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Linear Regression with Gaussian Model

Uncertainty: Algorithms and Bounds
Ami Wiesel, Yonina C. Eldar and Arie Yeredor

Abstract—We consider the problem of estimating an unknown
deterministic parameter vector in a linear regression model with
random Gaussian uncertainty in the mixing matrix. We prove
that the maximum likelihood (ML) estimator is a regularized
least squares estimator and develop three alternative approaches
for finding the regularization parameter which maximizes the
likelihood. We analyze the performance using the Cramér Rao
bound (CRB) on the mean squared error, and show that the
degradation in performance due the uncertainty is not as severe
as may be expected. Next, we address the problem again assuming
that the variances of the noise and the elements in the model
matrix are unknown and derive the associated CRB and ML
estimator.

We compare our methods to known results on linear regression
in the error in variables (EIV) model. We discuss the similarity
between these two competing approaches, and provide a thorough
comparison which sheds light on their theoretical and practical
differences.

Index Terms—Maximum likelihood estimation, Total least
squares, Errors in Variables, Linear models, Random model
matrix.

I. INTRODUCTION

One of the most classical problems in statistical signal

processing is that of estimating an unknown, deterministic

vector parameter x in the linear regression model y = Gx+w

where G is a linear transformation and w is a Gaussian

noise vector. The importance of this problem stems from the

fact that a wide range of problems in communications, array

processing, and many other areas can be cast in this form.

Most of the literature concentrates on the simplest case, in

which it is assumed that the model matrix G is completely

specified. In this setting, the celebrated least squares (LS)

estimator coincides with the maximum likelihood (ML) solu-

tion and is known to minimize the mean-squared-error (MSE)

among all unbiased estimators of x [1], [2]. Nonetheless, it

may be outperformed in terms of MSE by biased methods

such as the regularized LS estimator due to Tikhonov [3], the

James-Stein method [4], and the minimax MSE approach [5].

The linear regression problem for cases where G is not

completely specified received much less attention. In this

case, there are many mathematical models for describing the

uncertainty in G. Each of these models leads to different

optimization criteria and accordingly to different estimation

algorithms. Most of the literature can be divided into two main
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categories, in which the uncertainty is expressed using either

deterministic or random models. A standard deterministic

approach is the “robust LS” which is designed to cope with

the worst-case G within a known deterministic set [6], [7].

Recently, the minimax MSE criterion was also considered

in this problem formulation [5]. In the stochastic uncertainty

models, G is usually known up to some Gaussian distortion.

Typically, there are two approaches in this setting. First, one

can use a random variables (RV) model and assume that G

is a random Gaussian matrix with known statistics. Based on

this model, different estimation methods have been considered.

The ML estimator was derived in our recent letter [8]. An

alternative strategy is to minimize the expected LS criterion

with respect to G [9], [10]. The minimax MSE estimator was

also generalized to this setting in [10]. The second approach

is the standard Errors-in-Variables (EIV) model, where G is

considered a deterministic unknown matrix, and an additional

noisy observation on this matrix is available [11]. The ML

solution for x in this case was addressed in [11], and coincides

with the well known total LS (TLS) estimator [12] (when

the additive Gaussian noise w is independent and identically

distributed).

Evidently, there are different models and optimization cri-

teria for estimating x in a linear model with uncertainty in the

model matrix. The main objective of this paper is to compare

the Gaussian uncertainty approaches and to shed light on

their advantages and disadvantages. In particular, we consider

the two classical Gaussian uncertainty formulations: the RV

and EIV models. We explain the practical and theoretical

differences between them, and discuss the scenarios in which

each is appropriate.

The main part of this paper considers ML estimation of

x in the RV linear regression model. We prove that the

ML estimate (MLE) is a regularized (or deregularized) LS

estimator, and that its regularization parameter and squared

norm can be characterized as a saddle point of a concave-

quasiconvex objective function. Thus, we can efficiently find

the optimal parameters numerically. In fact, our previous

solution in [8] can be interpreted as a minimax search for

this saddle point. Using this new characterization, we present

a more efficient maximin search. Furthermore, an appealing

approach for finding the ML estimate in this setting is to resort

to the classical expectation maximization (EM) algorithm

which is known to converge to a stationary point of the ML

objective (see [13], [14], [15] and references within). Due to

the non-convexity of the log-likelihood function, there is no

guarantee that this point will indeed be the global maximum.

Fortunately, our saddle point interpretation provides a simple

method for checking the global optimality of the convergence
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point. We conclude this part of the paper with a comparison

to the ML in the EIV model and show that our ML estimator

is a regularized version of the latter.

In the second part of the paper, we analyze the performance

in the RV model using the Cramér Rao bound (CRB) on

the MSE of unbiased estimators [1], [2]. We derive the CRB

associated with our model and quantify the degradation in

performance due to the randomness of G. Interestingly, the

degradation in performance is not as severe as one may

suspect. Actually, as we will show and quantify, randomness

in G may even improve the performance in terms of MSE.

However, the potential improvement is contingent upon the

assumption that the variances of the random variables are all

known. In practice, this knowledge is not always available,

and therefore we also consider the case in which these

variances are unknown deterministic nuisance parameters. As

before, we begin with the ML estimator which reduces to

the standard LS. Then, we derive the associated CRB and

analyze the degradation in performance inflicted by the lack of

knowledge regarding the variances. We conclude this section

with a comparison to the EIV model. Interestingly, under

these assumptions the ML estimate does not exist in the EIV

model ([16] and references within), and the CRB has a similar

structure to our random model bound.

The paper is organized as follows. In Section II we intro-

duce the problem formulation. ML estimation of x when the

variances are known is discussed in Section III. CRB analysis

under this setting is analyzed in Section IV. Next, we dedicate

Section V to the estimation of x when the variances are

unknown nuisance parameters. A few numerical examples are

demonstrated in Section VI. Finally, in Section VII we provide

concluding remarks.

