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Abstract

Taking a sequence of photographs using multiple illumi-

nation sources or settings is central to many computer vi-

sion and graphics problems. Recently, a growing number

of methods use multiple sources rather than single point

sources in each frame of the sequence. Potential bene-

fits include increased signal-to-noise ratio and accommoda-

tion of scene dynamic range. However, existing multiplex-

ing schemes, including Hadamard-based codes, are inhib-

ited by fundamental limits set by Poisson distributed pho-

ton noise and by sensor saturation. The prior schemes may

actually be counterproductive due to these effects. We de-

rive multiplexing codes that are optimal under these fun-

damental effects. Thus, the novel codes generalize the

prior schemes and have a much broader applicability. Our

approach is based on formulating the problem as a con-

strained optimization. We further suggest an algorithm to

solve this optimization problem. The superiority and effec-

tiveness of the method is demonstrated in experiments in-

volving object illumination.

1. Illumination Multiplexing

In computer vision research and image-based rendering,

objects or people are often acquired under variable lighting

directions [3, 5, 7, 16, 17, 20, 21, 22, 23, 28, 29, 31, 34, 35,

40]. Such images are then used for object recognition and

identification [3, 16, 25, 27, 34, 35], rendering [6, 16, 23,

29], shape estimation [10, 12, 13, 14, 39, 40] and analysis

of specularities, shadows and occlusions [30]. Traditionally,

such images were taken by moving a light source around

the object, or by sequential operation of individual sources

in a constellation. However, recently, there is growing inter-

est in using illumination which is not based on single point

sources. Rather, it is based a sequence of images, in each of

which lighting may simultaneously arrive from several di-

rections or sources [5, 16, 18, 24, 31, 32, 33, 37]. Some of

the benefits include significant improvement in signal noise

Figure 1. [Left] An image taken under a single light source.

[Right] An image of the same scene, decoded from multiplexed

illuminated objects. It is decoded as if illuminated by the same

single source. The multiplexing code is optimal.

ratio (SNR) [32] (See for example Fig. 1), significant reduc-

tion of dynamic range problems in the presence of saturated

pixels, and convenience when photographing people [37].

Other advantages mentioned are efficiency of the acquisi-

tion process and image representation, and image enhance-

ment by simultaneous use of flashes and ambient lighting.

The question is, given all the possibilities of simultane-

ous operation of sources, what is the optimal way to mul-

tiplex the sources in each frame. Ref. [32] suggested that

Hadamard-based codes should be used. However, its anal-

ysis did not account for a very important problem: image

noise depends on the image irradiance itself, which may

make Hadamard multiplexing counter productive, as was

later experienced by [37]. Fundamentally, this is due to pho-

ton noise, which exists even in images no matter the quality

of the camera, as it stems from the quantum mechanical

nature of light. Moreover, no prior study accounted for sat-

uration when seeking optimal lighting. This is despite the

acknowledgment that saturation and scene dynamic range

are important aspects when using multiple sources [32, 37].

This paper directly seeks multiplexing codes that are op-

timal under the fundamental limitations of photon noise and

saturation, in addition to camera readout noise. This prob-

lem and its solution have implications much broader than

computer vision and graphics. The reason is that multi-
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plexing of radiation sources is used in many sensing modal-

ities, such as X-ray imaging [11, 36], spectroscopy [11],

and communication in fiber optics. Hence, the approach we

present here has wide applicability. It is based on a con-

strained optimization formulation. We also describe an al-

gorithm for solving this problem. The novel codes resulting

from it are superior to any prior multiplexing codes. We

demonstrate this in experiments of object illumination.

2. Theoretical Background

2.1. Multiplexing

Consider a setup where N light sources illuminate an

object from various directions. Let i = (i1, i2, . . . , iN )
t

be

a set of intensity values of a certain pixel, where each value

corresponds to illumination by any individual light source

in this setup. Here, t denotes transposition.

In general, several light sources can be turned on at a

time (multiplexing). Define an N ×N multiplex matrix W.

It is often referred to as “multiplexing code” Each element

of its mth row represents the power of the corresponding

illumination source in the mth measurement. The power

is measured relative to its maximum value where, 0 states

that the source is completely off and 1 indicates a fully acti-

vated source. The measurements acquired at each pixel are

denoted by the vector a = (a1, a2, . . . , aN )
t
.It is given by

a = Wi + υ , (1)

where υ is the measurement noise. Any bias to this noise

is assumed to be compensated for. The noise υ, in different

pixels is assumed to be uncorrelated, with variance of σ2
a.

