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Abstract
Consider the case where consecutive blocks of N letters of a semi-in�nite individualsequence X over a �nite-alphabet are being compressed into binary sequences by someone-to-one mapping. No a-priori information about X is available at the encoder, whichmust therefore adopt a universal data-compression algorithm.It is known that if the universal LZ77 data compression algorithm is successivelyapplied to N -blocks then the best error-free compression, for the particular individualsequence X is achieved as N tends to in�nity.The best possible compression that may be achieved by any universal data com-pression algorithm for �nite N -blocks is discussed. It is demonstrated that context treecoding essentially achieves it.Next, consider a device called classi�er (or discriminator) that observes an individualtraining sequence X. The classi�er's task is to examine individual test sequences oflength N and decide whether the test N -sequence has the same features as those thatare captured by the training sequence X, or is su�ciently di�erent, according to someappropriate criterion. Here again, it is demonstrated that a particular universal contextclassi�er with a storage-space complexity that is linear in N , is essentially optimal. Thismay contribute a theoretical \individual sequence" justi�cation for the ProbabilisticSu�x Tree (PST) approach in learning theory and in computational biology.

Index Terms: Data compression, universal compression, universal classi�cation, context-tree coding.
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A. Introduction and Summary of Results:
Traditionally, the analysis of information processing systems is based on a certain modelingof the process that generates the observed data (e.g an ergodic process). Based on thisa-priori model, a processor (e.g. a compression algorithm, a classi�er, etc) is then optimallydesigned. In practice, there are many cases where insu�cient a-priori information aboutthis generating model is available and one must base the design of the processor on theobserved data only, under some complexity constraints that the processor must complywith.
1. Universal Data Compression with Limited Memory
The Kolmogorov-Chaitin complexity (1968) is the length of the shortest program that cangenerate the given individual sequence via a universal Turing machine. More concrete resultsare achieved by replacing the universal Turing machine model with the more restricted�nite-state machine model.
The Finite- State(FS) normalized complexity (compression) H(X), measured in bits perinput letter, of an individual in�nite sequence X is the normalized length of the shortestone-to-one mapping of X into a binary sequence that can be achieved by any �nite-statecompression device[1]. For example, the counting sequence 0123456... when mapped intothe binary sequence 0,1,00,01,10,11,000,001,010,011,100,101,110,111... is incompressible byany �nite-state algorithm. Fortunately, the data that one has to deal with is in many casescompressible.
The FS complexity was shown to be asymptotically achieved by applying the LZ universaldata compression algorithm [1] to consecutive blocks of the individual sequence. The FSmodeling approach was also applied to yield asymptotically optimal universal prediction ofindividual sequences[9].
Consider now the special case of a FS class of processors is further constrained to includeonly block-encoders that process one N -string at a time and then start all over again, (e.g.due to bounded latency and error-propagation considerations), H(X) is still asymptoticallyachievable by the LZ algorithm when applied on-line to consecutive strings of length N, asN tends to in�nity[1]. But the LZ algorithm may not be the best on-line universal datacompression algorithm when the block-length is of �nite length N .
It has been demonstrated that if it is a-priori known that X is a realization of a stationaryergodic, Variable Length Markov Chain (VLMC) that is governed by a tree model, thencontext-tree coding yields a smaller redundancy than the LZ algorithm([10],[4]). Morerecently, it has been demonstrated that context-tree coding yields an optimal universalcoding policy (relative to the VLMC assumption) ([2]).
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Inspired by these results, one may ask whether the optimality of context-tree coding relativeto tree models still holds for more general setups.
It is demonstrated here that the best possible compression that may be achieved by anyuniversal data compression algorithm for �nite N -blocks is essentially achieved by context-tree coding for any individual sequence X and not just for individual sequences that arerealizations of a VLMC.
In the following, a number of quantities are de�ned, that are characterized by non-traditionalnotations that seem unavoidable due to end-e�ects resulting from the �nite length of XN1 .These end-e�ects vanish as N tends to in�nity, but must be taken into account here.
Refer to an arbitrary sequence over a �nite alphabetA; jAj = A,XN = XN1 = X1; X2; :::;XN 2A, as being an individual sequence. Let X = X1; X2; ::: denote a semi-in�nite sequenceover the alphabet A. Next, an empirical probability distribution PMN (ZN1 ; N) is de�nedfor N vectors that appear in a sequence of length MN . The reason for using the notationPMN (ZN1 ; N) rather than, say, PMN (ZN1 ) is due to end-e�ects as discussed below. Wethen de�ne an empirical entropy that results from PMN (ZN1 ; N), namely HMN (N). Thisquantity is similar to the classical de�nition of the empirical entropy of N -blocks in anindividual sequence of length MN and as one should anticipate, serves as a lower boundfor the compression that can be achieved by any N - block encoders.
Furthermore, HMN (N) is achievable in the impractical case where one is allowed to �rst scanthe long sequence XMN1 , generate the corresponding empirical probability PMN (ZN1 ; N) foreach N -vector ZN1 that appears in XMN1 , and apply the corresponding Hu�man coding toconsecutive N -blocks.
Then, de�ne H(X; N) = lim supM!1HMN (N). It follows that