The following notation is used. Boldface upper case letters

denote matrices, boldface lower case letters denote column

vectors, and standard lower case letters denote scalars. The

superscripts (·)T , (·)−1, (·)†, (·)′ and (·)′′ denote the transpose,

matrix inverse, Moore-Penrose pseudoinverse and first and sec-

ond derivatives, respectively. The operators ⊗, vec (·), Tr {·},

‖·‖ and ‖·‖F denote the Kronecker matrix multiplication, the

vector obtained by stacking the columns of a matrix one over

the other, the trace operator, the standard Euclidean norm and

the Frobenius matrix norm, respectively. The matrix I denotes

the identity, R (A) is the range space of the columns of A,

λmin (A) is the minimum eigenvalue of A, and A º 0 means

that A is positive semidefinite.

II. PROBLEM FORMULATION

We consider the classical linear regression model in which

y = Gx + w, (1)

where y is a length N observed vector, G is an N ×K linear

model matrix, x is a length K deterministic unknown vector,

and w is a zero-mean Gaussian random vector with mutually

independent elements, each with variance σ2 > 0.

Methods for estimating x in (1) when G is completely

specified have been intensively studied. The problem becomes

more interesting and challenging when G is not exactly

known. In this case, there are different mathematical models

for describing the uncertainty in G. In this paper, we model

G as a random matrix with known mean given by H:

G = H + W, (2)

where W is a random matrix of mutually independent, zero-

mean Gaussian elements with variance σ2
h > 0, independent

of w. For simplicity, we assume that H is full column rank.

Our problem is to estimate x from the observations y in

the model (1)-(2). We consider two problem formulations.

First, we assume that the variances σ2 and σ2
h are known.

Under this assumption, we focus on ML estimation and CRB

analysis. Second, we discuss the problem when the variances

are unknown nuisance parameters which must be estimated as

well.

A. Comparison to EIV

Throughout the paper, we will compare our results with

previous works on a very similar uncertainty model, namely,

the EIV model. We conclude each section with a comparison

to this standard model. For simplicity, we slightly abuse the

notations so as to use the same notations for both formulations.

In the EIV formulation, we model G as a deterministic

unknown matrix, and assume that we are given a noisy

observation on G in addition to the vector y:

H = G + W, (3)

where W is a random matrix of mutually independent, zero-

mean Gaussian elements with variance σ2
h > 0, independent

of w. For simplicity, we assume that G is full column rank.

Models (2) and (3) are closely related. In fact, one can

easily pass W from the right hand side of (3) to its left

hand side and since the distribution of W is invariant to

a sign change, it may initially seem that the two models

are identical. One of the main contributions of our work is

to elucidate the mathematical-statistical differences between

these two models. First, let us propose a practical example

for the use of each. Consider a communication system over

a multiple-input-multiple-output (MIMO) channel denoted by

G. The RV model is appropriate when the channel itself is

random and time varying, with a known distribution around

some “nominal” H. The cause of the uncertainty is the

randomness of the channel. On the other hand, the EIV model

is appropriate when the channel is unknown but fixed (with no

prior distribution) but some noisy estimate H of the channel

is available (for example, in communication systems using a

training phase). The uncertainty is the result of the imperfect

noisy estimation. Despite these differences, the models are

very similar. In most applications it is not obvious which

reason is the cause of the uncertainty and it can often be a

combination of both. Moreover, the models basically provide

the same information: we have access to y and H, and the

true channel G is equal to H plus some Gaussian noise.

Yet when we consider statistical properties of the estimate,

a key question is whether in each realization of the data y, G

remains constant and H varies (EIV) or H remains constant

and G varies (RV).
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III. MAXIMUM LIKELIHOOD ESTIMATION

In this section we discuss the ML estimation of x in (1)-

(2) from y when H, σ2 and σ2
h are known parameters. We

characterize the structure of the MLE and suggest efficient

numerical methods for the associated optimization problem.

The ML method is one of the most common approaches

in estimation theory whereby the estimates are chosen as the

parameters that maximize the likelihood of the observations:

x̂ML = arg max
x

logf(y;x), (4)

where f(y;x) is the probability density function of y parame-

terized by x. In our model the vector y is a Gaussian vector

with mean Hx and covariance (σ2
h‖x‖

2+σ2)I. Therefore, the

ML estimator can be found by solving

x̂ML = arg min
x

{
‖y − Hx‖2

σ2
h‖x‖

2 + σ2
+ N log(σ2

h‖x‖
2 + σ2)

}
. (5)

Problem (5) is a K dimensional, nonlinear, and nonconvex

optimization problem and is therefore considered difficult. In

the following theorem, we characterize its solution using a

simple change of variables.

Theorem 1: Consider the estimation of x in (5) under the

assumption that the norm of x is upper bounded, say ‖x‖2 ≤
U for some sufficiently large U . Then, the ML estimator is a

(de)regularized LS, i.e.,

x̂ML =
(
HT H + αMLI

)†
HT y, (6)

with squared norm tML = ‖x̂ML‖
2. The parameters αML ∈ A

and tML ∈ T are a saddle point of the following concave-

quasiconvex optimization problem

min
t∈T

max
α∈A

f(α, t) = max
α∈A

min
t∈T

f(α, t), (7)

where

f(α, t) =
c(α) − αt

σ2
ht + σ2

+ N log(σ2
ht + σ2)

c(α) = yT y − yT H
[
HT H + αI

]†
HT y

A =

{
α :

α ≥ −λmin

(
HT H

)

HT y ∈ R
(
HT H + αI

)
}

T = {t : 0 ≤ t ≤ U}. (8)

Before proving the theorem, we note that the bounded norm

assumption is a technical mathematical condition needed for

the proof, and in practice the saddle point does not depend on

the specific choice of U . Thus, the estimator is not assumed to

have knowledge of U . Second, the set A is convex and for all

practical purposes is equivalent to α ≥ −λmin

(
HT H

)
. The

range constraint is again a technical condition which is almost

always satisfied.