Once images have been acquired under multiplexed il-

lumination, they can be demultiplexed computationally, to

derive estimates for the pixel values under single-source il-

lumination î. The best linear estimator in the sense of mean

square error (MSE) for the single source images is

î = W−1a . (2)

The MSE of this estimator [11, 32] is

MSE
î
=

σ2
a

N
trace

[

(

WtW
)−1

]

. (3)

This is the expected noise variance of the recovered images.

The lower it is, the better the SNR. The ratio of the SNRs

with and without multiplexing

G = SNRMultiplexed/SNRSingle (4)

is the multiplex gain We now discuss the noise mechanisms.

2.2. Noise Mechanisms

To analyze the effect of multiplexing, we should first

understand the sources of image noise. In this section we

briefly review the affine noise model, of high grade detec-

tors, which have a linear radiometric response. The noise

can be divided into two components, signal-dependent and

signal-independent. Regardless of the photon flux, signal-

independent noise is created by dark current [8, 15, 19], by

amplifier noise and the quantizer in the camera circuity [19].

Denote the graylevel variance of signal-independent noise

by κ2
gray.

Signal-dependent noise is related to two random effects.

The random nature of light’s photon flux and the uncertainty

in the process of electron-photon conversion in the detec-

tor. Overall, the random number nphoto
electr of photo-generated

electrons is Poisson distributed [1, 2, 8, 15]. In this distri-

bution, the variance of nphoto
electr is

VAR(nphoto
electr ) = E(nphoto

electr ) . (5)

This variance increases with the measured electric signal

nphoto
electr . The number of detected electrons nphoto

electr is propor-

tional to the gray-level of the acquired pixel value a

a = nphoto
electr/Qelectr . (6)

Here Qelectr is the number of photo-generated electrons re-

quired to change a unit gray-level. Typically Qelectr ≫ 1.

Combining Eqs. (5,6) yields the variance in gray levels

E(nphoto
electr )/Q2

electr = a/Qelectr . (7)

Compounded with signal-independent noise, the total noise

variance of the measured gray level [8, 15] is

σ2
a = κ2

gray + a/Qelectr . (8)

Now, consider a diffuse object and sources that illumi-

nate the object from similar directions. In this case, each

light source yields a similar object radiance, hence, a sim-

ilar photon noise. We rephrase Eq. (8) for the general case

of C light sources activated in maximal intensity per mea-

surement. Then,

σ2
a = κ2

gray + Cη2 ∀k ∈ {1, . . . , N} . (9)

Here η2 is the photon noise variance, induced by illuminat-

ing the object by a single source. This is an affine function

of the number of sources C. Next, we describe the effect of

the affine noise model on multiplexing.

As an example consider Fig. 2. It plots the average noise

in raw images acquired by a PtGrey Dragonfly camera, as

function of the number of sources being used. Fitting a

straight line to this plot yields κ2
gray and η2.

2.3. Photon Noise and Multiplexing

A well known multiplexing code is based on Hadamard

codes. Its multiplex matrix known as the S-matrix [9, 11,

26, 32, 36, 37]. It was used in Refs. [32, 37] to multiplex il-

lumination sources. In each row of the S-matrix, (N + 1)/2
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Figure 2. Results of the calibration process for 47 light sources.

We see the noise variance, linearly increases with the number of

used sources, in consensus with the affine noise model.

of the elements have the value of 1, while the rest are null.

The MSE obtained using that code is

MSEî,Had =
4N

(N + 1)2
σ2

a . (10)

Applying the affine noise model, (9) with C = (N + 1)/2
in Eq. (10) yields

MSE
î,Had =

4N

(N + 1)2
κ2

gray +
2N

N + 1
η2 . (11)

In the special case where the photon noise is negligible, i.e.

κ2
gray ≫ Cη2, Eq. (10) becomes:

MSE
î,Had =

4N

(N + 1)2
κ2

gray (12)

and the corresponding SNR gain is [32, 38]

GHad =
SNRHadamard

SNRSingle
=

N + 1

2
√

N
. (13)

Hence, in such a scenario, Hadamard multiplexing is highly

beneficial. Ref. [11] shows that then, the S-matrix is opti-

mal, minimizing Eq. (3).