H(X) = lim supN!1 H(X; N))
is the smallest number of bits per letter that can be asymptotically achieved by any N-block data-compression scheme for X. However, in practice, universal data-compression isexecuted on-line and the only available information onX is the currently processed N -block.
Next, an empirical probability measure PMN (Zi1; N) is de�ned for i < N vectors that appearin an MN -sequence, which is derived from PMN (ZN1 ; N) by summing up PMN (ZN1 ; N)over the last N � i letters of N vectors in the MN - sequence. Again, observe that dueto end-e�ects, PMN (Zi1; N) is di�erent from PMN (Zi1; i) but converges to it asymptotically,as M tends to in�nity. Similarly, an empirical entropy HMN (i;N) that is derived fromPMN (Zi1; N). In the analysis that follows below both HMN (N) and HMN (i;N) play animportant role.
An empirical entropy HMN (ZijZi�11 ; N) is associated with each vector Zi�11 ; 1 � i �(logN)2 in XMN1 . This entropy is derived from PMN (ZijZi�11 ; N) = PMN (Zi1;N)PMN (Zi�11 ;N) . Note
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that this empirical entropy is conditioned on the particular value of Zi�11 and is not aver-aged over all Zi�11 2 Ai�1 relative to PMN (Zi�11 ; N).
A context-tree with approximately N leaves, that consists of the N most empirically prob-able contexts in XMN1 , is generated. For each leaf of this tree, choose the one contextamong the contexts on the the path from the root of the tree to this leaf, for which theassociated entropy is the smallest. Then, these minimal associated entropies are averagedover the set of leaves of the tree. This average entropy is denoted by Hu(N;M). Note thatHu(N;M) is essentially an empirical conditional entropy which is derived for a suitablyderived variable-length Markov chain (VLMC).
Finally, de�neHu(X; N) = lim supM!1Hu(N;M). It is demonstrated that lim infN!1[H(X; N)�Hu(X; N)] > 0. Thus, for large enough N , Hu(X; N), like H(X; N), may also serve as alower bound on the compression that may be achieved by any encoder for N -sequences. Therelevance of Hu(X; N) becomes apparent when it is demonstrated in Theorem 2 below thata context-tree universal data-compression scheme, when applied to N 0-blocks, essentiallyachieves Hu(X; N) for any X if logN 0 is only slightly larger than logN , and achieves H(X)as N" tends to in�nity.
Furthermore, it is shown in Theorem 1 below that among the many compressible sequencesX for which Hu(X; N) = H(X) < logA, there are some for which no on-line universaldata-compression algorithm can achieve any compression at all when applied to consecutiveblocks of length N 0, if logN 0 is slightly smaller than logN . Thus, context-tree universaldata-compression is therefore essentially optimal. Note that the threshold e�ect that isdescribed above is expressed in a logarithmic scaling ofN . At the same time, the logarithmicscaling of N is apparently the natural scaling for the length of contexts in a context-treewith N leaves.
2. Application to Universal Classi�cation
A device called classi�er (or discriminator) observes an individual training sequence oflength of m letters, Xm1 .
The classi�er's task is to consider individual test sequences of length N and decide whetherthe test N -sequence has, in some sense the same properties as those that are captured bythe training sequence, or is su�ciently di�erent, according to some appropriate criterion.No a-priori information about the test sequences is available to the classi�er asides fromthe training sequence.
A universal classi�er d(Xm1 ; ZN1 2 AN ) for N-vectors is de�ned to be a mapping from ANonto f0; 1g. Upon observing ZN1 , the classi�er declares ZN1 to be similar to one of the N -vectors Xj+Nj+1 ; j = 0; 1; :::;m�N i� d(Xm1 ; ZN1 ) = 1 (or, in some applications, if a slightlydistorted version ~ZN1 of ZN1 satis�es d(Xm1 ; ~ZN1 ) = 1).
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In the classical case, the probability distribution of N -sequences is known and an opti-mal classi�er accepts all N -sequences ZN1 such that the probability P (ZN1 ) is bigger thansome preset threshold. If XL1 is a realization of a stationary ergodic source one has, bythe Asymptotic Equipartition Property (A.E.P) of information theory, that the classi�er'stask is tantamount (almost surely for large enough N and M) to deciding whether the testsequence is equal to a "typical" sequence of the source (or, when some distortion is accept-able, if a slightly distorted version of the test sequence is equal to a "typical" sequence).The cardinality of the set of typical sequences is, for large enough N , about 2NH , where His the entropy rate of the source[10].
What to do when P (ZN1 ) is unknown or does not exist, and the only available informa-tion about the generating source is a training sequence Xm1 ? The case where the trainingsequence is a realization of an ergodic source with vanishing memory is studied in [11],where it demonstrated that a certain universal context-tree based classi�er is essentiallyoptimal for this class of sources. This is in unison with related results on universal predic-tion([11],[12],[13]).
Universal classi�cation of test sequences relative to a long training sequence is a centralproblem in computational biology. One common approach is to assume that the trainingsequence is a realization of a VLMC, and upon viewing the training sequence, to constructan empirical Probabilistic Su�x Tree (PST), the size of which is limited to the availablestorage complexity of the classi�er, and apply a context-tree based classi�cation algorithm[7,8].
But how one should proceed if there is no a-priori support for the VLMC assumption? Inthe following, it is demonstrated that the PST approach is essentially optimal for everyindividual training sequence, even without the VLMC assumption. Denote by S�(N;Xm1 )a set of N -sequences ZN1 which are declared to be similar to Xm1 (i.e. d(Xm1 ; ZN1 ) = 1),where d(Xm1 ; Xj+Nj+1 ) = 0 should be satis�ed by no more than �(m � N + 1) instancesj = 0; 1; 2; :::;m � N , and where � is an arbitrarily small positive number. Also, given aparticular classi�er, let D�(N;Xm1 ) = jS�(N;Xm1 )j, and let

H�(N;Xm1 ) = 1N logD�(N;Xm1 ) :
Thus, any classi�er is characterized by a certain H�(N;Xm1 ). Given Xm1 , let D�;min(N;Xm1 )be the smallest achievable D�(N;Xm1 ) and let

H�;min(N;Xm1 ) = 1N logD�;min(N;Xm1 ) :
and, for an in�nite training sequence X,

H�(N;X) = lim supm!1 H�;min(N;Xm1 )
.
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Note that �H(X) = lim�!0 lim supN!1 H�;min(N;X)
is the topological entropy of X[6].
Naturally, if the classi�er has the complete list of N -vectors that achieve D�;min(N;Xm1 ),it can achieve a perfect classi�cation by making d(Xm1 ; ZN1 ) = 1 i� ZN1 = Xj+Nj+1 , for everyinstant j = 0; 1; 2; :::;m�N for which Xj+Nj+1 2 S(N; �;Xm1 ).
The discussion is constrained to cases where H�;min(N;Xm1 ) > 0. Therefore, when mis large, D�;min(N;Xm1 ) grows exponentially with N(e.g. when the test sequence is a re-alization of an ergodic source with a positive entropy rate). The attention is limited toclassi�ers that have a storage-space complexity that grows only linearly with N. Thus, thelong training sequence cannot be stored. Rather, the classi�er is constrained to representthe long training sequence by a short \signature", and use this short signature to classifyincoming test sequences of length N . It is shown that it is possible to �nd such a classi�er,denoted by d(Xm1 ; �; ZN1 ), which is essentially optimal in the following sense:
An optimal \�-e�cient" universal classi�er d(Xm1 ; �; ZN1 ) is de�ned to be one that satis�esthe condition that d(Xm1 ; Xj+Nj+1 ) = 1 for (1 � �̂)(m � N + 1) instances j = 0; 1; :::m � N ,where �̂ � �. This corresponds to the rejection of at most �D�;min(N;Xm1 ) vectors fromamong the D�;min(N;Xm1 ) typical N -vectors in Xm1 . Also, an optimal \�-e�cient" universalclassi�er should satisfy the condition that d(Xm1 ; ZN1 ) = 1 is satis�ed by no more than2NH�;min(N;Xm1 )+� N-vectors ZN1 . This corresponds to a false-alarm rate of

