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Abstract

Cross-modal analysis offers information beyond that ex-

tracted from individual modalities. Consider a camcorder

having a single microphone in a cocktail-party: it captures

several moving visual objects which emit sounds. A task for

audio-visual analysis is to identify the number of indepen-

dent audio-associated visual objects (AVOs), pinpoint the

AVOs’ spatial locations in the video and isolate each cor-

responding audio component. Part of these problems were

considered by prior studies, which were limited to simple

cases, e.g., a single AVO or stationary sounds. We describe

an approach that seeks to overcome these challenges. It

acknowledges the importance of temporal features that are

based on significant changes in each modality. A proba-

bilistic formalism identifies temporal coincidences between

these features, yielding cross-modal association and visual

localization. This association is of particular benefit in har-

monic sounds, as it enables subsequent isolation of each

audio source. We demonstrate this in challenging experi-

ments, having multiple, simultaneous highly nonstationary

AVOs.

1. Cross-Modal Analysis

Cross modal analysis is gaining interest in computer vi-

sion. Such analysis seeks associations between sources of

input data, which have very different natures. Examples

of this include registration of images acquired using sen-

sors of different kinds [15], or association of images to

text [12], such as in web pages and multimedia subtitles.

It also includes audio-visual analysis [23, 25, 29], which

has seen a growing expansion of research directions, includ-

ing lip-reading [7, 13], tracking [24], and spatial localiza-

tion [6, 9, 17, 18, 22]. This follows evidence of audio-visual

cross-modal processing in biology [11].

This work deals with complex scenarios that are some-

times referred to in the literature as a cocktail party [9, 13,

26]: multiple sources exist simultaneously in all modalities.

Figure 1. A frame and the audio from the violin-guitar

movie. A camcorder and a single microphone were used.

Two movies were compounded and then processed as a whole.

Out of the selected and tracked visual features [Dots], two

are automatically associated to the audio [Crosses]: cor-

rectly, one per source. The audio mixture is also de-

coupled to a guitar and a violin. See/hear this via

www.ee.technion.ac.il/∼yoav/research/harmony-in-motion.html

This inhibits the interpretation of each source. In the do-

main of audio-visual analysis, a camera views multiple in-

dependent objects which move simultaneously, while some

of them emanate sounds, which mix. This is depicted in

Fig. 1. This paper presents a computer vision approach for

dealing with this scenario. The approach has several no-

table results. First, it automatically identifies the number of

independent sources. Second, it tracks in the video the mul-

tiple spatial features, that move in synchrony with each of

the (still mixed) sound sources. This is done even in highly

non stationary sequences. Third, aided by the video data, it

successfully separates the audio sources, even though only

a single microphone is used. This completes the isolation of

each contributor in this complex audio-visual scene.

Some of the prior methods considered only parts of these

tasks. Others relied on complex audio-visual hardware,

such as an array of microphones that are calibrated mu-
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tually and with respect to cameras [23, 24]. This yields

an approximate spatial localization of audio sources. A

single microphone is simpler to set up, but it cannot, on

its own, provide audio spatial localization. Hence, locat-

ing audio sources using a camera and a single microphone

poses a significant computational challenge. In this context,

Refs. [17, 22] spatially localize a single audio-associated

visual object (AVO). Ref. [6] localizes multiple AVOs if

their sounds are repetitive and non-simultaneous. Neither

of these studies attempted audio separation. A pioneering

exploration of audio separation [9] used complex optimiza-

tion of mutual information based on Parzen windows. It can

automatically localize an AVO if no other sound is present.