On the other hand, when photon statistics dominate the

noise, Cη2 ≫ κ2
gray, Eq. (11) indicates that the demulti-

plexed images are more noisy than those obtained by simple

single-source acquisition [11, 37]. The noise variance dou-

bles by this process, if N ≫ 1. The reason is that increasing

the signal by multiplexing light sources, also increases the

photon noise.

Ref. [38] looked into the problem of multiplexing under

photon noise. It formulated a general expression for the

multiplex gain under the affine model of Eq. (8):

G = G0

(

1 + χ2

1 + Cχ2

)

1

2

, (14)

where χ = η/κgray. Here,

G0 =

√

N/trace
[

(WtW)
−1

]

(15)

is the multiplex gain when photon noise is not considered.

Hence, for given parameters of the noise, G is maximized

by reducing C while increasing G0. Ref. [38] also found

multiplexing codes based on perfect sequences for which

G is optimal. However, the codes of Ref. [38] can only be

applied to a very limited set of N and noise parameters.

For most parameters and N values, the codes in [38] do not

exist. Moreover, these codes apply only to cyclic matrices

W, hence they are not general.

3. Optimal Saturated Multiplexing
We begin the discussion about multiplexing codes under

fundamental limits by considering saturation. While an ob-

ject may be moderately bright when illuminated by a single

source, it can become saturated if illuminated by numerous

light sources. When this is the case, multiplexing too many

sources, e.g. using the S-matrix is impractical. While expo-

sure time may be reduced to counter saturation, Ref. [32]

proved that such a step should be avoided: a better solution

is to decrease the number of illumination sources C used in

each measurement. This raises the need for new multiplex-

ing codes, that comply with constraints on the number of

light sources C used in each measurement.

Assume that the saturation phenomenon is insensitive to

the specific identities of the illuminating sources. Saturation

is assumed to occur when the total illumination radiance

exceeds a threshold, Csat. If all light sources have a similar

radiance, then Csat expresses units of light sources, and is

analogous to C in Sec. 2.3.

Saturation is avoided if

N
∑

s=1

wm,s 6 Csat ∀m ∈ {1, 2, . . . , N} . (16)

Recall that all sources can be activated with some portion

of their maximum intensity i.e.

0 6 wm,s 6 1 ∀m, s ∈ {1, 2, . . . , N} . (17)

We use Eq. (15) to formulate a maximization problem on

the multiplex gain, G0. This is equivalent to minimizing its

reciprocal square i.e.

arg max
W

G0 ≡ arg min
W

1

G2
0

=

arg min
W

1

N
trace

[

(

WtW
)−1

]

. (18)

The constraints for our problem are taken from Eqs. (16,17).

Thus, the optimization problem is

min
W

1

N
trace

[

(

WtW
)−1

]

(19)

s.t. 11,N · wm − Csat 6 0 ∀m ∈ {1, . . . , N} (20)

− wm,s 6 0 ∀m, s ∈ {1, . . . , N} (21)

wm,s − 1 6 0 ∀m, s ∈ {1, . . . , N} . (22)
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Figure 3. A 2D illustration of the optimization task. The shaded

area is the domain in which w1 satisfies the constrains.

Here 11,N is a row vector, all of whose elements are 1 and

wm is the m’th row of W. See Fig. 3 for an illustration of

this optimization task.

This problem is simple if Csat > (N + 1)/2. In this

case, codes based on S-matrix are optimal. The reason is

that saturation is not met in Hadamard multiplexing when

Csat > (N + 1)/2. Moreover, signal-dependent noise is

not explicitly used in (19). Hence, the optimality [11] of

Hadamard codes holds in this case.

We thus focus on Csat ≤ (N + 1)/2. Simulations we

preformed found local minima in (19). The best minimum

occurred when (20) was active. This may be intuitively ex-

plained by arguing that one prefers to exploit maximum

radiance for every measurement.1 We therefore replace

Eq. (20) by an equality constraint on the sum of rows i.e.

11,N · wm = C ∀m ∈ {1, 2, . . . , N} , (23)

setting C = Csat in Eq. (23) facilitates optimization under

saturation. Nevertheless, we maintain the use of C rather

than Csat to allow a later generalization to photon noise.

Note that Eq. (23) means that wm must lie on a hyperplane

(see Fig. 3), whose unit normal vector is (1/
√

N)1t
1,N .

