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Abstract

We consider a wireless collision channel, shared by a finite number of users who

transmit to a common base station. Users are self-optimizing, and each wishes to

minimize its average transmission rate (or power investment), subject to minimum-

throughput demand. The channel quality between each user and the base station is

time-varying, and partially observed by the user in the form of channel state infor-

mation (CSI) signals. We assume that each user can transmit at a fixed power level

and that its transmission decision at each time slot is stationary in the sense that

it can depend only on the current CSI. We are interested in properties of the Nash

equilibrium of the resulting game between users.

We define the feasible region of user’s throughput demands, and show that when

the demands are within this region, there exist exactly two Nash equilibrium points,

with one strictly better than the other (in terms of average power) for all users. We

further address the performance benefits of improved CSI, and show that if even a

single user obtains better CSI, the average power of all users is reduced. We then

provide some lower bounds on the channel capacity that can be obtained, both in the

symmetric and non-symmetric case. Finally, we show that a simple greedy mechanism

converges to the best equilibrium point without requiring any coordination between

the users.
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1 Introduction

1.1 Background and Motivation

The emerging use of wireless technologies (such as WIFI and WIMAX) for data commu-

nication has brought to focus novel system characteristics which are of less importance in

wireline platforms. Power control and the effect of mobility on network performance are

good examples of topics which are prominent in the wireless area. An additional distinc-

tive feature of wireless communications is the possible time variation in the channel quality

between the sender and the receiver, an effect known as channel fading [1].

As wireless networks grew larger, it became evident that centralized control would

be impractical for coordinating all elements of the network, and in particular end-user

transmissions. The celebrated Aloha protocol was designed at the early 70’s as a distributed

mechanism which can allow efficient media sharing. This protocol and its variants, such as

CSMA-CD and tree-algorithms [2], are cooperative in the sense that each user is committed

to perform his part of the protocol. Modern wireless network protocols are often based on

Aloha-related concepts (for example, the 802.11 standards [3]). The design of such protocols

raises novel challenges and difficulties, as the wireless arena becomes more involved.

An additional consideration is the possibly selfish behavior of users, who can bias their

transmission decisions to accommodate their own best interest. Such behavior is to be ex-

pected in wireless networks, considering the dynamic and ad-hoc nature of such networks,

and the scarce resources of mobile terminals. In many cases, an individual user can mo-

mentarily improve its Quality of Service (QoS) metrics, such as delay and throughput, by

accessing the shared channel more frequently. Aggressiveness of even a single user may lead

to a chain reaction, resulting in possible throughput collapse. Significant research has been

recently dedicated to analyzing wireless random access networks shared by self-interested

agents, applying non-cooperative game theoretic tools for the analysis [4, 5, 6, 7].

Our work considers a shared uplink in the form of a collision channel, where a user’s

transmission can be successful only if no other user attempts transmission simultaneously.

A basic assumption of our user model is that each user has some throughput requirement,

which it wishes to sustain with a minimal power investment. The required throughput of

each user may be dictated by its application (such as video or voice which may require

fixed bandwidth), or mandated by the system. A distinctive feature of our model is that

the channel quality between each user and the base station is stochastically varying. For
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example, the channel quality may evolve as a block fading process [1] with a general un-

derlying state distribution (such as Rayleigh, Rice, and Nakagami-m, see [1]). A user may

base its transmission decision upon available indications on the channel state, known as

channel state information (CSI). This decision is selfishly made by the individual without

any coordination with other users, giving rise to a non-cooperative game. Our focus in this

paper is on stationary transmission strategies, in which the decision whether to transmit or

not can depend (only) on the current CSI signal. Non-stationary strategies are naturally

harder to analyze, and moreover, their advantage over stationary strategies is not clear in

large, distributed and selfish environments1.

The technological relevance for our work lies, for example, in WLAN systems, where

underlying network users have diverse (application-dependent) throughput requirements.

The leading standard, namely the 802.11x [3], employs a random access protocol, whose

principles are based on the original Aloha. Interestingly, on-going IEEE standardization

activity (the 802.11n standard) focuses on the incorporation of CSI for better network

utilization. This last fact further motivates to study the use of CSI in distributed, self-

optimizing user environments.

1.2 Related Work

Exploiting channel state information for increasing the network’s capacity has been an on-

going research topic within the information theory community (see [1] for a survey). Recent

research (see [8, 9] and references therein) is dedicated to uplink decentralized approaches,

in which each station’s transmission decision can be based on private CSI only. Nodes are

assumed to operate in a cooperative manner, thus willing to accept a unified throughput-

maximizing transmission policy.

Game theoretic tools have been widely applied to analyze selfish behavior in communi-

cation networks (see [10] for a survey). Recently, some papers have considered Aloha-like

random access networks from a non-cooperative perspective [6, 5, 4, 11, 7]. Of specific

relevance to our work is a paper by Jin and Kesidis [6], which considers a shared collision

channel with users who have fixed throughput demands. Users dynamically adapt their

transmission rates in order to obtain their required demands. Our work provides, as a spe-

1Accordingly, our study centers on equilibrium points that are obtained in stationary strategies. We

note however that the Nash equilibrium in stationary strategies remains an equilibrium point even within

the larger class of general strategies.
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cial case, a comprehensive analysis of their model, and further extends it by incorporating

channel state information as affecting the transmission policy.

Our user model that incorporates both channel-aware and self-interested mobiles is

quite novel. A related model was considered in [11, 12], where users with long term power

constraints determine the transmission power for given CSI to maximize their individual

throughput. The reception rules which are considered are either single packet “capture”

[11] or multi-reception [12]. These papers are mainly concerned with the existence of a

Nash equilibrium point and some basic structural properties thereof.

1.3 Contribution and Paper Organization

This paper presents a comprehensive study of the non-cooperative game between the

channel-aware, self-interested network users. The main contributions are summarized be-

low.

• We provide a model for an uplink collision channel that incorporates stochastic channel

variation and CSI, with which the interaction of selfish users may be studied.

• Our equilibrium analysis reveals that when the throughput demands are within the

network capacity, there exist exactly two Nash equilibrium points in the resulting game.

• We show that one equilibrium is strictly better than the other in terms of power

investment for all users. We further show that the performance gap (in terms of the total

power investment) between the equilibrium points is potentially unbounded.

• We investigate the advantage of higher quality CSI and show that all users benefit

from the ability of even a single user to obtain better CSI.

• A simple lower bound on the total channel throughput (or capacity) is provided. We

relate this bound to the well-known result for the capacity of an Aloha network (1/e).

• We describe a fully distributed mechanism which converges to the better equilibrium

point. The suggested mechanism is natural in the sense that it relies on the user’s best

response to given network conditions.

We emphasize that all our results are valid under general assumptions on the channel

state distribution and CSI signals. We also note that our game model is related (but not

identical) to S-modular games [13, 14]. However, the results we obtain here are stronger

than these implied by the general theory.
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The structure of the paper is as follows. We first present the general model (Section 2),

and identify basic properties related to stationary transmission strategies. A detailed equi-

librium analysis is provided in Section 3. The performance benefits of CSI are highlighted

in Section 4. Section 5 focuses on the achievable network capacity. In Section 6 we present

a mechanism which converges to the better equilibrium. We discuss several aspects of our

results in Section 7. Conclusion and further research direction are drawn in Section 82.

2 The Model and Preliminaries

We consider a wireless network, shared by a finite set of mobile users I = {1, . . . , n} who

transmit at a fixed power level to a common base station over a shared collision channel.

Time is slotted, so that each transmission attempt takes place within slot boundaries

that are common to all. A transmission can be successful only if no other user attempts

transmission simultaneously. Thus, at each time slot, at most one user can successfully

transmit to the base station. To further specify our model, we start with a description of

the channel between each user and the base station (Section 2.1), ignoring the possibility of

collisions. In Section 2.2, we formalize the user objective and formulate the non-cooperative

game which arises in a multi-user shared network.

2.1 The Single-User Channel

Our model for the channel between each user and the base station is characterized by two

basic quantities.

a. Channel state information. At the beginning of each time slot k, every user i obtains

a channel state information (CSI) signal ζi,k ∈ Zi ⊂ R
+, which provides an indication

(possibly partial) of the quality of the current channel between the user and the base station

(a larger number corresponds to a better channel quality). We assume that each set Zi of

possible CSI signals for user i is finite3 and denote its elements by {zi1, zi2, . . . , zixi
}, with

zi1 < zi2 < · · · < zixi
.

b. Expected data rate. We denote by Ri(zi) > 0 the expected data rate (say, in bits

2A preliminary version of our work, which focuses on a simplified model with no CSI, was presented at

the Net-Coop’07 workshop, Avignon [15].
3This is assumed for convenience only. Note that the channel quality may still take continuous value,

which the user reasonably classifies into a finite number of information states.
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per second) that user i can sustain at any given slot as a function of the current CSI signal

zi ∈ Zi. We assume that the function Ri(zi) strictly increases in zi.