2N(H�;min(N;Xm1 )+�) � 2NH�;min(N;Xm1 )
2N logA � 2NH�;min(N;Xm1 )

when N -vectors are selected independently at random, with an induced uniform probabilitydistribution over the set of 2N logA � 2N(H�;min(N;Xm1 )) N -vectors that should be rejected.Note that the false-alarm rate is thus guaranteed to decrease exponentially with N for anyindividual sequence Xm1 for which H�;min(N;Xm1 ) < logA� �.
A context-tree based classi�er for N -sequences, given an in�nite training sequence X anda storage-complexity of O(N), is shown by Theorem 3 below to be �-e�cient for any N �N0(X) and somem = m0(N;X). Furthermore, by Theorem 3 below, among the set of train-ing sequences for which the proposed classi�er is �-e�cient, there are some for which no �-e�cient classi�er for N 0-sequences exists, if logN 0 < logN for any � < logA�H�;min(N;X).Thus, the proposed classi�er is essentially optimal.
Finally, the following universal classi�cation problem is considered: Given two test-sequencesY N1 and ZN1 and no training data, are these two test-sequences "similar" to each other?The case where both Y N1 and ZN1 are realizations of some (unknown) �nite-order Markovprocesses is discussed in [14], where an asymptotically optimal empirical divergence measureis derived empirically from Y N1 and ZN1 .
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In the context of the individual-sequence approach that is adopted here, this amounts to thefollowing problem: Given Y N1 and ZN1 , is there a training-sequenceX for whichH�;min(X) >0 ,such that both Y N1 and ZN1 are accepted by some �-e�cient universal classi�er with linearspace complexity?(this problem is a reminiscence of the \common ancestor" problem incomputational biology[15], where one may think of X as a training sequence that capturesthe properties of a possible \common ancestor" of two DNA sequences Y N1 and ZN1 ).
This is the topic of the Corollary following Theorem 3 below.

B. De�nitions,Theorems and Algorithms
Given XN1 2 AN , let c(XN1 );X 2 AN be a one-to-one mapping of XN1 into a binarysequence of length L(XN1 ), which is called the length function of c(XN1 ). It is assumed thatL(XN1 ) satis�es the Kraft inequality.
For every X and any positive integers M;N , de�ne the compression of the pre�x XNM1 tobe:
�L(X; N;M) = maxi;1�i�N�1 1NM

2
4
2
4M�2X
j=0 L

�X(i+(j+1)N)i+jN+1 �35+ L(Xi1) + L�XNM(i+1+(M�1)N)�
3
5 :

Thus, one looks for the compression of the sequence XMN1 that is achieved by successivelyapplying a given length-function L(XN1 ) and with the worst starting phase i; i = 1; 2; :::; N�1. Observe that by ignoring the terms 1NML(Xi1) and 1NML�XNM(i+1+(M�1)N)� (that vanishfor large values of M) in the expression above, one gets a lower bound on the actualcompression.
In the following, a lower-bound HMN (N) on �L(X; N;M) is derived, that applies to anylength-function L(XN1 ). First, the notion of empirical probability of an N -vector in a �niteMN -vector is derived, for any two positive integer N and M .
Given a sequence XMN1 , de�ne for a vector ZN1 2 AN ,

Pi;MN (ZN1 ; N) = 1M � 1
M�2X
j=0 l1ZN1 �Xi+(j+1)N�1i+jN �; 1 � i � N � 1 (1)

and
PMN (ZN1 ; N) = 1N

nX
i=1 Pi;MN (ZN1 ; N) (2)

where,
l1ZN1 (X(j+1)N+i�1jN+i ) = 1 i� X(j+1)N+i�1jN+i = ZN1 ; else l1ZN1 (X(j+1)N+i�1jN+i ) = 0:
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Thus,
PMN (ZN1 ; N) = 1(M � 1)N + 1

(M�1)N+1X
i=1 l1ZN1 (Xi+N�1i ) ;

the empirical probability of ZN1 .
Similarly, de�ne

PMN (Zi1; N) = X
ZNN�i+12Ai PMN (ZN1 ; N); 1 � i � N � 1

(As noted in the Introduction, PMN (Zi1; N) converges to the empirical probability PMN (Zi1; i)asM tends to in�nity. However, for �nite values ofM , these two quantities are not identicaldue to end-e�ects).
Let,

HMN (i;N) = � 1̀ X
Zi12Ai PMN (Zi1; N) logPMN (Zi1; N)

and HMN (N) = HMN (N;N) = � 1N X
ZN1 2AN PMN (ZN1 ; N) logPMN (ZN1 ; N) (3)

then,
Proposition 1 �L(X; N;M) � HMN (N)
and lim supM!1 �L(X; N;M) � H(X; N)
where H(X; N) = lim supM!1HMN (N). The proof appears in the Appendix.
Thus, the best possible compression of XMN1 that may be achieved by any one-to-oneencoder for N -blocks, is bounded from below by HMN (N). Furthermore, HMN (N) isachievable for N that is much smaller than logM , if c(ZN1 ) (and its corresponding length-function L(ZN1 ) is tailored to the individual sequence XMN1 , by �rst scanning XMN1 ,evaluating the empirical distribution PMN (ZN1 ; N) of N -vectors and then applying thecorresponding Hu�man data compression algorithm. However, in practice, the data-compressionhas to be executed on-line and the only available information on XMN1 is the one that iscontained the currently processed N-block.
The main topic of this paper is to �nd out how well one can do in such a case where thesame mapping c(XN1 ) is being applied to successive N -vectors of XMN1 .
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Next, given N and M a particular context-tree is generated from XMN1 for each letterXi; 1 � i �MN , and de�ne a related conditional empirical entropy Hu(N;M) thatcorresponds to these context trees. It is then demonstrated that for large enough N andM , Hu(N;M) may also serve as a lower bound on �L(X; N;M).
Construction of the Context-tree for the letter Zi
1) Consider contexts which are no longer than t = d(logN)2e and let K be a positivenumber.
2)Let K1(ZN1 ;K) = min[j � 1; t] where j is the smallest positive integer such thatPMN (Zj1 ; N) � 1K , where the probaility measure PMN (Zj1 ; N) for vectors Zj1 2 Aj is der-vided from XMN1 . If such j does not exist, set K1(ZN1 ;K) = �1, where Z01 is the nullvector.
3)Given XMN1 evaluate PMN (Zi1; N). For the i-th symbol in ZN1 , let Zi�11 be thecorresponding su�x. For each particular Zi�11 2 Ai�1 de�ne