Proof: Introducing an auxiliary variable t = ‖x‖2 into

(5) yields

min
t∈T

g(t)

σ2
ht + σ2

+ N log
(
σ2

ht + σ2
)
, (9)

where

g(t) =

{
minx ‖y − Hx‖2

s.t. ‖x‖2 = t
. (10)

In [17], [18] it was shown that due to hidden convexity, (10)

can be solved via its Lagrange dual program

g(t) = max
α∈A

{c(α) − αt}, (11)

where c(α) and A are defined in (8). Moreover, the optimal

x and α satisfy

x =
(
HT H + αI

)†
HT y. (12)

Thus, we can rewrite the problem as

min
t∈T

max
α∈A

f(α, t), (13)

where f(α, t) is defined in (8). The objective f(α, t) is

concave in any α ∈ A for fixed t ∈ T since it originates in a

Lagrange dual program. In Appendix A, we prove that it is also

quasi-convex in t ∈ T for fixed α ∈ A. The feasible sets are

both convex and due to our assumption on the norm of x, T is

compact. Therefore, according to Sion’s quasi-concave-convex

minimax theorem there exists a saddle point as expressed in

(7) [19].

The theorem characterizes the structure of the MLE and

relates it to the class of (de)regularized LS solutions. More-

over, as we will show, the concave-quasiconvex property

allows for efficient numerical methods for finding the optimal

regularization parameter. It is important to emphasize that

Theorem 1 does not claim that the original ML estimation

problem in (5) is convex in x. The convexity is a result of

our change in variables and refers to α and t alone. In the

following subsections, we explain how this property may be

used to find the MLE numerically.

A. Minimax - numerical method

The first approach is to solve the minimax problem, i.e., to

minimize

f̃(t) = max
α∈A

f(α, t) (14)

with respect to t ∈ T . This requires two nested line searches.

We have an outer minimization with respect to t and for each

fixed t we need to solve (14) via (10). More details on this

approach can be found in our earlier letter [8].

In practice, the main computational complexity in this ap-

proach is evaluating c(α) for different values of α. Fortunately,

these could be easily implemented by utilizing the eigenvalue

decomposition of HT H.

B. Maximin - numerical method

The second approach is to solve the maximin problem, i.e.,

to maximize

f(α) = min
t∈T

f(α, t) (15)

with respect to α ∈ A. This approach leads to a single line

search as the inner minimization can be solved in closed form.

It is a convex minimization over a closed interval, and its

solution is either a stationary point or one of the extreme

points. Setting the derivative to zero results in

∂f(α, t)

∂t
=

Nσ2
h − α

σ2
ht + σ2

− σ2
h

c(α) − αt

(σ2
ht + σ2)

2 = 0, (16)
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and solving for t yields

t(α) =
ασ2

Nσ4
h

+
c(α)

Nσ2
h

−
σ2

σ2
h

. (17)

Therefore,

f(α) =

{
f(α, t(α)) 0 ≤ t(α) ≤ U
min{f(α, 0), f(α, U)} else.

(18)

The function f(α) is concave in α since f(α, t) is concave

in α. Therefore, any standard line search can easily find its

maximum which corresponds to a saddle point of f(α, t).
Here too, the main computational complexity is evaluating

c(α) for different values of α which may be implemented by

utilizing the eigenvalue decomposition of HT H. Nevertheless,

the maximin approach is more appealing than the minimax

version since it involves only one line search instead of two

nested searches.

C. EM - numerical method

We now provide an alternative numerical solution for the

ML problem in (4) based on the classical EM algorithm

[13]. The EM method is an iterative approach for solving

ML problems with missing data. It is known to converge to

a stationary point of the likelihood. We will apply the EM

technique to our problem and will show how Theorem 1 can

be used to verify whether a stationary point obtained by EM

is indeed the correct ML estimate.

At each iteration, the EM algorithm maximizes the expected

log likelihood of {y,G} with respect to the missing G

(instead of the log likelihood of y itself). The result is the

following updating formula (See Appendix B):

xn+1 =
[
GT

nGn

]−1

Gn
T
y, (19)

where

Gn = H +
σ2

h

σ2
h‖xn‖2 + σ2

[y − Hxn]xT
n

GT
nGn = Gn

T
Gn + N

[
σ2

hI −
σ4

hxnxT
n

σ2
h‖xn‖2 + σ2

]
.(20)

The iterations are very simple to implement in practical fixed

point signal processors. In practice, there is no need to invert

the matrix GT
nGn, as xn+1 can be found as a solution of a set

of linear equations (the matrix GT
nGn is always invertible).

The EM algorithm will converge to a stationary point of

the likelihood function [13]. However, since our problem is

non-convex, this may be a local maximum depending on the

initial conditions x0. Our experience with arbitrary parameters

and

x0 =
[
HT H

]−1
HT y, (21)

shows that the above iterations usually converge to the correct

ML estimate, but it is easy to find initial conditions which con-

verge to spurious local maximum. Nonetheless, using Theorem

1 we can determine whether or not a given stationary point of

the EM algorithm is indeed the global maximum:

Theorem 2: Let xEM be a stationary point of the EM

algorithm. Then, xEM is a (de)regularized LS estimate:

xEM =
[
HT H + αEMI

]−1
HT y, (22)

where

αEM = σ2
h

(
N −

‖y − HxEM‖2

σ2
h‖xEM‖2 + σ2

)
. (23)

Moreover, let tEM = ‖xEM‖2. Then a necessary and sufficient

condition for xEM = xML is αEM ∈ A, tEM ∈ T where A and

T are defined in (8).

Proof: Any stationary point will satisfy the EM iteration

with xEM = xn = xn+1. Rearranging the terms in the

iterations using simple algebraic manipulations yields

c

[
HT H + σ2

h

(
N −

‖y − Hx‖2

σ2
h‖xEM‖2 + σ2

)
I

]
x = cHT y, (24)

where

c =
σ2

σ2
h‖xEM‖2 + σ2

. (25)

Due to σ2 > 0, we can divide both sides by c > 0 and obtain

the required result. Therefore, xEM is a (de)regularized LS

with parameters αEM and tEM.