4. Optimal Photon Limited Lighting

Sec. 3 considered only saturation. We now extend the ap-

proach presented in Sec. 3 to cope with photon noise. Solv-

ing the optimization problem in Eq. (19) subject to the con-

straints (21,22,23) results in an illumination matrix W(C),
that is optimal, for a given C. In other words, we determine

the values in each row wm of W(C), such 11,N · wm is

exactly C, while W(C) has the highest multiplex gain, G0.

1This intuition holds if the noise is signal independent. The more gen-

eral case is discussed in Sec. 4.

Eq. (14) converts G0 to the gain under the general affine

noise model.

We wish to note that there is no point in checking cases

where C > N+1
2 . They are certainly suboptimal, for a given

N , as we no explain. Recall that for signal-independent

noise and no saturation, G is optimized by the S-matrix.

From (14) it can also be seen that if G0 is optimized, there

is no point in increasing C, as it will only degrade G.

Recall that χ2 can be obtained from calibration, as de-

scribed in Sec. 2.2. Based of χ2 and G0(W(C)), Eq. (14)

yields the expected multiplexing gain G(C). We now scan

a range of values for C. For each C, we get W(C), as well

as G(C). Out of these, we select the value of C maximizing

G. This scan finds the number of illumination sources that

maximizes the gain. To recap,

1. Calibrate the system to find χ2.

2. Scan the range of C values from 1 to Csat. For each2

value of C do the following:

3. Find the matrix W(C) that optimizes Eq. (19) subject

to Eqs. (21,22,23).

4. Calculate the expected multiplex gain G(C) using

Eq. (14, 15).

5. Let Copt = arg maxC G(C).

6. The desired multiplex code is W(Copt).

5. Minimization Procedure
We now describe a numerical scheme for solving of the

system given in Eqs. (19,21,22, 23). It consists of a core,

which is based on a projected gradient method [4]. It also

consists of a higher-level procedure, designed to escape lo-

cal minima.

Define:

M̃SE =
1

σ2
a

MSE
î
(W) =

1

N
trace

[

(

WtW
)−1

]

. (24)

We iteratively minimize M̃SE as a function of W. The min-

imization core is based on projected gradient descend. In

each basic step, W is updated by the gradient

Γ ,
dM̃SE

dW
= − 2

N

(

WtWWt
)−1

. (25)

The updated W is then projected onto constraints (17) and

(23), one at a time. This is illustrated in Fig. 4. Further

details are given in App. A.

The M̃SE in Eq. (19) is a multimodal function of W.

Therefore, the core generally converges to a local minimum,

rather than a global one. To escape local minima, we embed

the above core into a higher level process. When the core

2There is no necessity for exhaustive search of G(C). As G(C) is well

behaved, one can incorporate efficient optimization procedures.
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converges to a local minimum, W is modified, as we de-

scribe below. Then, the core is re-initialized with the modi-

fied W.

The minimization core gets stuck in a local minimum

because specific rows of W that are prevented from under-

going any modification. This prevention is caused by the

constraints. To understand this, note that Eq. (25) is never

nulled.3 Hence, following the Karush-Kuhn-Tucker theo-

rem [4], all of the extrema of M̃SE are obtained when at

least some constraints are active. For this reason, local min-

ima are caused by matrix rows which reside on constraints,

as illustrated in Fig. 4. On the other hand, other rows of W

are free to change. We therefore seek to identify rows that

stagnate the minimization core.

The m’th row of W is wm. Its corresponding row in

the gradient matrix Γ is gm. When gm is parallel to 11,N ,

it means that this row of the gradient, is orthogonal to the

constraint surface given in (23), as illustrated in Fig. 4. If

this is the case, then wm is equivalent to its projection, stag-

nating the minimization core. Hence, a sufficient condition

of row m of W to stagnate is that gm ‖ 11,N .

While this condition is sufficient, it is not a necessary

one. We now describe a wider class of stagnating rows.

Suppose that wm has elements s for which wm,s = 1 or

0 and that wm − gm shifts them beyond the bounds of

Eqs. (21,22). Denote the set of indices of these elements

by Soverflow. Now, define a row vector geff
m ∈ RN−|Soverflow|.

It is extracted from gm. It defined as geff
m , gm,s 6∈Soverflow .

Hence, it consists only of those elements s in gm whose

3A valid inverse of a matrix A can never be nulled. If it could, it would

have yielded a contradiction: A−1A = IN×N = 0N×NA, where

0N×N is an N ×N null matrix.

Figure 5. Multiplexing codes produced by our algorithm.