Throughout this paper we make the following assumption:

Assumption 1 (i) Zi = {ζi,k}
∞
k=1 is a sequence of independent and identically distributed

(i.i.d.) random variables; the probability of observing a particular CSI signal zi ∈ Zi in

any given slot is denoted by Pi(zi) > 0 (signals with zero probability are excluded from the

set Zi). (ii) The sequences Zi and Zj are independent for i 6= j.

The above model may be used to capture the following network scenario. The quality (or

state) of the channel between user i and the base station may vary over time. Let wi denote

an actual channel state for user i at the beginning of some slot (time indexes are omitted

here for simplicity). Instead of the exact channel state, user i observes a CSI signal zi,

which is some (possibly noisy) function of wi. As already noted, larger zi’s indicate better

channel conditions. After observing the CSI at the beginning of a slot, user i may respond

by adjusting its coding scheme in order to maximize its data throughput on that slot.

The expected data rate Ri(zi) thus takes into account the actual channel state distribution

(conditioned on zi), including possible variation within the slot duration, as well as the

coding scheme used by the user. Specifically, let R̃i(wi, zi) be the expected data rate for

channel state wi, as determined by the coding scheme that corresponds to zi. Then the

expected data rate is given by Ri(zi) = E(R̃i(wi, zi)|zi) =
∫

P̃i(wi|zi)R̃i(wi, zi)dwi, where

E is the expectation operator and P̃i(wi|zi) is the conditional probability that the actual

channel state is wi when zi is observed. Assuming that the actual channel quality forms

an i.i.d. sequence across slots, this property is clearly inherited by the CSI sequence Zi.

Our modeling assumptions accommodate, in particular, the so-called block-fading model,

which is broadly studied in the literature (see [1, 8] and references therein). Note however

that our model does not require the actual channel state to be fixed within each interval.

The following examples serve to illustrate certain aspects of our model.

1) Partial vs. null CSI. Let Zi = {zi1, zi2}. In this case, user i is able to roughly classify

the channel quality as either “weak” or “good”, denoted by the two signals zi1 and zi2

with Ri(zi1) < Ri(zi2). The maximal data rate which this user can obtain (in a collision

free environment) is given by Pi(zi1)Ri(zi1) + Pi(zi2)Ri(zi2). Consider now the case where

the same user is unable to obtain any CSI (so that the CSI set is formally a singleton

Z̃i = {z̃i1}). In this case, user i faces several options: (i) Coding its data as if the CSI

signal is zi1; (ii) Coding its data as if the CSI signal is zi2, (iii) Optimizing its coding
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scheme while taking into account the statistical properties of the unobserved CSI signals

zi1 and zi2. The first option leads to an expected rate which is around Ri(zi1), as the

better CSI signal is not exploited for higher data-rate transmissions. The second option

risks data losses whenever the CSI signal is zi1. The third option may lead to higher rates

than the first two, for example, by applying broadcast techniques [16]. Regardless of the

user’s coding decision, it is expected that Pi(zi1)Ri(zi1)+Pi(zi2)Ri(zi2) ≥ Ri(z̃i1). We shall

formally address the advantage of CSI acquisition in Section 4.

2) Gaussian channel. Consider the case where the channel quality between user i and the

base station evolves as a block-fading process, with white Gaussian noise being added to

the transmitted signal. Specifically, at each time t, the received signal yi(t) is given by

yi(t) =
√

wi(t)xi(t) + n(t), where xi(t) and wi(t) are respectively the transmitted signal

and channel gain (which is the physical interpretation for channel quality). Let T be the

length of a slot. Then wi(t) remains constant within slot boundaries, i.e., wi(t) ≡ wi,k, t ∈

[(k − 1)T, kT ), k ≥ 1. Suppose user i is able to obtain the underlying channel quality

with high precision, namely ζi,k ≈ wi,k. Let Si be the maximal energy per slot, and let

N0/2 be the noise power spectral density. Then if the user can optimize its coding scheme

for rates approaching the Shannon capacity, the expected data rate which can be reliably

transmitted is given by the well known formula Ri(zi) = Bi log(1 + Si

N0
zi), where Bi is the

bandwidth.

2.2 User Objective and Game Formulation

In this subsection we describe the user objective and the non-cooperative game which arises

as a consequence of the user interaction over the collision channel. In Section 2.2.1 we define

the Nash equilibrium of the game, and also characterize stationary transmission strategies,

which are central in this paper. Some basic properties of these strategies are highlighted

in Section 2.2.2.

2.2.1 Basic Definitions

We associate with each user i has a throughput demand ρi (in bits per slot) which it4

wishes to deliver over the network. The objective of each user is to minimize its average

transmission power (which is equivalent in our model to the average rate of transmission

4The user here should be interpreted as the algorithm that manages the transmission schedules, and is

accordingly referred to in the third person neuter.
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attempts, as users transmit at a fixed power level), while maintaining the effective data

rate at (or above) this user’s throughput demand. We further assume that users always

have packets to send, yet they may postpone transmission to a later slot to accommodate

their required throughput with minimal power investment.

A general transmission schedule, or strategy, πi for user i specifies a transmission deci-

sion at each time instant, based on the available information, that includes the CSI signals

and (possibly) the transmission history for that user. A transmission decision may include

randomization (i.e., transmit with some positive probability). Obviously, each user’s strat-

egy πi directly affects other users’ performance through the commonly shared medium. The

basic assumption of our model is that users are self-optimizing and are free to determine

their own transmission schedule in order to fulfill their objective. We further assume that

users are unable to coordinate their respective decisions. This situation is modeled and

analyzed in our paper as a non-cooperative game [17] between the n users. In particular,

we are interested in the Nash equilibrium point of the game, which we define below. Since

the bulk of the paper focuses on stationary transmission strategies, we will not bother with

a formal definition of a general strategy. For our purpose, it suffices to assume that the

collection of user strategies (πi)i∈I together with the channel description, induce a well

defined stochastic process of user transmissions.

We use the term multi-strategy when referring to a collection of user strategies, and de-

note by π = (π1, . . . , πn) the multi-strategy comprised of all users’ strategies. The notation

π−i is used for the transmission strategies of all users but for the i-th one. For each user

i, let pi(π) be the average transmission rate (or transmission probability), and let ri(π) be

the expected average throughput, as determined by the user’s own strategy πi and by the

strategies of all other users π−i. Further denote by ci,k the indicator random variable which

equals one if user i transmits at slot k and zero otherwise, and by ri,k the number of data

bits successfully transmitted by user i at the same slot. Then

pi(π) = lim
K→∞

E
π
( 1

K

K
∑

k=1

ci,k

)

, (2.1)

and

ri(π) = lim
K→∞

E
π
( 1

K

K
∑

k=1

ri,k

)

, (2.2)

where E
π stands for the expectation operator under the multi-strategy π. If the limit in

(2.1) does not exist we may take the lim sup instead, and similarly the lim inf in (2.2).
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A Nash equilibrium point (NEP) is a multi-strategy π = (π1, . . . , πn), which is self-

sustaining in the sense that all throughput constraints are met, and neither user can lower

its transmission rate by unilaterally modifying its transmission strategy. Formally,

Definition 2.1 (Nash equilibrium point) A multi-strategy π = (π1, . . . , πn) is a Nash

equilibrium point if

πi ∈ argmin
π̃i

{pi(π̃i, π−i) : ri(π̃i, π−i) ≥ ρi} . (2.3)

The transmission rate pi can be regarded as the cost which the user wishes to minimize.

Using game-theoretic terminology, a Nash equilibrium is a multi-strategy π = (π1, . . . , πn)

so that each πi is a best response of user i to π−i, in the sense that the user’s cost is

minimized.

Our focus in this paper is on stationary transmission strategies, in which the decision

whether to transmit or not can depend (only) on the current CSI signal. A formal definition

for a stationary strategy is provided below.

Definition 2.2 (stationary strategies) A stationary strategy for user i is a mapping

πi : Zi → [0, 1]. Equivalently, a stationary strategy will be represented by an xi-dimensional

vector si = (si1, . . . , sixi
) ∈ [0, 1]xi, where the m-th entry corresponds to the user i’s trans-

mission probability when the observed CSI signal is zim.

For example, the vector (0, . . . , 0, 1) represents the strategy of transmitting (w.p. 1) only

when the CSI signal is the highest possible. Note that the transmission probability in a

slot, which is a function of si only, is given by

pi(si) =

xi
∑

m=1

simPi(zim). (2.4)

Let s
△
= (s1, . . . , sn) denote a stationary multi-strategy for all users. Evidently, the proba-

bility that no user from the set I\i transmits in a given slot is given by
∏

j 6=i(1 − pj(sj)).

Since the transmission decision of each user is independent of the decisions of other users,

the expected average rate ri(si, s−i) is given by

ri(si, s−i) =

[

xi
∑

m=1

simPi(zim)Ri(zim)

]

∏

j 6=i

(

1 − pj(sj)
)

, (2.5)

where the expression
∑xi

m=1 simPi(zim)Ri(zim) stands for the average rate which is obtained

in a collision-free environment under the same strategy si.
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2.2.2 Threshold Strategies

A subclass of stationary strategies which is central in our analysis is defined below.

