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Abstract

For a countable-state Markov decision process we introduce an embedding

which produces a finite-state Markov decision process. The finite-state embedded

process has the same optimal cost, and moreover, it has the same dynamics as

the original process when restricting to the approximating set. The embedded

process can be used as an approximation which, being finite, is more convenient

for computation and implementation.
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1 Introduction

In this paper we develop a tool that is useful in studying countable state
Markov Decision Processes (MDPs). A Markov Decision Process is a con-
trolled dynamical system with probabilistic transitions, that are influenced by
the control actions (for precise definitions see §§ 1.1). We consider discrete-
time MDPs with a discrete state space X which is either finite or countably
infinite, to which we will refer in the sequel as countable. The cost under
consideration is the long-time average cost.

Countable MDPs are obviously more difficult to study, analytically and
numerically, than finite state MDPs. Several approaches were developed to
deal with this issue. The first approach is to reduce the state space by clus-
tering together “equivalent” states: see e.g. [GDG] and references therein.
This approach provides a smaller state space and exact relations, but re-
quires a very special structure of the MDP in order for the derived model
to have a finite state space. Namely, equivalent states must have the same
transition probability into and out of the state, under any action, and the
same immediate cost. This special structure seldom exists in applications.

The second approach deals with the approximation of countable MDPs
by finite state MDPs using a truncation of the state space. Existing results
show that as the size of the approximating MDP increases, its cost func-
tion and, under some conditions its optimal policies approach those of the
original, countable MDP. See, e.g. [C, A1, A2] and references therein. This
approach is applicable in greater generality, but typically provides approx-
imations without an error estimate—thus the results are “asymptotic” in
nature.

We propose a different approach, with the advantage that the optimal cost
of the approximating, finite MDP agrees with that of the countable MDP.
Moreover, restricted to the approximating set the optimal policies agree as
well. Thus the term “exact approximations.” We establish this approach for
general, compact action spaces.

We conclude this section with a precise statement of the problem. In §2
we introduce the main idea—the finite embedding, and prove its existence. In
§3 we show that the embedding possesses the desired properties. We discuss
some extensions in §4. Section 5 develops some applications.
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1.1 Problem formulation

Consider a process with state space X ⊂ {0, 1, 2, 3, ...}. When the system
occupies state i ∈ X, then the controller can influence its behavior by choos-
ing an action a from the compact action set Ai, i ∈ X, which is a subset of
the action space A. Choosing an action a ∈ Ai has a twofold effect:

(i) A running cost c(i, a) is incurred,

(ii) The system transits from state i to j according to the transition prob-
ability P (j|i, a).

Thus an MDP is defined in terms of a quadruplet

M = (X, {Ai}, c(i, a), P (j|i, a)).

The state and action at time k ≥ 0 are denoted xk and ak respectively, so
that the system’s behavior on the infinite time interval is described in terms
of the stochastic process {(xk, ak)}

∞
k=0.

Admissible policies. A policy π is a law which is used to choose the actions
ak ∈ Axk

. It is admissible if its choice at time k depends only on the history
(x0, a0, ..., xk−1, ak−1, xk) of the system up to time k. A policy can be either
deterministic or randomized, so that the choice of ak may be made according
to a probability measure on Axk

. A (possibly randomized) policy which
depends only on xk is called a “stationary Markov policy”. Such polices
generate a state process {xk}

∞
k=0 which is a Markov chain with stationary

transition probabilities.

The cost criterion. An admissible policy π generates the stochastic pro-
cesses {xk}

∞
k=0 and {ak}

∞
k=0, and the expected cost flow

CN(i, π) = Eπ
i

N−1
∑

k=0

c(xk, ak), N ≥ 1. (1.1)

The expectation Eπ
i in (1.1) is with respect to the probability measure P π

i

induced by π on the set of sequences {(xk, ak)}
∞
k=0 with x0 = i. We address

the optimal control problem of minimizing the functional

π 7→ Ji(π) = lim inf
N→∞

1

N
CN(i, π), x0 = i,
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over all admissible policies, and call Ji(π) the expected long-run average cost.
It is convenient to introduce the notation g⋆(M) for the optimal cost: this
notation makes explicit the model M under consideration. An optimal policy
realizes the minimal long-run average cost, and an ǫ-optimal policy realizes
it up to ǫ.

