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Abstract

Based on a recently introduced Rate-Distortion model for color image compres-
sion, optimal color coding and bit allocation are derived. We show that this Rate-
Distortion model in conjunction with the probability distribution of subband coef-
ficients can be used to develop an efficient algorithm for coding color images and
video sequences. We demonstrate this approach for subband coding using Discrete
Cosine Transform (DCT) and a Laplacian distribution as the probability model.
We show how the model can be used for rate-control, applicable to still images and
to controlling the bit-rate or bandwidth of video transmission. Visual and quantita-
tive results are presented and discussed to support the efficiency of our algorithms,
which outperform presently available compression systems.

Key words: Color image coding, Subband transforms, Rate-Distortion model,
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1 Introduction

Color image and video compression has become a major task in today’s com-
munication environment. Usually color images are represented by the three
RGB color components, which are highly correlated [4], [7], [10], [15], [22].
Naturally, it is a naive approach to compress each color component sepa-
rately. To improve the information distribution in the image data, usually a
color components transform (CCT) is used. The RGB to YUV transform is
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employed for example in JPEG [20] and JPEG2000 [13], while the Karhunen
Loeve transform (KLT) is used in [5], [8] and [21]. Nevertheless, these trans-
forms are presently used arbitrarily since no optimization process has been
proposed so far for color image compression. Part of the reason has been the
lack of a model for color images and their Rate-Distortion (R-D) curve. Re-
cently, such a model has been introduced for the analysis of color compression
and its optimization [3]. The model has been proposed in the context of the
widely used subband transform coders. Based on the model, a color compres-
sion algorithm has been presented, outperforming commonly used algorithms.

In this work we present an improved compression algorithm based on the new
Rate-Distortion theory and on a probability model for the distribution of the
subband transform coefficients. We also present an application of the R-D
model for rate-control of the compression. This application can be used to
achieve a certain compression ratio or target rate. This approach to image
compression is applicable to both still and video coding.

The structure of the work is as follows. In Subsections 1.1 and 1.2 we briefly
review subband transforms and the Rate-Distortion theory of subband trans-
form coders. In Section 2 we present the new compression algorithm for color
images and compare its performance to that of presently available algorithms
including [3]. In Section 3 the new rate-control algorithm is presented and its
performance is measured for still images, and in Section 4 the algorithm is
considered for video sequences. Finally, conclusions and a summary are given
in Section 5.

1.1 Subband transforms - definitions

Subband transform coding is an efficient approach to image compression. Fig.
1 presents a filter bank interpretation of the general tree structured subband
transform. The input signal x[n] is decomposed by passing through a set of
m analysis filters and down-sampling by a factor m. Then its low frequencies
subband y

(1)
0 [n] is decomposed by the same filters and so on in an iterative

fashion until depth D of the tree is reached. The signal can be reconstructed
iteratively as shown in Fig. 2 by up-sampling the outputs y

(d)
k [n] (0 ≤ k ≤

m−1) of the analysis filters at level d by a factor of m, filtering them through
a synthesis filter-bank and summing up the results to obtain the low pass
subband at level d − 1 (y

(d−1)
0 [n]). The original signal x[n] can be considered

as the subband y
(0)
0 in this context, i.e., it is obtained using a reconstruction

algorithm on the subbands at level 1.

Compression can be achieved by quantization of the subband components and
possibly omission of the less significant subbands.
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Fig. 1. Tree structured subband transform: Analysis.

Fig. 2. Tree structured subband transform: Synthesis.

The DCT [14], the Discrete Wavelet Transform (DWT) [11] and filter-banks
used for audio coding (e.g. [16]) readily fit into this typical structure.