It will be equal to xML if and only if αEM and tEM satisfy

the conditions in Theorem 1. It remains to show that if

tEM ∈ T then it is the solution to mint∈T f(αEM, t), and

that if αEM ∈ A then it is the solution to maxα∈A f(α, tEM).
The first property holds since for any (de)regularized LS with

parameters α ∈ A and t = ‖x‖2 we have

‖y − Hx‖2 = yT y − 2yT Hx + xT HT Hx

= yT y − 2yT Hx + xT
(
HT H + αI

)
x − αxT x

= yT y − 2yT Hx + yT Hx − αxT x

= c(α) − αt, (26)

where we have used x =
(
HT H + αI

)†
HT y and HT y ∈

R
(
HT H + αI

)
in the third equality. Combining (23) with

(26) yields

αEM = σ2
h

(
N −

c(αEM) − αEMtEM

σ2
htEM + σ2

)
, (27)

which can be easily seen to satisfy the condition in (16). The

second property holds since for any (de)regularized LS, the

equation

‖
(
HT H + αI

)†
HT y‖2 = t, (28)

has a unique root in α ∈ A which is the optimal solution to

maxα∈A f(α, tEM) (see [18] for more details).

D. Comparison to EIV

We now compare the above results with the corresponding

results in the EIV model. The ML estimator in model (1) and

(3) estimates both x and G by solving

max
x,G

logf (y,H;x,G) , (29)
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where f (y,H;x,G) is the joint probability density function

of y and H parameterized by x and G. Due to the Gaussian

assumption, (29) is equivalent to

x̂TLS = arg min
x

{
min
G

{
‖y − Gx‖2

σ2
+

‖H − G‖2
F

σ2
h

}}
,

(30)

where we intentionally insert the minimization with respect

to G inside the objective in order to emphasize that G is a

nuisance parameter. In the signal processing literature (30) is

usually known as the (column-wise weighted) TLS estimator

[12]. It is a generalization of the LS solution to the problem

y ≈ Hx when both y and H are subject to measurement

errors. It tries to find x and G which minimize the squared

errors in y and in H as expressed in (30).

Under a simple condition which is usually satisfied, it can

be shown that the TLS estimator in (30) is a deregularized LS

solution [12]

x̂TLS =
(
HT H + αTLSI

)−1
HT y, (31)

where

αTLS = −λmin

([
HT H −σh

σ
HT y

−σh

σ
yT H

σ2

h

σ2 y
T y

])
. (32)

Since our ML estimator is also a (de)regularized LS it is

interesting to compare the two.

Proposition 1: The regularization parameters1 of the ML

estimator in (6) and the TLS in (31) satisfy αTLS ≤ αML.

Proof: This relation holds since the objective in (5) is

equal to the objective in (30) plus an additional logarithmic

regularization term. In order to see this, we begin by minimiz-

ing (30) with respect to G first, and find that the TLS is the

solution to

x̂TLS = arg min
x

‖y − Hx‖2

σ2
h‖x‖

2 + σ2
, (33)

which is exactly (5) without the logarithmic penalty. Now,

assume in contradiction that αTLS > αML. Then, ‖x̂TLS‖
2 <

‖x̂ML‖
2 and

‖y − Hx̂TLS‖
2

σ2
h‖x̂TLS‖2 + σ2

+ N log(σ2
h‖x̂TLS‖

2 + σ2)

<
‖y − Hx̂TLS‖

2

σ2
h‖x̂TLS‖2 + σ2

+ N log(σ2
h‖x̂ML‖

2 + σ2)

≤
‖y − Hx̂ML‖

2

σ2
h‖x̂ML‖2 + σ2

+ N log(σ2
h‖x̂ML‖

2 + σ2) (34)

which is a contradiction to the optimality of x̂ML.

Thus, the MLE can also be considered a regularized TLS

estimator. Interestingly, the concept of regularizing the TLS

estimator is not new [20], [21]. It is well known that the TLS

solution is not stable when applied to ill-posed problems. It

has been shown that in many applications regularizing the TLS

objective may significantly improve the performance of the

TLS estimator in terms of MSE. The ML estimator in the RV

model provides statistical reasoning to this phenomenon and

1That is of course under the technical assumption in [12] required for (31).

suggests an inherent logarithmic penalty scheme. More details

on this property can be found in our earlier paper [8] and in

[21], [22].

There is another interpretation for the difference between (5)

and (33). We obtained these two estimators by optimizing the

ML criterion in two different models. In turns out that the same

estimators can be obtained using the RV model but by choos-

ing two different optimization criteria. In particular, (33) can

be interpreted as the joint maximum-a-posteriori ML (JMAP-

ML) estimator in the RV model [23]. It has been shown in

[23] that in the general Gaussian case the difference between

the ML criterion and the JMAP-ML criterion is always a

logarithmic penalty. Thus, the logarithmic regularization can

be interpreted as a special case of the ML and JMAP-ML

relation.

IV. CRAMÉR RAO BOUND

In the previous section, we discussed the MLE and numer-

ical algorithms for finding it. Unfortunately, analytic perfor-

mance evaluation may be intractable. Instead, we now provide

an indication of performance using the CRB. The CRB is a

lower bound for the MSE of any unbiased estimator [1], [2].

Moreover, it is well known that under a number of regularity

conditions the MSE of the MLE asymptotically attains this

bound. Therefore, the CRB is a reasonable metric for shedding

more light on the performance of our estimators (and on the

models themselves). A closed form expression of the CRB in

our problem setting is provided in the following theorem.