Definition 2.3 (threshold strategies) A threshold strategy is a stationary strategy of

the form

si = (0, 0, . . . , 0, simi
, 1, 1 . . . , 1), simi

∈ (0, 1], where zimi
is a threshold CSI level above

which user i always transmits, and below which it never transmits.

An important observation, which we summarize next, is that users should always prefer

threshold strategies.

Lemma 1 Assume that all users access the channel using a stationary strategy. Then a

best response strategy of any user i is always a threshold strategy.

Proof: For a given multi-strategy vector s = (s1, . . . , sn), assume by way of contradiction

that si is a best response strategy which is not a threshold strategy. Then there exist some

indexes k and l with l > k, such that sik > 0 and sil < 1. The key observation in establishing

the claim, is that a lower-cost strategy can be obtained by increasing the transmission

probability of the better CSI signal at the expense of decreasing the transmission probability

of the lower quality signal.

Formally, we construct a lower-cost strategy s̃i (derived from si) via the two following

steps: (i) Set s̃im = sim for every m ∈ Zi\{k, l}; and s̃ik = sik − ǫ
Pi(k)

, s̃il = sil + ǫ
Pi(l)

,

where ǫ > 0 is a small constant. Note from (2.4) that this strategy maintains the same

transmission rate, yet the average throughput in (2.5) increases (as Ri is an increasing

function), thus it is strictly above ρi (as the original strategy si meets the throughput

demand by definition). (ii) Pick an arbitrary m for which sim > 0. By the last argument,

there exists some δ > 0 such that letting s̃im = sim − δ still maintains the throughput

demand, yet with an overall lower transmission rate. This contradicts the optimality of si.

¤

As a result of the above lemma, we may analyze the non-cooperative game by restricting

the strategies of each user i to the set of threshold strategies, denoted by Ti. We proceed by

noting that every threshold strategy can be identified with a unique scalar value pi ∈ [0, 1],

which is the transmission probability in every slot, i.e., pi ≡ pi(si). More precisely:

Lemma 2 The mapping si = (0, 0, . . . , 0, simi
, 1, 1 . . . , 1) ∈ Ti 7→ pi ≡ pi(si) ∈ [0, 1], is
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a surjective (one-to-one and onto) mapping from the set of threshold strategies Ti to the

interval [0, 1].

Proof: The claim follows directly from (2.4), upon noting that
∑

m Pi(zim) = 1 and

Pi(zim) > 0 by assumption. Note that under a threshold strategy, pi = simi
Pi(zimi

) +
∑xi

m=mi+1 Pi(z). Indeed, 0 ≤ pi(si) ≤
∑

m Pi(zim) ≤ 1. Conversely, every pi ∈ [0, 1]

corresponds to a unique threshold strategy as follows: Given pi, the corresponding is such

that
∑xi

m=mi+1 Pi(zim) < pi and
∑xi

m=mi
Pi(zim) ≥ pi; the transmission probability for the

threshold CSI is given by simi
=

pi−
∑xi

m=mi+1 Pi(zim)

Pi(zimi
)

. simi
=

pi−
∑xi

m=mi+1 Pi(zim)

Pi(zimi
)

. ¤

Given this mapping, the stationary policy of each user will be henceforth represented

through a scalar pi ∈ [0, 1],which uniquely determines the CSI threshold and its associated

transmission probability, denoted by zimi
(pi) and simi

(pi) respectively. Consequently, the

user’s expected throughput per slot in a collision free environment, denoted by Hi, can be

represented as a function of pi only, namely

Hi(pi)
△
= simi

(pi)Pi(zimi
(pi))Ri(zimi

(pi)) +

xi
∑

m=mi(pi)+1

Pi(zim)Ri(zim). (2.6)

This function will be referred to as the collision-free rate function. Using this function,

we may obtain an explicit expression for the user’s average throughput, as a function of

p = (p1, . . . , pn), namely

ri(pi,p−i) = Hi(pi)
∏

j 6=i

(1 − pj). (2.7)

Example: No CSI. A special important case is when no CSI is available. This corresponds

to xi = 1 in our model. In this case the collision-free rate function is simply Hi(pi) = R̄ipi,

where R̄i = Ri(zi1) is the expected data rate that can be obtained in any given slot.

3 Equilibrium Analysis

In this section we analyze the Nash equilibrium point (2.3) of the network under stationary

transmission strategies. For the analysis, we require the following properties of the rate

function (2.6):

Lemma 3 The collision-free rate function Hi satisfies the following properties.

(i) Hi(0) = 0.
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Figure 1: An example of the collision-free rate function Hi(pi). In this example there are

four CSI signals. Note that the slope of Hi(pi) is exactly the rate of the threshold CSI

which corresponds to pi.

(ii) Hi(pi) is a continuous and strictly increasing function over pi ∈ [0, 1].

(iii) Hi(pi) is concave.

Proof: Noting (2.4), pi = 0 means no transmission at all, thus an average rate of zero.

It can be easily seen that Hi(pi) in (2.6) is a piecewise-linear (thus continuous), strictly

increasing function. As to concavity, note that the slope of Hi is determined by Ri(zimi
)

which decreases with pi (see Figure 1), as mi decreases in pi (from Eq. (2.6)) and zim is

increasing in m (by definition). ¤

A key observation which is useful for the analysis is that every Nash equilibrium point

can be represented via a set of n equations in the n variables p = (p1, . . . , pn). This is

summarized in the next proposition.

Proposition 1 (The equilibrium equations) A multi-strategy p = (p1, . . . , pn) is a

Nash equilibrium point if and only if it solves the following set of equations

ri(pi,p−i) = Hi(pi)
∏

j 6=i

(1 − pj) = ρi, i ∈ I. (3.8)
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Proof: Adapting the Nash equilibrium definition (2.3) to stationary threshold strategies,

a NEP is a multi-strategy p = (p1, . . . , pn) such that

pi = min {p̃i ∈ [0, 1], subject to ri(p̃i,p−i) ≥ ρi} , i ∈ I, (3.9)

where ri is defined in (2.7). Since ri(p̃i,p−i) is strictly increasing in p̃i (by Lemma 3), (3.9)

is equivalent to ri(pi,p−i) = ρi, i ∈ I, which is just (3.8). ¤

Due to the above result, we shall refer to the set of equations (3.8) as the equilibrium

equations.

3.1 Two Equilibria or None

We next address the number of equilibrium points in our system. Obviously, if the overall

throughput demands of the users are too high there cannot be an equilibrium point, since

the network naturally has limited traffic capacity (the capacity of the network will be

considered in Section 5). When throughput demands are within the feasible region, we

establish that there are exactly two Nash equilibria.

Denote by ρ = (ρ1, . . . , ρn) the vector of throughput demands, and let Ω be the set of

feasible vectors ρ, for which there exists at least one Nash equilibrium point (equivalently,

for which there exists a feasible solution to (3.8)). Figure 1 illustrates the set of feasible

throughput demands for a simple two-user case, with Hi(pi) = pi.

To specify some structural properties of Ω, it is convenient to define the set of basis

vectors Ω̂, where each ρ̂ = (ρ̂1, . . . , ρ̂n) ∈ B+
1 is such that ρ̂i > 0 for every i ∈ I and

‖ρ̂‖2 = 1, i.e.,
∑

i ρ̂
2
i = 1. We also define the upper boundary of Ω, denoted Ω+ as

Ω+ =
{

α(ρ̂)ρ̂ : ρ̂ ∈ B+
1 , α(ρ̂) = sup{α ≥ 0 : αρ̂ ∈ Ω}

}

. (3.10)

Proposition 2 The feasible set Ω obeys the following properties.

(i) Closed cone structure: For every ρ̂ ∈ B+, αρ̂ ∈ Ω for all α ∈ [0, α(ρ̂)].

(ii) Continuity of the upper boundary Ω+: For every ǫ > 0 there exists some δ > 0 such

that if ‖ρ̂1 − ρ̂2‖2 < δthen |α(ρ̂1) − α(ρ̂2)| < ǫ.

(iii) Let ρ ≤ ρ̃ be two throughput demand vectors. Then if ρ̃ ∈ Ω, it follows that ρ ∈ Ω.

Proof: See Appendix A.

In particular, note that Ω is a closed set with nonempty interior. We can now specify

the number of equilibrium points for any throughput demand vector ρ = (ρ1, . . . , ρn).
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Figure 2: The set of feasible throughput demands for a two user network with Hi(pi) = pi,

i = 1, 2.

Theorem 3 Consider the non-cooperative game model under stationary transmission strate-

gies. Let Ω be the set of feasible throughput demand vectors ρ, let Ω+ be its upper boundary,

and let Ω0 be its interior. Then

(i) For each ρ ∈ Ω+ there exists a unique Nash equilibrium point.

(ii) For each ρ ∈ Ω0 there exist exactly two Nash equilibria.