1.2 The Rate-Distortion model

A brief presentation of the theory developed in [3] is summarized here. Given
a color image in the RGB domain, we denote each pixel by a 3x1 vector
x = [R G B]T . The RGB correlations are usually high for natural images [1],
[4], [7], [10] and hence, a preprocessing stage of a color components transform
(CCT) is usually performed prior to coding. Assume that a CCT is applied to
an image, denoted by a 3×3 matrix M, we obtain for each pixel a new vector
of 3 components C1, C2, C3, denoted x̃ = [C1 C2 C3]T . Thus x̃ is related to
x by:

x̃ = Mx. (1)

Each component in the C1,C2,C3 color space is subband transformed, quan-
tized and its samples are independently encoded (e.g., entropy coded). This de-
scription corresponds to typical image compression algorithms such as JPEG
[20] and JPEG 2000 [13], when applied to a color image up to and including
the quantization stage. Denote by xrec the reconstructed image in the RGB
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domain, the error covariance matrix in the RGB domain Er is given by

Er = E
[
(x − xrec)(x − xrec)

T
]
. (2)

Assume that we have B subbands in the transform for each color component,
indexed by b ∈ [0, B − 1] and i ∈ {1, 2, 3} is the index of the color compo-
nent. Then the average MSE (Mean Square Error)between the original and
reconstructed images in the RGB domain is:

MSE =
1

3
trace(Er) =

1

3

3∑

i=1

B−1∑

b=0

ηbGbσ
2
biε

2
i e

−aRbi

(
(MMT )−1

)

ii
, (3)

where Rbi stands for the rate allocated for the subband b of color component i

and σ2
bi is this subband’s variance. ηb is the sample rate of subband b, meaning

the ratio of the number of coefficients in this subband and the total number
of coefficients in each component. Gb is the energy gain of subband b equal
to the squared norm of the subband’s synthesis vectors [19]. ε2

i is a constant
dependent on the distribution of the subband transform coefficients in each
color component and finally a , 2ln2. Considering the optimization problem
of minimizing (3) under the constraint

∑3
i=1

∑B−1
b=0 ηbRbi = R for some total

image rate R and using Lagrange multipliers method, the Lagrangian to be
minimized is:

L ({Rbi},M, λ) =
1

3

3∑

i=1

B−1∑

b=0

ηbGbσ
2
biε

2
i e

−aRbi

((
MMT

)−1
)

ii

(4)

+ λ

(
3∑

i=1

B−1∑

b=0

ηbRbi − R

)
,

where λ is the Lagrange multiplier. By minimizing (4), one can derive the
optimal subband rates R∗

bi and the target function for the optimal CCT. The
optimal solution for this target function is image adaptive. A sub-optimal
solution is the DCT as a CCT [2], as used in this work. It is of interest to note
that this result (without proof, however) was also found to be most efficient
in [6].

In practice, some coding systems such as JPEG perform down-sampling on
part of the color components prior to coding. For such systems the down-
sampling can be taken into account by introducing down-sampling factors αi,
so that the global rate constraint for the image is

3∑

i=1

αi

B−1∑

b=0

ηbRbi = R, (5)

where the down-sampling could be, for example, by a factor of 2 horizontally
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and vertically and then

αi =





1 full component

0.25 down-sampled component
.

We thus wish to minimize the MSE of (3) under the rate constraint of (5).
Additional constraints are the non-negativity of the rates: Rbi ≥ 0. Using the
Lagrange multipliers method, we have to minimize:

L ({Rbi},M, λ, {µbi}) =
1

3

3∑

i=1

B−1∑

b=0

ηbGbσ
2
biε

2
i e

−aRbi ·
(
(MMT )−1

)

ii

+ λ

(
3∑

i=1

αi

B−1∑

b=0

ηbRbi − R

)
−

3∑

i=1

B−1∑

b=0

µbiRbi,

(6)

where λ and µbi are the Lagrange multipliers for the rate constraint and the
non-negativity constraints, respectively.