We need to exclude one case in which it is not possible to approximate a
countable MDP by a finite one.

Definition 1.1 Let σ be a stationary Markov policy of an MDP M, gener-
ating the state-action process {(xk, ak)}. We say that σ is a drifting policy if
for every finite set F ⊂ X and every initial condition i ∈ F ,

P σ
i (xk ∈ F ) → 0 as k → ∞. (1.2)

We say that an MDP M is a drifting MDP if there exists a constant δ > 0
such that any stationary Markov policy of M, say σ, that satisfies

J(σ) < g⋆(M) + δ

is drifting. An MDP is called non-drifting if it is not a drifting MDP.

Obviously it is not possible to approximate a drifting MDP by a finite MDP
while preserving both cost structure, optimality and dynamics. Moreover,
if the MDP is drifting so that the condition in Definition 1.1 is violated,
then for a certain δ > 0, for every 0 < ν < δ, every stationary Markov
policy with average cost smaller than g⋆ + ν, eventually leaves every finite
set F with probability 1. But this yields the existence of a Markov policy
(not necessarily stationary) with average cost g⋆ which is drifting, namely
eventually leaves every finite set with probability 1. Assuming that this
does not happen implies that the requirement holds. In this paper we will
therefore consider only non-drifting MDPs.

2 The embedding

We wish to associate with the given MDP M a finite state MDP M0,

M0 = (X0, A0, Q0(j|i, a), c0(i, a))

with cost flow C0
N(i, π) defined as in (1.1), in such a manner that the two

MDPs will share common optimality properties and, in some sense, will share
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transition probabilities. To this end we introduce the notion of embedding,
whose exact definition is presented below. In §3 we prove that this definition
implies the desired exact approximation property.

We will next define the embedding notion, which will be followed by a
construction of an embedding M0. Denote by {(xk, ak)}

∞
k=0 the generic state-

action process of M and by {(ξk, αk)}
∞
k=0 the generic state-action process of

M0. Given a finite subset Z ⊂ X define

η = inf{k ≥ 0 : xk 6∈ Z} τ = inf{k > η : xk ∈ Z} . (2.1)

Thus if the initial state is in Z then η is the first exit time and τ is the first
return time, while if the initial state is not in Z then η = 0 and again τ is
the first return time. For a stopping time ν > 0 define

Cν(i, π) = Eπ
i

ν−1
∑

k=0

c(xk, ak)

and note that if ν = N , a deterministic integer, this definition agrees with
(1.1). (If, however, ν is a random variable then Cν(i, π) 6= CN(i, π) |N=ν , the
latter being a random variable.) Given a finite subset Z0 ⊂ X0, define η0, τ0

and C0
ν analogously.

Definition 2.1 We say that M0 is embedded in M if there exist subsets
Z0 ⊂ X0 and Z ⊂ X, and a one-to-one mapping e : Z0 7→ Z from Z0 onto Z

such that, for any stationary Markov policy σ of M under which Z contains
at least one recurrent state, the following holds.

There exists a stationary Markov policy σ0 of M0, such that if the processes
start with initial states x0 ∈ Z and ξ0 = e−1(x0) ∈ Z0 respectively, then xτ

and ξτ0 are identically distributed (under the probability measures P σ
x0

and
P σ0

ξ0
respectively) and, if the term on the right is finite,

Cτ (x0, σ) = C0
τ0

(ξ0, σ0).

Embedding means that if we restrict attention only to the states Z in X

and to the corresponding states Z0 in X0, then the performance of any sta-
tionary Markov policy σ on M can be imitated by the performance of some
stationary Markov policy σ0 on M0. This imitation can be achieved when
considering finite subsets F of the state space X on which σ generates a
nontrivial dynamics, namely the states in F are not all transient under σ.
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We now establish that for certain finite sets Z ⊂ X there exists a finite
state M0 = (X0, A0, P0, c0) and an embedding e(·) of M0 in M. This em-
bedding will be useful and significant for stationary Markov policies σ which
induce a nontrivial dynamics on Z. The embedding is such that if e(·) is
defined on Z0, then Z = e(Z0) and

#(X0) = 2#(Z0).