Theorem 3: Consider the estimation of x in the model (2)

when σ2
h and σ2 are known. Then, the MSE of any unbiased

estimator is lower bounded by

CRBRV =
(
σ2

h‖x‖
2 + σ2

) (
HT H

)−1
− ∆, (35)

where ∆ º 0 is given by

∆ =
1

γ

(
HT H

)−1
xxT

(
HT H

)−1
(36)

with

γ =
1

2Nσ4
h (σ2

h‖x‖
2 + σ2)

+
xT

(
HT H

)−1
x

σ2
h‖x‖

2 + σ2
. (37)

Proof: The CRB is defined as

CRBRV = J−1(x)

=

[
−E

{
∂2logf (y;x)

∂xxT

}]−1

, (38)

where J (x) is the Fisher information matrix (FIM) for esti-

mating x given y. Fortunately, we can exploit a closed form

expression for the FIM in the case of a jointly Gaussian

distribution of the observations:

Lemma 1 ([2]): Let z be a Gaussian vector with mean

η (θ) and covariance C (θ). Then the elements of the FIM

for estimating θ from z are

[J (θ)]ij =

[
∂η (θ)

∂θi

]T

C−1 (θ)

[
∂η (θ)

∂θj

]

+
1

2
Tr

{
C−1 (θ)

∂C (θ)

∂θi

C−1 (θ)
∂C (θ)

∂θj

}
. (39)
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In our setting, z = y and θ = x. Thus, η(θ) = Hx,

C(θ) = (σ2
h‖x‖

2 + σ2)I, and

J(x) =
HT H

σ2
h‖x‖

2 + σ2
+

2Nσ4
hxxT

(σ2
h‖x‖

2 + σ2)
2 . (40)

The CRB is then obtained by applying the matrix inversion

lemma.

Theorem 3 allows us to compare the CRB in our uncertainty

model with the CRB in a model where G is known. In the

latter case, the CRB for estimating x is given by [2]

CRBknown = σ2
(
GT G

)−1
. (41)

Indeed, substituting σ2
h = 0 in (35) yields

CRBknown = σ2
(
HT H

)−1
, (42)

which is consistent with (41) since σ2
h = 0 implies that

G = H. An important difference between (35) and (42) is

that, unlike the known-G case, the CRB under uncertainty

conditions depends on the specific value of x. Thus, some

x’s are more difficult to estimate in this model than others,

depending on H.

Surprisingly, it is not trivial to compare the RV CRB with

the known-G CRB. Examining the bounds carefully reveals

that

CRBknown � CRBRV, (43)

i.e., there exist parameters such that the RV CRB is lower

than the known-G CRB. For example, if K = 1 then CRBRV

approaches zero much faster than CRBknown. Although this

may seem like a mistake, it is actually a feature of our model.

Increasing the randomness in G via σ2
h has two effects: it

accounts for the uncertainty in G, but it also affects the

relation between y and x. As we will now show, the increased

uncertainty in G degrades the MSE, but random perturbation

itself can be beneficial in some scenarios. Thus, the overall

performance may be improved.

To better understand these effects and decouple the contri-

bution of each, let us first derive the CRB when G is random

but known. Recall that when G is random, the bound is given

by (38). Therefore, when G is known all we need to do is add

G as an additional observation:

CRBknown-RV =

[
−E

{
∂2logf (y,G;x)

∂xxT

}]−1

. (44)

The variables y and G are jointly Gaussian, and the bound

can be derived in a straightforward manner using Lemma 1.

Alternatively, the derivations can be simplified by conditioning

on G:

∂2logf (y,G;x)

∂xxT
=

∂2logf (y|G;x)

∂xxT
+

∂2logf (G;x)

∂xxT

=
∂2logf (y|G;x)

∂xxT
, (45)

since the distribution of G does not depend on x. Thus,

CRBknown-RV =

[
−E

{
∂2logf (y|G;x)

∂xxT

}]−1

=

[
−E

{
E

{
∂2logf (y|G;x)

∂xxT

∣∣∣∣G
}}]−1

=

[
E

{
GT G

σ2

}]−1

= σ2
(
HT H + Nσ2

hI
)−1

, (46)

where the first equality is due to (45), the third equality is

given by the inverse of (41), and the last equality is obtained

by taking the expectation with respect to G. From (46) we

see that if G were known, its randomness would improve the

performance:

CRBknown-RV ¹ CRBknown, (47)

since the additional Nσ2
hI term in (46) decreases its inverse.

An intuitive explanation is that since the performance depends

on GT G, the squared effect of the random perturbations in G

implies that realizations of G with increased GT G are more

dominant, on the average, than realizations with decreased

GT G. Thus, the effect of known perturbations is equivalent

to an increased signal (Gx) to noise (w) ratio.

On the other hand, when the perturbation in G is random,

the uncertainty degrades the performance:

CRBknown-RV ¹ CRBRV. (48)

The proof of (48) is trivial by comparing the closed form ex-

pressions for the bounds in (35) and (46), or by comparing the

FIMs in (38) and (44) and noting that additional observations

provide more information.

Thus, known random perturbations always improve the

performance in our model, as can be intuitively explained.

Surprisingly, unknown random perturbations may also be

beneficial as expressed in (43). Nonetheless, here the re-

lation is unclear and there is no simple ordering between

the two bounds. Moreover, there is an important difference:

unlike known randomness which improves the performance

uniformly in x, the improvement due to unknown randomness

depends on the specific value of x. Roughly speaking, when G

is known, the additional information on x is available through

the mean of y, whereas when G is unknown, additional

information originates from the covariance matrix of y (W

takes the role of multiplicative noise). This covariance contains

information only on ‖x‖2 and not on x itself. Practically,

we can only use the covariance information for estimating

‖x‖2, or (if we are fortunate enough) use the combined

(mean and covariance) information to improve upon the mean-

only based estimate of other specific functions of x with

gradient components in the direction of
(
HT H

)−1
x. Other

functions will not gain much from the unknown randomness.

Furthermore, in Section V we will discuss another reservation

that distinguishes the known perturbations case from the case

of unknown perturbations.

The above discussion demonstrates that using the CRBs in

the presence of random nuisance parameters is non trivial.
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For completeness, we now provide a brief review on the

literature in this context. First, the expression in (46) can also

be derived as an approximation of the CRB with unknown

random nuisance parameters [24]. This approximation is useful

when the CRB is too complicated to compute. This is not the

case here. Indeed, we have already derived the CRB and it

is given by CRBRV in (35). Furthermore, it is tempting to

compare CRBRV with E{CRBknown} where CRBknown is

given in (41) and the expectation is taken with respect to G.

The idea is that for each realization of G CRBknown bounds

the MSE (with respect to the additive noise w) conditioned on

G, and the averaged MSE is bounded by its expected value.

