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Abstract

The Mean Square Error (MSE) or the Peak Signal to Noise Ratio (PSNR) are com-
mon distortion measures used to assess image quality. Nevertheless, they are usually
chosen due to their simplicity and not their performance as they are not always suit-
able compared to the human observer. In this work we present a Rate-Distortion
approach to color image compression based on subband transforms using perceptual
optimization of the compression quality. This approach is based on minimization of
the Weighted Mean Square Error (WMSE) of the encoded image, which better corre-
sponds to the quality assessment of the human eye. The WMSE can be measured in
the YCbCr color space, for which visual weights are relatively easily derived. Based
on the new approach, new optimized compression algorithms are introduced using
the Discrete Cosine Transform and the Discrete Wavelet Transform. We compare
the new algorithms to presently available algorithms such as JPEG and JPEG2000.
Our conclusion is that the new WMSE optimization approach outperforms presently
available compression systems when a human observer is considered.

Key words: Color image compression, Weighted Mean Square Error, Discrete
Cosine Transform, Discrete Wavelet Transform, Perceptual Rate-Distortion model,
Optimal color components transform, Optimal rates allocation

1 Introduction

Many color image coding algorithms are based on subband transforms for the
compression process. The complexity of such algorithms varies from systems
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based on elementary block transforms like the DCT (Discrete Cosine Trans-
form) [13] used, for example, in JPEG [18] to more complicated algorithms
based on the DWT (Discrete Wavelet Transform), wavelet packets and fil-
ter banks, such as EZW (Embedded Zerotree Wavelet) [16], JPEG2000 [12]
or uniform DFT filter banks [15]. Still it is not always clear that the added
complexity also improves the compression results. The recently introduced
Rate-Distortion (R-D) model for subband transform coders [4] can be used
in such applications to assess the performance of the compression algorithm.
This R-D model, however, approximates the MSE distortion of the compres-
sion results, which is not always well correlated with subjective image quality
as seen by the human eye. More complicated distortion measures can be pro-
posed, such as calculating the MSE distortion between two images after an
intensity transformation and filtering for gray-scale images [10] or a similar
process using a non-linear transformation of the primary color components,
followed by filtering, for a color image [1]. A basic measure that is similar to the
MSE, but can incorporate perceptual weights is the Weighted MSE (WMSE).
This measure assigns a different weight to the MSE of each subband of the
image, thus simulating the varying sensitivity of the Human Visual System
(HVS) to different horizontal and vertical spatial frequencies. As a more real-
istic tool, it can improve the assessment of the model.
The goal of this work is to develop a perceptual Rate-Distortion (R-D) model
of subband transform coders based on the WMSE as the distortion measure.
We demonstrate the efficiency of the new model for subband transform cod-
ing by presenting a new type of compression algorithms based on perceptual
optimization of the pre-processing stage and of the subband rates allocation.

1.1 Objective Rate-Distortion theory of subband transform coders

Consider a general subband transform coder for color images. Typically, the
image samples are first pre-processed, then subband transformed and quan-
tized and finally post-processed losslessly. A detailed description of these stages
is given below.

Pre-processing

Here a CCT (Color Components Transform) is applied to the RGB color
components of the image. We denote the RGB components in vector form as
x = [R G B]T and the new color components as x̃ = [C1 C2 C3]

T . The 3 × 3
size CCT matrix is denoted as M. This stage can be written as:

x̃ = Mx. (1)
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The goal of using the CCT transform is usually to de-correlate the highly
correlated RGB components [6], [9], [14], [20]. The CCT transform is often
followed by level shifting as for example is the case in JPEG2000 [12] so that
the sample range of values becomes symmetric around zero.

Subband trasnforming and quantizing

A subband transform, such as the DCT or the DWT is applied to each color
component. The subband coefficients of each color component are then quan-
tized. An independent uniform scalar quantizer for each subband is used.