[Left] N = 47, C = 12. [Right] N = 57, C = 24. Here,

black pixels denotes wm,s = 0. White denotes wm,s = 1. The

intermediate values are in gray.

indices are not in Soverflow. It can be shown that

geff
m ‖ 11,N−|Soverflow| (26)

is a necessary condition for stagnation of row m.

An algorithm is intended to detect a local minimum of

the core, and then escape it:

1. Execute the minimization core given in App. A once.

Use its output multiplexing code and corresponding

MSE to initialize W0 and M̃SE
min

2. Iterate the subsequent steps 3,4,5 until an upper limit

on the number of iterations is met. The iteration index

is l.

3. For all m ∈ {1, . . . , N} if Eq. (26) holds, then row m
is detected as stagnated. Replace it by a random row

vector. This new row complies with (17, 23) and is

formulated as described in App. B.

4. Execute the minimization core again. Use the modified

W(l−1) as its initial solution. Its output is W(l), as

well as M̃SE
(l)

and its corresponding gradient Γ(l).

5. If M̃SE
(l)

< M̃SE
min

Then M̃SE
min

:= M̃SE
(l)

.

6. Multiplexing Methodology
This section outlines our methodology of multiplexing

light sources, considering photon noise and saturation. As

a first step, estimate the noise parameters κ2
gray and η2 of

the acquisition system. These parameters directly yield χ2.

The second step is to calculate optimal multiplexing codes,

ignoring photon noise, per C 6 N+1
2 . This can be done by

the algorithm described in Sec. 5. As an examples, Fig. 5

shows multiplexing codes produced by our numerical pro-

cedure for two pairs of N and C values. The multiplexing

codes and the noise parameters of the camera are used by

the algorithm is Sec. 4 to find the optimal value of C. Then,

the desired multiplexing code W is the one corresponding

to this value of C. As an example, Fig. 6 plots the multiplex

gain corresponding to some noise parameters and codes: the

plot highlights the curve corresponding to the noise charac-

teristics encountered in our experiments. Notice the shift in
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Here N = 57, thus C ∈ {2, . . . , 29}. The solid line corresponds

to our system’s χ2. The C that maximizes G(C) shifts as the

relative signal-dependency of the noise varies.

the location of the gain’s peak, as the signal dependency of

the noise increases. This stems from the fact that photon

noise inhibits the use of more light sources. On the other

hand, if noise is totally signal-independent, it is best to use

the maximal number of sources, as in the S-matrix.

7. Experiments

We now demonstrate multiplexing with the codes ob-

tained by our algorithm. We apply these codes to multi-

plex light sources considering photon noise and saturation

effects on the acquired images. The experiment setting in-

cluded a PGR dragonfly camera controlled by a computer,

mounted with a 35mm Nikon lens. Illumination sources

were created by an EPSON EMP-7800 projector that pro-

jected patterns of light rectangles onto a white wall (see

ref. [32]). All frames were taken with an exposure time

of 63 milliseconds. This exposure time meets the frequency

limitation of 15Hz. It also eliminates illumination source

intensity fluctuations measured to occur in cycles of 7 mil-

liseconds.

As explained in Sec. 6, we preformed a calibration ses-

sion. It was based on 10 frames sequences for each num-

ber of activated light sources. We estimated the gray-level

variance at each pixel. As a representative value for each

number of the light sources we averaged the estimated vari-

ance over the entire image. This statistics generally agreed

with the affine noise model. The estimated values of the

noise parameters for N = 57 are κgray = 42.4[gray lev-

els]; η = 9.0 [gray levels/light sources]; χ2 = 0.045
Following the calibration session we created multiplex

codes for our test case. For N = 57 we used the Identity

matrix I57, a matrix offered by Wuttig [38] and a matrix

produced by our algorithm. The multiplex code offered by

Wuttig uses eight fully activated light sources for each mea-

surement. Note that the optimal number of fully activated

sources has been evaluated, using the derivations in [38], to

be 20. However, this value does not correspond to a valid
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Figure 7. MSEs obtained by decoding process of illumination mul-

tiplexed images (N = 57). Our optimal code outperforms both

Wuttig’s [38] code and trivial illumination.

matrix. Our algorithm, described in sec. 4 determined a

budget of 24 fully operated light sources for each measure-

ment.

Once the multiplex codes had been constructed, we

utilized them to illuminated a scene while acquiring im-

age sets. From each set of acquired images, we recon-

structed the scene as if illuminated by individual illumina-

tion sources. Fig. 1 for an example of a demultiplexed im-

age. For each image set, we estimated the noise statistics.