Proof: See Appendix A.

Cases where ρi = 0 for some i ∈ I are covered by a reduction to a smaller number of

(active) users. Note that the case of a single equilibrium point is non-generic (i.e., occurs

only for a set of throughput vectors ρ of measure zero). Accordingly, we shall can exclude

the single equilibrium case from our discussion.

3.2 The Energy Efficient Equilibrium

Going beyond the basic questions of existence and number of equilibrium points, we wish

to further characterize the properties of the equilibrium points. In particular, we are

interested here in the following question: How do the two equilibrium points compare: is

one “better” than the other? The next theorem shows that indeed one equilibrium point

is power-superior for all users.

14



Theorem 4 Assume that the throughput demand vector ρ is within the feasible region

Ω0, so that there exist two equilibria in stationary strategies. Let p and p̃ be these two

equilibrium points. If pi < p̃i for some user i, then pj < p̃j for every j ∈ I.

Proof: Define aik
△
= ρi

ρk
. For every user k 6= i divide the ith equation in the set (3.8) by

the kth one. We obtain

aik =
Hi(pi)(1 − pk)

Hk(pk)(1 − pi)
<

Hi(p̃i)(1 − pk)

Hk(pk)(1 − p̃i)
, (3.11)

since Hi is increasing. Now since Hi(p̃i)(1−p̃k)
Hk(p̃k)(1−p̃i)

= aik, it follows that (1−p̃k)
Hk(p̃k)

< (1−pk)
Hk(pk)

. Since

Hk is increasing in pk, we conclude from the last inequality that pk < p̃k. ¤

The last result is significant from the network point of view. It motivates the design of

a network mechanism that will avoid the inferior equilibrium point, which is wasteful for

all users. This will be our main concern in Section 6. Henceforth, we identify the better

equilibrium point as the Energy Efficient Equilibrium (EEE).

We now turn to examine the quality of the EEE relative to an appropriate social cost.

Recall that each user’s objective is to minimize its average transmission rate subject to

a throughput demand. Thus, a natural performance criterion for evaluating any multi-

strategy s = (s1, . . . , sn) (in particular, an equilibrium multi-strategy) is given by the sum

of the user’s average transmission rates induced by s, namely

Q(s) =
∑

i

pi(si). (3.12)

The next theorem addresses the quality of the EEE with respect to that criterion.

Theorem 5 Let p be an EEE. Then
∑

i pi ≤ 1.

Proof: See Appendix A.

An immediate conclusion from the above theorem is that the overall power investment

at the EEE is bounded, as the sum of transmission probabilities is bounded. This means,

in particular, that the average transmission power of all users is bounded by the maximal

transmission power of a single station.

3.3 Social Optimality and Efficiency Loss

We proceed to examine the extent to which selfish behavior affects system performance.

That it, we are interested to compare the quality of the obtained equilibrium points to
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the centralized, system-optimal solution (still restricted to stationary strategies). Recently,

there has been much work in quantifying the “efficiency loss” incurred by the selfish behav-

ior of users in networked systems (see [18] for a comprehensive review). The two concepts

which are most commonly used in this context are the price of anarchy (PoA), which is (an

upper bound on) the performance ratio (in terms of a relevant social performance measure)

between the global optimum and the worst Nash equilibrium, and price of stability (PoS),

which is (an upper bound on) the performance ratio between the global optimum and the

best Nash equilibrium.

Returning to our specific network scenario, consider the case where a central authority,

which is equipped with user characteristics H = (H1, . . . , Hn) and ρ = (ρ1, . . . , ρn) can

enforce a stationary transmission strategy for every user i ∈ I. We consider (3.12) as the

system-wide performance criterion, and compare the performance of this optimal solution

to the performance at the Nash equilibria. A socially optimal multi-strategy denoted

s∗(H, ρ), is a strategy that minimizes (3.12), while obeying all user throughput demands

ρi. Similarly, denote by sb(H, ρ) and sw(H, ρ) the multi-strategies at the better NEP and

at the worse NEP, respectively. Then the PoA and PoS are given by

PoA = sup
H,ρ

Q
(

sw(H, ρ)
)

Q
(

s∗(H, ρ)
) , PoS = sup

H,ρ

Q
(

sb(H, ρ)
)

Q
(

s∗(H, ρ)
) . (3.13)

We next show that the PoA is generally unbounded, while the PoS is always one.

Theorem 6 Consider the non-cooperative game, the NEP of which is defined in (2.3).

Then (i) The PoS is always one, and (ii) The PoA is generally unbounded.

Proof: (i) This claim follows immediately, noting that 1) the socially optimal stationary

strategy is a threshold strategy (by applying a similar argument to the one used in Lemma

1), and 2) the socially optimal stationary strategy obeys the equilibrium equations (3.8)

(following a similar argument to the one used in Proposition 1). Hence, by Proposition 1

the optimal solution is also an equilibrium point. Equivalently, this means that PoS = 1.

(ii) We establish that the price of anarchy is unbounded by means of an example. Con-

sider a network with n identical users with Hi(pi) = R̄pi (this collision-free rate func-

tion corresponds to users who cannot obtain any CSI). Each user’s throughput demand is

ρi = ǫ → 0. Recall that the throughput demands are met with equality at every equilib-

rium point (Proposition 1). Then, by symmetry, we obtain a single equilibrium equation,

namely R̄p(1 − p)n−1 = ǫ. As ǫ goes to zero, the two equilibria are pa → 1 and pb → 0.
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Obviously, the latter point is also a social optimum; it is readily seen that the price of

anarchy here equals in the limit to pa

pb
→ ∞. ¤

The above theorem clearly motivates the need for a mechanism that will induce the

EEE, as this equilibrium point coincides with the socially-optimal solution, while the gap

between the two equilibria could be arbitrarily large.

3.4 Computational Aspects

We conclude this section by briefly addressing the computational properties of an equilib-

rium point, which may be directly observed from the proof of Theorem 3. The proof of The-

orem 3 relies on representing the equation set (3.8) through a single scalar equation gi(pi),

which was shown to be unimodal. Hence we may verify the existence of an equilibrium

by finding the maximizer of gi(pi). An equilibrium obviously exists if maxpi
gi(pi) ≥ log ρi.

The maximizer of gi(pi) as a unimodal function could be efficiently obtained by standard

search techniques (such as the bisection method or the golden section search method [19]).

Subsequently, we may efficiently compute each of the two equilibria, by dividing the region

[0, 1] into two subregions, where the maximizer of gi(pi) is the boundary point between the

subregions. As a result of the unimodality gi(pi), exactly one equilibrium point lies in each

subregion. Each equilibrium can be efficiently calculated by finding the zero of the function

gi(pi) − ρi, which is a monotonous function in each subregion.

An alternative way for verifying the existence of the equilibrium point, as well as calcu-

lating the EEE is obtained by simulating the best-response dynamics, which is considered

in Section 6. Indeed, we show in that section that this dynamics either converges to the

EEE, or obtains probabilities larger than 1 in case that no equilibrium exists.

4 Performance Benefits of Channel State Information

In this section we show that network performance is enhanced whenever the information

quality is improved, that is, when users can obtain refined CSI. Generally, it is expected

that under centralized control, system performance would improve when better quality

information is available. However, a selfish-user environment can lead to various so-called

paradoxes. A classic example is the Braess paradox [20], where the addition of a link in a

transportation network increases the overall traffic delay. In [21] it was shown that users

are sometimes better off without acquiring additional knowledge (such as the number of
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network users). We next show that in our context, CSI acquisition is beneficial even with

self-optimizing users. We consider both the the quality of the EEE for given throughput

demands and also the total throughput which can be supported by the network.

By enhanced channel state information, we mean that the user can distinguish between

different underlying channel conditions which were originally classified identically. Consider

Example 1 in Section 2.1. The partial CSI set with two signals is obviously of better quality

than the null CSI set. An even better CSI set would be, for example, a four signal set, where

the user gets different signals for “excellent” and “fair” conditions, for channel states which

were originally interpreted only as “good”. Similarly, the user may obtain two different

CSI signals, indicating “no-connection” and “some-connectivity” channel conditions, for

channel states which were originally classified as “weak” in the two-signal set. To formalize

the notion of better quality (or refined) CSI sets, we use the next definition.

Definition 4.1 (CSI Refinement) Consider two CSI sets Zi and Z̃i which correspond

to the same underlying channel conditions. Let Pi(zi) be the probability of observing a CSI

signal zi ∈ Zi, and let P̃i(z̃i) be the probability of observing a CSI signal z̃i ∈ Z̃i. Then Z̃i

is said to be a refined CSI set with respect to Zi if every zi ∈ Zi is either (i) duplicated in

Z̃i with Pi(zi) = P̃i(zi) or (ii) refined in Z̃i into a subset of CSI signals z̃i1 , z̃i1 , . . . , z̃iM(zi)
,

such that Pi(zi) =
∑

m P̃i(z̃im) and

Pi(zi)Ri(zi) ≤
∑

m

P̃i(z̃im)Ri(z̃im). (4.14)

The set z̃i1 , z̃21 , . . . , z̃iM(zi)
is referred to as the refinement of zi.