Post-processing

The quantized coefficients are encoded losslessly. The goal is to reduce the
number of bits required for the coefficients without loss of information. Tech-
niques such as run-length encoding, zero trees, delta modulation and entropy
coding are used here. This stage has to be adapted to the subband transform
used.
To derive the R-D behavior of the algorithm, first the R-D of a scalar uni-
form quantizer needs to be considered. Assuming that a random signal x with
variance σ2

x is quantized by such a quantizer, its Rate-Distortion behavior has
been approximated by [5], [17]:

d(R) = ε2σ2
x2

−2R, (2)

where ε2 is a constant dependent upon the distribution of x. Then based on (2)
the R-D model of a general monochromatic subband coder with B subbands
can be expressed as:

dSC({Rb}) =
B−1∑

b=0

ηbGbdb(Rb) =
B−1∑

b=0

ηbGbσ
2
bε

2e−aRb . (3)

Here db is the MSE of subband b (b ∈ 0, 1, ..., B − 1), σ2
b is its variance, Gb

is its energy gain [17] and Rb is the rate allocated to it. Also ηb is its sample
rate, i.e., the relative part of the number of coefficients in it from the total
number of samples in the signal. a is a constant equal to 2ln2.
Consider now a color image. The coding algorithm described in the beginning
of this section may be regarded as applying a CCT to the image, followed
by monochromaticly subband coding each of the new color components. The
Rate-Distortion model of this algorithm is [2]:

d ({Rbi},M) =
1

3

3∑

i=1

B−1∑

b=0

ηbGbσ
2
biε

2
i e

−aRbi

(
(MMT )−1

)
ii
, (4)
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where σ2
bi and Rbi have the same meaning as before, but for subband b of color

component i (i ∈ 1, 2, 3). Optimal rates allocation for the subbands can be
found by minimizing the expression of Equation (4) under the rate constraint:

3∑

i=1

αi

B−1∑

b=0

ηbRbi = R (5)

for some total image rate R. Here down-sampling factors αi have been used.
αi denotes how much the number of samples of color component i has been
reduced by down-sampling. For example, if the down-sampling is by a factor
of 2 horizontally and vertically then:

αi =





1 full component

0.25 down-sampled component.

The optimal rates under the rate constraint of (5) as well as non-negativity
constraints are:

Rbi =
R

3∑
j=1

αjξj

+
1

a
ln




ε2iGbσ
2

bi((MMT )−1)
ii

αi

∏3
k=1

(
((MMT )−1)

kk
ε2
k
GMAct

k

αk

)
αkξk

3∑
j=1

αjξj




(b ∈ Acti).

(6)
where Acti denotes the set of non zero (or active) rates in the color component
i, i.e.,

Acti , {b ∈ [0, B − 1] | Rbi > 0} . (7)

Also
ξi ,

∑

b∈Acti

ηb, GMAct
i ,

∏

b∈Acti

(Gbσ
2
bi)

ηb
ξi . (8)

The structure of this work is as follows. In Section 2 the perceptual Rate-
Distortion model is introduced. Section 3 presents new color compression al-
gorithms optimized according to this model based on the DCT subband trans-
form and on the DWT. Simulations of the new algorithms and comparison to
presently available algorithms are provided in this section. Finally, conclusions
and summary are given in Section 4.

2 The Perceptual R-D Model

We assume here that we are given the visual perception weights corresponding
to the subbands of a certain subband transform (SBT) in a color space. Such
a space can be, for example, YCbCr as we have chosen in this work. We now
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wish to derive an expression for the WMSE distortion of a coder based on the
subband transform. The same coder described in Subsection 1.1 is assumed,
so that a CCT is applied to the RGB color components of the image prior
to coding and the actual image data compression is performed in another
color space denoted C1C2C3. We denote as Yb = [yYb yCbb yCrb ]T the vector of
the SBT coefficients at some index in subband b in the YCbCr color space.
Similarly, the vector of subband b coefficients in the C1C2C3 color space is
denoted Ỹb = [yC1

b yC2

b yC3

b ]T . Due to the linearity of the SBT, the following
relationship holds:

Ỹb = M̄Yb ⇒ Yb = M̄−1Ỹb, (9)

where M̄ stands for the CCT matrix from the YCbCr color space to the
C1C2C3 space. If M is the CCT matrix from RGB to C1C2C3 and MYCbCr

is the RGB to YCbCr matrix, then:

M̄ = M · M−1
YCbCr. (10)

Since the SBT coefficients are lossy encoded, errors are introduced between
the reconstructed coefficients Yrec

b in the YCbCr color space and the original
ones. The error covariance matrix for the subband b in the YCbCr domain is:

Erb = E
[
(Yb − Yrec

b )(Yb − Yrec
b )T

]
, (11)

where E() denotes statistic mean. Similarly in the C1C2C3 domain:

Ẽrb = E
[
(Ỹb − Ỹrec

b )(Ỹb − Ỹrec
b )T

]
, (12)

and using (9) we can express Ẽrb by Erb as:

Erb = M̄−1ẼrbM̄
−T . (13)

The MSE distortions dbi of the YCbCr color components in subband b are the
diagonal elements of Erb and thus:

dbi = ni
T Ẽrbni, (14)

where ni is the ith row of M̄−1 in column form. In a similar fashion, the
diagonal elements of Ẽrb can be recognized as the MSE distortions d̃bi of the
C1, C2, C3 color components, given by (2) and slightly rewritten to become:

d̃bi = ε2
i σ̃

2
bie

−aRbi , (15)

where a = 2ln2 and σ̃2
bi, i ∈ {1, 2, 3} denotes the variance of subband b of

color component Ci. Note that we continue here with the consistent notation
of a tilde for the variables related to the C1C2C3 color space. Assuming that
the quantization errors of the three color components in each subband in the
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C1C2C3 domain are uncorrelated, Ẽrb becomes a diagonal matrix and (14)
becomes

dbi =
3∑

k=1

ni
2
kd̃bk =

3∑

k=1

(
M̄−1

)2

ik
ε2
kσ̃

2
bke

−aRbk (16)

once (15) is substituted for d̃bk. Now if, for the sake of convenience, we denote
the YCbCr color components at each pixel as a vector xYCbCr = [Y Cb Cr]T ,
then the WMSE of the ith color component (xYCbCr)i is:

WMSE
(
(xYCbCr)i

)
=

B−1∑

b=0

ηbGbwbidbi. (17)

As can be seen, this expression incorporates the energy gains of the sub-
bands Gb as well as their sample rates ηb. Also the visual weights wbi are part
of the expression, providing varying significance to different subbands of the
same color component as well as between color components. Defining the total
WMSE as the average WMSE of the YCbCr color components, we get:

WMSE =
1

3

3∑

i=1

WMSE
(
(xYCbCr)i

)
=

1

3

3∑

i=1

B−1∑

b=0

ηbGbwbidbi (18)

and after substituting (16) for dbi the expression becomes:

WMSE =
1

3

3∑

i=1

B−1∑

b=0

ηbGbwbi

3∑

k=1

(
M̄−1

)2

ik
ε2
kσ̃

2
bke

−aRbk

=
1

3

B−1∑

b=0

ηbGb

3∑

k=1

ε2
kσ̃

2
bke

−aRbk

3∑

i=1

wbi
(
M̄−1

)2

ik
.

(19)

To simplify (19) we denote:

ψbk ,

3∑

i=1

wbi
(
M̄−1

)2

ik
, (20)

so that the WMSE expression becomes:

WMSE =
1

3

B−1∑

b=0

3∑

k=1

ηbGbσ̃
2
bkε

2
ke

−aRbkψbk. (21)

Clearly, if the visual weights wbi are all equal to 1, the WMSE expression of
(21) should become the expression for the MSE in the YCbCr domain. This
expression is given exactly by (4) with the difference that M there is to be
replaced by M̄ in our case. From the comparison of equations (21) and (4) we

conclude that ψbk =
(
(M̄M̄

T
)−1

)
kk

in that case, which means according to

(20) that
3∑

i=1

(
M̄−1

)2

ik
=
(
(M̄M̄

T
)−1

)
kk
. (22)

6



A straightforward check proves that this is indeed the case.

2.1 De-correlation of the quantization errors

In the derivation of the WMSE expression of (21) we have assumed that the
quantization errors of the C1, C2, C3 color components are uncorrelated in
each subband. It is of interest to note that the assumption in the derivation
of the MSE expression of (4) was the lack of correlation of the quantization
errors in the image domain [2], i.e. that Ci − Crec

i and Cj − Crec
j have zero

correlation for i, j ∈ {1, 2, 3}, i 6= j. Note that Crec
i denotes here the recon-

structed Ci component. The question that rises is whether the assumption
of zero correlation in each subband means also zero correlation in the image
domain.
Using the vector space interpretation of subband transforms [17], we can write
for the color component Ci:

Ci =
B−1∑

b=0

∑

l∈Z

yCi

b [l]s
(l)
b , Crec

i =
B−1∑

b=0

∑

l∈Z

ŷCi

b [l]s
(l)
b . (23)

Ci here is the color component in vector form after lexicographic ordering.
s
(l)
b are the SBT synthesis vectors. Also the sum on l is on all the coefficient

indices in the subband, yCi

b [l] denotes the subband b coefficient of Ci at index
l and ŷCi

b [l] is the same coefficient after quantization and reconstruction. Now

consider the expression E
[

1
N

〈
Ci − Crec

i ,Cj − Crec
j

〉]
for i 6= j, where N is

the number of the image pixels. Using Equation (23), it can be written as:

E

[
1

N

〈
Ci − Crec

i ,Cj − Crec
j

〉]

=
1

N

B−1∑

b=0

B−1∑

p=0

∑

l∈Z

∑

m∈Z

E
(
δyCi

b [l]δyCj
p [m]

) 〈
s
(l)
b , s

(m)
p

〉
,

(24)

where δyCi

b [l] , yCi

b [l] − ŷCi

b [l]. Assuming zero correlation of the quantization
errors of the different color components in each subband and between subbands
means that E

(
δyCi

b [l]δy
Cj
p [m]

)
= 0, hence E

[
1
N

〈
Ci − Crec

i ,Cj − Crec
j

〉]
= 0

immediately follows according to (24). But this means exactly zero correlation
of the quantization errors in image domain. Thus the derivation of the WMSE
expression of (21) is once again consistent with the derivation of the MSE
expression of (4).
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2.2 Basic optimization using the WMSE model

After deriving the WMSE expression, the natural next step is to use it to
find the optimal rates and optimal CCT in the WMSE sense. First we wish to
minimize the WMSE of (21), subject to the rate constraint

∑3
i=1

∑B−1
b=0 ηbRbi =

R, resulting in the following Lagrangian (λ is the Lagrange multiplier):

L
(
{Rbi}, M̄, λ

)
=

1

3

B−1∑

b=0

3∑

k=1

ηbGbσ̃
2
bkε

2
ke

−aRbkψbk (25)

+λ

(
3∑

i=1

B−1∑

b=0

ηbRbi −R

)
,

which is minimized by the optimal rates given by:

Rbi =
R

3
+

1

a
ln


 Gbσ̃

2
biε

2
iψbi

∏3
k=1 (GMkε

2
kΨk)

1

3


 . (26)

Here

GMk ,

B−1∏

b=0

(
Gbσ̃

2
bk

)ηb

and Ψk ,

B−1∏

b=0

(ψbk)
ηb . (27)

Note that no constraints for non-negativity of the rates are used here, which
means that high rates R are assumed. As for the optimal CCT matrix M̄: it
can be found by minimizing the target function f(M̄), that is actually the
denominator of the ln() in (26) after some straightforward manipulations:

f(M̄) =
3∏

k=1

(GMkΨk) =
3∏

k=1

B−1∏

b=0

(
Gbσ̃

2
bkψbk

)ηb

. (28)

We should remind here that ψbk is a function of M̄ as given in (20). Also the
variances σ̃2

bk depend on M̄, or more specifically on M. These variances are the
diagonal elements of the subband b covariance matrix in the C1C2C3 image
domain:

Λ̃b , E

[(
Ỹb − µ̃Yb

) (
Ỹb − µ̃Yb

)T ]
µ̃Yb

, E
[
Ỹb

]
, (29)

and can also be expressed using the M matrix and the subband b covariance
matrix in the RGB image domain:

Λb , E

[(
YRGB

b − µRGB
Yb

) (
YRGB

b − µRGB
Yb

)T ]
µRGB

Yb
, E

[
YRGB

b

]
(30)

according to:

σ̃2
bk = mk

TΛbmk. (31)
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Here YRGB
b = [yRb yGb yBb ]T is defined similarly to the definitions in the begin-

ning of the section of Yb. Also mk denotes the kth row of the M matrix in
vector form. Thus the target function f(M̄) can be rewritten as:

f(M̄) =
3∏

k=1

B−1∏

b=0

(
(mk

TΛbmk)Gbψbk
)ηb

, ψbk =
3∑

i=1

wbi
(
M̄−1

)2

ik
. (32)