Minimizing the Lagrangian L() for the rates Rbi requires knowing the rates
that are positive and those that are zero. We denote by Acti the set of all
the active subbands in the color component i, that is, those subbands with
positive rates:

Acti , {b ∈ [0, B − 1] | Rbi > 0} . (7)

We also define the following:

ξi ,
∑

b∈Acti

ηb, GMAi ,
∏

b∈Acti

(Gbσ
2
bi)

ηb
ξi , (8)

i.e., the relative part of the coefficients in the active subbands from the total
signal length (ξi ) and the weighted geometric mean of their variances (cor-
rected by the energy gains Gb) GMAi. It can be shown that the solution for
b ∈ Acti becomes:

Rbi =
1

a
ln




ε2

i
Gbσ

2

bi((MM
T )−1)

ii

αi

∏3
k=1

(
((MM

T )−1)
kk

ε2

k
GMAk

αk

)
αkξk

3∑
j=1

αjξi




+
R

3∑
j=1

αjξj

(9)

The determination of the active subbands can be done according to the algo-
rithm given in [3].
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2 Improving the compression algorithm

Based on the Rate-Distortion theory, a DCT-based algorithm for color image
compression is proposed. This algorithm employs the DCT as the color com-
ponents transform and utilizes the optimal rates expression of (9). It consists
of the following stages:

(1) Apply the CCT (DCT) to the RGB color components of a given image
to obtain new color components C1, C2, C3.

(2) Decimate the 2 color components with minimal energy (variance) by a
factor of 2 in each direction.

(3) Apply the two-dimensional block DCT to each color component Ci.

(4) Quantize each subband of each color component independently using uni-
form scalar quantizers. The quantization step-sizes are chosen so that op-
timal subband rates are achieved according to Subsection 2.2. The rates
are calculated using the Laplacian distribution model for the coefficients
of the DCT subband transform.

(5) Apply lossless coding to the quantized DCT coefficients. Coding tech-
niques similar to JPEG [20] can be used: differential Huffman coding for
the DC coefficients and zigzag scan, run-length coding and Huffman cod-
ing (combined with variable-length integer codes) for the AC coefficients.

2.1 The Laplacian distribution

We say that a stochastic variable X has Laplacian distribution if its probability
distribution function is

pX(x) =
µ

2
e−µ|x| (10)

for some positive constant µ. For such a variable, we can derive the variance
σ2

X and entropy h(X) as functions of µ:

σ2
X =

2

µ2
, h(X) = log2

2e

µ
. (11)

Thus the following relationship holds:

2h(X) =
√

2eσX . (12)

Assume that X is quantized by a uniform scalar quantizer with a step size ∆
to the discrete variable X̂. The probability distribution of X̂ is
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Pn , Prob
(
X̂ = n

)
= Prob ((n − 0.5)∆ ≤ X ≤ (n + 0.5)∆)

=

(n+0.5)∆∫

(n−0.5)∆

pX(x)dx =

(n+0.5)∆∫

(n−0.5)∆

µ

2
e−µ|x|dx.

(13)

and hence:

Pn =





1
2
e−µn∆

(
e0.5µ∆ − e−0.5µ∆

)
n > 0

1 − e−0.5µ∆ n = 0

P−n = Pn.

(14)

Defining k , e0.5µ∆ − e−0.5µ∆ and using (14), we can derive the entropy of X̂:

H(X̂) =−
∞∑

n=−∞
Pn log2(Pn) = −P0 log2(P0) − 2

∞∑

n=1

Pn log2(Pn) (15)

=−
(
1 − e−0.5µ∆

)
log2

(
1 − e−0.5µ∆

)
− e−0.5µ∆ (log2 k − 1)

+
µ∆

k
log2(e).

Note that the µ parameter in (15) can be expressed by the standard deviation

of X using (11) as µ =
√

2
σX

.

2.2 DCT coefficients distribution

When examining the coefficients’ distribution of the 2D block DCT, it can
be concluded that the distribution of all the subbands, except for the DC
subband, can be modelled by the Laplacian distribution [9]. Using this model
we can benefit in 2 ways:

(1) An algorithm for the calculation of the quantization step sizes for optimal
rates can be introduced based on the approximate connection [19]:

∆bi = 2hbi−Rbi , (16)

where hbi is the entropy of subband b of the color component i prior
to quantization and ∆bi is its quantization step. The quantization steps
initialization can be chosen according to (16) directly by substituting the
right hand side of (12) for 2h(X), i.e., we get an expression that can be
easily calculated:

(∆bi)0 =
√

2eσbi2
−R∗

bi , (17)
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where (∆bi)0 is the initial quantization step and R∗
bi is the optimal rate of

subband b of color component i. Following the initialization, the optimal
quantization steps can be calculated iteratively using the update rule:

∆new
bi = ∆bi2

−(R∗

bi
−Rbi), (18)

based on (16), where ∆bi and Rbi are the current quantization steps and
rates respectively, and ∆new

bi are the updated steps. This update rule
can be repeated until the optimal rates R∗

bi are sufficiently close, i.e.,
E (|R∗

bi − Rbi|) < ε for some small constant ε. Note that the rates Rbi are
measured by the entropies of the subbands. Those can be calculated as
follows.

(2) The entropies of the quantized DCT coefficients can be approximately
calculated according to (15) without the need to calculate the subband
histograms. We use the Laplacian distribution assumption also for the
DC subband, although its distribution is usually not Laplacian. The use
of the approximated entropies reduces the number of the calculations
required, thus reducing the run time of the algorithm - as discussed in
Subsection 2.4.

To assess the performance of the proposed approach, simulation results of the
new algorithm with estimated rates (entropies) according to (15) are presented
and compared to JPEG.

2.3 Simulations and Comparison

2.3.1 Comparison to JPEG

Similar to the PSNR (Peak signal to Noise Ratio): PSNR = 10log10

(
2552

MSE

)
,

we use the PSPNR (Peak Signal to Perceptible Noise Ratio), defined as

PSPNR = 10 log10

2552

WMSE
, (19)

where WMSE (Weighted Mean Square Error) for each color component, is
calculated as:

WMSE =
B−1∑

b=0

ηbWbGbdb. (20)

Here Wb denotes the visual perception weight of subband b and db is its MSE
distortion. We have taken the WMSE suggested in [19] for JPEG2000, so
that the subbands in (20) are of the Discrete Wavelet Transform (DWT).
We consider 256x256 size images displayed on a screen as 12cm x 12cm size
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PSNR PSPNR

Image New Alg. JPEG New Alg. JPEG CR

Lena 30.030 29.486 39.048 37.192 44.84

Peppers 29.971 28.277 37.818 35.439 33.77

Baboon 30.024 26.306 38.273 36.023 16.62

Fruit 30.024 29.268 39.048 36.974 46.53

Girl 29.987 28.719 38.407 36.871 52.56

House 30.006 28.573 38.788 37.073 54.36

Tree 29.987 28.798 39.210 38.072 14.19

Mean 30.004 28.490 38.656 36.806

Table 1
PSNR and PSPNR results for the DCT-based compression algorithm
with estimated rates (New Alg.) and JPEG at the same compression
ratio (CR).

images and a viewing distance of approximately 50 cm. The PSPNR used
here is the mean PSPNR of the three color components. Simulation results
for several images are summarized in Table 1. It can be seen that the new
algorithm outperforms JPEG by 1.5dB PSNR and 1.85dB PSPNR on average.
These results are not limited just to the compression ratios of Table 1. Fig.
3 shows the algorithm’s mean performance gain for a range of compression
ratios corresponding to the major range of PSNRs.

Visual results for the House and the Tree images are shown in Fig. 4. It
can be seen that JPEG introduces color artifacts in both images. These are
significantly less visible in our new algorithm at the same rate. Furthermore,
quantitatively, there is a gain of 1.25dB PSNR and 1.6dB PSPNR by the new
algorithm for the Tree image. For the House image the gain is even larger:
1.55dB PSNR and 2.1dB PSPNR.

2.3.2 Comparison to the algorithm in [3]

Another comparison is to the algorithm in [3]. The compression results for
several images are displayed in Table 2. It can be seen that the algorithm
proposed in this work always outperforms the algorithm in [3] with a mean
gain of 0.522dB PSNR and 0.278dB PSPNR. The gain for an individual image
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Fig. 3. PSNR and PSPNR gains of the new algorithm (New Alg.) with
estimated rates on JPEG for various values of PSNR.

