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Abstract

An identity between two versions of the Chernoff bound on the probability a certain large
deviations event, is established. This identity has an interpretation in statistical physics, namely,
an isothermal equilibrium of a composite system that consists of multiple subsystems of particles.
Several information–theoretic application examples, where the analysis of this large deviations
probability naturally arises, are then described from the viewpoint of this statistical mechanical
interpretation. This results in several relationships between information theory and statistical
physics, which we hope, the reader will find insightful.

Index Terms: Large deviations theory, Chernoff bound, statistical physics, thermal equilib-
rium, equipartition, thermodynamics, phase transitions.

1 Introduction

Relationships between information theory and statistical physics have been extensively recognized

over the last few decades, and they are drawn from many different aspects. We mention here only

a few of them.

One such aspect is characterized by identifying structures of optimization problems pertaining

to certain information–theoretic settings as being analogous to parallel structures that arise in

statistical physics, and then borrowing statistical–mechanical insights, as well as powerful analysis

techniques (like the replica method) from statistical physics to the dual information–theoretic
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setting of interest. A very partial list of works along this line includes [1], [13], [14], [18], [19], [20]

[21], [22], [30] (and references therein), [31], [32], [36], [37], [41], [42], [43], [44], and [45].

Another aspect pertains to the philosophy and the application of the maximum entropy prin-

ciple, which emerged in statistical mechanics in the nineteenth century and has been advocated

during the previous century in a wide variety of more general contexts, by Jaynes [15],[16],[17], and

by Shore and Johnson [40], as a general guiding principle to problems in information theory (see,

e.g., [5, Chap. 11] and references therein) and other areas, such as signal processing, in particular,

speech coding (see, e.g., [11]) spectrum estimation (see, e.g., [4]), and others.

Yet another aspect is related to ideas and theories that underly the notion of ‘trading’ between

information bits and energy, or heat. In particular, Landauer’s erasure principle [23] is argued to

provide a powerful link between information theory and physics and to suggest a physical theory of

information (comprehensive overviews are included in, e.g., [26] and [35]). According to Landauer’s

principle, the erasure of every bit of information increases the thermodynamic entropy of the world

by k ln 2, where k is Boltzmann’s constant, and so, information is actually physical.

Finally, to shift gears more to the direction of this paper, we should mention the aspect of the

interface between statistical physics and large deviations theory, a line of research advocated most

prominently by Ellis [8],[9], and developed also by Oono [34], McAllester [27], and others. The main

theme here evolves around the identification of Chernoff bounds and more general large deviations

rate functions with free energies (along with their related partition functions), thermodynamical

entropies, and the underlying maximum–entropy/equilibrium principle associated with them. In

particular, Ellis’ book [8] is devoted largely to the application of large deviations theory to the

statistical physics pertaining to models of ferromagnetic spin arrays, like Ising spin glasses and

others, in order to explore phase transitions phenomena of spontaneous magnetization (see also

[30]).

This paper, which is mostly expository in character, lies in the intersection of information theory,

large deviations theory, and statistical physics. In particular, we establish a simple identity between

two quantities as they can both be interpreted as the rate function of a certain large deviations

event that involves multiple distributions of sets of independent random variables (as opposed to

the usual, single set of i.i.d. random variables). The analysis of this large deviations event is of
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a general form that is frequently encountered in numerous applications in information theory (cf.

Section 4). Its informal description is as follows: Let v1, . . . , vn be an arbitrary (deterministic)

sequence whose components take on values in a finite set V, and let U1, . . . , Un be a sequence of

random variables where each component is generated independently according to a distribution

q(ui|vi), i = 1, . . . , n. For a given function f and a constant E, we are interested in the large

deviations analysis (Chernoff bound) of the probability of the event

n
∑

i=1

f(Ui, vi) ≤ nE, (1)

assuming that the relative frequencies of the various symbols in (v1, . . . , vn) stabilize as n grows

without bound, and assuming that E is sufficiently small to make this a rare event for large n.

There are (at least) two ways to drive a Chernoff bound on the probability of this event. The

first is to treat the entire sequence of RV’s, {f(Ui, vi)} as a whole, and the second is to partition it

according to the various symbols {vi}, i.e., to consider the separate large deviations events of the

partial sums,
∑

i:vi=v f(Ui, v), v ∈ V, for all possible allocations of the total ‘budget’ nE among

the various {v}. These two approaches lead to two (seemingly) different expressions of Chernoff

bounds, but since they are both exponentially tight, they must agree.

As will be described and discussed in Section 2, the identity between these two Chernoff bounds

has a natural interpretation in statistical physics: it is viewed as a situation of thermal equilibrium

(maximum entropy) in a system that consists of several subsystems (which can be of different

kinds), each of them with many particles.

As will be shown in Section 4, the above–described problem of large deviations analysis of

the event (1) is encountered in many applications in information theory, such as rate–distortion

coding, channel capacity, hypothesis testing (signal detection, in particular), and others. The above

mentioned statistical mechanical interpretation then applies to all of them. Accordingly, Section

4 is devoted to expository descriptions of each of these applications, along with the underlying

physics that is inspired by the proposed thermal equilibrium interpretation. The reader is assumed

to have very elementary background in statistical physics.

The remaining part of this paper is organized as follows. In Section 2, we establish some notation

conventions. In Section 3, we assert and prove our main result, which is the identity between the

above described Chernoff bounds. Finally, in Section 4, we explore the application examples.
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2 Notation

Throughout this paper, scalar random variables (RV’s) will be denoted by the capital letters, like

U ,V ,X, and Y , their sample values will be denoted by the respective lower case letters, and their

alphabets will be denoted by the respective calligraphic letters. A similar convention will apply to

random vectors and their sample values, which will be denoted with same symbols superscripted

by the dimension. Thus, for example, Xn will denote a random n-vector (X1, . . . ,Xn), and xn =

(x1, ..., xn) is a specific vector value in X n, the n-th Cartesian power of X . The notations xj
i and

Xj
i , where i and j are integers and i ≤ j, will designate segments (xi, . . . , xj) and (Xi, . . . ,Xj),

respectively, where for i = 1, the subscript will be omitted (as above). Sequences without specifying

indices are denoted by {·}. Sources and channels will be denoted generically by the letter P or

Q. Specific letter probabilities corresponding to a source P will be denoted by the corresponding

lower case letter, e.g., p(v) is the probability of a letter v ∈ V. A similar convention will be applied

to a channel Q and the corresponding transition probabilities, e.g., q(u|v), u ∈ U , v ∈ V. The

cardinality of a finite set A will be denoted by |A|. Information theoretic quantities like entropies,

and mutual informations will be denoted following the usual conventions of the information theory

literature.