HMN (ZijZi�11 ; N) = � X
Zi2A

PMN (Zi1; N)PMN (Zi�11 ; N) log PMN (Zi1; N)PMN (Zi�11 ; N) (4)
4)Let j0 = j0(Zi�11 ) be the integer for which,

HMN (ZijZi�1i�j0 ; N) = min1�j�1+K1(ZN1 ;K)HMN (ZijZi�1i�j ; N)
Each such j0 is a node in a tree with about K leaves. The set of all such nodes representthe particular context tree for the i-th instant.
5)Finally,

Hu(N;K;M) = X
ZN1 2AN PMN (ZN1 ; N)HMN (ZijXi�1i�j0(Zi�11 ); N) (5)

Observe that Hu(N;K;M) is an entropy-like quantity de�ned by an optimal data-driventree of variable depth K1, where each leaf that is shorter than t has roughly an empiricalprobability 1K .
Set K = N and let Hu(N;M) = Hu(N;N;M). Also, let

Hu(X; N) = lim supM!1 Hu(N;M) (6)
and Hu(X) = lim supN!1 Hu(X; N): (7)
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Let H(X; N) = lim supM!1 HMN (N)
and H(X) = lim supN!1 H(X; N)
Then,
Lemma 1 For every individual sequence X,

lim infN!1
hH(X; N)�Hu(X; N)i � 0 (8)

Hence, Hu(X) � H(X) : The proof of Lemma 1 appears in the Appendix.
A compression algorithm that achieves a compression Hu(X; N) is therefore asymptoticallyoptimal as N tends to in�nity.
Note that the conditional entropy for a data-driven Markov tree of a uniform depth of, say,O(log logN) may still satisfy Lemma 1 (by the proof of Lemma 1), but this conditionalempirical entropy is lower-bounded by Hu(X; N) for �nite values of N .
A context-tree data-compression algorithm for N -blocks that essentially achieves acompression Hu(X; N) is introduced below, and is therefore asymptotically optimal, but soare other universal data-compression algorithms (e.g., a simpler context-tree datacompression algorithm with a uniform context depth or the LZ algorithm [1]). However, theparticular context-tree algorithm that is proposed below is shown to be essentially optimalfor non-asymptotic values of N as well.
It is now demonstrated that no universal data-compression algorithm that utilizes alength-function for N -blocks can always achieve a compression which is essentially betterthan Hu(X; N) for any value of N in the following sense:
Let � be an arbitrarily small positive number. Let us consider the class CN0;M0;� of allX-sequences for which for some Ĥ such that � < Ĥ < (1� 2�) logA,

1) HM0N0(N0; N0) = Ĥ.
2) Hu(N0;K0;M0)� Ĥ � � where K0 = N0.

It is demonstrated that the class CN0;M0;� is not empty. In the proof of Theorem 1 inthe Appendix, a class of cardinality M`;h = �2(logA)`2h` � of sequences is constructed such thatthis class is included in CN0;M0;� for h = �2 and for ` that satisfy N0 = 2h`. Moreover, byLemma 1, it follows that every sequence X is in the set CN0;M0;�, for large enough N0 andM0 =M0(N0).
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Theorem 1 Let N 0 = N1��. For any universal data-compression algorithm for N 0-vectorsthat utilizes some length-function L(ZN 01 ), there exist some sequences X 2 CN0;M0;� suchthat for any M �M0 and any N � N0:
�L(X;M;N 0) � (1� �)[logA� �] > Ĥ

for large enough N0.
The proof of Theorem 1 appears in the Appendix.
The next step demonstrates that there exists a universal data-compression algorithm, whichis optimal in the sense that when it is applied to consecutive N -blocks, its associatedcompression is about Hu(X; N 0) for every individual sequence X where logN 0 is slightlysmaller than logN .
Theorem 2 Let � be an arbitrarily small positive number and let N 0 = bN1��c. Thereexists a context-tree universal coding algorithm for N -blocks, with a length-function L̂(ZN1 )for which, for every individual XMN1 2 AMN ,

�L̂(X;M;N) � Hu(N;N 0;M) +O� logNN �
�

It should be noted here that the particular universal context-tree algorithm that is describedbelow is not claimed to yield the lowest possible redundancy for a given block-length N .No attempt was taken to minimize the redundancy, since it is su�ce to establish the factthat this particular essentialy optimal universal algorithm indeed belongs to the class ofcontext-tree algorithms. The reader s referred to [4] for an exhaustive discussion of optimaluniversal context-tree algorithms.
Description of the universal compression algorithm: Consider �rst the encoding ofthe �rst N -vector XN1 (to be repeated for every XiN(i�1)N+1; i = 2; 3; :::;M � 1).
Let t = d(logN)2e.
A) Given the �rst N -vector XN1 , generate the set Tu(XN1 ) that consists of all contextsZi�11 that appear in XN1 , satisfying PN (Zi�11 ; t) � 1N1�� ; i � t.

Clearly, Tu(XN1 ) is a context tree with no more than N1�� leaves with a maximumdepth of t = d(logN)2e. The depth t is chosen to be just small enough so as to yieldan implementable compression scheme and at the same time, still be big enough so asto yield an e�cient enough compression.
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B) Evaluate,
Hu(XN1 ; Tu; t) = X

Xt�11 2At�1 PN (Xt�11 ; t) min0�j�t�1;Xj�11 2Tu(XN1 )HN (XijXi�11 ; t) :
Let T̂u(XN1 ) be a sub-tree of Tu(XN1 ), such that it's leaves are the the set of contextsthat achieves Hu(XN1 ; Tu; t).