Results demonstrated in Ref. [29] were mainly of repetitive

sounds, without distractions by unrelated moving objects.1

Here we propose an approach that better manages obsta-

cles faced by prior methods. It can use the simplest hard-

ware: a single microphone and a camera. Algorithmically,

we are inspired by feature-based image registration meth-

ods, which use spatial significant changes (e.g, edges and

corners). Analogously, we use as our features the temporal

instances of significant changes in each modality. To match

the two modalities, we look for cross-modal temporal co-

incidences of events. Based on a likelihood criterion, the

AVOs are then localized and tracked. Following the visual

localization of the AVOs, the sound produced by each one

is isolated. The algorithm exploits the sparsity of an audio

representation we use, and is aided by the essential visual

information.

2. Significant Visual and Audio Events

How may we associate two modalities, where each

changes in time? Some prior methods use continuous val-

ued variables to represent each modality, e.g., a weighted

sum of pixel values. Maximal canonical correlation or mu-

tual information was sought between these variables [9, 14,

17]. That approach is analogous to intensity-based image

matching. It implicitly assumes some correlation (possibly

nonlinear) between the raw data values in each modality.

We do not look at the raw data values during the cross-

modal association. Rather, here we opt for feature-based

matching: we seek correspondence between significant fea-

tures in each modality. Interestingly, there is also evidence

that biological neural systems perform cross-modal associ-

ation based on salient features [10].

Which features are good? Recall a familiar matching

problem: that of images. Feature-based image registration

focuses on sharp spatial changes (edges and corners) [5],

rather than the smooth regions between them. In cross-

sensor image matching, Ref. [15] highlighted sharp spatial

1Some studies used an approach motivated by computer-vision in order

to make only-audio analysis [16, 27].

changes by high-pass filtering. Analogously, in our audio-

visual matching problem, we use features having strong

temporal variations in each of the modalities.

As a pre-processing step, image features (corners etc.)

that can be easily locked-on are automatically found [28]

and then tracked [3] (see Fig. 1). The result is a set of Nv

visual features, each indexed by i ∈ [1, Nv]. Each feature

has a trajectory vi(t) = [xi(t), yi(t)]
T , where t is the tem-

poral index (in units of frames), and x, y are the image co-

ordinates. One of the tasks is to determine if any of these

trajectories is of an AVO.

The magnitude of the acceleration ‖v̈i(t)‖ of feature i
is a measure of significant change in its motion speed or

direction.2 We process ‖v̈i(t)‖ in analogy to the way image

gradients are processed to detect edges [28]: we threshold

and temporally prune ‖v̈i(t)‖ to derive a binary vector v
on
i

von
i (t) =

{
1 feature i has high acceleration at t
0 otherwise

, (1)

which expresses the visual onsets of image feature i. For all

features {i}, the corresponding vectors v
on
i have the same

length Nf , which is the number of frames.

Audio is treated in a similar manner. We focus on au-

dio onsets [4]. These are time instances in which a sound

commences (over a possible background).3 Audio onset de-

tection was well studied [2, 19]. It is briefly discussed in

Sec. 4.3. This detection process results in a binary vector

a
on of length Nf

aon(t) =

{
1 an audio onset takes place at time t
0 otherwise

. (2)

In the next section, we describe how audio onsets are tem-

porally matched to visual (motion) onsets.

3. A Coincidence-Based Approach

Our cross-modal association is based on a simple as-

sumption. Consider a pair of significant events (onsets):

one event per modality. We assume that if both events co-

incide in time, then they are possibly related. If such a co-

incidence re-occurs multiple times for the same feature i,
then the likelihood of cross-modal correspondence is high.

On the other hand, if there are many temporal mismatches,

then the matching likelihood is inhibited.

In the specific context of the audio and visual modalities,

the choice of audio and visual onsets is not arbitrary. These

onsets indeed coincide in many scenarios. For example: the

sudden acceleration of a guitar string is accompanied by the

beginning of the sound of the string; a sudden deceleration

2A criterion [22] of absolute position ‖vi(t)‖ is sensitive to initializa-

tion of the origin of the position coordinates.
3We opt not to rely on sound terminations for this purpose, as these are

often not sufficiently fast and distinct.



of a hammer hitting a surface is accompanied by noise; the

lips of a speaker open as he utters a vowel.