Notation pertaining to statistical physics will also follow, wherever possible, the customary

conventions. I.e., k will denote Boltzmann’s constant (k = 1.38065 × 10−23 Joules per Kelvin

degree), T – absolute temperature (in Kelvin degrees), β = 1/(kT ) – the inverse temperature (in

units of Joule−1 or erg−1), E – energy, the letter Z will be used to denote partition functions, etc.

3 Main Result

Let U and V be finite1 sets and let f : U × V → IR be a given function. Let P = {p(v), v ∈ V} be

a probability mass function on V and let Q = {q(u|v), u ∈ U , v ∈ V} be a matrix of conditional

probabilities from V to U .

1The assumption that U is finite, is made mostly for the sake of convenience and simplicity. Most of our results
extend straightforwardly to the case of a continuous alphabet U . The extension to a continuous alphabet V is
somewhat more subtle, however.
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Next, let us define for each v ∈ V, the partition function:

Zv(β) =
∑

u∈U

q(u|v)e−βf(u,v), β ≥ 0, (2)

and for a given Ev in the range

min
u∈U

f(u, v) ≤ Ev ≤
∑

u∈U

q(u|v)f(u, v), (3)

let

Sv(Ev) = min
β≥0

[βEv + ln Zv(β)]. (4)

Further, for a given constant E in the range

∑

v∈V

p(v)min
u∈U

f(u, v) ≤ E ≤
∑

u∈U

∑

v∈V

p(v)q(u|v)f(u, v),

let

S̄(E) = min
β≥0

[

βE +
∑

v∈V

p(v) ln Zv(β)

]

. (5)

Let H(E) denote the set of all |V|–dimensional vectors Ē = {Ev, v ∈ V}, where each component

Ev satisfies (3), and where
∑

v p(v)Ev ≤ E. Our main result, in this section, is the following:

Theorem 1

max
Ē∈H(E)

∑

v∈V

p(v)Sv(Ev) = S̄(E). (6)

The expression on the right–hand side is, of course, more convenient to work with since it

involves minimization w.r.t. one parameter only, as opposed to the left–hand side, where there is a

minimization over β for every v, as well as a maximization over the |V|–dimensional vector Ē.

While the proof of Theorem 1 below is fairly short, in the Appendix (subsection A.1), we outline

an alternative proof which, although somewhat longer, provides some additional insight, we believe.

As described briefly in the Introduction, it is based on two different approaches to the analysis of

the rate function, I(E), pertaining to the probability of the event:

n
∑

i=1

f(Ui, vi) ≤ nE, (7)
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where {Ui} are RV’s taking values in U and drawn according to q(un|vn) =
∏n

i=1 q(ui|vi), and

vn = (v1, . . . , vn) is a given deterministic vector whose components are in V, with each v ∈ V

appearing nv times (
∑

v∈V nv = n), and the related relative frequency, nv/n is exactly p(v).

It should be noted that the proof in the Appendix pertains to a slightly different definition of the

set H(E), where the individual upper bound to each Ev is enlarged to maxu f(u, v). Thus, H(E) is

extended to a larger set, which will be denoted by H0(E) in the Appendix. But the maximum over

H0(E) is always attained within the original set H(E) (as is actually shown in the proof below).

Proof. Here we prove the identity of Theorem 1 directly, without using large deviations analysis

and Chernoff bounds. We first prove that for every Ē ∈ H(E), we have
∑

v∈V p(v)Sv(Ev) ≤ S̄(E)

and then, of course,

max
Ē∈H(E)

∑

v∈V

p(v)Sv(Ev) ≤ S̄(E)

as well. This follows from the following chain of inequalities:

∑

v∈V

p(v)Sv(Ev) =
∑

v∈V

p(v) · min
β≥0

[βEv + lnZv(β)]

=
∑

v∈V

min
β≥0

[βp(v)Ev + p(v) ln Zv(β)]

≤ min
β≥0

[

β
∑

v∈V

p(v)Ev +
∑

v∈V

p(v) ln Zv(β)

]

≤ min
β≥0

[

βE +
∑

v∈V

p(v) ln Zv(β)

]

= S̄(E), (8)

where in the second inequality we used the postulate that
∑

v p(v)Ev ≤ E.

In the other direction, let β∗ be the achiever of S̄(E), i.e., β∗ is the solution to the equation:

E = −

[

∂

∂β

∑

v

p(v) ln Zv(β)

]

β=β∗

.

For each v ∈ V, let E∗
v ∈ [minu f(u, v),

∑

u q(u|v)f(u, v)] be chosen such that β∗ would be the

achiever of Sv(E
∗
v ), i.e., E∗

v = −[∂ ln Zv(β)/∂β]β=β∗ . Obviously, the vector {E∗
v , v ∈ V} lies in
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H(E), and

∑

v

p(v)E∗
v = −

∑

v

p(v)

[

∂ ln Zv(β)

∂β

]

β=β∗

= −

[

∂

∂β

∑

v

p(v) ln Zv(β)

]

β=β∗

= E. (9)

Thus,

max
Ē∈H(E)

∑

v∈V

p(v)Sv(Ev) ≥
∑

v∈V

p(v)Sv(E
∗
v )

=
∑

v∈V

p(v)[β∗E∗
v + ln Zv(β

∗)]

= β∗
∑

v∈V

p(v)E∗
v +

∑

v

p(v) ln Zv(β
∗)

= β∗E +
∑

v

p(v) ln Zv(β
∗)

= S̄(E). (10)

This completes the proof of Theorem 1. �

The function Zv(β) is similar to the well–known partition function pertaining to the Boltzmann

distribution w.r.t. the Hamiltonian (energy function) Ev(u) = f(u, v), except that each exponential

term is weighted by q(u|v), as opposed to the usual form, which is just
∑

u∈U e−βEv(u). Before

describing the statistical mechanical interpretation of eq. (6), we should note that Zv(β) defined in

(2) can easily be related to the ordinary partition function, without weighting, as follows: Suppose

that {q(u|v)} are rational2 and hence can be represented as ratios of two positive integers, q(u|v) =