The results of the MSE evaluation are shown in Fig. 7. As

predicted by the analytical derivations, the best multiplex

sequence for the signal dependent noise (as modelled here)

is the sequence created by our method.

The following scenario examines the effects of satura-

tion due to specular areas in the acquired frame. In a sim-

ilar manner to the case of N = 57 we calibrated the noise

parameters of the camera and scene. The noise parameters

for this case are κgray = 74.0[gray levels]; η = 28.7 [gray

levels/light sources]; χ2 = 0.15.

We then constructed multiplex codes for the case of

N = 47 and N = 11. We examined multiplex codes based

on I, S-matrices and the matrices produced by our numer-

ical algorithm. The latter uses the equivalence of 12 light

sources, tuned for maximal intensity, for N = 47 and 5

sources for N = 11.

The resulting reconstruction of images with individual

source illumination for N = 47 are shown in Fig. 8 and the

MSE estimation for both cases is shown in Fig. 9.

While acquiring the images using N = 47 and the S-

matrix based multiplex code, the specular parts of the im-

ages have been saturated. Although most of the image

is dark (with gray levels of up to 1000), the specularities

caused us to exploit all of the dynamic range. The satura-

tion rules out the possibility of using Hadamard codes, for

this case altogether. We have shown the statistics of the vast

majority of the pixels in the image that are not saturated in

an intention to prove the dual advantage of our method. We



Figure 8. [Left] An image taken under a single light source.

[Right] An image of the same scene, decoded from multiplexed

illuminated objects. It is decoded as if illuminated by the same

single source. The multiplexing code is optimal.
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Figure 9. The MSEs of decoded images derived from illumina-

tion multiplexed frames. [Top] Hadamard multiplexing becomes

counter productive for high gray levels while our multiplexing

code is better than the trivial one (and the Hadamard code) all

along the dynamic range . [Buttom] 47 light sources. Some pix-

els became saturated when multiplexed by a Hadamard code. This

invalidated the use of Hadamard code.

are able to construct multiplex codes that surpass the trivial

codes, in cases where other codes simply do not exist. Even

when other codes do exist, the codes based on our method

are better adapted to the scenario, hence producing smaller

MSE of the reconstructed images.

8. Discussion

Our approach provides optimal multiplexing codes for

every desired number of light sources N and radiance inhi-

bition (saturation, photon noise). It does so for much more

general cases than those reported in the literature, covering

cases for which no codes are known. By accounting for fun-

damental physical limits in image acquisition, it achieves

results that are superior to other multiplexing codes, when

such competing codes exist. Future research may improve

the methods used for optimization. Our work may apply to

many applications that use multiplexing in general, beyond

multiplexing of illumination sources (Xray, spectroscopy

etc.).

A. Minimization Core
We iterate on k, minimizing M̃SE as a function of W.

The algorithm stops when |M̃SEk − M̃SEk+1| < ǫ, where

ǫ is a pre-determined small threshold.

1. For given N and C create an initial matrix W0 (See

App. B). The initial matrix W0 complies with con-

straints (21,22,23).

2. Repeat the subsequent stages 3 and 4, until the im-

provement in M̃SE is negligible.

3. Calculate the gradient in Wk as appears in

Eq. (25). Then, calculate an updated matrix

Wunconst
k+1 , Wk − Γk, as in standard gradient descent.

We take care of the step size in stage 4.

4. Project Wunconst
k+1 in the following way:

(i) Project Wunconst
k+1 onto the hyperplane used

in (23). It is easy to show that for each row,

wunconst
m , its projection is

wproj
m = wunconst

m +

[

C −
N

∑

s=1

wunconst
m,s

]

1t
1,N

N
.

(27)

(ii) Denote dk , W
proj

k+1 − Wk. Update

Wunbounded
k+1 = Wk − βdk, where β is a pa-

rameter controlling the step size.

(iii) Project Wunbounded
k+1 onto constraints (21,22) to

create Wk+1. This is done by truncating the ele-

ments of Wunbounded
k+1 ’s values to [0, 1].

B. Initialization of the Minimization Core
We now describe the initialization procedure for the ini-

tial solution W0. We randomly generate values between 0.1

and 0.9. This is done to avoid dictation of the active con-

straints by the initial solution. We then normalize the rows

of W0 to have the sum of C. Any element violating (17) is

regenerated and the normalization process is repeated until

full satisfaction of (17, 23).
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