Inequality (4.14) incorporates the basic assumption that a user can obtain higher data

rates with refined CSI signals. The main consequence of (4.14) is that the collision-free

rate functions Hi obtains higher values for refined CSI sets.

Lemma 4 Consider two CSI sets Zi and Z̃i, where Z̃i refines Zi. Let Hi and H̃i be the

collision-free rate functions for Zi and Z̃i respectively, defined in (2.6). Then Hi(pi) ≤

H̃i(pi) for evert pi ∈ [0, 1].

Proof: For a given threshold policy under Zi (represented by the scalar pi), denote by

zimi
(pi) and simi

(pi) the CSI threshold and its associated transmission probability, uniquely

determined by pi. The lemma essentially follows directly from (2.6) and (4.14). The only

case which deserves a direct proof is the case where the only refined CSI signal is the
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threshold CSI zimi
. To simplify notations, we write zm instead of zimi

(pi) and sm instead

of simi
(pi). Let z̃m1 , z̃m2 , . . . , z̃mM(zm)

be a refinement of zm, and s̃m1 , s̃m2 , . . . , s̃mM(zm)
the

respective transmission strategy for the refined CSI signals (sm =
∑

l s̃ml
). Then

smPi(zm)Ri(zm) ≤
∑

l

smP̃i(z̃ml
)Ri(z̃m1) ≤

∑

l

s̃ml
P̃i(z̃ml

)Ri(z̃m1),

where the first inequality follows by (4.14), and the second by the fact that the user applies

a threshold strategy, putting more weight on CSI signals which lead to higher data rates

(by the monotonicity of Ri). ¤

This lemma directly leads us to the main conclusions regarding the benefits of better

CSI. That is: refined CSI is beneficial in terms of both the achievable throughput and the

transmission rates at the energy efficient equilibrium.

Theorem 7 5Consider two games instances G and G̃ with identical channel conditions.

Denote by {Zi}i∈I and {Z̃i}i∈I the CSI sets under G and G̃ respectively, and assume that

Z̃i refines Zi for every i ∈ I. Let ρ be the throughput demand vector. Then

(i) If ρ admits a NEP in G, so it does in G̃.

(ii) If ρ admits an equilibrium in both game instances, the EEE transmission rates in G̃

(denoted p̃i) are lower than the ones in game G (denoted pi) for every user i, i.e., p̃i ≤ pi

for every i ∈ I.

(iii) A strict refinement (replace ≤ with < in (4.14)) of a CSI signal which is in use at the

EEE of G, leads to strictly lower transmission rates at the EEE for all users, i.e., p̃i < pi

for every i ∈ I.

Proof: The proof essentially follows from Lemma 4. yet, some proof techniques require

the notion of best-response dynamics, which is considered in Section 6. Hence, a full proof

of the theorem is deferred to Appendix C.

The theorem above implies that even if a single user obtains better CSI, the situation of

all users is improved, in the sense that all users obtain lower transmission rates. Thus, CSI

acquisition is beneficial from the viewpoint of both the individual and the entire network.

5Reference to Theorem 7 in [22] should be to Theorem 9.
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5 Achievable Channel Capacity

The aim of this section is to provide explicit lower bounds for the achievable channel ca-

pacity. The term “capacity” is used here for the total throughput (normalized to successful

transmission per slot) which can be obtained in the network. We focus here on the case

where users have no CSI, and then relate our result to general CSI.

Consider the null-CSI model, where no user can observe any CSI (see the example at the

end of Section 2). Recall that the collision-free rate in this case is given by Hi(pi) = R̄ipi,

where R̄i is the expected data rate in case of a successful transmission. Define yi
△
= ρi

R̄i
,

which we identify henceforth as the normalized throughput demand for user i: indeed, yi

stands for the required rate of successful transmissions. Then the equilibrium equations

(3.8) become

pi

∏

j 6=i

(1 − pj) = yi, 1 ≤ i ≤ n. (5.15)

We shall first consider the symmetric case, i.e., yi = y for every user i, and then relate the

results to the general non-symmetric case. The theorem below establishes the conditions

for the existence of an equilibrium point in the symmetric null-CSI case.

Theorem 8 (Symmetric users) 6Let yi = y for every 1 ≤ i ≤ n. Then (i) A Nash

equilibrium exists if and only if

ny ≤ (1 −
1

n
)n−1. (5.16)

(ii) In particular, a Nash equilibrium exists if ny ≤ e−1.

Proof: (i) By dividing the equilibrium equations (5.15) of any two users, it can be seen

that every symmetric-users equilibrium satisfies pi = pj = p (∀ i, j). Thus, the equilibrium

equations (5.15) reduce to a single (scalar) equation:

h(p)
△
= p(1 − p)n−1 = y. (5.17)

We next investigate the function h(p). Its derivative is given as h′(p) = (1− p)n−2(1−np).

It can be seen that the maximum value of the function h(p) is obtained at p = 1/n. An

equilibrium exists if and only if the maximal value of h(p) is greater than y. Substituting

the maximizer p = 1/n in (5.17) implies the required result.

(ii) It may be easily verified that the right hand side of (5.16) decreases with n. Since

limn→∞(1 − 1
n
)n−1 = e−1, the claim follows from (i). ¤

6Reference to Theorem 8 in [22] should be to Theorem 10.
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We now show that the simple bound obtained above holds for non-symmetric users as

well, implying that the symmetric case is worst in terms feasible channel utilization.

Theorem 9 (Asymmetric users) For any set of n null-CSI users with normalized through-

put demands {yi}, an equilibrium point exists if

n
∑

i=1

yi ≤ (1 −
1

n
)n−1. (5.18)

Proof: See Appendix B.

The quantity e−1 is also the well-known maximal throughput of a slotted Aloha system

with Poisson arrivals and an infinite set of nodes [2]. In our context, if the normalized

throughput demands do not exceed e−1, an equilibrium point is guaranteed to exist. Thus,

in a sense, we may conclude that noncooperation of users, as well restricting users to

stationary strategies, do not reduce the capacity of the collision channel.

We conclude this section by noting that Equation (5.18) serves as a global sufficient

condition for the existence of an equilibrium point, which holds for any level of channel

observability. This observation follows by Theorem 7(i), which implies that the capacity

can only increase when users obtain channel state information.

6 Best-Response Dynamics

stable working point, from which no user has incentive to deviate unilaterally. Still, the

question of if and how the system arrives at an equilibrium remains open. Furthermore,

since our system has two Nash equilibria with one (the EEE) strictly better than the other,

it is of major importance (from the system viewpoint, as well as for each individual user)

to employ mechanisms that converge to the better equilibrium rather than the worse.

The distributed mechanism we consider here relies on a user’s best-response, which is

generally the optimal user reaction to a given network condition (see [17]). Specifically,

the best response of a given user is a transmission probability which brings the obtained

throughput of that user (given other user strategies) to its throughput demand ρi. Accord-

ingly, observing (2.7), the best response of user i for any multi-strategy p = (p1, . . . , pn) is

given by

pi := H−1
i

(

ρi
∏

j 6=i(1 − pj)

)

, (6.19)
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where H−1
i is the inverse function of the collision-free rate function Hi (if the argument of

H−1
i is larger than maximal value of Hi, pi can be chosen at random). Note that H−1

i is

well defined, since Hi is continuous and monotone (Lemma 3). It is important to notice

that each user is not required to be aware of the transmission probability of every other

user. Indeed, only the overall idle probability of other users
∏

j 6=i(1 − pj) is required in

(6.19). Our mechanism can be described as follows. Each user updates its transmission

probability from time to time through its best response (6.19). The update times of each

user need not be coordinated with other users.

This mechanism reflects what greedy, self-interested users would naturally do: Repeat-

edly observe the current network situation and react to bring their costs to a minimum.

For the analysis of best-response dynamics we assume the following.

Assumption 2

(i) The user population is fixed.

(ii) Users repeatedly update their transmission probabilities (i.e., an infinite number of

updates for each user) using Eq. (6.19) .

(iii) The effective elements
∏

j 6=i(1− pj) and H−1
i are perfectly estimated by the user before

each update.

(iv) The transmission probabilities of each user are initialized to zero (“slow start”).

Our convergence result is summarized below.

Theorem 10 (Convergence to the EEE) Under Assumption 2, best response dynam-

ics asymptotically converges to the EEE, in case that a Nash equilibrium point exists.

The proof of the above result relies on showing that the vector of user probabilities p

monotonously increases until convergence. See Appendix C for a detailed proof. We note

that the initialization of the transmission probabilities to zero (or any other value smaller

than the EEE) is essential for this result.

We briefly list here some important considerations regarding of the presented mecha-

nism.

1) The slow start requirement (Assumption 2(ii)) is essential for preventing excessive trans-

missions which lead to the worst equilibrium.