However, here too, the ordering is non-trivial and it is easy to

find specific parameters in which E{CRBknown} � CRBRV.

A possible explanation is that the left-hand side is a bound

on the MSE of estimators which are unbiased for each G,

whereas the right-hand side bounds estimators which are only

unbiased “on the average” with respect to G. Clearly, the

latter constraint is less strict and allows for a larger set of

estimators. Again, the same approach is discussed in the

context of bounding the MSE in the presence of unknown

random nuisance parameters [25]. A comprehensive discussion

on these bounds and their relations may be found in [26], [27]

and references within.

A. Comparison with EIV

We now turn to compare the previous results with the CRB

in the EIV model. Here too the derivation of the CRB is rather

straightforward using Lemma 1. The only difference is that we

need to derive the CRB for estimating both x and G and then

quantify the degradation in performance due to the uncertainty

in G using the matrix inversion lemma (See Appendix C). The

final result is:

CRBEIV =
(
σ2

h‖x‖
2 + σ2

) (
GT G

)−1
. (49)

This bound has already appeared in [28], [29]. Moreover, small

error analysis of the TLS estimator proved that it is tight when

σ2
h is sufficiently small.

Particularizing the bound to the known-G case (σ2
h = 0)

yields (41). Unlike our previous results in the RV model, it

is easy to see that the uncertainty in G always degrades the

performance in the EIV model:

CRBknown ¹ CRBEIV. (50)

This is expected as when we increase σ2
h we add uncertainty

but do not change the relation between y and x (y does not

depend on σ2
h in the EIV model). In fact, the bound for the EIV

model can be interpreted as the bound for a standard known-

G model suffering from an additional independent noise term

with variance σ2
h‖x‖

2. It is interesting to note a duality with

the RV model in this context: In the RV model this additional

noise term is indeed part of the data generation model, hence

its information content (on ‖x‖2) can be exploited to improve

the mean-based estimate of x, as explained above. However,

in the EIV model this additional noise term is not actually part

of the measurement - it merely serves to decrease the bound,

as if it did not contain any information on x.

Another difference between the RV and EIV models is that

the performance in the RV model is a function of H (the

mean channel) whereas the performance in the EIV model

is a function of G (the true channel). Thus, it is not fair to

compare them directly. Nonetheless, if we ignore this fact for

the moment and let H and G play the same role, it is easy to

see that (49) is similar to (35) except for the ∆ term. Thus,

in some way the estimation of x is easier in the RV model

than in the EIV model. This is easy to explain in view of the

previous discussion since both models introduce uncertainty in

G but the randomness in the RV model can also be beneficial.

V. ESTIMATION WITH UNKNOWN VARIANCES

In the previous sections, we discussed the estimation of

x when the variances σ2
h and σ2 are known deterministic

parameters, and derived the associated ML estimator and CRB.

In practice, it is not clear whether this information is always

available. Therefore, we now focus on the more difficult case

in which the variances are unknown nuisance parameters. As

before, we begin with ML estimation and then analyze the

inherent performance limitations using the CRB.

The main result is summarized in the following theorem:

Theorem 4: Consider the estimation of x in (2) when σ2
h

and σ2 are unknown deterministic nuisance parameters. Then,

the ML estimator of x is the standard LS solution to

min
x

‖y − Hx‖2, (51)

and the CRB reduces to
(
σ2

h‖x‖
2 + σ2

) (
HT H

)−1
. (52)

Proof: See Appendices C and D.

Thus, when the variances are unknown, the ML estimator

in the RV model coincides with the standard LS estimator,

whereas the CRB is simplified to the expression of the known-

G CRB with an effective noise variance of
(
σ2

h‖x‖
2 + σ2

)
.

The lack of knowledge of the variances causes the correction

term ∆ in (35) to disappear. There is a simple intuitive

explanation for these properties. As we already explained, the

randomness of G has a negative effect but also a positive

effect as it provides more information on ‖x‖2 through the

covariance of y given by
(
σ2

h‖x‖
2 + σ2

)
I. However, the

positive effect can only be realized if we know σ2
h and σ2

and can somehow estimate the contribution of ‖x‖2 to this

covariance. This is another difference between the case of

known perturbations and unknown perturbations, as in order to

utilize the known perturbations we do not need any knowledge

of the variances (the information is completely contained in

the mean of y rather than in its covariance).

A. Comparison with EIV

There are many results in the literature on the EIV model

with unknown noise variances. This is a very difficult estima-

tion problem and there are still many open questions regarding

it. Interestingly, it was shown that, under this setting, the

log-likelihood function does not have a maximum and the

ML estimator does not exist ([16] and references within). In

fact, to our knowledge there is no consistent estimator of x
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in this model unless σ2
h, σ2

h/σ2 or some other instrumental

variable is known [11]. In our view, this means that our

ML estimator which reduces to the standard LS method is

a practical approach for avoiding the problematic (and non

existing) EIV ML estimator using a different mathematical

model.

In Appendix C, we obtain the following CRB for estimating

x in the EIV model when σ2 and σ2
h are unknown nuisance

parameters:

CRBEIV =
(
σ2

h‖x‖
2 + σ2

) (
GT G

)−1
. (53)

As before, in the EIV model the performance is a function of

G rather than H. Yet, bearing this in mind, it is tempting to

compare (52) with (53) and conclude that when the variances

are unknown nuisance parameters the two bounds are similar.

VI. NUMERICAL RESULTS

We now provide a few numerical examples illustrating the

behavior of the proposed ML estimator.

Example I: In the first example, we consider the classical

linear regression problem of fitting a line to noisy measure-

ments [30]. Let a be a vector with N uniformly spaced

samples on the interval [−1, 1], and assume that y ≈ ax are

noisy observations of a line with an unknown slope x. We

are interested in estimating x given y. If a is exactly known

and only y is noisy, then the ML method coincides with the

standard LS estimator

x̂LS =
(
GT G

)−1
GT y (54)

with G = a. In the following examples, we consider this

problem under uncertainty conditions on a.