2.3 Optimal rates with down-sampling

When considering potential down-sampling of some of the color components,
the rate constraint becomes (5) and the Lagrangian that incorporates this
constraint, as well as constraints for the non-negativity of the subband rates,
is:

L ({Rbi},M, λ, {µbi}) =
1

3

B−1∑

b=0

3∑

k=1

ηbGbσ̃
2
bkε

2
ke

−aRbkψbk (33)

+λ

(
3∑

i=1

αi

B−1∑

b=0

ηbRbi −R

)
−

3∑

i=1

B−1∑

b=0

µbiRbi,

where µbi are the Lagrange multipliers for the new constraints. The rates that
minimize (33) are:

Rbi =
R

3∑
j=1

αjξj

+
1

a
ln




ε2iGbσ
2

bi
ψbk

αi

∏3
k=1

(
GMAct

k
ε2
k
ΨAct

k

αk

)
αkξk
3∑

j=1

αjξj




(b ∈ Acti). (34)

Actk here is defined in (7) while GMAct
k and ξk are as in (8). As for ΨAct

k , it is
given by:

ΨAct
k ,

∏

b∈Actk

(ψbk)
ηb
ξk . (35)

3 Perceptually Optimized Compression

In this section we present a general approach to color image compression us-
ing a subband transform with perceptual optimization of the CCT and of the
subband rates allocation. This approach consists of the stages described in
the beginning of Section 1.1. The differences here is that in the pre-processing
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stage, the perceptually optimal CCT transform is applied to the color compo-
nents and in the quantization stage the perceptually optimal rates allocation
is used. We demonstrate this approach both for the DCT in Subsection 3.1
and the DWT in Subsection 3.2. Note that a probability distribution model
can be used for the SBT coefficients to improve the performance of the algo-
rithms with respect to run-time and compression quality [3]. For example, the
Laplacian probability model can be assumed for DCT coefficients [8].

3.1 DCT-based compression algorithm

Since the DCT is a subband transform, the Rate-Distortion theory of Section
2 can be applied to it. To find the DCT visual weights we use the HVS CSF
(Contrast Sensitivity Function) curves for the YCbCr color space that can
be found, for example, in [17]. To convert the cpd (cycle per degree) units of
these graphs to spatial frequency units for the DCT, the equations proposed
in [19] can be used. We consider, for example, 256 × 256 images displayed as
64mm× 64mm on a display with dot pitch of 0.25mm. The viewing distance
is assumed to be four times the image height [11], i.e., in this example 25cm.
Similarly we can consider 512× 512 images displayed as 128mm× 128mm at
a viewing distance of 50cm.
The stages of the proposed algorithm are as follows:

(1) Find the optimal CCT M by minimizing (32).
(2) Apply the CCT M to the RGB color components of the image to receive

the new color components C1, C2, C3.
(3) Apply the DCT block transform to each color component Ci, i ∈ {1, 2, 3}.
(4) Calculate the optimal rates according to (34) substituting there the used

CCT matrix and the variances of the DCT subbands. To find the active
subbands, the algorithm presented in [4] can be used.

(5) Quantize the DCT coefficients using a uniform scalar quantizer in each
subband. The (optimal) quantization steps are found using an iterative
algorithm [4].

(6) Use post-quantization coding similar to the one used in JPEG. Adaptive
Huffman coding is employed and the codes are sent with the image data.
This stage is lossless and does not affect the image distortion.

It is of interest to compare the performance of this algorithm to the other
DCT-based compression algorithms, such as the MSE optimized algorithm
proposed in [4] and JPEG. A comparison for several images is given in Table
1. We consider here the above algorithm with WMSE R-D optimization of the
rates allocation and CCT, as well as another version that uses optimal rates,
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but in the YCbCr color space. The PSPNR measure used here is:

PSPNR , 10log10
2552

WMSE
, (36)

where WMSE for each color component is calculated in the DWT domain
in the YCbCr color space according to the visual weights suggested in [17].
Then the average PSPNR on the 3 color components is taken. Based on our
experience and results, this is a good measure of subjective image quality.
Note that each image in the table was compressed at the same compression
rate (given in the last column from the left) for each of the algorithms, but
the rate is not the same for different images. The reason is that the the rate
was chosen to achieve the same objective performance (PSNR) for the first
algorithm (from the left) to allow meaningful comparison of average algorithm
performances. See also Table 2 below.
It can be concluded from the table that the WMSE optimized algorithm with
the optimal CCT achieves the highest PSPNR, which is 1.8dB higher on aver-
age than the PSPNR of the MSE optimized algorithm and 3.5dB above JPEG.
The use of the optimal CCT in WMSE sense increases the performance by
almost 1dB (0.8dB) on average when perceptually optimal rates are employed.
Another comparison of interest is of the standard or objective distortions of
the algorithm, i.e., the PSNR as presented in Table 2. As expected, the MSE
optimized algorithm is superior here, but what is perhaps less intuitive is the
fact that the use of the optimal CCT slightly decreases the PSNR, indicating
that PSNR and PSPNR are different measures. As can be seen in the examples
of Figs. 1 - 2 below, the human observer judgement is closely related to the
PSPNR, not the PSNR. Despite this both WMSE algorithms have MSE per-
formance superior to JPEG with a gain of 1.1dB in the PSNR without using
the optimal CCT and slightly less (1dB) with the optimal CCT. We conclude
this section by presenting a visual comparison of the algorithms as can be
seen in Fig. 1 for the Lena image and in Fig. 2 for the Baboon image. It can
be seen that the WMSE algorithm provides the best results for both images
visually, while the results of the MSE algorithm are slightly less pleasing to
the eye. Yet both algorithms are superior to JPEG.

3.2 DWT-based compression algorithm

When the DWT is considered, there are quite a few options for the wavelet
filter bank to be used for the decomposition. We have chosen the Daubechies
9/7 filter bank, but obviously other choices can be considered as well. No tiling
[12] is used. The choice of the visual weights is according to [17]. The stages
of the proposed algorithm are:

(1) Find the optimal CCT M by minimizing (32).
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PSPNR

Image WMSE
Alg. in the

YCbCr
domain

WMSE
Alg. in the

optimal
domain

MSE
Alg.

JPEG Rate
[bpp]

Lena 39.4 40.6 38.9 37.6 0.76

Peppers 39.6 39.6 38.1 36.6 0.81

Baboon 42.0 42.5 39.2 36.1 1.76

Cat 41.3 43.1 41.3 39.9 1.30

Landscape 42.5 42.5 40.5 38.0 1.85

House 39.8 40.3 39.2 38.1 0.54

Jelly
Beans

38.5 38.6 38.3 37.5 0.47

Fruits 41.0 42.3 40.4 38.9 0.71

Sails 41.0 42.9 39.7 37.6 1.84

Monarch 39.8 40.2 38.7 37.5 1.03

Goldhill 42.9 43.4 41.9 40.6 2.17

Mean 40.7 41.5 39.7 38.0

Table 1
Perceptually-based results (PSPNR) for (from left to right): The DCT-based WMSE
optimized algorithm in the YCbCr domain; The same algorithm with optimal CCT;
The MSE optimized algorithm; JPEG. The compression rate for each image is shown
in the right column.
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PSNR

Image WMSE
Alg. in the

YCbCr
domain

WMSE
Alg. in the

optimal
domain

MSE
Alg.

JPEG Rate
[bpp]

Lena 30.0 30.5 30.7 29.7 0.76

Peppers 30.0 30.1 30.5 29.3 0.81

Baboon 30.0 29.0 30.5 26.5 1.76

Cat 30.0 29.6 31.3 29.5 1.30

Landscape 30.0 30.1 30.3 25.9 1.85

House 30.0 30.2 30.3 29.5 0.54

Jelly
Beans

30.0 30.3 30.6 29.7 0.47

Fruits 30.0 29.8 30.6 30.6 0.71

Sails 30.0 29.7 30.6 28.9 1.84

Monarch 30.0 29.6 30.6 29.4 1.03

Goldhill 30.0 30.2 31.7 29.2 2.17

Mean 30.0 29.9 30.7 28.9

Table 2
Same as Table 1, but for PSNR instead of PSNR. Note that optimization of PSPNR,
as induced by the human observer, does not necessarily mean optimization of the
arbitrarily used PSNR (see text).
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Fig. 1. Compression results for Lena at 0.72 bpp. Original image (top left); Im-
age compressed by the WMSE optimized algorithm (top right, PSPNR=40.4dB);
Image compressed by JPEG (bottom left, PSPNR=37.7dB); Image compressed by
the MSE optimized algorithm (bottom right, PSPNR=39.3dB). As expected, the
WMSE algorithm outperforms the other methods, especially in the marked areas.