C) A length function L̂(XN1 ) = L̂1(XN1 ) + L̂2(XN1 ) + L̂3(XN1 ) is constructed as follows:
1) L̂1(XN1 ) is the length of an uncompressed binary length-function, m̂1(XN1 ) thatenables the decoder to reconstruct the context tree T̂u(XN1 ), that consists of theset of contexts that achieves Hu(XN1 ; Tu; t). This tree has, by construction, atmost N1�� leaves and at most t letters per leaf. It takes at most 1 + tlogA bitsto encode a vector of length t over an alphabet of A letters. It also takes at most1 + log t bits to encode the length of a particular context. Therefore,L̂1(XN1 ) � N1��(t logA+ log t+ 2) � [logN logA+ log(logN2) + 2]N1�� bits.
2) L̂2(XN1 ) is the length of a binary word m̂2(XN1 ), (t logA bits long), which is anuncompressed binary mapping of Xt1, the �rst t letters of XN1 .
3) Observe that given m̂1(XN1 ), and m̂2(XN1 ), the decoder can re-generate Xt1 andthe sub-tree T̂u(XN1 ) that achieves Hu(XN1 ; Tu; t)). Given T̂u(XN1 ) and a pre�xXt1 of XN1 , XNt+1 is compressed by a context-tree algorithm for FSMX sources[3,4], which is tailored to the contexts that are the leaves of T̂u(XN1 ) , yielding alength function L̂3(XN1 ) � NHu(XN1 ; T; t) +O(1).

D) Repeat the steps 1), 2) and 3) above for the N-vectors XiN(i�1)N+1; i = 2; 3; :::;M � 1.
Let �Tu(XN1 ) be the set of all vectors Zi�11 satisfying PMN (Zi�11 ; N) � 1N" ; i � t, whereN" = N1�2�.
The proof of Theorem 2 follows from the construction and by the convexity of the entropyfunction since

1M
M�1X
i=0 Hu�Z(i+1)NiN+1 ; Tu; t� � Hu(N;N";M) +O(N��) +O� [logN ]4N

�

and where the term O(N��) is an upper-bound on the relative frequency of instances inX(i+1)NiN+1 that have as a context a leaf of T̂u(X(i+1)NiN+1 ) that is a su�x of one of the vectors in�Tu(XN1 ) and therefore is not an element of the set of contexts that achieve Hu(N;N";M).The term O( [logN ]4N ) is due to end-e�ects and follows from Lemma 2.7 in [5,page 33](seeproof of Lemma 1 in the Appendix).
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C. Application to Universal Classi�cation
A device called classi�er (or discriminator) observes an individual training sequence oflength of m letters, Xm1 .
The classi�er's task is to consider individual test sequences of length N and decide whetherthe test N-sequence has the same features as those that are captured by the training se-quence, or is su�ciently di�erent, according to some appropriate criterion. No a-priori infor-mation about the test sequences is available to the classi�er aside from the training sequence.Following the discussion in the Introduction section, a universal classi�er d(Xm1 ; ZN1 2 AN )for N-vectors is de�ned to be a mapping from AN onto f0; 1g. Upon observing ZN1 , theclassi�er declares ZN1 to be similar to one of the N -vectors Xj+Nj+1 ; j = 0; 1; :::;m � N i�d(Xm1 ; ZN1 ) = 1 (or, in some applications, if a slightly distorted version ~ZN1 of ZN1 satis�esd(Xm1 ; ~ZN1 ) = 1). Denote by S(N; �;Xm1 ) a set of N -sequences ZN1 which are declared tobe similar to Xm1 , i.e. d(Xm1 ; ZN1 ) = 1), where d(Xm1 ; Xj+Nj+1 ) = 0 should be satis�ed by nomore than �(m�N +1) instances j = 0; 1; 2; :::;m�N , and where � is an arbitrarily smallpositive number. Also, given a particular classi�er, let D�(N;Xm1 ) = jS(N; �;Xm1 )j, and let

H�(N;Xm1 ) = 1N logD�(N;Xm1 ) :
Thus, any classi�er is characterized by a certainH�(N;Xm1 ). GivenXm1 , letD�;min(N; �;Xm1 )be the smallest achievable D�(N;Xm1 ) and let

H�;min(N;Xm1 ) = 1N logD�;min(N;Xm1 ) :
Naturally, if the classi�er has the complete list of N -vectors that achieve D�;min(N;Xm1 ),it can perform a perfect classi�cation by making d(Xm1 ; ZN1 ) = 1 i� ZN1 = Xj+Nj+1 for everyinstant j = 0; 1; 2; :::;m�N for which Xj+Nj+1 2 S(N; �;Xm1 ). The discussion is constrainedto cases where H�;min(N;Xm1 ) > 0. Therefore, when m is large, D�;min(N;Xm1 ) growsexponentially with N .
The attention s limited to classi�ers that has a storage-space complexity that grows onlylinearly with N. Thus the training sequence cannot be stored. Rather, the classi�er shouldrepresent the long training sequence with a short \signature" and use it to classify incomingtest sequences of length N . It is shown that it is possible to �nd such a classi�er, denoted byd(Xm1 ; �; ZN1 ), that is essentially optimal in the following sense(as discussed and motivatedin the Introductory section): d(Xm1 ; �; ZN1 ) is de�ned to be one that satis�es the conditionthat d(Xm1 ; Xj+Nj+1 ) = 1 for (1 � �̂)(m � N + 1) instances j = 0; 1; :::m � N , where �̂ � �.This corresponds to a rejection of at most �N vectors among N -vectors in Xm1 . Also, anoptimal \�-e�cient" universal classi�er should satisfy the condition that d(Xm1 ; ZN1 ) = 1 issatis�ed by no more than 2NH�;min(N;Xm1 )+� N-vectors ZN1 .
Observe that in the case where X is a realization of a �nite-alphabet stationary ergodic
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process, lim�!0 limN!1 lim supm!1H0(N;Xm1 ) is equal almost surely to the entropy- rateof the source and, for a large enough N , the classi�er e�ciently identi�es typical N -vectorswithout searching the exponentially large list of typical N-vectors, by replacing the longtraining sequence with an \optimal su�cient statistics" that occupies a memory of O(N)only.
In the following, a universal context classi�er for N-vectors with a a storage-space complexitythat is linear in N , is shown to be essentially optimal for large enough N and m.
Description of the universal classi�cation algorithm:
A) Evaluate H�;min(N;Xm1 ).
B) Let M = bmN c and let N" = bN1�2�c. Compute Hu(N;N";M) where Hu(N;N";M)is given by Eq.(5), with N" replacing K. Let �Tu(Xm1 ) be the subset of contexts forwhich the minimization that yields Hu(N;N";M) is achieved.