Let us consider for the moment the correspondence of

audio and visual onsets in some ideal cases. If just a sin-

gle AVO exists in the scene, then ideally, there would be

a one-to-one audio-visual correspondence, i.e., v
on
i = a

on

for a unique feature i. Now, suppose there are several in-

dependent AVOs, where the onsets of each object i are ex-

clusive, i.e., they do not coincide with those of any other

object. Then,
∑

i∈J
v

on
i = a

on, where J is the set of true

AVOs. Such ideal cases usually do not occur in practice:

there are outliers in both modalities, due to clutter and to im-

perfect detection of onsets, having false positives and neg-

atives. Thus, we define a matching criterion that is based

on a probabilistic argument and enables imperfect match-

ing. It favors coincidences, and penalizes for mismatches.

This criterion is then used in a fast iterative algorithm, in

the spirit of [21].

3.1. Matching Algorithm

We now describe both the matching criterion, and the it-

erative algorithm. Define 1 as a column vector, all of whose

elements equal 1. The criterion we use is

L̃(i) = 2[(aon)T
v

on
i ] − 1

T
v

on
i . (3)

In Sec. 3.2, we show that Eq. (3) is equivalent to a match-

ing likelihood. Out of all the visual features i ∈ [1, Nv],

L̃(i) should be maximized by the one corresponding to an

AVO. Let us first gain some intuition into Eq. (3). The num-

ber of visual onsets of feature i that coincide with audio

onsets is (aon)T
v

on
i , since v

on
i and a

on are binary. More-

over, (1 − a
on)T

v
on
i is the number of visual onsets of i,

that are inconsistent with a
on. Therefore, Eq. (3) favors

coincidences while penalizing for the inconsistencies. We

calculate Eq. (3) for each visual feature i. The one corre-

sponding to the highest value of L̃ is a candidate AVO. Let

its index be î. This candidate is classified as an AVO, if its

likelihood L̃(̂i) is above a threshold. Note that by definition,

L̃(i) ≤ L̃(̂i) for all i. Hence, if L̃(̂i) is below the threshold,

neither î nor any other feature is an AVO.

At this stage, a major goal has been accomplished. Once

feature î is classified as an AVO, it indicates audio-visual

association not only at onsets, but for the entire trajec-

tory vî(t), for all t. Hence, it marks a specific tracked

feature as an AVO, and this AVO is visually traced con-

tinuously throughout the sequence. For example, consider

the violin-guitar sequence, one of whose frames is

shown in Fig. 1. It was recorded by a simple camcorder and

using a single microphone.4 Onsets were obtained as de-

scribed in Sec. 2. Then, the visual feature that maximized

4The sampling parameters of the audio and video are given in Sec. 4.1.

Eq. (3) was the hand of the violin player. Its detection and

tracking were automatic.

Now, the audio onsets that correspond to AVO î are

given by the vector m
on = a

on • v
on
î

, where • denotes the

logical-AND operation per element. Let us eliminate these

corresponding onsets from a
on. The residual audio onsets

are represented by a
on
1 ≡ a

on − m
on. The vector a

on
1 be-

comes the input for a new iteration: it is used in Eq. (3), in-

stead of a
on. Consequently, a new candidate AVO is found,

this time optimizing the match to the residual audio vector

a
on
1 .

This process re-iterates. It stops automatically when

a candidate fails to be classified as an AVO. This indi-

cates that the remaining visual features cannot “explain”

the residual audio onset vector. The main parameter in

this method is the mentioned classification threshold of the

AVO. We set it to L̃(̂i) = 0. If L̃(̂i) < 0, it means that more

than half of the onsets in v
on
î

are not matched by audio ones.

In other words, most of the significant visual events of i are

not accompanied by any new sound. We thus interpret this

object as not audio-associated.