(2) Apply the CCT M to the RGB color components of the image to receive
the new color components C1, C2, C3.

(3) Apply the DWT tree decomposition up to the required depth of the tree
(3, 4, 5 or higher according to image size) to each color component Ci,
i ∈ {1, 2, 3}.

(4) Calculate the optimal rates according to (34) substituting there the used
CCT matrix and the variances, sample rates and energy gains of the
DWT subbands. The determination of the active subbands is the same
as for the DCT-based algorithm of Section 3.1.

(5) Quantize the DWT coefficients by a uniform quantizer with a central
dead-zone in each subband similar to the one used in JPEG2000 Part I
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Fig. 2. Compression results for the Baboon (zoomed in) at 0.88 bpp. Original im-
age (top left); Image compressed by the WMSE optimized algorithm (top right,
PSPNR=36.9dB); Image compressed by JPEG (bottom left, PSPNR=33.6dB); Im-
age compressed by the MSE optimized algorithm (bottom right, PSPNR=35.6dB).
Here again, the WMSE algorithm outperforms the other methods.

[7]. Use optimal quantization steps.
(6) Use the post-quantization coding of the EZW algorithm [16] on the quan-

tized subband coefficients. This stage is lossless and includes bit plane
coding using zero trees. The bit plane coding is split into two passes
(dominant and subordinate) and a separate arithmetic coder is employed
for each pass.