PSNR PSPNR

Image New Alg. Alg. in [3] New Alg. Alg. in [3] CR

Lena 30.011 29.765 39.038 38.671 45.07

Peppers 29.971 29.770 37.818 37.489 33.77

Baboon 30.024 28.056 38.273 37.859 16.92

Cat 30.019 29.172 40.066 39.603 21.97

Sails 29.990 29.923 39.018 39.012 14.61

Monarch 29.975 29.721 38.221 37.871 27.08

Goldhill 29.999 29.928 40.519 40.499 13.23

Mean 29.998 29.476 38.993 38.715

Table 2
PSNR and PSPNR results for the new algorithm (New Alg.) and the
algorithm in [3] at the same compression ratio (CR).

can be as much as 2dB PSNR as for Baboon.
The new algorithm is superior to the one in [3] also with respect to the exe-
cution times. This is elaborated in Subsection 2.4.
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Fig. 4. The House and the Tree images - from top to bottom: original,
compressed by JPEG and compressed by the new algorithm.
PSNR for the House image: 29.45dB for JPEG and 30.98dB for the new
algorithm. PSPNR: 38.01dB and 40.10dB, respectively, at CR=45.15.
PSNR for the Tree image: 28.73dB (JPEG) and 29.98dB (new algo-
rithm). PSPNR: 37.99 and 39.56dB, respectively, at CR=15.36.
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2.4 Run time of the algorithm

The run-times for the new algorithm, the algorithm in [3] as well as JPEG
are shown in Table 3 for several image sizes. As expected, the use of esti-
mated rates improves the run-time of the compression algorithm, especially
for smaller images (15.7% improvement for 256x256 images, 3.5% improve-
ment for 512x768 images). The new algorithm is also comparable with JPEG
(14% slower for 256x256 images, 6.9% slower for 512x768 images).

Image Size The alg. in [3] New Alg. JPEG

256 × 256 1.53 1.29 1.13

512 × 768 7.73 7.46 6.98

Table 3
Run-times in sec. for the algorithm in [3], the new algorithm and JPEG.

3 Rate Control

Having introduced a DCT-based color compression method that outperforms
the baseline JPEG algorithm, it should be noted that this application does
not target rate control. Since we can derive the expression for the optimal
rates for some given image rate R as in Equation (9) and we can calculate the
quantization tables to achieve these rates, an application for rate control can
be designed. Next we describe such an application, based on the DCT block
transform, aimed to achieve a given rate with performance higher or equal
to JPEG. Although this algorithm employs the DCT as a CCT as well and
designs the quantization tables for optimal rates, it codes the subbands differ-
ently: each subband (DC or AC) is coded independently using the size/value
representation of the baseline JPEG [20]. The sizes are coded using adaptive
arithmetic coding and the values as variable length integer (VLI) codes similar
to JPEG.

For the decoder to be able to reconstruct the sizes, the numbers of appear-
ances (or counts) of each size are sent with the compressed image data to the
decoder. The number of bits for these counts as well as the number of bits for
the quantization tables (adaptively designed for the image) have to be taken
into account. This bits overhead can be considerably reduced, especially at
high compression ratios by sending the quantization steps and counts only for
the active subbands (with optimal rates R∗

bi > 0) in addition to bit vectors
signifying which subbands are active. This requires, however, calculating the
optimal rates as described below.
The stages of the rate control algorithm are:
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(1) Apply the CCT (here DCT) to the RGB color components of a given
image and obtain new color components C1, C2, C3.

(2) Apply the 2D block-DCT to each color component Ci (using block size
of 8 × 8 if comparison to JPEG is of interest).

(3) Calculate the optimal rates corresponding to the given total rate R (us-
ing (9)). Assume here that no bits are sent for the quantization steps
and the counts (of the arithmetic coding) to find the rate for the actual
compressed image data.

(4) Using the optimal rates of the previous stage, find the number of ac-
tive subbands in each color component and calculate the number of bits
needed both for the quantization tables and the counts. Then recalculate
the rate for the actual image data and find the optimal subband rates
accordingly.