M(u|v)/M , where M ≥ |U| is common to all u ∈ U (and v ∈ V). Now, imagine that every value of

u actually represents a ‘quantization’ of a more refined microstate (call it a “nanostate”) w ∈ W,

|W| = M , so that u = gv(w), where gv is a many–to–one function, for which the inverse image of

every u consists of M(u|v) many values of w. Suppose further that the Hamiltonian depends on

w only via gv(w), i.e., E ′
v(w) = Ev(gv(w)). Then, the (ordinary) partition function related to w is

2Even if not rational, they can always be approximated as such to an arbitrarily good precision.
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given by

ζv(β) =
∑

w∈W

e−βE ′

v(w)

=
∑

w∈W

e−βEv(gv(w))

=
∑

u∈U

M(u|v)e−βEv(u)

= M
∑

u∈U

q(u|v)e−βEv(u) = MZv(β). (11)

Thus, the weighted partition function is, within a constant factor M , the same as the ordinary

partition function of w. This factor cancels out when probabilities are calculated since it appears

both in the numerator and the denominator. Moreover, it affects neither the minimizing β that

achieves Sv(Ev) or S̄(E), nor the derivatives of the log–partition function.

We now move on to our interpretation of eq. (6) from the viewpoint of elementary statistical

physics: Consider a physical system which consists of |V| subsystems of particles. The total number

of particles in the system is n and the total amount of energy is nE Joules. For each v ∈ V, the

subsystem indexed by v (subsystem v, for short) contains nv = np(v) particles, each of which can lie

in any microstate within a finite set of microstates U (or an underlying nanostate in a set W), and

it is characterized by an additive Hamiltonian Ev(u1, . . . , unv ) =
∑nv

i=1 f(ui, v). The total amount of

energy possessed by subsystem v is given by nvEv Joules. As long as the subsystems are in thermal

isolation from each other, each one of them may have its own temperature Tv = 1/(kβv), where

βv is the achiever of the normalized (per–particle) entropy associated with an average per–particle

energy Ev, i.e.,

Sv(Ev) = min
β≥0

[βEv + ln Zv(β)].

The above–mentioned rate function I(E) of Pr{
∑n

i=1 f(Ui, vi) ≤ nE} is then given by the nega-

tive maximum total per–particle entropy,
∑

v p(v)Sv(Ev), where the maximum is over all energy

allocations {Ev} such that the total energy is conserved, i.e.,
∑

v p(v)Ev = E. This maximum is

attained by the expression of the r.h.s. of eq. (6), where there is only one temperature parameter,

and hence it corresponds to thermal equilibrium. In other words, the whole system then lies in the

same temperature T ∗ = 1/(kβ∗), where β∗ is the minimizer of S̄(E). Thus, the energy allocation

among the various subsystems in equilibrium is such that their temperatures are the same (cf.
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the above proof of Theorem 1). Theorem 1 is then interpreted as expressing the second law of

thermodynamics.

At this point, a few comments are in order:

1. It should be pointed out that in the above physical interpretation, we have implicitly assumed

that the particles within each subsystem are distinguishable, and so the partition function

corresponding to a set of nv particles is given by the partition function of a single particle

raised to the power of nv, without dividing by nv!. This differs then from the indistinguishable

case only by a constant factor (as long as nv is indeed constant) and hence the difference

between the distinguishable and the indistinguishable cases is not essential for the most part

of our discussion.

2. As mentioned in the above paragraph, our conclusion is that I(E) = −S̄(E). At first glance,

this may seem peculiar as it appears that I(E) may be negative. However, one should keep in

mind that S̄(E) is induced by a (convex) combination of weighted partition functions, rather

than ordinary partition functions, like ζv(β). Referring to eq. (11), the ordinary notion of

entropy Σ(E) as the normalized log–number of (nano)states with normalized energy E, is

given by

Σ̄(E) = min
β≥0

[

βE +
∑

v

p(v) ln ζv(β)

]

= min
β≥0

[

βE +
∑

v

p(v) ln Zv(β)

]

+ ln M

= S̄(E) + ln M. (12)

Thus,

I(E) = ln M − Σ̄(E),

which is always non–negative.

3. The identity (6) can be thought of as a generalized concavity property of the entropy: Had all

the entropy functions Sv(·) been the same, this would have been the usual concavity property.

What makes this equality less trivial and more interesting is that it continues to hold even

when Sv(·), for the various v ∈ V, are different from each other.
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4. On the more technical level, since this paper draws analogies with physics, we should say a few

words about physical units. The products βE, βEv, βf(u, v), etc., should all be pure numbers,

of course. Since β = 1/(kT ), where k is Boltzmann’s constant and T is absolute temperature,

and since kT has units of energy (Joules or ergs, etc.), it is understood that E, Ev, f(u, v) and

the like, should all have units of energy as well. In the applications described below, whenever

this is not the case, i.e., the latter quantities are pure numbers rather than physical energies,

we will sometimes reparametrize β by βε0, where ε0 is an arbitrary constant possessing units

of energy (e.g., ε0 = 1 Joule or ε0 = 1 erg), and we absorb ε0 in the Hamiltonian, i.e., redefine

Ev(u) = ε0f(u, v). Thus, in this case, Sv(E), where E is the now the energy in units of ε0, is

redefined as

Sv(E) = min
β≥0

[

β · ε0E + ln

(

∑

u

q(u|v)e−βEv(u)

)]

.

This kind of modification is not essential, but it may help to avoid confusion about units

when the picture is viewed from the aspects of physics.

4 Applications

Equipped with the main result of the previous section and its statistical mechanical interpretation,

we next introduce a few applications that fall within the framework considered. In all these appli-

cations, there is an underlying large deviations event of the type of eq. (7), whose rate function

is of interest. The above described viewpoint of statistical physics is then relevant in all these

applications.

4.1 The Rate–Distortion Function

Let P = {p(x), x ∈ X} designate the vector of letter probabilities associated with a given discrete

memoryless source (DMS), and for a given reproduction alphabet X̂ , let d : X × X̂ → IR+ denote

a single–letter distortion measure. Let R(D) denote the rate–distortion function of the DMS P .