First, we concentrate on the RV model. We assume that a

consists of the mean values of the true samples, rather than the

samples themselves. Thus, H = a and G is a random matrix.

The parameters are N = 10 , x = 1, σ2
h = σ2. We provide

the empirical MSEs over 200 trials of four estimators: the

clairvoyant LS in (54), the mismatched LS with G replaced by

H, the ML in (4) solved by the minimax approach in Section

III-A, and the EIV-ML (TLS) in (29) implemented using the

EVD as expressed in (31). The MSEs are then compared to

CRBRV. The results are plotted in Fig. 1. The first observation

is that the CRB is non informative in this case. As expected,

the RV-ML estimator performs better than the mismatched LS

estimator. The performance of the EIV-ML estimator is very

poor and it is clear that it is not appropriate for estimation in

the RV model in this example.

Next, we focus on the EIV model and assume that G = a

consists of the unknown samples, and H is a noisy observation

on G. We consider the same parameters and estimators as

before. The estimated MSEs along with CRBEIV are plotted

in Fig. 2. Unlike the previous case, the CRB in the EIV

model appears to be reasonably tight. The two LS estimators

perform as expected but the performance of the ML estimators

is surprising. The mismatched RV-ML performs considerably

better than the more appropriate EIV-ML estimator. In fact,

this example demonstrates the instability of the EIV-ML

estimator in low signal-to-noise-ratios.
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Fig. 1. MSE in estimating the slope of a straight line in the RV model.
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Fig. 2. MSE in estimating the slope of a straight line in the EIV model.

Example II: We examine the asymptotic performance of the

estimators in the RV model. The parameters in our simulation

are as follows. The matrix H is chosen as a concatenation of

T matrices of size 5 × 5 with unit diagonal elements and

0.5 off-diagonal elements. We expect the ML estimator to

attain its asymptotic performance as T increases, therefore we

choose T = 50. The vector x was chosen as the normalized

eigenvector of HT H associated with its minimal eigenvalue.

We present the empirical MSEs of the four estimators defined

above in Fig. 3 for σ2
h = 0.1. As before, the MSEs of the

mismatched EIV-ML estimator were significantly worse than

the others and were therefore omitted from the graph. It is

easy to see the advantage of the RV-ML estimator over the

mismatched LS estimator. As expected, the MSE of the RV-

ML estimator approaches the CRB when σ2 is sufficiently

low.
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Fig. 3. Approaching the asymptotic MSE in the RV model.

VII. CONCLUSIONS

We considered the problem of linear regression in a

Gaussian uncertainty model. We focused on ML estimation

and proved that it is a regularized LS. We characterized the

optimal regularization parameter using saddle point theory and

provided efficient numerical methods for finding it. In addition,

we analyzed the traditional EM solution to our problem using

this new characterization. Next, we addressed the inherent

performance limitations using the CRB. We quantified the

degradation in performance due to the uncertainty, and showed

that it is less severe than expected. We explained this property

by noting that our model introduces uncertainty into G but also

randomness. The uncertainty is clearly undesirable, but under

some reservations the randomness itself may be beneficial.

Next, we considered ML estimation and CRB analysis when

the variances of the random variables are unknown nuisance

parameters. Finally, using a few simple numerical results we

demonstrated the instability of the EIV-ML estimator, and the

advantage of the RV-ML estimator (in both models).

We note in addition, that the numerical algorithms, as well

as some of the CRB results, are firmly based on the assumption

of independent, identically distributed perturbations in the

elements of the model matrix (as well as in the additive

noise term w). In realistic situations this assumption may not

be valid, and adaptation of some of our results to different

distributions (even within the Gaussian framework) may be

non-trivial, if at all possible.

In our view, the main contribution of this paper is in

providing more insight into the different uncertainty mod-

els. Estimation under uncertainty conditions is an important

problem in modern statistical signal processing. Our results

show that the first step in such problems is to properly define

the setting. Different uncertainty models give rise to different

algorithms, and different performance measures. We believe

that in order to decide which model fits a specific application,

one must fully understand the theoretical differences between

these models and the advantages and disadvantages of each.
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APPENDIX A

PROOF OF QUASI-CONVEXITY OF f(α, t) IN t

The proof is based on the following result:

Lemma 2 ([17]): If r′(t) = 0 implies r′′(t) > 0 for any

t ≥ 0, then r(t) is unimodal in t ≥ 0.

The condition
∂f(α,t)

∂t
= 0 is given in (16). Multiplying it

by
σ2

h

σ2

h
t+σ2

yields:

σ4
hc(α) − σ4

hαt

(σ2
ht + σ2)

3 =
Nσ4

h − σ2
hα

(σ2
ht + σ2)

2 . (55)

The second derivative is

∂2f(α, t)

∂t2
=

σ2
hα

(σ2
ht + σ2)

2 +
2σ4

hc(α)

(σ2
ht + σ2)

3 +
σ2

hα

(σ2
ht + σ2)

2

−
2σ4

hαt

(σ2
ht + σ2)

3 −
Nσ4

h

(σ2
ht + σ2)

2 . (56)

Plugging in the left hand side of (55) yields

∂2f(α, t)

∂t2
=

Nσ4

h

(σ2

h
t+σ2)

2 > 0, (57)

which concludes the proof.

APPENDIX B

EM SOLUTION OF THE ML PROBLEM

In this appendix, we provide the derivation of the EM algo-

rithm in (19)-(20). At each iteration, the algorithm maximizes

the expected log likelihood (with respect to G given y)

xn+1 = arg max
x

E { logf(y,G;x)|y;xn}

= arg max
x

E { logf(y|G;x) + logf(G;x)|y;xn}

= arg min
x

E
{
‖y − Gx‖2

∣∣y;xn

}

=
[
GT

nGn

]−1

Gn
T
y, (58)

where

Gn = E {G|y;xn,Hn}

GT
nGn = E

{
GT G

∣∣y;xn,Hn

}
. (59)

Fortunately enough, the expectations in (59) can be easily

evaluated based on jointly Gaussian optimal MMSE estimation

theory [2]. Using the Kronecker product we have

y =
(
xT ⊗ I

)
g + w, (60)

where g = vec (G). The Bayesian MMSE estimator of g

given y in (60) satisfies

E{g|y;xn,Hn} = vec (Hn) +
σ2

h (xn ⊗ I) [y − Hnxn]

σ2
h‖xn‖2 + σ2

, (61)

and

COV{g|y;xn,Hn} = σ2
hI −

σ4
h

(
xnxT

n ⊗ I
)

σ2
h‖xn‖2 + σ2

, (62)
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where COV{·} is the corresponding covariance matrix. Using

(61)-(62) and straightforward algebraic manipulations yields

the first and second moments of G given in (19)-(20).