2) It is important to notice that each user is not required to be aware of the transmission

probability of every other user. Indeed, only the overall idle probability of other users
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∏

j 6=i(1 − pj) is required in (6.19). This quantity could be estimated by each user by mon-

itoring the channel utilization.

3) Assumption 2(iv) entails the notion of a quasi-static system, in which each user responses

to the steady state reached after preceding user updates. This assumption approximates a

natural scenario where users update their transmission probabilities at much slower time-

scales than their respective transmission rates.

The result of Theorem 10 relates to a fixed user population. However, the user pop-

ulation (and the user throughput requirement) change over time. Hence, it is important

to study the system dynamics when users join or leave the network. For our analysis, we

assume that the network is at equilibrium, i.e., the required throughput demands are met

for the present users, when new users join or leave. This assumption, is more acceptable in

wireless systems, where the node population varies on a relatively slower time-scale than

the convergence speed of the mechanism. This could be the case, for example, in wireless

LAN networks. The next result shows that the network is resilient against a change in user

population, in the sense that the best-response dynamics reconverge to the EEE.

Theorem 11 (Joining and Leaving) Consider a network which is at its EEE, and the

next two scenarios: (a) some users join the network (not necessarily at the same time

slot). (b) some users leave the network (not necessarily at the same time slot). Then under

Assumptions 2(i) and 2(ii), the best response dynamics will (asymptotically) re-converge to

the EEE in either scenario.

The case of joining users essentially follows from Theorem 10, as the transmission proba-

bilities of all users monotonously increase. However, when users leave the network, present

users would lower their transmission probabilities. Hence, in the latter case, different proof

techniques are required for showing convergence to the EEE. A detailed proof of Theorem

11 is provided in Appendix C. The case where some users join and some abandon is more

involved, and is under current investigation.

notice convergence results obtained in the section would still hold for a relaxed variation

of (6.19), given by

pi := βiH
−1
i

(

ρi
∏

j 6=i(1 − pj)

)

+ (1 − βi)pi, (6.20)

where 0 ≤ βi ≤ 1. This update rule can be more robust against inaccuracies in the

estimation of
∏

j 6=i(1 − pj) , perhaps at the expense of slower convergence to the desired

equilibrium.
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Our convergence results are obviously idealized and should be supplemented with fur-

ther analysis of the effect of possible deviations from the model and possible remedies.

In case that a worst equilibrium point does occur (or no equilibrium is obtained after a

reasonably long time), users can reset their probabilities and restart the mechanism (6.19)

for converging to the better equilibrium. This procedure resembles the basic ideas behind

TCP protocols. The exact schemes for detecting operation at suboptimal equilibria, and

consequently directing the network to the EEE are beyond the scope of the present paper.

7 Discussion

We briefly discuss here some consequences of our results, emphasizing network management

aspects. Our equilibrium analysis has revealed that within the feasible region the system has

two Nash equilibrium points with one strictly better than the other. The better equilibrium

(the EEE) is socially optimal, hence the network should ensure that users indeed operate

at that equilibrium. An important step in this direction is the above suggested distributed

mechanism which converges to the EEE. It should be mentioned however that fluctuations

in the actual system might clearly bring the network to an undesired equilibrium. Hence,

centralized management (based on user feedbacks) may still be required to identify the

possible occurrence of the worse equilibria, and then direct the network to the EEE. Possible

mechanisms for this purpose remain a research direction for the future.

In this paper we mainly considered the throughput demands ρi as determined by the

user itself. Alternatively, ρi may be interpreted as a bound on the allowed throughput which

is imposed by the network (as part of a resource allocation procedure). The advantage of

operating in this “allocated-rate” mode is twofold. First, the network can ensure that

user demands do not exceed the network capacity (e.g., by restricting the allocated rate, or

through call admission control). Second, users can autonomously reach an efficient working

point without network involvement, as management overhead is reduced to setting the user

rates only. The rate allocation phase (e.g., through service level agreements) is beyond the

scope of the present model.

A final comment relates to elastic users that may lower their throughput demand based

on a throughput–power tradeoff. An obvious effect of demand elasticity would be to lower

the throughput at inefficient equilibria. It remains to be verified whether other properties

established here remain valid in this case.
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8 Conclusion

We have investigated in this paper the interaction between self-interested wireless users,

each wishing to sustain a given throughput requirement, while making use of available

CSI. We have characterized the set of feasible throughput requirements for which a Nash

equilibrium exists, and shown that within the feasible region there exist two distinct NEPs,

with one being power-superior for all users. We further demonstrated that the performance

gap between these two equilibria (in terms of power investment) could be arbitrarily large.

Consequently, network users should be willing to accept a mechanism which ensures con-

vergence to the better equilibrium. We have suggested a simple and natural mechanism

based on each user’s best response. This mechanism is shown to converge to the better

equilibrium point (within a simplified, dynamic model) without requiring any coordination

between the users.

A reassuring result of our work is the utility of higher-quality channel state information,

which leads to power savings for all users. Interestingly, better personal information is

exploited by the individual user, yet not at the expense of other users’ performance. This

indicates that wireless platforms can benefit from technological enhancements which would

lead to higher quality CSI, even when available to some users and not others, and under

totally distributed and self-interested user environments.

The framework and results of this paper may be extended in several ways. One direction

is to extend the reception model beyond the collision model studied in this paper. In

particular, capture models (which sometimes better represent WLAN systems) and multi-

packet reception models [23] (as in CDMA systems) are of obvious interest. Another

extension of interest to the channel model is CSI signals that are correlated in time (i.e.,

subsequent CSI signals are statistically dependent) and/or in space (i.e., CSI signals of

neighboring users are statistically dependent). Last, we intend to consider non-stationary

user strategies. A central question is whether the system benefits from the use of more

complex policies by selfish individuals. The incorporation of non-stationary strategies and

correlated CSI seems to add considerable difficulty to the analysis, and may require more

elaborate game theoretic tools than the ones used here.
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APPENDICES

A Proofs for Section 3

Proof of Proposition 2: The idea behind the proof is to reduce the equation set (3.8) to

a scalar equation in a single variable pi, for some arbitrarily chosen user i.

Construction of the scalar function. Consider an equilibrium point with throughput

demands ρ = αρ̂, where ρ̂ = (ρ̂1, . . . , ρ̂n) ∈ B+ is some fixed basis vector. Then by dividing

the ith equilibrium equation (3.8) by the jth one, we obtain

Hi(pi)

1 − pi

=
ρ̂i

ρ̂j

Hj(pj)

1 − pj

. (A.21)

Note that for each pi ∈ [0, 1] there exists a unique pj ∈ [0, 1] such that (A.21) holds. This

follows since the function hj(pj)
△
=

Hj(pj)

1−pj
is continuous, strictly increasing and ranges from

0 to ∞ over pj ∈ [0, 1]. Consequently, its inverse h−1
j is a well defined, continuous increasing

function, and

pj(pi) = h−1
j

(

Hi(pi)

1 − pi

ρ̂i

ρ̂j

)

. (A.22)

By substitution, the ith equilibrium equation can be regarded as function of pi only, namely

Hi(pi)
∏

j 6=i

(1 − pj(pi)) = αρ̂i, (A.23)

where pj(pi) is defined in (A.22). It follows that an equilibrium exists for a given throughput

vector ρ = αρ̂ if and only if there exists some pi ∈ [0, 1] such that

fi(pi, ρ̂)
△
=

1

ρ̂i

Hi(pi)
∏

j 6=i

(1 − pj(pi)) = α. (A.24)

The key property which is required for the proof, is the continuity of the function fi(pi, ρ̂),

which is shown below.

Lemma 5 The function fi(pi, ρ̂) defined in (A.24) is continuous in pi. Additionally, fixing

pi, it is continuous in ρ̂ = (ρ̂1, . . . , ρ̂n).

Proof: Continuity in pi and (ρ̂1, . . . , ρ̂n) follows straightforwardly by the continuity of

the functions Hi and pj(pi). Note that fi(pi, ρ̂) = 1
ρ̂i

Hi(pi)
∏

j 6=i

(

1 − h−1
j

(

Hi(pi)
1−pi

ρ̂i

ρ̂j

)

)

, hence

continuity with respect to ρ̂ follows by the continuity of h−1
j (·). ¤
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We are now ready to prove Proposition 2. Let αmax = maxpi∈[0,1] fi(pi, ρ̂) (where the

maximum is attained by continuity of fi). Further note that fi(0, ρ̂) = fi(1, ρ̂) = 0 (by

(A.21)) and that fi(pi, ρ̂) > 0 for pi ∈ (0, 1). Thus, since fi(pi, ρ̂) is continuous in pi any

value in the range [0, αmax] is obtained for some pi ∈ [0, 1]. This proves part (i) of the

proposition. For part (ii), since fi(pi, ρ̂) is continuous in ρ̂, it immediately follows that the

maximum value αmax is continuous in ρ̂ as well. Part (iii) is proved by techniques which

are realted to best-response dynamics. Hence, we defer the proof to Appendix C ¤

Proof of Theorem 3: We analyze the same scalar function (A.24) which was used to

prove Proposition 2. We show that this function is unimodal in pi. Consequently, by

continuity, every value in the range [0, αmax) corresponds to two equilibrium points, where

the value αmax corresponds to a single equilibrium. The details are provided below.