One useful way to think of the rate–distortion function is inspired by the classical random

coding argument: Let (X̂1, . . . , X̂n) be drawn i.i.d. from the optimum random coding distribution

q∗(x̂1, . . . , x̂n) =
∏n

i=1 q∗(x̂i) and consider the event
∑n

i=1 d(xi, X̂i) ≤ nD, where xn is a given source

vector, typical to P , i.e., the composition of xn consists of nx = np(x) occurrences of each x ∈ X .
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This is exactly an event of the type (7) with Ui = X̂i, vi = xi, i = 1, . . . , n, q(u|v) = q(x̂|x) = q∗(x̂)

independently of x, f(u, v) = f(x̂, x) = d(x, x̂), and E = D. I.e., the Hamiltonian Ex(x̂) is given

by ε0d(x, x̂) and the total energy is nD in units of ε0.

Suppose that this probability is of the exponential order of e−nI(D). Then, it takes about

M = en[I(D)+ε] (ε > 0, however small) independent trials to ‘succeed’ at least once (with high

probability) in having some realization of X̂n within distance nD from xn. This is the well–known

the classical random coding achievability argument that leads to I(D) = R(D). Thus, the large–

deviations rate function of interest agrees exactly with the rate–distortion function (cf. [3, Sect.

3.4]), which is:

R(D) = −min
β≥0



β · ε0D +
∑

x∈X

p(x) ln





∑

x̂∈X̂

q∗(x̂)e−β·ε0d(x,x̂)







 . (13)

Interestingly, in [10, p. 90, Corollary 4.2.3]), the rate–distortion function is shown, using completely

different considerations, to have a parametric representation which can be written exactly in this

form.

The fact that the rate–distortion function has an interpretation of an isothermal equilibrium

situation in statistical thermodynamics is not quite new (cf. e.g. [3, Sect. 6.4], [38]). Here, however,

we obtain it in a more explicit manner and as a special case of a more general principle.

A simple example is that of the binary symmetric source with the Hamming distortion measure.

It is easy to see that, in this example, the relationship between distortion and temperature is:

T =
ε0

k ln[(1 − D)/D]
or, equivalently, D =

1

1 + eε0/(kT )
(14)

and, of course, R(D) = 1 − h2(D), where h2(D) is the binary entropy function.

A slightly more involved example pertains to the regime of high resolution (small distortion) and

it turns out to be related to (a generalized version of) the law of equipartition of energy in statistical

physics: Consider the Lθ distortion measure, d(x, x̂) = |x − x̂|θ (most commonly encountered are

the cases θ = 1 and θ = 2). Let us assume that D > 0 is very small and consider the (continuous)

uniform random coding distribution q(x̂) = 1
2A in the interval [−A,A] and zero elsewhere. This

random coding distribution is suboptimal, but it corresponds, and hence is well motivated, by

many results in high–resolution quantization using uniform quantizers (see, e.g., [12] and references

11



therein). For every x ∈ X , the partition function is given by

Zx(β) =
1

2A

∫ A

−A
exp{−βε0|x̂ − x|θ}dx̂.

When D is very small, β is very large, and then the finite–interval integral pertaining to Zx(β)

can be approximated3 by an infinite one, provided that the support of {p(x)} is included4 in the

interval [−A,A]:

Zx(β) ≈
1

2A

∫ ∞

−∞
exp{−βε0|x̂ − x|θ}dx̂, (15)

which then becomes independent of x. The average distortion (internal energy) associated with

this partition function can be evaluated using the same technique as the one that leads to the law

of equipartition in statistical physics:

ε0D ≈ −
∂

∂β
ln

[
∫ ∞

−∞
exp{−βε0|x̂ − x|θ}dx̂

]

= −
∂

∂β
ln

[

β−1/θ ·

∫ ∞

−∞
exp{−ε0|β

1/θ(x̂ − x)|θ}d(β1/θ(x̂ − x))

]

= −
∂

∂β
ln

[

β−1/θ ·

∫ ∞

−∞
exp{−ε0|z|

θ}dz

]

= −
d

dβ
ln
(

β−1/θ
)

−
∂

∂β
ln

[
∫ ∞

−∞
exp{−ε0|z|

θ}dz

]

=
1

βθ
− 0 =

kT

θ
(16)

[Note that for θ = 2, where the Hamiltonian is quadratic in the integration variable x̂, this is exactly

the law of equipartition.] Thus, for low temperatures, the distortion is given by D = kT/(ε0θ), i.e.,

distortion is linear in temperature in that regime, and the constant of proportionality is related to

the heat capacity, C = k/θ. Since the temperature is proportional to the negative local slope of

the distortion–rate function (as the reciprocal, β, is proportional to the negative local slope of the

rate–distortion function), this means that the distortion is proportional to its derivative w.r.t. R,

which means an exponential relationship of the form D = D0e
−θR (D0 – constant). For θ = 2 (mean

square error), this is recognized as the well–known characterization of distortion as function of rate

in the high resolution regime. Specifically, in this case, the factor of 2 at the denominator of kT/2,

the universal expression of the internal energy per degree of freedom according to the equipartition

theorem, has the same origin as the factor of 2 that appears in the exponent of D(R) = D0e
−2R

3See the Appendix (subsection A.2) for a more rigorous derivation.
4An alternative, softer condition is that the probability that |x| ≥ A is negligibly small.
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(decay of 6dB per bit). Thus the law of equipartition in statistical physics is related to the behavior

of rate distortion codes in the high resolution regime.

To compute the rate associated with this temperature more explicitly, note that the minimizing

β∗ is given by 1/(θε0D), and so

R = −β∗ε0D − ln

[

1

2A

∫ ∞

−∞
exp{−β∗ε0|x̂ − x|θ}dx̂

]

= −
1

θ
− ln

[

1

2A
·

2Γ(1/θ)

θ(1/θD)1/θ

]

= ln

[

Aθ

Γ(1/θ)(θeD)1/θ

]

= ln

[

Aθ

Γ(1/θ)

]

−
1

θ
ln(θeD). (17)

4.2 Channel Capacity

In complete duality to the random coding argument that puts the rate–distortion function in the

framework discussed in Section 3, a parallel argument can be made with regard to channel capacity.

Given a discrete memoryless channel (DMC) with a finite input alphabet X , and a finite out-

put alphabet Y, we can obtain capacity using the following argument. Let {q∗(x), x ∈ X} be

the optimum random coding distribution according to which, each codeword Xn is drawn inde-

pendently. Let yn be a given channel output sequence which is typical to the output distribution

p(y) =
∑

x∈X q(x)W (y|x), where {W (y|x), x ∈ X , y ∈ Y} are the channel transition probabilities.