In §3 we will employ the embedding result to establish existence and
characterize optimal policies for certain countable state MDPs. As we shall
see there, we need the embedding to be such that, in addition to the cost
flow, the expected return times agree, that is, Eτ = Eτ0.

2.1 The existence of embedding

Theorem 2.2 Let M be a countable state MDP and let Z ⊂ X be a finite
set. Then there exists a finite state MDP M0 with state space X0 and an
embedding e : Z0 7→ Z of M0 in M such that

#(X0) = 2#(Z0).

The result has non-trivial content provided that Z ⊂ X contains a recurrent
state of some stationary Markov policy of M.

Proof: We will define an MDP M0, and will then establish that it has the
properties asserted in the theorem. Denote

Z = {z1, ..., zn},

let Z0 be a finite set
Z0 = {s1, ..., sn} (2.2)

and let e : Z0 7→ Z be defined by

e(si) = zi, i = 1, 2, ..., n. (2.3)

With each state si in Z0 we associate a state ωi, and we then define

X0 = {s1, ..., sn} ∪ {ω1, ..., ωn}. (2.4)

We have to specify M0 as a quadruplet

(X0, (A0)s, c0(s, a), P0(s
′|s, a))
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and define explicitly the terms A0, c0 and P0. We define A0(si) (= (A0)si
)

by
A0(si) = A(e(si)) for every 1 ≤ i ≤ n. (2.5)

The definition of the action sets A0(ωi) will be given below.
We next define the transition probabilities P0(s|si, a), s ∈ X0, a ∈ A0(si).

First, for si ∈ Z0

P0(s|si, a) =







P (e(sj)|e(si), a) if s = sj ∈ Z0

1 −
∑n

j=1 P0(sj |si, a) if s = ωi

0 if s = wj , j 6= i.

(2.6)

The corresponding cost is defined by

c0(si, a) = c(e(si), a) (2.7)

for a ∈ A0(si) = A(e(si)).
We now fix 1 ≤ i ≤ n and define the action sets and the transition

probabilities for the state ωi ∈ X0 \Z0. Let σ be a stationary Markov policy
of M such that Z contains at least one recurrent state. Recall the definitions
(2.1) and let

qj(σ) = P σ{xτ = zj | xη−1 = zi}. (2.8)

This is the probability that the process {xk} will first enter Z through state
zj , conditioned on having left Z from zi while employing the action a ∈ A(zi)
specified by σ. The action for state ωi induced by σ is the collection of n+1
nonnegative numbers

α(σ) = (λq1(σ), . . . , λqn(σ), c(σ)) (2.9)

where the constant λ satisfies 0 < λ ≤ 1. These two parameters λ and
c(σ) which define the action α(σ) will be specified below. The quantities
q1(σ), ..., qn(σ) are the probabilities associated in (2.8) with the fixed state
zi and the stationary Markov policy σ. We define the action set of ωi to be
the set

A0(ωi) =
⋃

σ

α(σ), (2.10)

where the union is over all the stationary Markov policies under which Z

contains a recurrent state. Of course, two different policies σ1 and σ2 may
give rise to the same action, that is α(σ1) = α(σ2).
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We now define the transition probabilities from ωi. If α ∈ A0(ω), then

α = (α1, . . . , αn, αn+1) = (λq1, . . . , λqn, c) (2.11)

for some constant 0 < λ ≤ 1, and it follow that

n
∑

j=1

αj = λ.

We then define P0(s|ωi, α) by

P0(s|ωi, α) =







αj if s = sj ∈ Z0

1 − λ if s = ωi

0 if s 6∈ Z0 ∪ {ωi}.
(2.12)

Thus for every choice of 0 < λ ≤ 1, the conditional probability to enter
Z0 through sj, given that the process did enter Z0, is qj, independent of λ.
However, the value of λ determines the expected time that would elapse until
entrance, and we choose λ in such manner that this expected time turns out
to be equal to the corresponding time for M. Namely, if σ0 is the policy that
uses α(σ) in state ωi, then λ is chosen such that

1 + Eσ0

ωi
τ0 = Eσ

zi
[τ | η = 1] (2.13)

is satisfied.