(5) Quantize each subband of each color component independently using uni-
form scalar quantizers with quantization steps designed as in Subsection
2.2.

(6) Encode the quantized DCT coefficients in each subband similarly to
JPEG’s coding of the DC subband, but without using delta modulation.
Delta modulation can be used, but for the DC subband only (see below).
Each coefficient is split into size and value representation when the sizes
are coded arithmetically and contain the information of the number of
bits in the coefficient while the following values are coded by VLIs (1’s
complement). For applications where rate control precision is of primary
concern, we allow optional non differential coding of the DC subband of
the maximal energy color component (denoted C1). Such coding requires
more bits, however, it allows to achieve the required total rate more accu-
rately, especially at high compression ratios. The decision whether to code
the DC subband differentially or not is made according to a comparison
between the sum of the real rates Rb1 allocated to the subbands of C1
and the sum of optimal rates R∗

b1. The decision can be made according
to





If
B−1∑
b=0

Rb1 < ε
B−1∑
b=0

R∗
b1 use non differential coding

Else use differential coding
, (21)

where 0 < ε < 1 is a constant close to 1, e.g., 0.98.

The image data bitstream at the end of the algorithm consists of the bit
vectors signifying the active subbands, the quantization tables, the arithmetic
coding counts and the encoded DCT coefficients (in addition to potential head-
ers, etc.). Note that optional down-sampling of some of the color components
(usually C2 and C3) can be performed between Stages 1 and 2.
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3.1 Rate-control Results

When considering, for example, images of size 256x256 and a target compres-
sion ratio (CR) of 30 (or total rate of 0.8bpp), the results of the algorithm are
shown in Table 4. Here the accuracy of the algorithm is measured and a com-
parison of its performance to JPEG is given in the PSNR and PSPNR sense.
The rate-control algorithm succeeds to achieve the desired compression ratio
with a relative absolute error of 1.464% and mean of 29.995. The standard
deviation is 0.524 or 1.747% of the target CR. Its performance is superior to
JPEG with a gain of 0.360 dB PSNR and 1.129 dB PSPNR on average.

Note that all the relative measures are relative to the target CR, i.e., the
relative absolute error for example is the ratio of L1 norm of the error and the
CR value.

3.1.1 Accuracy of the algorithm

When applying the algorithm to the same images for other compression ra-
tios, the results are given graphically in Figs. 5 and 6. It should be noted
that the algorithm is more accurate at medium compression ratios: 20-110
where the mean relative error is approximately 1% or less, the mean relative
absolute error is in the range 1-2% and the relative standard deviation (STD)
is below 2% for compression ratios below 100, and grows up to 2.6% above
it. At high compression ratios (above 110) and at low ratios (below 20) the
accuracy decreases. Note that for each value of target CR the mean relative
error describes the shift of the mean CR relative to the target value (in % of
this value) while the relative STD describes the width of the data distribution
around the mean CR. Finally, the absolute relative error is a measure of the
actual mean error when all errors are absolute values averaged.

The main difficulty at low rates is that there are many active subbands and
since the size/value coding of each subband usually achieves slightly greater
rates than plain entropy coding, the results are that the more subbands are
coded the greater the error in the bit rate. At high rates the number of active
subbands becomes small and therefore the decision how the C1 DC subband is
coded becomes of greater importance: if the DC subband is coded differentially,
the resulting compression will be greater than the target CR since the DC rate
will be smaller than the subband’s (non-differential) entropy. On the other
hand, coding the DC non-differentially results in a greater number of bits
than needed for the DC information and often in a compression ratio that is
too low. If the algorithm’s complexity is of lower priority than the rate-control
accuracy, both options for the DC subband coding can be always tested and
the more precise one chosen. Then the precision at high rates improves as
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Fig. 5. The mean CR for the set of images in Table 4 vs. the target CR.
The solid line describes the target CR, while the points describe the
achieved mean CR and the error bars are of standard deviation (STD)
size.