That is, each symbol y appears ny = np(y) times in yn. Consider now the large deviations event

n
∑

i=1

log
1

W (yi|Xi)
≤ nH(Y |X), (18)

where H(Y |X) = −
∑

x∈X

∑

y∈Y q(x)W (y|x) log W (y|x). By the union bound, as long as the

number of randomly chosen codewords is exponentially less than e−nI , where I is the rate function

of the large–deviations event (18), then the average error probability still vanishes as n → ∞.5

Since this is the exactly the achievability argument of the channel coding theorem, then I = C,

where C the channel capacity.

5Here we apply the union bound to a threshold decoder that seeks a unique codeword that satisfies (18), which
although suboptimum, is still good enough to achieve capacity.
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Again, this complies with our model setting with the assignments, Ui = Xi, vi = yi, i = 1, . . . , n,

q(u|v) = q(x|y) = q∗(x) independently of y, f(u, v) = f(x, y) = − log W (y|x) and E = H(Y |X)

units of ε0. In other words, channel capacity can be represented as

C = −min
β≥0



β · ε0H(Y |X) +
∑

y∈Y

p(y) ln

(

∑

x∈X

q∗(x)e−β·ε0[− log W (y|x)]

)



 . (19)

It is easy to see that, in this case, the equilibrium temperature always corresponds to βε0 = 1,

namely, T = ε0/k.

By the same token, one can derive an expression of the random coding capacity pertaining to

mismatched decoding, where the decoder uses an additive metric m(x, y) other than the optimum

metric, − log W (y|x) (see, e.g., [2], [7], [24], [25], [28], and references therein). The only modifi-

cations to the above expression would be to replace the Hamiltonian by Ey(x) = ε0m(x, y) and to

replace H(Y |X) by the expectation of m(X,Y ) w.r.t. q∗(x)W (y|x). The new optimum random

coding distribution might change as well. Here, it is no longer necessarily true that the equilibrium

temperature is T = ε0/k.

4.3 Signal Detection and Hypothesis Testing

Consider the following binary hypothesis testing problem: Given a deterministic signal, which is

repreresented by a sequence xn = (x1, . . . , xn) with elements taking on values in a (finite) set X

and relative frequencies {p(x), x ∈ X}, and given an observation sequence Y n = (Y1, . . . , Yn), we

are required to decide between two hypotheses:

H0 : The observation vector Y n is “pure noise,” distributed according to some product measure

Q = {q(y), y ∈ Y}, i.e., q(yn) =
∏n

i=1 q(yi), which is unrelated to xn.

H1 : The observation vector Y n is a “noisy version” of xn, distributed according to q(yn|xn) =
∏n

i=1 q(yi|xi).

The optimum detector (under both the Bayesian and the Neyman–Pearson criterion) compares

the likelihood ratio
∑n

i=1 ln[q(yi)/q(yi|xi)] to a threshold nE0, and decides in favor of H0 if this

threshold is exceeded, otherwise, it decides in favor of H1.

14



The false–alarm probability then is the probability of the event

n
∑

i=1

ln

[

q(Yi)

q(Yi|xi)

]

≤ nE0

under Q. This, again, fits our scenario with the substitutions Ui = Yi, vi = xi, i = 1, . . . , n,

q(u|v) = q(y), independently of x = v, f(u, v) = f(y, x) = ln[q(y)/q(y|x)], and E = E0. Similarly,

the analysis of the missed–detection probability corresponds to the assignments: Ui = Yi, and

vi = xi, i = 1, . . . , n, as before, but now q(u|v) = q(y|x), f(u, v) = f(y, x) = ln[q(y|x)/q(y)] and

E = −E0. Note that when {q(y)} is the uniform distribution over Y, the missed-detection event

can also be interpreted as the probability of excess code–length of an arithmetic lossless source code

w.r.t. {q(y|x)}.

Another situation of hypothesis testing that is related to our study in a similar manner is one

where the signal xn is always underlying the observations, but the decision to be made is associated

with two hypotheses regarding the noise level, or the temperature. In this case, there is a certain

Hamiltonian Ex(y) for each x ∈ X , and we assume a Boltzmann–Gibbs distribution parametrized

by the temperature

q(y|x, β) =
e−βEx(y)

ζx(β)

where

ζx(β) =
∑

y

e−βEx(y).

Note that here ζx(β) is an ordinary partition function, without weighting (cf. (11)). We shall also

denote

Σ̄(E) = min
β≥0

[

βE +
∑

x∈X

p(x) ln ζx(β)

]

.

As Σ̄(E) is induced by a convex combination of non-weighted partition functions, it has the sig-

nificance of the normalized logarithm of the number of microstates with energy about nE. Thus,

k · Σ̄(E), where k is Boltzmann’s constant, is the thermodynamic entropy.

Given two values β1 and β2 (say, β1 > β2), the hypotheses now are the following:

H1 : Y n is distributed according to q1(y
n|xn) =

∏n
i=1 q(yi|xi, β1).

H2 : Y n is distributed according to q2(y
n|xn) =

∏n
i=1 q(yi|xi, β2).
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The likelihood ratio test compares
∑n

i=1 Exi(Yi) to a threshold, nE0, and decides in favor of H2

if the threshold is exceeded, otherwise, it favors H1. Here, E0 should lie in the interval (E1, E2),

where

Ei
∆
= −

∑

x∈X

p(x) ·

[

∂ ln ζx(β)

∂β

]

β=βi

, i = 1, 2.