Fixing ρ̂, let gi(pi)
△
= log

(

ρ̂ifi(pi)
)

. Unimodality of gi(pi) would clearly imply unimodal-

ity of fi(pi, ρ̂). The function gi(pi) is given by

gi(pi) = log Hi(pi) +
∑

j 6=i

log(1 − pj(pi)). (A.25)

For simplicity of notations we shall henceforth write pj instead of pj(pi), yet recall that pj

is a function of pi.

Step 1: The function gi(pi) is continuous in pi by the continuity of fi(pi, ρ̂). Furthermore,

gi(0) = gi(1) = −∞, and gi(pi) > −∞ for pi ∈ (0, 1) by the corresponding values of

fi(pi, ρ̂). In the sequel we claim that there exists a unique extremum point for the function

gi(pi). Furthermore this extremum lies in (0, 1), hence it is the maximizer of gi(pi). We

proceed to compute the derivative g′(pi) (Step 2), and then show that g′(pi) changes sign

exactly once (Step 3).

Step 2: Taking the logarithm from both sides of (A.21) we obtain

log Hi(pi) + log(1 − pj) = ãij + log Hj(pj) + log(1 − pi) (A.26)

(where ãij = log ρ̂i

ρ̂j
). Denote by

H ′
i(pi) =

dHi(pi)

dpi

(A.27)

the derivative of Hi w.r.t. pi. Recalling that Hi is piecewise-linear (see Theorem 3), at a

finite set of points in which the standard derivative is undefined, we take the left derivative

instead. Differentiating both sides of (A.26) yields the following equation

H ′
i(pi)

Hi(pi)
+

1

1 − pi

=

(

H ′
j(pj)

Hj(pj)
+

1

1 − pj

)

dpj

dpi

. (A.28)
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Thus,

dpj

dpi

=

H′
i(pi)

Hi(pi)
+ 1

1−pi

H′
j(pj)

Hj(pj)
+ 1

1−pj

. (A.29)

The derivative of gi(pi) w.r.t. pi is given by

g′
i(pi) =

H ′
i(pi)

Hi(pi)
−

∑

j 6=i

1

1 − pj

dpj

dpi

. (A.30)

Using (A.29), it follows that

1

1 − pj

dpj

dpi

=

(

H ′
i(pi)

Hi(pi)
+

1

1 − pi

)[

(1 − pj)
(H ′

j(pj)

Hj(pj)
+

1

1 − pj

)

]−1

. (A.31)

Thus,

g′
i(pi) =

H ′
i(pi)

Hi(pi)
−

(

H ′
i(pi)

Hi(pi)
+

1

1 − pi

)

∑

j 6=i

vj(pj), (A.32)

where vj(pj)
△
=

Hj(pj)

(1−pj)H′
j(pj)+Hj(pj)

.

Step 3: The function gi(pi) increases if and only if g′
i(pi) > 0. Equivalently,

∑

j 6=i

vj(pj) <

H′
i(pi)

Hi(pi)

H′
i(pi)

Hi(pi)
+ 1

1−pi

(A.33)

= 1 −

1
1−pi

H′
i(pi)

Hi(pi)
+ 1

1−pi

= 1 −
Hi(pi)

(1 − pi)H ′
i(pi) + Hi(pi)

= 1 − vi(pi). (A.34)

To summarize, gi(pi) increases at pi if and only if

∑

j∈I

vj(pj) < 1. (A.35)

Similarly gi decreases if and only if
∑

j∈I vj(pj) > 1.

Since Hi is concave increasing (Lemma 3), it may be verified that vi is strictly increasing

in pi. This can be seen by noting that

1

vi(pi)
= 1 +

H ′
i(pi)(1 − pi)

Hi(pi)
(A.36)

strictly decreases with pi (by Lemma 3). Consequently, since pj strictly increases with pi

due to (A.22), then
∑

j∈I vj(pj) strictly increases with pi. Note further that if pi = 0 then
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∑

j∈I vj(pj) = 0; additionally, for pi = 1, pj = 1 for every j, hence
∑

j∈I vj(pj) = n. Hence,

the function gi(pi) strictly increases up to some value p∗i ∈ (0, 1) and then decreases.

Step 4: Due to the above and by the continuity of fi(pi, ρ̂), the function gi(pi) is a unimodal

function. Hence fi(pi, ρ̂) is unimodal and the result follows. ¤

Proof of Theorem 5: We adopt in this proof the notations used for the proof of Theorem

3. Consider a reference user i. Note that an equilibrium point is obtained as a solution

to the equation gi(pi) = log ρi. By the unimodality of gi(pi) (see proof of Theorem 3), it

follows that the better equilibrium point is obtained at some pi ∈ [0, 1] for which gi(pi) is

increasing. Hence,
∑

j∈I

vj(pj) ≤ 1, (A.37)

by (A.35) (equality holds when the two equilibria coincide). The proof will be completed

by showing that vj(pj) ≥ pj for all pj ∈ [0, 1] and each j. For convenience, we omit the

user index j in the sequel. To see the latter, note that by the concavity of H (Lemma 3) it

follows that H(0) ≤ H(p) + H ′(p)(0− p), using the gradient inequality ([24], p. 69), where

H ′ is defined in (A.27). Hence H(p) ≥ pH ′(p), or equivalently H(p)(1−p) ≥ pH ′(p)(1−p).

Thus, H(p) ≥ pH ′(p)(1−p)+pH(p) = p
[

H(p)+H ′(p)(1−p)
]

, or v(p) ≡ H(p)
(1−p)H′(p)+H(p)

≥ p.

The result of the theorem is now established by summing the last inequality on all users,

combined with (A.37). ¤

B Proof of Theorem 9

For the proof, we require the following lemma, which relates the user probabilities in

equilibrium.

Lemma 6 In every equilibrium point of null-CSI users, the following relation holds for

every i, j ∈ I.

pj =
ajipi

1 − pi + ajipi

, (B.38)

where aji
△
= yj/yi.

Proof: Immediate by dividing the equilibrium equation of the ith user by the equation of

the jth one. ¤

The idea behind the proof to fix pi and to obtain an expression for the total normalized

throughput by using (B.38). It can be shown that the minimal total normalized throughput
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is obtained when aji = 1 for every j ∈ I, which is essentially the symmetric case. Since

the above holds for every pi, the maximal total normalized throughput is the lowest at the

symmetric case.

Define ymax
i as the maximal normalized throughput which can be obtained by user i

given the ratios {aji}. Noting (B.38),

ymax
i

△
= max

pi∈[0,1]
pi

∏

j 6=i

(

1 − pi

1 − pi + ajipi

)

. (B.39)

The maximal normalized throughput for {aji} is given by

(1 +
∑

j 6=i

aji)y
max
i . (B.40)

Let a
△
= 1

n−1

∑

j 6=i aji denote the mean of the sequence. We next show that for every fix

pi ∈ [0, 1] the following inequality holds.

pi

∏

j 6=i

(

1 − pi

1 − pi + ajipi

)

≥ pi

(

1 − pi

1 − pi + api

)n−1

. (B.41)

Define bj
△
= 1 − pi + ajipi. Noting that the nominators in (B.41) are all the same, we need

to show that
(
∏

j 6=i bj

)
1

n−1 ≤ 1− pi + api. Since 1− pi + api =
∑

j 6=i(1−pi+ajipi)

n−1
=
∑

j 6=i bj

n−1
, in-

equality (B.41) immediately follows (arithmetic average is greater or equal than geometric

average). The proof of the theorem proceeds through the following two steps:

Step 1: The maximal normalized throughput decreases when {aji} are replaced with their

mean. Note first that the quantity (1 +
∑

j 6=i aji) in (B.40) remains constant when {aji}

are replaced with their mean. Thus, we only need to show that ymax
i decreases. This im-

mediately follows since (B.41) is valid for every pi (and thus the maximal value before the

transformation is greater or equal than the maximal value after the transformation).