To recap, our matching algorithm is

Input: vectors {von
i },aon

0. Initalize: l = 0, a
on
0 = a

on, m
on
0 = 0.

1. Iterate

2. l = l + 1

3. a
on
l = a

on
l−1 − m

on
l−1

4. îl = arg maxi{2(aon
l )T

v
on
i − 1

T
v

on
i }

5. If {(aon
l )T

v
on
î

≥ 1
21

T
v

on
î
} , then

6. m
on
l = v

on
î

• a
on
l

7. else

8. quit

Output:

• The estimated number of independent AVOs is

|̂J | = l − 1.

• A list of AVOs and corresponding audio

onsets vectors {̂il,m
on
l }.

Here 0 is a column vector, all of whose elements are null.

Note that the output |̂J | accomplishes another goal of this

paper: the automatic estimation of the number of indepen-

dent AVOs. This algorithm is fast (linear): ≈ |J | iterations,

each having O(NfNv) calculations.

In the violin-guitar sequence mentioned above,

this algorithm automatically detected that there are two in-

dependent AVOs: the guitar string, and the hand of the vi-

olin player (marked as crosses in Fig.1). Note that in this

sequence, the sound and motions of the guitar pose a dis-

traction for the violin, and vice versa. However, the algo-

rithm correctly identified the two AVOs.



3.2. Likelihood Interpretation

Here we show that Eq. (3) can be interpreted as equiva-

lent to the matching likelihood of feature i. Let vi(t) be a

random variable which follows the probability law

Pr [von
i (t)|aon(t)] =

{
p , von

i (t) = aon(t)
1 − p , von

i (t) 6= aon(t)
. (4)

Assuming that the elements aon(t) are statistically indepen-

dent of each other, the matching likelihood of a vector v
on
i

is

L(i) =

Nf∏

t=1

Pr [von
i (t)|aon(t)] . (5)

Denote by Nagree the number of time instances in which

aon(t) = von
i (t). From Eqs. (4,5),

L(i) = pNagree · (1 − p)(Nf−Nagree) . (6)

Both a
on and v

on
i are binary, hence the number of time in-

stances in which both are 1 is (aon)T
v

on
i . The number of in-

stances in which both are 0 is (1 − a
on)

T
(1 − v

on
i ), hence

Nagree = (aon)T
v

on
i + (1 − a

on)
T

(1 − v
on
i ) . (7)

Plugging Eq. (7) in Eq. (6) and re-arranging terms,

log [L(i)] = Nf log(1 − p) +

+
[
(aon)T

v
on
i + (1 − a

on)
T

(1 − v
on
i )

]
log

(
p

1 − p

)
.

(8)

We seek the feature i whose vector v
on
i maximizes L(i).

Thus, we eliminate terms that do not depend on v
on
i . This

yields an equivalent objective function of i,

L̃(i) = {2
[
(aon)T

vi

]
− 1

T
v

on
i } log

(
p

1 − p

)
. (9)

It is reasonable to assume that if feature i is an AVO,

then it has more onset coincidences than mismatches.

Consequently, we may assume that p > 0.5. Hence,

log [p/ (1 − p)] > 0. Consequently, L̃(i) is maximized

when Eq. (3) is maximized.

4. Audio Processing and Isolation

Up to now, we derived the method for establishing the

AVOs in the scene. The described matching algorithm out-

puts a set of AVOs, each with its vector of corresponding

audio onsets: {̂il,m
on
l }. This vector of audio onsets points

to the time instances in which the sounds of the AVO com-

mence. In order to isolate the soundtrack of the AVO, we

need to isolate each of these sounds. How do we isolate a

single sound from a mixture, given only its onset time? This

is described next.