APPENDIX C

DERIVATIONS OF THE CRBS

A. Proof of (49)

In the EIV model, z =
[
yT hT

]T
and θ =

[
xT gT

]T

where h = vec (H) and g = vec (G). Therefore,

η (θ) =

[ (
xT ⊗ I

)
g

g

]

C (θ) =

[
σ2I 0

0 σ2
hI

]
, (63)

the CRB is given by the top left sub-block of J−1 (θ) in

Lemma 1. Using a well-known matrix inversion relation we

obtain

CRB =
(
Jxx − JxgJ

−1
ggJgx

)−1
, (64)

where

Jxx =
GT G

σ2

Jxg = JT
gx =

GT
(
xT ⊗ I

)

σ2

Jgg =

(
xxT ⊗ I

)

σ2
+

1

σ2
h

I. (65)

Using the properties of the Kronecker product, we obtain

JxgJ
−1
ggJgx

=
GT

(
xT⊗ I

)

σ2

[(
xxT

σ2
+

I

σ2
h

)−1

⊗ I

]
(x ⊗ I)G

σ2

=
σ2

h‖x‖
2

σ2
h‖x‖

2 + σ2

GT G

σ2
, (66)

and

Jxx − JxgJ
−1
ggJgx =

GT G

σ2
h‖x‖

2 + σ2
, (67)

as required.

B. Proof of (52)

In this scenario, the unknown parameters are θ =[
xT σ2 σ2

h

]T
and η(θ) = Hx, C(θ) = (σ2

h‖x‖
2 + σ2)I.

Applying Lemma 1 yields

Jxx =
HT H

σ2
h‖x‖

2 + σ2
+

2Nσ4
hxxT

(σ2
h‖x‖

2 + σ2)
2

Jσ2

h
σ2

h

=
N‖x‖4

2 (σ2
h‖x‖

2 + σ2)
2

Jσ2σ2 =
N

2 (σ2
h‖x‖

2 + σ2)
2

Jxσ2

h

= JT
σ2

h
x =

Nσ2
h‖x‖

2x

(σ2
h‖x‖

2 + σ2)
2

Jxσ2 = JT
σ2x =

Nσ2
hx

(σ2
h‖x‖

2 + σ2)
2

Jσ2

h
σ2 = Jσ2σ2

h

=
N‖x‖2

2 (σ2
h‖x‖

2 + σ2)
2 . (68)

The CRB is given by the top left sub block of J−1 (θ) which

is equivalent to

CRB =
(
Jxx − Jxσ

2J
†
σ

2
σ

2Jσ
2x

)−1

, (69)

where

Jxσ
2J

†
σ

2
σ

2Jσ
2x

=
[

Jxσ2

h

Jxσ2

] [
Jσ2

h
σ2

h

Jσ2

h
σ2

Jσ2σ2

h

Jσ2σ2

]† [
Jσ2

h
x

Jσ2x

]

=

2Nσ4
hx

[
‖x‖2 1

] [
‖x‖4 ‖x‖2

‖x‖2 1

]† [
‖x‖2

1

]
xT

(σ2
h‖x‖

2 + σ2)
2

=
2Nσ4

h

(σ2
h‖x‖

2 + σ2)
2 xxT . (70)

Plugging (70) into (69) yields (52).

Note that we have applied the CRB of singular Fisher

information matrices [1], [31]. The practical meaning of the

singularity in (69)-(70) is that it is impossible to differentiate

between σ2
h and σ2 in the model. Fortunately, this is not crucial

for the estimation of x since all we are interested in is an

estimate of the effective variance
[
σ2

h‖x‖
2 + σ2

]
.

C. Proof of (53)

Here, z =
[
yT hT

]T
and θ =

[
xT gT σ2

h σ2
]T

and η (θ)
and C (θ) are defined in (63). It is easy to see that the cross

terms between {x,g} and {σ2, σ2
h} in the FIM are all zero.

Therefore, the lack of knowledge of the variances does not

change the CRB which is equal to (49).

APPENDIX D

PROOF OF THEOREM 4

The ML estimator of x in the RV model when σ2
h and σ2

are unknown deterministic nuisance parameters is the solution

to

min
x

{
min

σ2

h
≥0,σ2≥0

{
‖y − Hx‖2

σ2
h‖x‖

2 + σ2
+ N log(σ2

h‖x‖
2 + σ2)

}}
. (71)
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First, we use a change of variables and replace σ2 by the

effective variance ξ = σ2
h‖x‖

2 + σ2. Problem (71) is then

min
x

{
min

ξ≥σ2

h
‖x‖2,σ2

h
≥0

{
‖y − Hx‖2

ξ
+ N log(ξ)

}}
. (72)

Now, the optimal σ2
h is any non negative number satisfying ξ ≥

σ2
h‖x‖

2, and does not effect the objective function. Without

loss of generality, we choose σ2
h = 0 and obtain

min
x

{
min
ξ≥0

{
‖y − Hx‖2

ξ
+ N log(ξ)

}}
. (73)

Simple differentiation yields the optimal ξ

ξ =
1

N
‖y − Hx‖2 ≥ 0. (74)

Plugging (74) back into (73) results in

min
x

{
N + N log

(
1

N
‖y − Hx‖2

)}
. (75)

which is equivalent to

min
x

{
‖y − Hx‖2

}
. (76)
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