Note that steps A), and B) above are preliminary pre-processing steps that are carriedout prior to the construction of the classi�er that is tailored to the training data Xm1 .
C) Compute hu(ZN1 ; Xm1 ; �Tu; t)

= � X
Z0�i+12 �Tu(Xm1 )PN (Z

0�i+1; t) XZ12APN (Z1jZ0�i+1; t) logPm(Z1jZ0�i+1; N)
D) Similar to step B in the description of the universal data compression algorithm above,let Tu(XN1 ) be the context tree that consists of all contexts Zi�11 that appear in ZN1 andthat satisfy PN (Zi�11 ; t) � 1N1�� ; i � t. Let S(ZN1 ; �) be the set of all XN1 2 AN suchthat g(ZN1 ; XN1 ) � �, where g(�; �) is some non-negative distortion function satisfying:g(ZN1 ; XN1 ) = 0 i� XN1 = ZN1 . Given a test sequence ZN1 , compute Hu( ~ZN1 ; Tu; t) =

min�ZN1 2S(ZN1 ;�)[�
X

�Z0�i+12Tu(Xm1 )PN ( �Z
0�i+1; t) X�Z12APN (

�Z1j �Z0�i+1; t) logPN ( �Z1j �Z0�i+1; t)]
E) Let

�(Zm1 ; ZN1 ) = hu(ZN1 ; Xm1 ; �Tu; t)�minhHu(ZN1 ; Tu; t); H�;min(N;Xm1 )i
and set d̂(Xm1 ; �; ZN1 2 AN )=1 i� �(Xm1 ; ZN1 ) � �0, where �0 is set so as to guaranteethat d̂(Xm1 ; �; ~Zj+Nj+1 ) = 1 for some ~ZN1 2 S(ZN1 ; �), for at least (1 � �)(m � N + 1)instances j = 0; 1::::;m � N . If Hu(ZN1 ; Tu; t) + �0 > logA, set d̂(Xm1 ; ZN1 2 AN )=1for every ZN1 2 AN .
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Refer to a test sequence ZN1 as being � acceptable (relative to Xm1 ) i� �(Xm1 ; ZN1 ) � �0.
It should be noted that for most instances in ZN1 , except for at most NO(N��) instancesin ZN1 , a context that is an element �Tu(Xm1 ) is a su�x of an element in Tu(ZN1 ). Hence,by the convexity of the logarithmic function, it follows that �(X; ZN1 ) � �O(N��). If, forexample, X is a realization of a stationary i.i.d. process, and if no distortion is allowed(� = 0), �(X; ZN1 ) +O(N��) is almost surely larger than or equal to the divergence

X
Z2AQZn1 (Z) log QZn1 (Z)P (X = Z)

where P (X) is the probability distribution of the i.i.d process and where QZn1 (Z) is theempirical probability of Z 2 ZN1 .
It should be noted that for some small values of N, one may �nd some values of m for whichĤ�(N;Zm1 ) is much larger than H�;min(X). It should also be noted that if no distortion isallowed (i.e. � = 0), the time complexity of the proposed algorithm is linear in N as well.
Theorem 3 1)For any arbitrarily small positive �, the \�-e�cient" classi�er that is de-scribed above accepts no more than 2Ĥ�(N;Zm1 ) N-vectors where

lim supN!1 lim infm!1 Ĥ�(N;Zm1 ) � H�;min(X) + �2
2) There exist m-sequences such that Ĥ�(N;Xm1 ) is much smaller than logA for which noclassi�er can achieve Ĥ�;min(N 0; Xm1 ) < logA�� if logN 0 < logN , where � is an arbitrarilysmall positive number.
Thus, for every X there exists some N0(X) such that for every N � N0, the the proposedalgorithm is essentially optimal for some m0 = m0(N;X) and is characterized by a storage-space complexity that is linear in N . Furthermore, if one sets � = 0 (i.e. no distortion), theproposed algorithm is also characterized by a linear time-complexity. The proof of Theorem3 appears in the Appendix. Also, it follows from the proof of Theorem 3 that if one generatesa training sequence X such that lim infM!1Hu(N;N;M) = limM!1Hu(N;N;M)(i.e. a \stationary" training sequence), then there always exist positive integers N0 andm0 = m0(N0) such that the proposed classi�er is essentially optimal for any N > N0(X)and any m > m0(N0), rather than only some speci�c values of m that depend on N .
Now, let Y N1 and ZN1 be two N-sequences and assume that no training sequence is available.However, one still would like to test the hypothesis that there exists some test sequence Xsuch that both N -sequences are �-acceptable with respect to X. (This is a reminiscence ofthe \common ancestor" problem in computational biology where one may think of X as atraining sequence that captures the properties of a possible \common ancestor"[15] of twoDNA sequences Y N1 and ZN1 ).
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Corollary 1 Let Y N1 and ZN1 be two N-sequences and let S(Y N1 ; ZN1 ) be the union of alltheir corresponding contexts that are no longer than t = d(logN)2e with an empirical prob-ability of at least 1N1�� .
If there does not exist a conditional probability distribution

P (X1jX0�i+1);X0�i+1 2 S(Y N1 ; ZN1 )
such that, X

X12APN;Y N1 (X1jX0�i+1; t) log PN;Y N1 (X1jX0�i+1)P (X1jX0�i+1) � �
and at the same time,

X
X12APN;ZN1 (X1jX0�i+1; t) log PN;ZN1 (X1jX0�i+1; t)P (X1jX0�i+1) � �

(where PN;Y N1 (Y1jY 0�i+1; t) is empirically derived from Y N1 and PN;ZN1 (X1jX0�i+1; t) is em-pirically derived from ZN1 ), then there does not exist a training sequence X, such that forsome Xm1 , H0(X) > 0 and Ĥ�(N;Xm1 ) � H�;min(X) + �2 (i.e. N is \long enough" relativeto X), both Y N1 and ZN1 are �-acceptable relative to Xm1 .
In unison with the \individual sequence" justi�cation for the essential optimality of Context-tree universal data compression algorithms [3, 4] that was established above, these resultsmay contribute a theoretical \individual sequence" justi�cation for the Probabilistic Su�xTree approach in learning and in computational biology [7, 8].
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Appendix
Proof of Proposition 1: By de�nition,
�L(X; N;M) � N�1maxi=1 1NM