Remark 2.3 Note that if zi is not accessible from the state in Z which is
recurrent under σ then we do not need to specify actions for ωi, while if it is
accessible then necessarily it is recurrent, so that the expectation on the right-
hand side of (2.13) is finite. An appropriate value of λ can clearly be chosen
since for λ = 1 the left-hand side equals 1, while as λ → 0 this expression
diverges.

We note that if it is possible to leave Z from zi in one step then

Eσ
zi
[τ | η = 1] = 1 +





∑

xj 6∈Z

P (xj|zi, σ(zi))





−1
∑

xj 6∈Z

P (xj|zi, σ(zi))E
σ
xj

τ.

If, however, this is not possible, than we can define the action in A0(ωi) that
corresponds to σ in an arbitrary manner. Finally note that the normalizing
constant (in square bracket) above is just P0(ωi|si, α(σ)).
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We next consider the cost associated with the action α, namely c0(ωi, α),
which is chosen to be such that

Cτ (zi, σ)) = C0
τ0

(e−1(zi), σ0)) (2.14)

holds for all zi ∈ Z. We distinguish between two cases: If under σ the
process {xk} starting at zi does not leave Z, then equality holds in (2.14) by
definition. If the process does leave Z, than

Cτ(zi, σ) = Eσ
zi

τ−1
∑

k=0

c(xk, ak)

can be expressed in the form

c(zi, σ(zi)) +
∑

xj 6∈Z

P (xj |zi, σ(zi))Cτ (xj , σ) +
∑

zj∈Z

P (zj|zi, σ(zi))Cτ(zj , σ).

We recall that c0(ωi, α) is actually the n + 1 component of α(σ) in (2.9),
denoted c(σ). It follows that setting

c0(ωi, α) =
∑

xj 6∈Z

P (xj|zi, σ(zi))Cτ (xj , σ)[Eσ0

ωi
τ0]

−1 (2.15)

ensures the desired equality (2.14). Thus to each σ there corresponds an
action α = α(σ), and a cost

c0(ωi, α) = αn+1 = c(σ)

which in view of the explicit expression (2.15), indeed depends on the state
and action alone.

The definition of M0 is thus complete, and it follows from the definition
that M0 indeed has the properties asserted in the theorem. �

3 Existence of optimal policies

In order to use the embedding result it is needed that some optimal policy
will have a recurrent state within some finite set. The following is a simple
condition under which there exists a finite subset Z as required in the theorem
presented in the previous section. Suppose that we have an estimate

g⋆(M) < γ, (3.1)

9



for some γ, and moreover, for some ordering of the states {xj} the following
holds:

lim inf
j→∞

{min{c(xj , a) : a ∈ A(xj)}} > γ. (3.2)

It clearly follows from (3.1) and (3.2) that if J(σ) < γ, then some finite set
Z contains a recurrent state of σ. Such a set is, e.g.,

Z = {x : min{c(xj , a) : a ∈ A(xj)} < γ}. (3.3)

An estimate as in (3.1) does not require a computation of the optimal policy,
but can be obtained by restricting to a special type of policies.

Fix some state z and denote s = e−1(z). Define ν = inf{k > 0 : xk = z},
and let ν0 be defined analogously.

Theorem 3.1 Fix a stationary Markov policy σ such that z ∈ Z is recurrent
under σ, and let M0 be an embedding as above. Let σ0 be the stationary
Markov policy of M0 associated with σ. If

Cν(z, σ) = Eσ
z

ν−1
∑

k=0

c(xk, ak)

is well defined then

lim
N→∞

1

N
CN(z, σ) = lim

N→∞

1

N
C0

N(e−1(z), σ0).

Remark 3.2 Conditions under which the average cost does not depend on
the initial state are standard, and therefore we shall not elaborate on this
point.

The proof applies without change when the condition that Cν(z, σ) is well
defined is replaced by the condition that the immediate costs c(x, a) are all
nonnegative.