For convenience, let us assume now that Ei, i = 0, 1, 2, and Ex(y) already have units of energy, so

there is no need to have the constant ε0. In this situation, the exponent of the error probability

under H2 is given by −S̄(E0), where

S̄(E0) = min
β≥0



βE0 +
∑

x∈X

p(x) ln





∑

y∈Y

q(y|x, β2)e
−βEx(y)









= min
β≥0

[

βE0 +
∑

x∈X

p(x) ln

(

ζx(β + β2)

ζx(β2)

)

]

= min
β≥0

[

βE0 +
∑

x∈X

p(x) ln ζx(β + β2) −
∑

x∈X

p(x) ln ζx(β2)

]

= min
β≥0

[

(β + β2)E0 +
∑

x∈X

p(x) ln ζx(β + β2)

]

− β2E0 −
∑

x∈X

p(x) ln ζx(β2)

= min
β≥β2

[

βE0 +
∑

x∈X

p(x) ln ζx(β)

]

+ β2(E2 − E0) −

[

β2E2 +
∑

x∈X

p(x) ln ζx(β2)

]

= min
β≥β2

[

βE0 +
∑

x∈X

p(x) ln ζx(β)

]

+ β2(E2 − E0)

−min
β≥0

[

βE2 +
∑

x∈X

p(x) ln ζx(β)

]

= Σ̄(E0) − Σ̄(E2) + β2(E2 − E0), (20)

where we have used the fact that the achiever β(E) of Σ̄(E) is a monotonically non-increasing

function of E, thus, E0 < E2 implies β(E0) > β(E2) = β2, and so, the global minimum over β ≥ 0

is attained for β ≥ β2 anyway.
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It then follows that the error exponent I2 under H2 is given by

I2 = Σ̄(E2) − Σ̄(E0) − β2(E2 − E0)

=
1

k

[

kΣ̄(E2) − kΣ̄(E0) −
E2 − E0

T2

]

=
1

k

∫ E2

E0

[

1

T (E)
−

1

T2

]

dE

=
1

k

∫ T2

T0

(

1

T
−

1

T2

)

C̄(T )dT, (21)

where T (E) = 1/(kβ(E)) is the temperature corresponding to energy E, Ti = T (Ei), i = 0, 1, 2,

and C̄(T ) = dE/dT is the average heat capacity per particle of the system, which is the weighted

average of heat capacities of all subsystems, i.e.,

C̄(T ) =
∑

x∈X

p(x)Cx(T ),

where

Cx(T ) =
dEx

dT
=

1

kT 2

[

d2 ln ζx(β)

dβ2

]

β=1/(kT )

.

Thus,

I2 =
∑

x∈X

p(x) ·
1

k

∫ T2

T0

(

1

T
−

1

T2

)

Cx(T )dT,

which is interpreted as the weighted average of the relative contributions of all subsystems, which

all lie in the same temperature T0.

In a similar manner, the rate function I1 of the probability of error under H1 is given by:

I1 = Σ̄(E1) − Σ̄(E0) − β1(E1 − E0)

=
1

k

[

kΣ̄(E1) − kΣ̄(E0) −
E1 − E0

T1

]

=
1

k

∫ E0

E1

[

1

T1
−

1

T (E)

]

dE

=
1

k

∫ T0

T1

(

1

T1
−

1

T

)

C̄(T )dT. (22)

The expression in the square brackets of the second line pertaining to I2 has a simple graphical

interpretation (see Fig. 1): It is the vertical distance (corresponding to the vertical line E = E0)

between the curve Σ̄(E) and the line tangent to that curve at E = E2 (whose slope is β2 = β(E2)).
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The two other expressions of I2, in the last chain of equalities, describe the error exponent I2 in

terms of slow heating from temperature T0 to temperature T2. Similar comments apply to I1 (cf.

Fig. 1). Thus, the error exponents are linear functionals of the average heat capacity, C̄(T ), in the

range of temperatures [T1, T2]. The higher is the heat capacity, the better is the discrimination

between the hypotheses. This is related to the fact that Fisher information of the parameter β is

given by

J(β) =
∑

x∈X

p(x)
d2 ln ζx(β)

dβ2
= kT 2C̄(T ),

namely, again, a linear function of C̄(T ). However, while the Fisher information depends only on

one local value of C̄(T ) (as it measures the sensitivity of the likelihood function to the parameter

in a local manner), the error exponents depend on {C̄(T ) : T1 ≤ T ≤ T2} in a cumulative manner,

via the above integrals. The tradeoff between I1 and I2 is also obvious: by enlarging the threshold

E0, or, correspondingly, T0, the range of integration pertaining to I1 increases at the expense of

the one of I2 and vice versa. In the extreme case, where I2 = 0, we get

I1 = D(P2‖P1) =
1

k

∫ T2

T1

(

1

T1
−

1

T

)

C̄(T )dT.

I1
I2

slope β2
slope β1

Σ̄(E)

E2E1 E0
E

Figure 1: Entropy as function of energy and a graphical representation of error exponents.
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4.4 Error Exponents of Time–Varying Scalar Quantizers

In this application example, we are back to the problem area of lossy data compression, but this

time, it is about scalar (symbol–by–symbol) compression. This setup is motivated by earlier re-

sults about the optimality of time–shared scalar quantizers within the class of causal source codes

for memoryless sources, both under the average rate/distortion criteria [33] and large–deviations

performance criteria [29]. In particular, it was shown that under both criteria, optimum time–

sharing between at most two (entropy coded) scalar quantizers is as good as any causal source code

for memoryless sources. Here, we will focus on the large deviations performance criteria, namely,

source coding exponents.

Consider a time–varying scalar quantizer X̂i = fi(Xi), acting on a DMS X1,X2, . . ., Xi ∈ X ,

drawn from q, where {fi} is an arbitrary (deterministic) sequence of quantizers from a given finite

set F = {F1, . . . , FS}, where Fs : X → X̂s, X̂s being the reproduction alphabet corresponding to

Fs, s = 1, . . . , S. In other words, for every i = 1, 2, . . . , n, fi = Fsi , for a certain arbitrary sequence

of ‘states’, s1, s2, . . . (known to the decoder) with components in S = {1, 2, . . . , S}.

The distortion incurred by such a time–varying scalar quantizer, over n units of time, is
∑n

i=1 d(Xi, fi(Xi)) =
∑n

i=1 d(Xi, Fsi(Xi)). The total code length is
∑n

i=1 Lsi(Fsi(Xi)), where the

per–symbol length functions Ls(·) may correspond to either fixed–rate coding, where Ls(x̂) = Rs
∆
=

dlog |X̂s|e for all x̂, or any other length function satisfying the Kraft inequality,
∑

x̂∈X̂s
2−Ls(x̂) ≤ 1.

For the sake of simplicity of the exposition, let us assume fixed–rate coding. We will denote by ns,

s ∈ S, the number of times that si = s occurs in sn, and p(s) = ns/n is the corresponding relative

frequency.

In [29], among other results, the rate function of the excess distortion event

n
∑

i=1

d(Xi, Fsi(Xi)) > nD, D >
∑

(x,s)∈X×S

q(x)p(s)d(x, Fs(x))

was optimized across the class of all time–varying scalar quantizers (each one corresponding to a

different sequence s1, . . . , sn) subject to a code–length constraint
∑n

i=1 Rsi ≤ nR, or equivalently,
∑

s∈S nsRs ≤ nR, for a given pair (D,R).