2
4M�2X
j=0 L(X

i+(j+1)N�1i+jN )
3
5 � 1N

NX
i=1

X
ZN1 )2AN Pi;MN (ZN1 ); N)L(ZN1 )

= 1N X
ZN1 2AN PMN (ZN1 ; N)L(ZN1 ) � HMN (N) (9)

which leads to Proposition 1 by the Kraft inequality.
Proof of Lemma 1: Let N0, M0 and M be positive numbers and let � = �(M) be anarbitrarily small positive number, satisfying logM0 > N0 logA, Hu(X) � Hu(X; N0) � �,and M � N02 such that Hu(M0N0;M0N0;M) � Hu(X)� �, where Hu(M0N0;M0N0;M) =Hu(M0N0;K;M) with K =M0N0.
Therefore, by the properties of the entropy function, by applying the chain-rule toHMN0(N0;M0N0)and by Eq. (5),

HMM0N0(N0;M0N0) � HMM0N0(ZN jZN0�11 ;M0N0) � Hu(M0N0;M0N0;M)� logAN0
� Hu(X; N0)� 2�� logAN0

where by Eq (4), the term logAN0 is an upper-bound on the total contribution toHu(M0N0;M0N0;M)by vectors ZN0�11 for which PMM0N0(ZN0�11 ;M0N0) < 1M0N0 ( hence yieldingK1(ZM0N01 ;K) < N0 � 1, where K =M0N0). Note that for any vector ZM0N01 , theparameter t that determines K1(ZM0N01 ;K), satis�es t > N20 > N0.
Now, jPMM0N0(ZN01 ;M0N0) � PMM0N0(ZN01 ; N0)j � M0N0MM0N0 � 1N02 = D(N0) . By Lemma2.7 in [5, page 33], for any two probability distributions P (ZN01 ) and Q(ZN01 ),��������

X
ZN01 2AN0 P (Z

N01 ) log P (ZN01 )Q(ZN01 )
������� � d log�AN0

d
�

where d = maxZN01 2AN0 jP (ZN01 )�Q(ZN01 )j. Hence,
���HMM0N0(N0;M0N0)�HMM0N0(N0; N0)��� � 1N02

hN0 logA+ 2 logN0i
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and therefore,
HMM0N0(N0; N0) � Hu(X; N0)� 2�� 1N02

hN0 logA+ 2 logN0i� logAN0
which, by Eqs. (6), (7) and (8) and by setting � = 1N0 , proves Lemma 1.

Proof of Theorem 1: Consider the following construction ofXNM1 : Let h be an arbitrarysmall positive number and ` be a positive integer, where � and ` satisfy N = `2h`, andassume that ` divides N .
1) Let S`;h be a set of some T 0 = Ǹ = 2h` distinct `-vectors from A`.
2) Generate a concatenation ZN1 of the T 0 distinct `-vector in S`;h.
3) Return to step 2 for the generation of the next N -block.

Now, by construction, for M consecutive N -blocks, �L(X; N;M) � 1M and
1N � Pj;MN (Z1̀; N) � M � 1 +NMN ; j = 1; 2; :::N:

Thus, by construction, PMN (Z1̀; N) � M�1+NMN : Furthermore, there exists a positive integerN0 = N0(h) such that for any N � N0,
HMN (`;N) � logN` � 2h

where HMN (`;N) = � 1̀ X
ZN1 2AN PMN (Z1̀; N) logPMN (Z1̀; N) :

Observe that any vector Zjj�i; i + 1 � j � MN ; 1 � i � ` � 1, except for a subset ofinstances j with a total empirical probability measure of at most 12h` , is therefore a su�xof Zjj�K1(XN1 ;K̂) where K̂ = N MM�1 and that K1(XN1 ; K̂) � t for any N > N0(h), wheret = d(logN)2e. Thus, by applying the chain-rule to HMN (`;N), by the convexity of theentropy function and by Eq. (5),
Hu(N; K̂;M) � HMN (Z1jZ0�`+1; N)�HMN (`;N) � 2h (10)

Also, lim supM!1Hu(N; K̂;M) = lim supM!1Hu(K̂; K̂;M � 1).
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Consider now the class �`;h of all sets like S`;h that consists of 2h` distinct `-vectors. Thenext step is to establish that no compression for N -sequences which consist of the 2h`distinct ` vectors that are selected from some member in the class �`;h is possible, at leastfor some such N -sequences.
Let the normalized length-function �L(ZN1 ) be de�ned by:

L̂(ZN1 ) = � log 2�L(ZN1 )PZN1 2AN 2�L(ZN1 ) :
Clearly, �L(ZN1 ) � L(ZN1 ) since L(ZN1 ) satis�es the Kraft inequality while �L(ZN1 satis�es itwith equality, since 2��L(ZN1 ) is a probability measure. Then,

L(ZN1 ) � �L(ZN1 ) =
Ǹ�1X
i=0 �L(Z(i+1)`i`+1 jZi`1 )

where �L(Z(i+1)`i`+1 jZi`1 ) = �L(Z(i+1)`1 )� �L(Zi`1 )
is a (normalized) conditional length-function that, given Xi`1 , satisfy the Kraft inequalitywith equality, since 2��L(Z(i+1)`i`+1 jZi`1 ) is a conditional probability measure.
Lemma 2 For any h > 0, any N � N0 = N0(`; h) and any �L(X1̀jX0�N+1) there exists aset of 2h` `-vectors such thatX

X1̀2A` P1;N (X1̀; `)�L(X1̀jX0�N+1) � `(1� �)(logA� �)
for all X0�N+1 which are concatenations of `-vectors from S`;h as described above.