Proof: We denote s = e−1(z), and by construction s is recurrent under σ0.
We note that sj is accessible from s under σ0 if and only if zj = e(sj) is
accessible from z under σ. Therefore we may assume that all states in Z

(resp. Z0) communicate, and ignore transient states. It is also convenient
to ignore (or remove from Z) states from which z can be reached only by
leaving Z.
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Let the random times ν and ν0 be as in the sentence that precedes Theo-
rem 3.1. Under the recurrence assumption the limit of the average cost flow
exists. It follows from Theorem 17.2.1 of [MT] that under σ the process pair
{xk, ak} possesses an invariant probability measure which we denote by π.
Moreover, almost surely under P σ

z we have

lim
N→∞

1

N

N−1
∑

k=0

c(xk, ak) =
Eσ

z

∑ν−1
k=0 c(xk, ak)

Eσ
z ν

= Eπc(x, a),

and analogously for M0:

lim
N→∞

1

N

N−1
∑

k=0

c0(ξk, αk) =
Eσ0

s

∑ν0−1
k=0 c0(ξk, αk)

Eσ0

s ν0

= Eπ0
c0(ξ, α).

In view of our assumptions concerning recurrence and existence of cycle costs,
this implies that

lim
N→∞

1

N
CN(z, σ) =

Eσ
z

∑ν−1
k=0 c(xk, ak)

Eσ
z ν

and similarly for C0. It therefore suffices to establish that

Eσ
z

∑ν−1
k=0 c(xk, ak)

Eσ
z ν

=
Eσ0

s

∑ν0−1
k=0 c0(ξk, αk)

Eσ0

s ν0
. (3.4)

We note that the numerators in (3.4) are the cycle costs corresponding to z

and s, assumed to be well defined. We first deal with the numerator in the
left-hand side of (3.4). Let IA denote the indicator of the set A, that is

IA(x) =

{

1 if x ∈ A

0 if x 6∈ A.

Recalling the definitions of η and τ we have

Eσ
z

ν−1
∑

k=0

c(xk, ak)

= Eσ
z

min(ν,η)−1
∑

k=0

c(xk, ak) + Eσ
z I{η<ν}

(

τ−1
∑

k=η

c(xk, ak) +
ν−1
∑

k=τ

c(xk, ak)

)

.
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By the construction of the embedding,

Eσ
z

min(ν,η)−1
∑

k=0

c(xk, ak) = Eσ0

s

min(ν0,η0)−1
∑

k=0

c(ξk, αk)

since, while xk is in Z, both transition probabilities and immediate costs
agree. Also

Eσ
z I{η<ν}

τ−1
∑

k=η

c(xk, ak) = Eσ0

s I{η0<ν0}

τ0−1
∑

k=η0

c(ξk, αk)

by the definition of the costs c0(ωi, α). Finally, using the Markov property,

Eσ
z I{η<ν}

ν−1
∑

k=τ

c(xk, ak) =
∑

zj∈Z

P σ
z (η < ν, xτ = zj)Cν(zj , σ) . (3.5)

Now write

P σ
z (η < ν, xτ = zj) =

∑

zi∈Z

P σ
z (η < ν, xτ = zj | xη−1 = zi)P

σ
z (xη−1 = zi) .

Recalling that ν is the return time to state z, we express the first probability
on the right-hand side as

P σ
z (η < ν, xτ = zj | xη−1 = zi) = P σ

z (xt 6= z, 1 ≤ t < η, xτ = zj | xη−1 = zi).

We now observe that the right hand side describes the conditional probability
of two events: one before the conditioning, one after. Since this is a Markov
process we have conditional independence and so

P σ
z (η < ν, xτ = zj | xη−1 = zi) = P σ

z (η < ν | xη−1 = zi)·P
σ
z (xτ = zj | xη−1 = zi).

It follows from (3.5) and the above computation that

Eσ
z I{η<ν}

ν−1
∑

k=τ

c(xk, ak)

=
∑

zj ,zi∈Z

P σ
z (η < ν | xη−1 = zi)·P

σ
z (xτ = zj | xη−1 = zi)·P

σ
z (xη−1 = zi)·Cν(zj , σ).