It is interesting to compare the proposed algorithm to JPEG2000. We have
considered the JPEG2000 implementation using the JasPer software package
[21] and another version of the implementation with fixed visual weighting
at subband level using the CSF weights of [17]. The visual results for the
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Lena image can be seen in Fig. 3. The PSNR results here are 29.5dB for
the proposed WMSE optimized algorithm, 28.6dB for JPEG2000 (original
JasPer implementation) and 28.5dB for JPEG2000 with CSF weights. We
conclude that the use of CSF weights, that affects the tier-2 coding stage
of the JPEG2000 algorithm, decreases the PSNR, but slightly improves the
visual performance. Also the proposed algorithm produces an image that is
much more pleasing to the eye than JPEG2000. Similar results can be seen in
the comparison of the proposed algorithm and JPEG2000 for other example
images in Figs. 4, 5 and 6. In Fig. 4 the loss of spatial details at high frequencies
in the Landscape and House images as well as the introduction of false contours
in the Jelly Beans image should be noted for JPEG2000. These effects can
be seen in the marked regions. In Fig. 5 once again the superiority of the
WMSE optimized algorithm on JPEG2000 can be seen in regions of high
frequency details as demonstrated by the Fruits and Cat images. For example,
the details of the apple texture in the Fruits image and of the fur and mustache
textures in the Cat image are lost. In the case of the Peppers image, the
compression result of JPEG2000 is less pleasing to the eye due to the color
artifacts introduced. Fig. 6 further demonstrates the loss of spatial details
in the case of JPEG2000 compression of the Sails image, the blurring of the
contours in the Monarch image and both effects in the Goldhill image (see the
top marked area for the blurred contour effect and, for example, the bottom
left marked area for the loss of spatial details). Furthermore, color artifacts
are introduced by JPEG2000 in the Goldhill image as indicated, for instance,
in the marked area in the center of the image.
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Fig. 3. Compression results for Lena at 0.52 bpp. Original image (top
left); Image compressed by the DWT-based WMSE optimized algorithm
(top right, PSPNR=19.7dB); Image compressed by JPEG2000 (bottom left,
PSPNR=19.1dB); Image compressed by JPEG2000 with CSF weights (bottom
right, PSPNR=19.2dB). Also here, the WMSE algorithm is superior to the rest.
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Fig. 4. Landscape, House and Jelly Beans images - from left to right: original, com-
pressed by the WMSE Algorithm (WMSE Alg.) and compressed by JPEG2000.
PSPNR for the Landscape image: 17.1dB (WMSE Alg.) and 15.7dB (JPEG2000).
PSNR: 28.7dB (WMSE Alg.) and 25.3dB (JPEG2000) at 0.97bpp.
PSPNR for the House image: 19.4dB (WMSE Alg.) and 19.0dB (JPEG2000).
PSNR: 31.2dB (WMSE Alg.) and 33.1dB (JPEG2000) at 0.68bpp.
PSPNR for the Jelly Beans image: 18.8dB (WMSE Alg.) and 18.2dB (JPEG2000).
PSNR: 32.3dB (WMSE Alg.) and 32.1dB (JPEG2000) at 0.48bpp.
In the only case where the PSNR of JPEG2000 is higher than the new algorithm
(House), the PSPNR result supports the fact that visually the new algorithm pro-
vides superior results.
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Fig. 5. Fruits, Cat and Peppers images - from left to right: original, compressed by
the WMSE Algorithm (WMSE Alg.) and compressed by JPEG2000.
PSPNR for the Fruits image: 22.2dB (WMSE Alg.) and 21.1dB (JPEG2000).
PSNR: 30.0dB (WMSE Alg.) and 29.0dB (JPEG2000) at 1.34bpp.
PSPNR for the Cat image: 17.0dB (WMSE Alg.) and 16.2dB (JPEG2000).
PSNR: 28.9dB (WMSE Alg.) and 26.9dB (JPEG2000) at 0.63bpp.
PSPNR for the Peppers image: 20.3dB (WMSE Alg.) and 19.3dB (JPEG2000).
PSNR: 30.8dB (WMSE Alg.) and 30.7dB (JPEG2000) at 0.86bpp.
As can be seen, PSNR and PSPNR results are superior for the new algorithm
compared to JPEG2000, as can be also observed visually - examples are indicated
in the marked areas.
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Fig. 6. Sails (zoomed in), Monarch (zoomed in) and Goldhill images - from left to
right: original, compressed by the WMSE Algorithm (WMSE Alg.) and compressed
by JPEG2000.
PSPNR for the Sails image: 19.2dB (WMSE Alg.) and 18.0dB (JPEG2000).
PSNR: 28.9dB (WMSE Alg.) and 26.6dB (JPEG2000) at 0.70bpp.
PSPNR for the Monarch image: 19.9dB (WMSE Alg.) and 19.6dB (JPEG2000).
PSNR: 29.0dB (WMSE Alg.) and 28.8dB (JPEG2000) at 0.56bpp.
PSPNR for the Goldhill image: 17.6dB (WMSE Alg.) and 16.6dB (JPEG2000).
PSNR: 27.0dB (WMSE Alg.) and 24.5dB (JPEG2000) at 0.59bpp.
Once again, the PSNR and PSPNR results are superior for the new algorithm
compared to JPEG2000 (see examples indicated in the marked areas).
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4 Summary

A perceptually-based model for the Rate-Distortion function of color subband
coders has been introduced. The new model approximates the WMSE distor-
tion of an image in a given color space, such as YCbCr. This distortion is then
minimized to achieve perceptual optimization of the compression. When the
weights in the WMSE calculation are taken based on the CSF curves of the
human visual system, better correspondence to image quality assessment by
the human eye is achieved.
Based on the Rate-Distortion model, new algorithms have been introduced
consisting of a pre-processing stage using a CCT, followed by a subband trans-
form, quantization stage, and lossless entropy encoding. The algorithms are
optimized with regard to the color component transform in the pre-processing
stage of the compression as well as the quantization tables used in the cod-
ing stage, both with respect to WMSE. The proposed DCT-based algorithm
outperforms both JPEG and the corresponding MSE optimized algorithm.
The DWT-based algorithm achieves higher compression ratios for the same
image quality than DCT-based techniques. We demonstrate in this work that
even when a relatively basic algorithm is used in the post-processing stage
(introduced for EZW), superior results are obtained by the proposed algo-
rithm when compared to other DWT-based algorithms, such as JPEG2000.
This holds even if the same WMSE distortion is used in both JPEG2000
and the proposed algorithm. Our conclusion is that based on the new percep-
tual Rate-Distortion model, optimized compression algorithms can be designed
with compression results superior to presently available techniques.
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