Proof of Lemma 2: The number of possible sets S`;h that may be selected from the A`
` vectors over A is:

M`;h = �2(logA)`
2h`

�

Given a particular �L(X1̀jX0�N+1), consider the collection M`;h;�jX0�N+1 of all sets S`;h;�that consist of at most (1 � �)2h` vectors selected from the set of vectors X̂1̀ for whichL(X̂1̀jX0�N+1) � (logA��)` (observe that there are at least 2logA`�2(logA��)` such vectors).
The collection M`;h;�jX�N+1 is referred to as the collection of "good" sets S`;h;� (i.e. setsyielding L̂(X1̀jX0�N+1) � (logA� �)`).
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It will now be demonstrated that ���PX0�N+12AN M`;h;�jX0�N
��� is exponentially smaller than

M`;h if N < �2h`(1�h)`. Hence, for any conditional length- function L(X1̀jX0�N+1) and anyX0�N+1) 2 AN , most of the sets S`;h 2M`;h will not contain a "good" S`;h;� 2M`;h;�jX0�N+1and therefore less than �2h` `-vectors out of the 2h` `-vectors in S`;h will be associated withan L(X1̀jX0�N+1) < (logA� �)`.
The cardinality ofM`;h;�j(X0�N+1 is upper bounded by: P2h`j=�2h` �2` logA�2(logA��)`(2h`�j) � �2(logA��)`j �.Now, by [3], one has for a large enough positive integer n,

log2
� npn

� = [h(p) + �(n)]n
where h(p) = �p log2 p� (1� p) log2(1� p) and where limn!1 �(n) = 0.
Thus,

log
PX0�N+12AN M`;h;�jX0�N+1M`;h � ��2h`(1� h)`+N + �0(N)N (11)

where limN!1 �0(N) = 0. Therefore, if N < �2h`(1� h)`, there exists some S`;h for which,
X

X1̀2A` 2�h`L̂(X1̀jX0�N+1) � `(1� �)(logA� �)
for all N-vectors X0�N+1 2 AN .
Hence by construction, there exists some S`;h for which,

L(ZN1 ) � �L(ZN1 ) =
Ǹ�1X
i=0 �L�Z(i+1)`i`+1 jXi`1 � � Nh(1� �)(logA� �) + �0(N)i

This completes the proof of Lemma 2 and setting h = �, the proof of Theorem 2.
Proof of Theorem 3: It follows from the construction of of the universal compressionalgorithm that is associated with Theorem 2 above that N [Hu(ZN1 ; Tu; t) + O(N��)] is aproper length-function. Consider the one-to-one mapping of XN1 with the following length-function:

1) L(ZN)1 ) = 2 + N [Hu(ZN1 ; Tu; t) + O(N��)] if Hu(ZN1 ; Tu; t) � H�(N;Xm1 ), and ifZN1 2 S0(N;Xm1 ) = S(N; �;Xm1 )
2) L(ZN1 ) = 2 +N [H0(N;Xm1 )] if Hu(ZN1 ; Tu; t) > H�(N;Xm1 ) and if ZN1 2 S(N; �;Xm1 )
3) Else, L(ZN1 ) = 2 +N [Hu(ZN1 ; Tu; t) +O(N��)].
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Note that for every ZN1 2 S(N; �;Xm1 ),
L(ZN1 ) � 2 +N [H�(N;Xm1 )]

By by Proposition 1 and by Lemma 1, since L(ZN1 ) is a length-function and by the con-struction of the universal data-compression algorithm that is associated with Theorem2, for any X, there exists a positive integer N0 such that for any N > N0 and someM > M0 =M0(N0), Hu(N;N";M) � Hu(X; N) + 14(�)2 and,
1m�N + 1

m�NX
j=0 Hu((Xj+Nj+1 ; �Tu; t);+ 2N +O(N��) � Hu(N;N";M) + 2N +O(N��)

Also, by Proposition 1 and Lemma 1 and for any N � N 00(X) � N0 and any m �MN 00,
1m�N + 1

m�NX
j=0 L(Xj+Nj+1 ) � HMN (N) � Hu(X; N)� 14(�)2

Therefore, 1m�N + 1
m�NX
j=0 �(Xm1 ; Xj+Nj+1 ) � 12�2 +O(N��)

But, as pointed in the description of the universal classi�er above,
�(Xm1 ; Xj+Nj+1 ) +O(N��) � 0; j = 0; 1; :::;m�N

Statement 1) in Theorem 3 then follows by the Markov inequality and by setting �0 =12�2 +O(N��).
Next, a training sequence Xm1 is constructed, for which H�;min(N;Xm1 ) > 0 and where the2NH�;min(N;Xm1 ) "typical" N-vectors inXm1 are equiprobable. At the same time, Ĥ�(N;ZN1 ) �H�;min(N;Xm1 ) + (�)2, where � is an arbitrarily small positive number.
Hence, if N 0 is a positive integer that satis�es logN 0 < logN , any classi�er with a storagecomplexity ofO(N 0) can store only an exponentially small fraction of the 2NH�;min(N;Xm1 ) typ-icalN -vectors that should be accepted and therefore, for any �-e�cient classi�er, Ĥ�(N;ZN1 ) �logA� �.
This will lead to statement 2) of Theorem 3.
Let B and ` be positive integers satisfying B > `3�� and let R`;h be the set of all the `-vectors in S`;h and their cyclic shifts, where S`;h is described in the proof of Theorem 1above. Consider training sequences Xm1 that are generated by B repetitions of an `-vectorsin S`;h, followed by B repetitions of yet another ` vector in R`;h and so on, until R`;h isexhausted. Thus, m = (`)22h`B.

21



Let N = �`B and assuming that N divides m, let M = mN . It then follows that 0 <H�;min(N;Xm1 ) � (h+ log `` ). Also, it follows that PMN (Zj+`j ) � 1(1��)` for most instances j,except for a subset of instances that has an empirical probability of at most �. Thus, similarto the proof of Theorem 1 above, it follows that there exists a positive integer `0 such that forany ` � `0 , HMN (`;N) � h + log `` + � logA and also, for small enough �, Hu(N;K;M) �Hu(N; `1�� ;M) < 2h, where K = N" and where N" = N1�2� = `(1+3�)(1�2�) � `1�� .Therefore, �(Xm1 ; Xj+Nj+1 ) � 2h.
Hence, by setting h = �2 and �0 = �2+O(N��), and by the Markov inequality, Ĥ�(N;ZN1 ) �H�;min(N;Xm1 )+(�)2. Also, the 2NH�;min(N;Xm1 ) "typical" N-vectors in Xm1 are equiprobable,which completes the proof of Theorem 3.
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