(3.6)
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Similarly to (3.5) we have the following expression for σ0:

Eσ
s I{η0<ν0}

ν0−1
∑

k=τ0

c(ξk, αk) =
∑

sj∈Z0

P σ0

s (ξτ0 = sj)C
0
ν0

(sj, σ0). (3.7)

We now repeat the discussion that appears in the text between equations
(3.5) and (3.6) for the embedded process. Since all the probabilities and
conditional probabilities in (3.6) agree with the corresponding quantities of
the embedded process, in view of (3.5) and (3.7) it remains to establish that

Cν(zj , σ) = C0
ν0

(sj, σ0). (3.8)

We proceed as before to consider two cases. We compute Cν(zj , σ) as follows:

Cν(zj , σ) = Eσ
zj

ν−1
∑

k=0

c(xk, ak)

= Eσ
zj

min(ν,η)−1
∑

k=0

c(xk, ak) + Eσ
zj

{

I{η<ν}

ν−1
∑

k=η

c(xk, ak)

}

. (3.9)

The first term once again agrees with the embedded chain. Conditioning on
the exit point we can write the second term as

Eσ
zj

{

I{η<ν}

ν−1
∑

k=η

c(xk, ak)

}

=
∑

zi∈Z

P σ
zj

(η < ν, xη−1 = zi)Cν(zi, σ), (3.10)

and similarly

Eσ0

sj

{

I{η0<ν0}

ν0−1
∑

k=η0

c0(ξk, αk)

}

=
∑

si∈Z0

P σ0

sj
(η0 < ν0, ξη0−1 = si)C

0
ν0

(si, σ0).

(3.11)
By construction

P σ
zj

(η < ν, xη−1 = zi) = P σ0

sj
(η0 < ν0, ξη0−1 = si),

and since z is accessible from zj , P σ
zj

(η < ν) < 1. Iterating equations (3.9),
(3.10) and (3.11) we see that the costs for both models agree, up to a last
term that goes to zero geometrically fast with the number of iterations. It
follows that the numerators of both sides in (3.4) agree, and the proof for
the denominators is similar. Thus (3.4) is established, and the proof of the
theorem is complete. �
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Theorem 3.3 Let M be a Markov Decision Process, and suppose that the
state z is recurrent under a stationary Markov optimal policy σ, and that the
cycle cost is finite. Then for any embedding such that z ∈ Z, the optimal
cost of M0 agrees with that of M. Moreover, M0 has an optimal policy σ0

that agrees with σ on corresponding states of Z and Z0.

The theorem assumes explicitly that there exists a stationary Markov optimal
policy. This holds for most applications: for conditions see for example [P]
and references therein.

4 Extensions

First, note that the requirement that the cycle cost is finite holds whenever
the immediate costs are bounded, since we assume recurrence. Moreover, as
noted above, this requirement is not needed when the immediate costs are
all of the same sign (positive or negative).

The following result is immediate, but nonetheless useful.

Theorem 4.1 Fix some i. Suppose the stationary policies σ and σ′ are
such that the associated actions α(σ) and α(σ′) have costs starting at ωi that
satisfy

αn+1(σ) = c(σ) > c(σ′) = αn+1(σ
′),

while
αi(σ) = αi(σ

′) for every i = 1, . . . , n.

Then the action α(σ) may be eliminated from A0(ωi).

This is quite clear from the definition, and in fact this follows from standard
results of action elimination in MDPs [L].

Next note that, even if the excursion costs Cτ are difficult to calculate,
any approximation of Cτ and of the mean excursion times leads to a non-
exact, approximate embedding, in the sense that optimal costs are not equal
anymore. However, it is easy to see that the approximation is continuous in
the sense that as the approximations of Cτ and Eτ improve, the costs (in-
cluding optimal costs) of the embedded model approach those of the original
MDP.

We now outline the extension to constrained MDPs, where a detailed
description of the model may be found in [A2]. In addition to the usual four
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components of an MDP we define a collection of immediate cost functions
{dk(x, a), k = 1, . . . , K}. Define Jk

i (π) in the same way that Ji(π) is defined,
but with dk replacing the immediate cost c. The constrained optimization
problem is to minimize the functional Ji(π), subject to the constraints

Jk
i (π) ≤ Vk

for some prescribed constants Vk, 1 ≤ k ≤ K.
Standard approximations of constrained problems are more difficult to

handle and establish than unconstrained approximations of optimization
problem. The reason for this is that when we require the approximate model
to satisfy the hard constraints

J
0,k
i (π) ≤ Vk, k = 1, 2, ..., K,

then clearly we may lose continuity, in the sense that even if the original
problem is feasible (that is, there exist policies satisfying the constraints), an
approximation of the required type may not be feasible [A2]. However, using
our exact approximation, this difficulty does not arise.

