 30.04 (CBA-1-1), 29.96 (CBA-1-2) and 28.85 (JPEG).
PSPNR: 44.25 (CBA-1-1), 44.08 (CBA-1-2) and 43.38 (JPEG) at 0.067bpp.
PSNR for the House image: 31.60 (CBA-1-1), 31.52 (CBA-1-2) and 30.39 (JPEG).
PSPNR: 47.52 (CBA-1-1), 47.55 (CBA-1-2) and 47.28 (JPEG) at 0.078bpp.
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algorithms. Also while for the Landscape image CBA-1-2 has definitely best
performance and for the Tree image CBA-1-1 is slightly better, for the House
image both CBA algorithms are about the same.

8 Summary

A new approach to color image compression has been introduced. The ap-
proach is based on exploiting the inter-color correlations between the color
primaries instead of transforming them into a de-correlated color space. Based
on this approach, two new compression algorithms have been introduced, em-
ploying the block DCT transform. Both algorithms use first-order linear ap-
proximation of two of the color components (C2 and C3) in each DCT subband
based to the third color component (C1). However, our second algorithm, de-
noted CBA-2-3, is more complex since it approximates one of the dependent
colors relative to the base as well as the second dependent color. It has been
shown how these algorithms can be optimized in the choice of the color compo-
nents transform and the subband rates allocation using the theory presented
in [4]. This theory is based on a Rate-Distortion model for subband transform
coders as well as common constraints [15]. Furthermore, the algorithms’ perfor-
mance can be significantly improved using down-sampling of the subordinate
colors (C2 and C3) and using a Laplacian model for the DCT coefficients. This
model also allows for the reduction of complexity of the algorithms. Additional
improvement is possible by using only first order expansion coefficients, avoid-
ing transmission of the zero order coefficients.
Simulation results have been provided, demonstrating the advantage of the
proposed techniques. In Section 7 the CBA algorithms have been compared to
JPEG, demonstrating superior performance both visually and quantitatively.
Our conclusion is that the new CBA approach could be superior to the com-
mon approach of de-correlation.
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