Fig. 6. Accuracy measures for the rate-control algorithm: mean relative
error (%), mean relative absolute error (%) and relative standard devi-
ation (%).
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Image CR Rel.
Err.(%)

PSNR PSPNR

New
Alg.

JPEG New
Alg.

JPEG

Lena 30.586 1.952 31.921 31.925 40.824 39.950

Peppers 29.785 -0.718 29.982 29.271 37.696 36.515

Baboon 30.860 2.868 24.553 24.462 35.226 33.766

Cat 30.291 0.970 27.052 26.881 37.749 36.662

Sails 29.500 -1.667 26.311 25.595 35.879 33.923

Tulips 29.482 -1.727 25.826 24.987 33.784 32.431

Monarch 29.581 -1.395 28.287 28.228 36.494 36.176

Goldhill 29.876 -0.413 24.716 24.422 36.289 35.487

Mean 29.995 -0.016 27.331 26.971 36.743 35.614

Table 4
Results for the rate-control algorithm on medium size images for target
CR=30. From left to right: The obtained CR, Relative Error, PSNR for
the new algorithm, PSNR for JPEG at the same CR and same columns
for PSPNR.

demonstrated in Table 5 - it is higher in terms of (lower) mean relative absolute
error and also the CRs distribution is narrower in terms of standard deviation.
Note that the original algorithm usually reduces the complexity (in terms of
run-time and storage capacity) by running the differential DC coding and
checking the condition in (21).

We should also note that if the application requires a compression ratio not
less that a given value, as perhaps can be the case in mobile applications,
only differential coding should be used. In any case the algorithm’s results are
comparable to [18] especially at the middle range of compression ratios.
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Original Algorithm Both DC coding options tested

Target
CR

Mean Rel.
Err. (%)

Mean Rel.
Abs. Err.
(%)

Rel.
Std
(%)

Mean Rel.
Err. (%)

Mean Rel.
Abs. Err.
(%)

Rel.
Std
(%)

100 -0.713 2.085 2.483 0.401 1.679 2.149

110 -0.772 2.025 2.663 0.958 1.743 2.191

120 -1.027 2.937 3.665 0.820 2.072 2.410

Table 5
Accuracy measures for the rate-control algorithm at high values of target
CR: original algorithm and with both DC coding options tested.

3.1.2 Performance (PSNR and PSPNR) of the algorithm

Fig. 7 describes the performance gain of the rate-control algorithm vs. JPEG
in the PSNR and PSPNR senses. Since the algorithm is based on the optimal
rates, it indeed outperforms JPEG. In cases of CR = 10 the reconstructed
images for both our algorithm and JPEG are visually identical to the original
one (e.g. when the PSNR > 34dB) and thus of limited interest.

Fig. 7. PSNR and PSPNR differences between the rate-control algorithm
and JPEG vs. target CR. Along the whole range of values checked the
new algorithm outperforms JPEG.
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4 Rate-Control of Video Sequences

Consider a group of frames (GOF) of a video sequence, to be encoded similarly
to the MPEG standard [17]. Here, instead of applying JPEG to the frames
or their prediction errors we would like to use the DCT-based compression
technique of [3]. We assume for simplicity that the GOF structure is: I,P,P,P,...
where I denotes an image coded using intra-frame techniques only and P stands
for an image coded using the inter-frame correlation with a previous image.
The correlation can be exploited using standard motion estimation. Suppose
that the frames are to be coded at a given rate R in bits/sec. We consider
k frames of the GOF and assume that these k images are allocated some
total number of bits denoted by Rk. Denoting by MSEj the MSE of the
reconstruction of frame j, the average MSE of the frames is simply:

MSE =
1

k

k∑

j=1

MSEj =
1

3k

k∑

j=1

3∑

i=1

B−1∑

b=0

ηbGbε
2
i

(
σ

j
bi

)2
e−aR

j

bi

(
(MMT )−1

)

ii
.