The embedding results hold for this model, with the following minor
modification. Recall the definitions (2.11) and (2.15) of the action in M0.
Define dk(σ) as in (2.15) and define α(σ) by

α = (α1, . . . , αn, αn+1, αn+2, . . . , αn+K+1) = (λq1, . . . , λqn, c, d1, . . . , dK).
(4.1)

Then the same arguments show that for the embedded chain, all costs agree
with those of the original model, so that we may approximate the countable
chain by a finite chain.

5 Examples

Consider the problem of controlling a single queue. New jobs arrive accord-
ing to an i.i.d. sequence of Bernoulli random variables with mean λ, and join
an infinite queue. The job at the head of the queue is served, and (indepen-
dently) the probability of completion of service (representing the speed of
service) is the control variable a. Assume that there exists some I > 0 and
µ > λ > δ so that

A(x) = [δ, µ] for x < I and A(x) = {µ} for x ≥ I.
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That is, service rate is controlled for small queue size, but maximal rate
must be used if the queue is large. If we assume further that, for x ≥ I the
immediate cost is sub-linear, that is, it satisfies c(x, a) = c(x, µ) ≤ c · x for
some positive c, then all our assumptions hold: state 0 is recurrent under any
policy and cycle costs are finite. If in addition c(x, µ) = c · x for x ≥ I then
the embedded model M0 can be computed explicitly (and easily). Thus,
whatever the immediate cost c(x, a), x ≤ I the control problem is reduced to
a finite-state embedded problem. In fact, in this problem only one ωi need
be defined since the only way to exit the set Z = {0, 1, . . . , I} is through
state I.

This example can be extended as follows. Suppose we do not assume that
the action space is restricted for x ≥ I. Instead assume that

c(x, a) < min{c(y, a) : a ∈ Ay, y ≥ I}

for all x < I and all a. It follows that µ is the optimal action at x ≥ I, and
we can apply Theorem 4.1 so that the previous conclusions apply.

In general, since this is a skip-free, one-dimensional problem, our results
allows an easy decoupling of the behavior for x < I from that for x ≥ I. The
situation is more complicated if the skip-free assumption is violated, namely
either batch arrivals or batch service or both are allowed. However, as is
clear from the proof of Theorem 3.3, we can write an implicit expression for
the cost using the cost flows until the first hitting time of {0, 1, . . . , I − 1},
to obtain an explicit expression for the embedded model.

Consider now a multi-dimensional queueing problem. Jobs of type 1, . . . , K
arrive according to a K-dimensional process B(t) of i.i.d. vectors. The kth
coordinate represents arrivals of customers of type k. Customers join infinite
queues, one queue for each type. A single server chooses at each point in
time which queue to serve, and serves the job at the head of the line. If job
of type k is served, then the service will succeed with probability µk, and
then the job will leave the queue.

If we impose the condition that some queue must be served as long as
not all queues are empty, then the empty state will be recurrent under mild
conditions. For example, it is sufficient to assume that the total number of
arrivals at any unit time interval is bounded, and that the condition

K
∑

k=1

EBk

µk

< 1 .
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Let Q(t) be the vector of queue-sizes at time t. This is the state of our MDP,
and the control is the choice of queue to serve. This is easily seen to be an
MDP, once immediate costs c(q, a) are chosen. It is then natural to choose

Z =

{

Q :
K
∑

k=1

Qk(t) ≥ Q0

}

and approximate the infinite model with a finite one.
Suppose for some Q0 we have that if

K
∑

k=1

Qk(t) ≥ Q0

then

c(x, a) =
K
∑

k=1

ckQk

for some positive coefficients {ck}. Then the system simplifies considerably,
and the computation of the hitting distributions and costs, required for our
approximation, become feasible [BMM, W].
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