4.1. Binary Masking

Audio isolation is based on Fourier analysis. Let s(n)
denote the recorded sound signal, typically sampled much

faster than the video. Here n is a discrete sample index of

the sound. This signal is analyzed in short temporal win-

dows w, each being Nw-samples long. Consecutive win-

dows are shifted by M samples. In our experiments, the au-

dio was sampled at 16 kHz, and analyzed with a Hamming

window of 80msec, equivalent to Nw = 1280. Our use

of M = Nw/2 ensured synchronicity of the windows with

the video frame rate (25Hz). Recalling that t is the frame

(time) index, the short-time Fourier transform of s(n) is

F (t, f) =

Nw−1∑

n=0

s(n + tM)w(n)e−j(2π/Nw)nf , (10)

where f is the frequency index. The spectrogram is

|F (t, f)|2. See for example the spectrograms in Fig. 2.

As seen in Fig. 2, the energy of each distinct sound lies

in a set Γ of time-frequency bins {(t, f)}. A common as-

sumption [1, 26, 31] is that if there are other sound sources,

then the energy distribution in {(t, f)} of these disturbances

has only little overlap with the bins in Γ. This assumption

is based on the sparsity of typical sounds, particularly har-

monic ones, in spectrograms. Consequently, a sound of in-

terest can be enhanced by maintaining the values of F (t, f)
in Γ, while nulling the other bins. This binary masking

forms the basis for many methods [1, 26, 31]. The masked

F (t, f) is then transformed back [26] to a sound signal

s̃(n).

How is the set Γ of a sound characterized? In an har-

monic sound, the acoustic energy lies in a pitch frequency

f0 and in integer multiples of this frequency (harmonies).

This is seen in the spectrogram of a violin at the bottom-

right of Fig. 2. We note that f0 of a distinct sound may drift

in time, i.e., f0 = f0(t), as shown in the left panel of Fig. 3

(speech). Thus,

Γ = {(t , f0(t)k)} , (11)

where k ∈ N
+. The set defined in Eq. (11) is bounded

temporally by t ∈ [ton, toff ], where ton is the onset of

this sound. Here toff is the offset instance, in which the

sound is considered as terminated or effectively faded. Con-

sequently, given only the onset instance ton, we deter-

mine Γ by detecting f0(t
on), and then tracking f0(t) in

t ∈ [ton, toff ]. The detection and tracking procedures are

described next.

4.2. Directional Derivative of the Spectrogram

Ref. [8] describes a method for estimating f0(t) of a sin-

gle sound using the amplitude A(t, f) = |F (t, f)| as input.
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Figure 2. Spectrograms corresponding to the violin-guitar sequence. Darker points in each plot indicate a higher energy content, as

a function of t and f . Based on visual data, the audio components of the violin and guitar were automatically separated from a soundtrack,

which had been recorded by a single microphone. [Right] The true components of each instrument, acquired separately. You may listen to

the results via the link www.ee.technion.ac.il/∼yoav/research/harmony-in-motion.html
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Figure 3. [Left] A section of a spectrogram (female speaker) ex-

hibiting a frequency drift. [Middle] A temporal derivative (Eq. 12)

results in high values through the entire sound duration. [Right]

The directional derivative (Eq. 14) handles the frequency drift

well. Resulting high values occur mainly at the onset.

In our case, however, multiple sounds coexist.5 We would

be able to use Ref. [8] per sound source, if we remove most

of the energy of the other sounds. How can we achieve this?

Here we exploit again the onsets that had been detected.

The sound of interest is the one commencing at ton. Thus,

the disturbing audio at ton is assumed by us to have com-

menced prior to ton. These disturbing sounds linger from

the past, and hence, they can be eliminated by comparing

the audio components at t = ton to those at t < ton, par-

ticularly at t = ton − 1. Specifically, the relative temporal

5We do not know the number of sound sources in the scene: in addi-

tion to the visual AVOs there can be audio sources of objects out of view.

Hence, we cannot use [1, 20, 30].

derivative

D(t, f) =
A(t, f) − A(t − 1, f)

A(t − 1, f)
(12)

emphasizes an increase of amplitude in frequency bins that

have been quiet (no sound) just before t.
As a practical criterion, however, Eq. (12) is not robust.