Step 2: Without loss of generality, let i be the user with the smallest normalized through-

put demand (yj ≥ yi, j 6= i). Assume aji = a ≥ 1 are identical for every j 6= i. Fixing pi,

We next show that the normalized throughput strictly increases with a. This, combined

with Step 1, would clearly indicate that the minimal normalized throughput is obtained

when aji = a = 1. Applying (B.38), the total normalized throughput is given by

pi

(

1 − pi

1 − pi + api

)n−1

+ (n − 1)
api

1 − pi + api

(1 − pi) (B.42)

×

(

1 − pi

1 − pi + api

)n−2

= pi(1 − pi)
n−1 1 + (n − 1)a

(1 − pi + api)n−1
.
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Note that the denominator (1 − pi + api)
n−1 is positive. Differentiation of (B.42) w.r.t. a

yields (after arranging terms) the following expression for the nominator

pi(1 − pi)
n−1(1 − pi + api)

n−2(n − 1)[1 − pi + api − pi], (B.43)

which is strictly positive for a ≥ 1 and pi ∈ [0, 1) (when pi = 1 all the obtained throughputs

are zero, thus this value may be excluded from the analysis). This establishes the required

result. ¤

C Proofs for Best-Response Dynamics

For the proofs in this section we use the following notations. Let the update time-slots

of each user i be given by an increasing sequence {tki }, k = 1, 2, 3, . . . . Also, let {tk} =
{

{tk1} ∪ {tk1} ∪ . . . {tkn}
}

, k = 1, 2, . . . . Note that at each tk at least a single user updates

its transmission probability. We shall use the notation pk
i for the transmission probability

of user i at time tk (similarly, pk is the transmission probability vector at time tk), with

the convention of p0
i = 0 for every user i. The content of this section is as follows. We start

with the proofs Section 6. We then complete the proofs of several results which required

the notion of best-response dynamics.

Proof of Theorem 10: For the proof of the theorem we require the next lemma.

Lemma 7 The sequence pk is increasing.

Proof: The result follows by induction. Obviously, 0 = p0 ≤ p1. Assume that p0 ≤ p1 ≤

. . .pk−1. We next show that pk−1 ≤ pk. Denote by Ik the set of users who update their

probabilities at time k (so that pk−1
i = pk

i ∀i /∈ Ik). For each i ∈ Ik, let ki < k be the last

time epoch at which user i updated its probability. Note that

ri(p
k−1
i ,pki−1

−i ) = ri(p
k
i ,p

k−1
−i ) = ρi, (C.44)

as the best response probability (6.19) is such the the throughput demand is met with

equality.

Since ri(p) = pi

∏

j 6=i(1 − pj) is decreasing in p−i and, by assumption, pki−1
−i ≤ pk−1

−i , it

follows that pk−1
i ≤ pk

i (as ri is increasing in pi). ¤

It follows from the above lemma that either some component of p must exceed 1 at some

iteration, or else p approaches a limit, say p∗, and in this limit the equilibrium equations

(3.8) are obviously satisfied (by continuity), i.e., it is an equilibrium point.
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To conclude the proof, we now turn to show that if p̃ is (another) equilibrium point,

then p∗ ≤ p̃. To see this, we apply a similar induction as that of Lemma 7, and also use the

notations thereof. Obviously 0 = p0 ≤ p̃. Assume p0 ≤ p1 ≤ · · · ≤ pk−1 ≤ p̃. Noting that

ri(p
k
i ,p

ki−1
−i ) = ri(p̃i, p̃−i) = ρi and pki−1

−i ≤ p̃−i for every i ∈ I, it follows that pk
i ≤ p̃i, i.e.,

pk ≤ p̃. This argument also shows that if some component of pk exceeds 1 for some k, then

there is no equilibrium point (i.e., the set of required user throughputs {ρi} is infeasible).

¤

Proof of Theorem 11: Convergence of case (a) (joining users) follows directly from the

convergence property of the mechanism itself (Theorem 10), as joining users can be regarded

as users who have been present at the network, yet decide to update their probabilities at

late times.

For case (b), we will restrict ourselves to a single departure, for the simplicity of expo-

sition. Results for multiple departures are obtained through the same arguments. We start

our analysis with a lemma which compares the energy efficient equilibria for two throughput

vectors, such that one is greater than the other.

Lemma 8 Let ρ and ρ̃ be two throughput demand vectors such that ρ̃ ≥ ρ (component-

wise), and let p and p̃ denote the respective EEEs. Then p̃ ≥ p. Consequently, fixing

some ρ, the EEE transmission probabilities are lower (component-wise) with n − 1 users

present, in comparison to the EEE transmission probabilities with n users present.

Proof: For the proof, we track the best response dynamics with parallel updates (where

tki does not depend on i), which are guaranteed to converge to an equilibrium point by

Theorem 10. We next show that p̃k ≥ pk for every k, thus also at the limit. Note that

since ri(p̃
1
i ,0) = ρ̃i ≥ ri(p

1
i ,0) = ρi, then by the monotonicity of ri, p̃1

i ≥ p1
i for every i.

At the next iteration, ri(p̃
2
i , p̃

1
−i) = ρ̃i ≥ ri(p

1
i ,p

1
−i) = ρi. Since p̃1

−i ≥ p1
−i, it follows that

p̃2
i ≥ p2

i for every i. The same argument carries over to subsequent iteration, thus it is valid

also at the limit. The case of (n − 1) users is obtained as a special case of the above, by

setting ρn = 0. ¤

We are now ready to prove convergence for the case of a leaving user. The impact of an

abandoning user (say the nth one) is equivalent to setting pn = 0. Let p̂ denote the initial

probability vector, representing the EEE when n users were present and let p0 denote the

same vector, except that pn = 0. For the proof of the convergence properties, we require

the next two lemmas.

Lemma 9 In case of an abandoning user, the sequence pk is decreasing.
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Proof: Denote by I1 the subset of users who update their probabilities at k = 1. For

every i ∈ I1, since ri(p
1
i ,p

0
−i) = ri(p

0
i , p̂−i) = ρi, it follows by the monotonicity of ri that

p1
i ≤ p0

i Thus overall, p1 ≤ p0. The result of the lemma follows by proceeding similarly in

subsequent iterations (see a similar proof idea in Theorem 10). ¤

Lemma 10 The sequence pk is bounded below by the EEE of the n − 1 users.

Proof: Denote by p∗ the EEE with n − 1 users. Then by Lemma 8 p0 ≥ p∗. Denote

by I1 the subset of users who update their probabilities at k = 1. For these users we

have ri(p
1
i ,p

0
−i = ri(p

∗
i ,p

∗
−i). Since p0

−i ≥ p∗
−i it follows that p1

i ≥ p∗i for every i. This

argument may be carried over to subsequent iterations (pk
−i ≥ p∗

−i for every k) and the

result follows. ¤

An immediate consequence of the last two lemmas is that the mechanism reobtains an

equilibrium in the case that a user leaves the network. We now show that the mechanism

converges to the EEE: We reuse some of the implications along the proof of Theorem 3.

Using the notations within that proof, we observed that the following condition is valid at

the EEE:
∑

j

vj(pj) < 1. (C.45)

This is true, in particular, for the equilibrium point with n users. Since the sequence pk

decreases due to the abandonment of a single user and moreover since vj is an increasing

function, it follows that
∑n−1

j=1 vj(p
k
j ) < 1 for every k. Accordingly, the convergence of the

sequence (guaranteed by the above two lemmas) must be to the EEE of the (n − 1) users.

¤

We now return to prove a couple of results which required the notion of best-response

dynamics.

Proof of Proposition 2(iii): Since ρ̃ admits an equilibrium, the EEE probabilities obvi-

ously obey p̃ ≤ 1. It follows by Lemma 8 that the respective EEEs are such that p̃ ≥ p.

Thus p ≤ 1. ¤

Proof of Theorem 7: (i) Let Hi and H̃i be the collision-free rate functions for Zi and

Z̃i respectively. Then a feasible throughput demand vector ρ for game G is such that the

equilibrium equations (3.8) are satisfied, i.e., Hi(pi)
∏

j 6=i(1 − pj) = ρi for every user i.

Using the same probability vector p = (p1, . . . , pn) with {Z̃i}i∈I , it follows by Lemma 4

that H̃i(pi)
∏

j 6=i(1−pj)
△
= ρ̃i ≥ ρi. Thus, a throughput demand vector ρ̃ = (ρ̃1, . . . , ρ̃n) ≥ ρ

is achievable under {Z̃i}i∈I . The result then immediately follows by Proposition 2(iii).
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(ii) The proof is based on simultaneously tracking the best response dynamics under

both {Hi} and {H̃i}. Specifically, we show that under synchronized best response dynam-

ics (where all users update their probabilities at the same time-slots), the transmission

probabilities are such that p̃k
i ≤ pk

i for every iteration k. Note that at the first iteration

each user solves Hi(p
1
i ) = ρi (or H̃i(p̃

1
i ) = ρi). Then by Lemma 4, p̃1

i ≤ p1
i . At the next

iteration, H̃i(p̃
2
i ) = ρi∏

j 6=i(1−p̃1
j )

≤ ρi∏
j 6=i(1−p1

j )
= Hi(p

2
i ), hence p̃2

i ≤ p2
i by the same lemma.

This inequality carries over to each k ≥ 1, and by continuity holds in the limit as well,

namely at the respective equilibrium points.

(iii) For lucidity, we shall consider the case where the CSI signal of only a single user

i is active and refined, i.e., Hi(pi) < H̃i(pi). Consider the same iterative procedure of (ii)

above. Then, noting (2.6) and by continuity, there exists some K for which the inequality

p̃K
i < pK

i becomes strict. Hence, it directly follows from the update rule (6.19) that p̃k
j < pk

j

for every user j ∈ I and k > K. ¤
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