(22)

Here we have used (3) for MSEj denoting by
(
σ

j
bi

)2
and R

j
bi the variance and

rate, respectively, of subband b of color component i of frame j. If frame j

is an I-frame, the variances are simply of its DCT subbands. However, if we
consider a P-frame, then the variances are of the DCT subbands of the image
of prediction errors. In any case what is important is that the MSE of the
reconstruction of the frame is only the result of its DCT-based compression
and not the prediction method used (the motion estimation). The prediction

technique affects only the magnitude of the variances
(
σ

j
bi

)2
. Note that M

stands here for the CCT as usual ( for example, the RGB to YUV transform
or the DCT). Substituting ηb = 1

B
and Gb = 1 for the DCT subband transform

and slightly rewriting (22) we have:

MSE =
1

3kB

3∑

i=1

ε2
i

(
(MMT )−1

)

ii

B−1∑

b=0

k∑

j=1

(
σ

j
bi

)2
e−aR

j

bi . (23)

Similarly, the rate constraint 1
k

∑k
j=1

∑3
i=1

∑B−1
b=0 αiηbR

j
bi = Rk for the k frames

can be written as:
1

kB

3∑

i=1

αi

B−1∑

b=0

k∑

j=1

R
j
bi = Rk, (24)

where here again we have used ηb of the DCT transform. Considering (23) and
(24), we conclude that the problem is similar to the case of still images. Assume
for a moment that each color component has kB subbands instead of B, and

that these subbands have variances
(
σ

j
bi

)2
and rates R

j
bi (b ∈ {0, 1, ..., B − 1},

j ∈ {1, 2, ..., k}). Then finding the optimal rates allocation for these subbands
will give us the subband rates allocation for our k frames. Here we can see
the significance of the choice of k. If we take a higher value for k we can
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expect better performance of the rate-control algorithm since we will be able
to allocate the bits budget more flexibly. If, for example, one frame is coded
with a small number of bits, its ’spare’ bits can be allocated to a greater
choice of other frames. However, it leads to a more complicated optimization
problem since there are 3kB subbands to consider. Similarly, a smaller value
for k reduces the order of the optimization problem, however, it also reduces
the flexibility of the bits allocation.
Using the same algorithm of Section 3 produces the results described in the
next subsection.

4.1 Video rate-control results

We consider a CIF (Common Intermediate Format) color video sequence of
352× 288 spatial resolution at the frame rate of 25 frames/sec. We would like
to encode the video at 1.055 Mbit/sec (compression ratio of 55). Original and
reconstructed frames for the video sequence ”Hall Monitor” are presented in
Fig. 8. We consider here a GOF starting at frame 100 of the sequence and
show the first 4 frames in the GOF. The k is chosen to be 5. The rate is
1.073 MBit/sec with an error of 1.73% relative to the desired one. The motion
vectors have used 4.17% of the total bits budget.

5 Summary

With the introduction of a Rate-Distortion model for color image compres-
sion, it has become possible to optimize subband transform coders both in
the preprocessing stage and in the encoding stage itself. The optimization
process leads to the use of the DCT as a color components transform in the
preprocessing stage (in addition to its role in subband coding) and provides
optimal rates allocation for the coding. These rates can be then used to de-
sign optimal quantization steps [12]. We have shown that the quantization
stage can be further optimized by applying a Laplacian model to the distribu-
tion of the DCT coefficients. This model allows for efficient initialization and
faster calculation of the optimal steps by estimating the subband entropies,
thus reducing the run-time of the algorithm compared to the use of real en-
tropies, as well as improving the compression performance in terms of PSNR
and PSPNR. We have also presented an algorithm for optimized image coding
with rate-control. This algorithm can be used to achieve a desired compres-
sion ratio and for controlling the bit-rate or bandwidth of video transmission.
The presented simulations demonstrate that the proposed algorithms outper-
form JPEG, both visually and quantitatively. Our conclusion is that based
on the newly introduced Rate-Distortion model, optimized compression algo-
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Fig. 8. Original and reconstructed frames 100-103 of the Hall Monitor
sequence. PSNR = 35.99dB, 34.23dB, 33.90dB and 33.41dB for frames
100, 101, 102 and 103 respectively.
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rithms can be designed with compression results superior to presently available
methods.
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