The reason is that sounds which have commenced prior to

t may have a slow frequency drift (Fig. 3). This poses a

problem for Eq. (12), which is based solely on a tempo-

ral comparison per frequency channel. Drift results in high

values of Eq. (12) in some frequencies f , even if no new

sound actually commences around (t, f), as seen in Fig. 3.

To overcome this, we perform a directional derivative in the

time-frequency (spectrogram) domain.6 It fits neighboring

bands at each instance, hence tracking the drift. Consider

a small frequency range Ω around f . In analogy to image

alignment, frequency alignment at time t is obtained by

faligned = arg min
fz∈Ω

|A(ton, f) − A(ton − 1, fz)| . (13)

Then faligned at t − 1 corresponds to f at t, partially cor-

recting the drift. The map

D̃(t, f) =
A(t, f) − A(t − 1, faligned)

A(t − 1, faligned)
(14)

is indeed much less sensitive to drift, and is responsive to

true onsets (Fig 3). The map D̃+(t, f) = max{0, D̃(t, f)}

6Treating the spectrogram as a two-dimensional signal (image) was

suggested in [16].



maintains the onset response, while ignoring amplitude de-

crease caused by fade-outs.

We may now use D̃+(ton, f) as input to the algorithm

of Ref. [8]. This yields the pitch f0 at ton. Following the

detection of f0(t
on), it is tracked during t ≥ ton, until toff .

This procedure for tracking f0(t) and for determining toff is

described below, in Sec. 4.4.

As described earlier in Sec. 4, this procedure and binary

masking are repeated for each of the onsets of the AVO. The

isolated sounds per onset are then concatenated to a single

soundtrack. This effectively yields the isolated soundtrack

of the AVO. As an example, Fig. 2 illustrates the results

obtained in the violin-guitar sequence.

4.3. Audio Onsets Detection

Past sections relied on prior detection of audio on-

sets. Methods for this detection have been extensively

studied [2]. Here we describe our particular method.

Our criterion for significant signal increase is simply

o(t) =
∑

f D̃+(t, f). It is similar to a criterion used in

Ref. [19], but is more robust, since it suppresses lingering

sounds. As in Ref. [2], the binary onset vector aon is a result

of thresholding of o(t).

4.4. Pitch Tracking

In Sec. 4.2 we described how the pitch frequency f0(t
on)

of a sound commencing at ton is detected. We now describe

how we track f0(t), and how the instance of its termination,

namely toff , is established.

Given the detected pitch frequency at f0(t), we wish

to establish f0(t + 1). It is known to lie in a frequency

neighborhood Ω of f0(t), since the pitch frequency changes

slowly through time [30]. Recall that an harmonic sound

contains multiples of the pitch frequency (the “harmonies”).

Denote the set of harmonies at time t by K(t) = [1, . . . , K].
The estimated frequency f0(t + 1) may be found as the

one whose harmonies capture most of the energy of the har-

monic signal

f0(t + 1) = arg max
f∈Ω

∑

k∈K(t)

[A (t + 1, f · k)]2 , (15)

where A(t, f) = |F (t, f)|.

Eq. (15), however, does not take into account the exis-

tence of other sources in the mixture. Disrupting sounds of

high energy may be present around the harmonies (t+1, f ·
k) for f ∈ Ω, and may distort the detection of f0(t+1). To

reduce the effect of these sounds, we do not use the ampli-

tude of the harmonies A(t + 1, f · k) in Eq. (15). Rather,

we use log[A (t + 1, f · k)]. This effectively causes the esti-

mate in Eq. (15) to use many frequency bins for the estima-

tion of f0(t+1), and significantly reduces the error induced

by a few noisy ones.