In the notation of our generic model, here we have Ui = Xi, vi = si, i = 1, . . . , n, q(u|v) =
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q(x|s) = q(x) independently of s, f(u, v) = f(x, s) = −d(x, Fs(x)), and E = −D.6 and the excess

distortion exponent is of the same form as before (see also [29]). Here, however, unlike the previous

application examples, we have a degree of freedom to select the relative frequency of usage, p(s), of

each member of F , i.e., the time–sharing protocol, but we also have the constraint
∑

s p(s)Rs ≤ R.

From the statistical physics point of view, these additional ingredients mean that we have a

freedom to select the number of particles in each subsystem (though the total number, n, is still

fixed), and the additional constraint,
∑

s p(s)Rs ≤ R, which is actually equivalent to the equality

constraint
∑

s p(s)Rs = R (in the interesting region of (R,D) pairs) can be viewed as an additional

conservation law with respect to some other constant of motion, in addition to the energy (e.g., the

momentum), where in subsystem s, the (average) value of the corresponding physical quantity per

particle is Rs.

While in [29], we have considered the problem of maximizing the rate function (the source coding

exponent) of the excess distortion event
∑n

i=1 d(Xi, Fsi(Xi)) > nD, a related objective (although

somewhat less well motivated, but still interesting) is to minimize the rate function (or maximize

the probability) of the small distortion event

n
∑

i=1

d(Xi, Fsi(Xi)) < nD, D <
∑

(x,s)∈X×S

q(x)p(s)d(x, Fs(x)).

In this case, the optimum performance is given by

F (R,D) = max
P∈P(R)

min
β≥0

[

βD +
S
∑

s=1

p(s) ln

(

∑

x∈X

q(x)e−βd(x,Fs(x))

)]

,

where P(R) is the class of all probability distributions P = {p(s), s ∈ S} with
∑

s p(s)Rs ≤ R.

From the viewpoint of statistical physics, this corresponds to a situation where the various subsys-

tems are allowed to interact, not only thermally, but also chemically, i.e., an exchange of particles

is enabled in addition to the exchange of energy, and the maximization over P(R) (maximum en-

tropy) is achieved when the chemical potentials of the various subsystems reach a balance. As the

maximization over P ∈ P(R) subject to the constraint
∑

s p(s)Rs ≤ R, for a given β, is a linear

programming problem with one constraint (in addition to
∑

s p(s) = 1), then as was shown in [29],

for each distortion level (or energy) D, the optimum P ∈ P(R) may be non–zero for at most two

6One may prefer to redefine f(x, s) = Dmax − d(x,Fs(x)) and E = Dmax − D, where Dmax
∆
= maxx,s d(x,Fs(x)),

in order to work with non–negative quantities.
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members of S only, which means that at most two subsystems are populated by particles in thermal

and chemical equilibrium under the two conservation laws (of D and of R). However, the choice

of these two members of S depends, in general, on D, which in turn depends on the temperature.

Thus, when the system is heated gradually, certain phase transitions may occur, whenever there is

a change in the choice of the two populated subsystems.

Finally, referring to comment no. 1 of Section 3, we should point out that here, in contrast

to our discussion thus far, the difference between the ensemble of distinguishable particles and

indistinguishable particles becomes critical since the factors {ns!} are no longer constant. Had

we assumed indistinguishability, the normalized log–partition function would no longer be affine

in P , thus the maximization over P would no longer be a linear programming problem, and the

conclusion might have been different. In the source coding problem, the indistinguishable case

corresponds to a situation where the sequence of states sn is chosen uniformly at random (with

the decoder being informed of the result of the random selection, of course). In this case, the

Chernoff bound corresponding to each composition {ns, s ∈ S} of sn should be weighed by the

probability of this composition, which is S−nn!/
∏

s ns!. Now, each factor of 1/ns! can be absorbed

in the corresponding partition function Zs(β) of subsystem s, with the interpretation that in each

subsystem the particles are now indistinguishable. The maximum over P would now correspond to

the dominant contribution in this weighted average of Chernoff bounds. One can, of course, extend

the discussion to any i.i.d. distribution on sn, thus introducing additional bias and preferring some

compositions over others.

Appendix

A.1. Sketch of an Alternative Proof of Theorem 1 via Chernoff Bounds

In this subsection, we outline another proof of Theorem 1 using a large deviations analysis approach.

In particular, consider the large deviations event
∑n

i=1 f(Ui, vi) ≤ nE, as described in Section 2.

Assuming that the relative frequencies {p(v)} all stabilize as n → ∞, let us compute the rate

function I(E) of the probability of this event in two different methods, where one would yield the

left–hand side of (6) and the other would give the right–hand side of (6).

In the first method, we partition the sequence vn according to its different letters. Specifically,
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let

Ev
∆
=

1

nv

∑

i:vi=v

f(Ui, v),

where nv is the number of occurrences of the symbol v ∈ V along vn. Let G denote the set of

all possible vector values that can be taken on by the vector Ē = {Ev, v ∈ V}. Now, obviously,
∑n

i=1 f(Ui, vi) ≤ nE if and only if there exists a vector Ẽ = {Ẽv , v ∈ V} ∈ G such that Ev ≤ Ẽv

for all v ∈ V and
∑

v∈V p(v)Ẽv ≤ E. The “if” part follows from

n
∑

i=1

f(Ui, vi) = n
∑

v∈V

p(v)Ev ≤ n
∑

v∈V

p(v)Ẽv ≤ nE.