Recall that the pitch is tracked in order to identify the

set Γ of time-frequency bins in which an harmonic sound

lies. We now go into the details of how to establish Γ. Ac-

cording to Eq. (11), Γ should contain all of the harmonies

of the pitch frequency, for t ∈ [ton, toff ]. However, we may

make Γ tighter, by not including all of the harmonies at each

instance. Harmonies may be removed due to two reasons:

First, there may be some harmonies in which a strong in-

terference exists. Second, some harmonies may fade out.

To identify these cases, we inspect the relative amplitude

temporal change

A [t + 1, f0(t + 1) · k]

A [t, f0(t) · k]
(16)

for each of the harmonies k ∈ K(t). When Eq. (16)

for some k0 exceeds a threshold , we deduce that a

disrupting sound has now entered the frequency bin

[t + 1, f0(t + 1) · k0]. We therefore remove k0 from K(t +
1). Similarly, when Eq. (16) goes below a threshold, we

deduce that the harmony k0 has faded and set K(t + 1) =
K(t)\k.

We initialize the tracking process with f0(t
on) and

K(ton) = [1, . . . , K], and iterate it through time. When

the number of active harmonies |K(t)| drops below a cer-

tain threshold, this indicates the termination of the signal

at time toff . The domain Γ that the tracked sound occupies

in t ∈ [ton, toff ] is composed from the active harmonies at

each instance t. Formally :

Γ = {(t, f0(t) · k} , (17)

where t ∈ [ton, toff ] and k ∈ K(t).

5. Results

In our experiments we compound separately-recorded

movies (e.g., a violin sequence and a guitar sequence) into

a single video.7 Such a procedure is a common practice

in single-micrhopone audio-separation studies [1, 13, 26],

since it provides access to the audio ground-truth data. This

allows quantitative assessment of the quality of audio isola-

tion, as we describe below.

The cross-modal method has several parameters, such as

the spectrogram window size (Sec. 4.1) and the temporal-

resolution of coincidences, discussed below in Sec. 6. Other

parameters are derived from the analogy of our approach

to image edge-detection. Such a detection usually involves

setting of an edge scale, a threshold of significant change,

7Compounding individiual scenes does not simplify the experiments

relative to a simultaneous recording of AVOs. The reverberations of each

source are preserved after sampling and compounding, since these are lin-

ear operations. For the same reason, the individual sources still interfere

with each other, regardless of whether they are recorded separately or si-

multaneously.



Figure 4. A frame from the speakers sequence. Out of the se-

lected and tracked visual features [Dots], two are automatically

associated to the audio [Crosses]: correctly, one per source. The

audio mixture is also decoupled to two separate speakers.

and a proximity parameter for pruning [28]. Such parame-

ters influence the results, and thus should be tuned.

All the video/audio material described here is

available in the supplementary material, and through

www.ee.technion.ac.il/∼yoav/research/harmony-in-motion.html.

The first experiment is the violin-guitar sequence al-

ready described in Figs. 1 and 2. The second experiment is

the speakers sequence, which has simultaneous speech

by people. The pitch of each speaker drifts significantly in

time. A sample frame is shown in Fig. 4, where crosses

indicate the automatically-detected AVOs. The features

detected correspond to the lips of each speaker. The

corresponding results of audio isolation for each speaker

in this minor “cocktail party” are shown in Fig. 5. An

additional experiment contains two identical instruments

playing different tunes simultaneously (Fig. 6). The

data and the separation results are available through the

above-mentioned link.

Quantitative Recovery Criteria

We quantify the quality of the audio-isolation in the ex-

periments by criteria described in Ref. [31]. These mea-

sures utilize our access to the ground-truth audio data. The

first measure evaluates the improvement of the signal-to-

interference-ratio (SIR). The second measure calculates the

preserved-signal-ratio (PSR), which is the amount of signal

energy that is preserved in the isolation process. For further

details about these criteria see Ref. [31].

In the violin-guitar sequence, the SIR of the violin

is significantly improved by 17.4 dB. The SIR of the guitar

improves by 4.4 dB. Some of the harmonies of the violin co-

incide with those of the guitar. Consequently, the isolated

guitar erroneously contains some components of the violin,

creating squeaking sounds. The PSRs of the violin and of

the guitar are 0.89 and 0.78, respectively. In the speakers

sequence, the SIR improvements of the male and of the fe-

male speakers are significant: 12.3 dB and 15.6 dB, respec-

tively. The corresponding PSRs are 0.64 and 0.51. Even

though The PSR of the female speaker indicates loss of al-

most 50% of the speech energy, her isolated speech is very

intelligible.

6. Limitation: Temporal Resolution

The approach described in this paper has limits. In par-

ticular, its temporal resolution is finite. As in any sys-

tem, the terms coincidence and simultaneous are meaning-

ful only within a tolerance range of time. In the real-world,

coincidence of two events at an infinitesimal temporal range

has just an infinitesimal probability. Thus, correspondence

between two modalities can be established only up to a fi-

nite tolerance range. Our approach is no exception. Specifi-

cally, each onset is determined up to a finite resolution, and

audio-visual onset coincidence should be allowed to take

place within a finite time window. This limits the temporal

resolution of coincidence detection. In our experiments, we

considered coincidences if a visual onset occurred within

≈ 1/8sec of an audio onset.

7. Relation to Audio-Only Methods

This computer vision work yields visual detection and

tracking of AVOs. In addition, it utilizes the visual data for

audio isolation. This raises the question of how audio-only

(unrelated to vision) methods can benefit from such a frame-

work. Some audio-separation methods are based on micro-

phone arrays [31] having a sufficiently wide baseline. Other

methods, which use a single microphone, generally separate

audio based on training on specific classes of sources, par-

ticularly speech and typical potential disturbances [1]. Such

methods may succeed in enhancing continuous sounds, but

may fail to group discontinuous sounds correctly to a single

stream. This is the case when the audio-characteristics of

the different sources are similar to one another, for instance,

two speakers with close by pitch-frequencies. In such a set-

ting, the visual data becomes very helpful, as it provides a

complementary cue for grouping of discontinuous sounds.

In our framework, sounds are grouped together according

to the coincidence of their onsets with visual onsets of an

AVO. Consequently, incorporating our approach with tradi-

tional audio separation methods may prove to be worthy.

8. Discussion

We presented a novel approach for cross-modal analysis.

It is based on instances of significant change in each modal-

ity. Our approach handled complex audio-visual scenarios

in experiments, where sounds overlapped and visual mo-

tions existed simultaneously. The approach yields a set of

distinct visual features, with associated isolated sounds. It

does not require training. Thus, it is applicable to a wide

range of AVOs (not limited to speech or specific instru-

ments). We believe that this general capacity is not limited

to the audio-visual domain. Rather, it may be applicable

to associating between other types of data. We hypothesize
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Figure 5. Spectrograms corresponding to the speakers sequence. Based on visual data, the audio components of each of the speakers

were automatically separated from a single soundtrack. A small section in the original spectrogram of the female is marked. It was

zoomed-in in Fig. 3.

Figure 6. A frame from the dual-violin movie.

that this may be potentially useful, for instance, in associat-

ing subtitles to multimedia (images, movies) databases, or

in associating macro-economic events.

Sec. 5 described the need for setting parameters, in anal-

ogy to parameters of image edge-detection. It would be

preferable to establish methods for automatic adaptation of

such parameters to the observed audio-visual scene.

As the number of independent AVOs in the scene in-

creases (a dense cocktail party), it may be expected that our

method will eventually break down. It is worth studying

the breaking point of our approach. Furthermore, it will

be beneficial to construct robust algorithms based on the

cross-modal coincidence principle. This would enable the

handling of dense scenarios of increased complexity.
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