The “only if” part follows by setting Ẽv = Ev for all v ∈ V. Therefore, denoting HG(E) =

H0(E)
⋂

G (where H0(E) is defined as in Section 2), we have:

Pr

{

n
∑

i=1

f(Ui, vi) ≤ nE

}

= Pr
⋃

Ē∈HG(E)

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv, v ∈ V

}

≤
∑

Ẽ∈HG(E)

Pr

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv, v ∈ V

}

=
∑

Ẽ∈HG(E)

∏

v∈V

Pr

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv

}

≤ |HG(E)| · max
Ẽ∈HG(E)

∏

v∈V

Pr

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv

}

≤ |G| · max
Ẽ∈HG(E)

∏

v∈V

Pr

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv

}

, (A.1)

and on the other hand,

Pr

{

n
∑

i=1

f(Ui, vi) ≤ nE

}

= Pr
⋃

Ẽ∈HG(E)

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv, v ∈ V

}

≥ max
Ẽ∈HG(E)

Pr

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv, v ∈ V

}

= max
Ẽ∈HG(E)

∏

v∈V

Pr

{

∑

i:vi=v

f(Ui, v) ≤ nvẼv

}

. (A.2)

At this point, the only gap between the upper bound (A.1) and the lower bound (A.2) is the factor

|G|. The number of different values that Ẽv can take does not exceed the number of different type
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classes of sequences of length nv over the alphabet U , which is upper bounded by (nv + 1)|U|−1.

Thus,

|G| ≤
∏

v∈V

[nv + 1]|U|−1

= exp

{

(|U| − 1)
∑

v

log(nv + 1)

}

= exp

{

|V| · (|U| − 1)
∑

v

1

|V|
log(nv + 1)

}

≤ exp

{

|V| · (|U| − 1) log

(

∑

v

1

|V|
[nv + 1]

)}

= exp

{

|V| · (|U| − 1) log

(

n

|V|
+ 1

)}

=

(

n

|V|
+ 1

)|V|·(|U|−1)

, (A.3)

and therefore |G| is only polynomial in n, and hence does not affect the exponential behavior.

Now, each one of the terms Pr{
∑

i:vi=v f(Ui, v) ≤ nvẼv} is bounded exponentially tightly by an

individual Chernoff bound,

exp

{

nv min
β≥0

[

βẼv + ln

(

∑

u

q(u|v)e−βf(u,v)

)]}

,

and so, the dominant term of their product is of the exponential order of

max
Ẽ∈HG(E)

∑

v

p(v) · min
β≥0

[

βẼv + ln

(

∑

u

q(u)e−βf(u,v)

)]

= max
Ẽ∈HG(E)

∑

v

p(v)Sv(Ev).

Finally, as nv → ∞, the set HG(E) becomes dense in the continuous set H0(E), and by simple

continuity arguments, the maximum over HG(E) tends to the maximum over H0(E).

The other method to evaluate the rate function I(E) is as follows. Let ` be a fixed positive

integer that divides n, and denote `v = `p(v), v ∈ V (assume that ` is chosen large enough that

`p(v) is well approximated by the closest integer with a very small relative error). Now, re–order the

pairs {(Ui, vi)} (periodically), according to the following rule: Assuming, without loss of generality,

that V = {1, 2, . . . , |V|}, the first `1 = `p(1) symbol pairs of each `–block of (un, vn) are such that

v = 1, the next `2 = `p(2) symbol pairs of each `–block are such that v = 2, and so on. In other

words, each `–block, vi`
(i−1)`+1 = (v(i−1)`+1, v(i−1)`+2, . . . , vi`), i = 1, 2, . . . , n/`, consists of the same
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relative frequencies {p(v)} as the entire sequence, vn. Now, for the re–ordered sequence of pairs,

let us define Xi =
∑i`

t=(i−1)`+1 f(Ut, vt), i = 1, 2, . . . , n/`. Obviously, X1,X2, . . . ,Xn/` are i.i.d.

and therefore the probability of the large deviations event {
∑n/`

i=1 Xi ≤ n
` · `E} can be assessed

exponentially tightly by the Chernoff bound as follows:

exp







n

`
· min

β≥0



β · `E + ln





∑

u`∈U`

q(u`|v`) exp

{

−β
∑̀

i=1

f(ui, vi)

}















= exp

{

n

`
· min

β≥0

[

β · `E + ln

(

∏

v∈V

∑

u`v

q(u`v |v`v) exp

{

−β

`v
∑

i=1

f(ui, v)

})]}

= exp







n

`
· min

β≥0



β · `E + ln





∏

v∈V

[

∑

u∈U

q(u|v)e−βf(u,v)

]`v














= exp

{

n

`
· min

β≥0

[

β · `E + ` ·
∑

v∈V

p(v) ln

(

∑

u∈U

q(u|v)e−βf(u,v)

)]}

= exp

{

n · min
β≥0

[

βE +
∑

v∈V

p(v) ln

(

∑

u∈U

q(u|v)e−βf(u,v)

)]}

= enS̄(E). (A.4)

Since both approaches yield exponentially tight evaluations of I(E), they must be equal.

A.2. A More Rigorous Derivation of Eq. (16)

The exact derivation of eq. (16) for the finite interval integration, is as follows:

ε0D = −
∂

∂β
ln

[
∫ A

−A
exp{−βε0|x̂ − x|θ}dx̂

]

= −
∂

∂β
ln

[

β−1/θ ·

∫ β1/θ(A−x)

−β1/θ(A+x)
exp{−ε0|β

1/θ(x̂ − x)|θ}d(β1/θ(x̂ − x))

]

= −
∂

∂β
ln

[

β−1/θ ·

∫ β1/θ(A−x)

−β1/θ(A+x)
exp{−ε0|z|

θ}dz

]

= −
∂

∂β
ln
(

β−1/θ
)

−
∂

∂β
ln

[

∫ β1/θ(A−x)

−β1/θ(A+x)
exp{−ε0|z|

θ}dz

]

=
1

βθ







1 −
β1/θ[(A − x) exp{−βε0|A − x|θ} + (A + x) exp{−βε0|A + x|θ}]

∫ β1/θ(A−x)

−β1/θ(A+x)
exp{−ε0|z|θ}dz







.(A.5)

When β is very large, the denominator of the second term of the expression in the curly brackets of

the right–most side, goes to
∫∞
−∞ exp{−ε0|z|

θ}dz, which is a constant. Now if, in addition, |x| < A,
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then the numerator tends to zero as β grows without bound. Thus, the dominant term, for low

temperatures, is 1/(βθ) = kT/θ.

An exact closed–form expression, for every finite β, can be derived for the case θ = 1, since in

this case, the integral at the denominator has a simple expression. For example, setting θ = 1, and

x = 0 in the above expression, yields:

D =
1

βε0
−

A

eβε0A − 1

=
kT

ε0
−

A

eε0A/(kT ) − 1
. (A.6)

Note that this expression is valid only in the range where it is monotonically increasing in T .

(Beyond this point, the minimizing β is no longer the point of zero derivative).
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