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Abstract

The perception of future wireless mesh network (WMN) deployment and usage is rapidly
evolving. WMNs are now being envisaged to provide citywide “last-mile” access for numerous
mobile devices running media-rich applications with stringent quality of service (QoS) require-
ments. Consequently, some current-day conceptions underlying application support in WMNs
need to be revisited. In particular, in a large WMN, the dynamic assignment of users to Inter-
net gateways will become a complex traffic engineering problem that will need to consider load
peaks, user mobility, and handoff penalties. We propose QMesh, a framework for user-gateway
assignment that runs inside the WMN, and is oblivious to underlying routing protocols. It
solves the handoff management problem in a scalable distributed manner. We evaluate QMesh
through an extensive simulation (mostly of VoIP), in two settings: (1) a real campus network,
with user mobility traces from the public CRAWDAD dataset, and (2) a large-scale urban
WMN. Simulation results demonstrate that QMesh achieves significant QoS improvements and
network capacity increases compared to traditional handoff policies, and illustrate the need for
intelligent gateway assignment within the mesh.

1 Introduction

Wireless mesh networks, or WMNs, are a rapidly maturing technology for providing inexpensive
Internet access to areas with limited wired connectivity [8]. While initially designed for small-scale
installations (e.g., isolated neighborhoods), WMNs are now envisioned to provide citywide access
and beyond through deploying thousands of access points and supporting thousands of simultaneous
users [6, 14].

WMN users access the Internet through a multihop backbone of fixed wireless routers. Some
of these routers, called gateways, are connected to the wired infrastructure. The WMN assigns
each user to a gateway upon initial connection, and can migrate it between gateways over time.
In traditional implementations, the gateways provide only Internet access. However, QoS-sensitive
applications will probably be supported by high-level services at the network edge, similarly to
the recent trend in wireline networks [5]. We envision a future WMN gateway that also provides
application-level support, e.g., acts as a SIP proxy, a media server cache, or a full-fledged game
server [15]. This trend extends the scope of the gateway assignment problem to a large variety of
applications and services.

This paper considers gateway assignment – a traffic engineering (TE) problem that seeks opti-
mizing the QoS or fully exploiting the network’s capacity for a specific application. The solution
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must take into account the parameters that incur QoS degradation and additional costs, e.g., user
mobility, congestion at the mesh links or nodes, and gateway handoffs. Mature networking systems
employ TE technologies (e.g., MPLS [23]) on top of their existing routing infrastructure, to allow
scalability of management. We believe that in future WMN’s, traffic engineering solutions like
gateway assignment will deployed atop other performance optimizations that are already in place
(e.g., multiple radios [9], smart routing metrics [17], etc.).

It is common practice in small-scale WMNs to always assign a user to the nearest gateway
(e.g., [10]). In this approach, gateway handoffs (macro-mobility) are tightly coupled with link-layer
access point (AP) handoffs (micro-mobility). That is, when a user moves and associates with an
AP that is closer to a different gateway than its current one, it automatically performs a gateway
handoff too. This simple approach suffers from two drawbacks. First, it cannot adapt to load peaks
within the WMN by load-balancing among multiple gateways. Second, it does not consider the
application-level impact of such gateway handoffs. For example, in VoIP, handoffs are relatively
low-cost, due to a small state associated with a session, whereas in online gaming, the performance
penalty of transferring the cached application state between two servers may be very high. Hence,
there is a need to decouple AP transitions from gateway handoffs. While the former are purely
location-based, application-transparent, and do not incur a high performance impact [10], the latter
are not transparent, and should be driven by service-specific QoS considerations.

We propose QMesh – a framework for dynamically managing gateway assignments in future
WMNs that can be instantiated with application-specific policies. QMesh is most beneficial for
applications that allow gateway handoffs. Traditional applications that do not handle handoffs
are supported, but might receive a degraded QoS. QMesh manages two types of decisions for each
mobile user: (1) when to migrate it between two gateways, and (2) which gateway to choose upon
a transition. QMesh employs application-specific considerations to balance the tradeoff between
two conflicting goals: assigning the user to a gateway that provides it with the best QoS at any
given time, and reducing the number of costly gateway handoffs. QMesh does not require any
extension of the underlying routing infrastructure, in particular, it does not introduce any non-
scalable mechanisms like host-specific routes. Since QMesh makes decisions on a per-user basis,
migrating a single user does not directly affect others, thus avoiding traffic oscillations.

QMesh manages gateway handoffs in a scalable distributed way, through a low-overhead sig-
naling protocol that runs within the mesh transparently to the mobile user’s networking stack.
It monitors the QoS of application traffic flows to determine the handoff times, and probes the
prospective QoS to in a shadow process to select the candidate handoff targets. The key to the pro-
tocol’s efficiency is its adaptive approach, which performs probing (1) at distances proportional to
those required for dissipating the load, and (2) at the frequency required to satisfy the QoS needs.
For example, in a low-utilized mesh with little mobility, where a near gateway is likely to provide a
good performance, QMesh infrequently performs very few probes limited to the close neighborhood.
In contrast, if load is high and current QoS is unsatisfactory, QMesh is more aggressive in probing
distant gateways more frequently.

We evaluate QMesh’s impact on the application QoS in a WMN through extensive simulations,
mostly of VoIP but also of other real-time applications that are more handoff-sensitive (e.g., online
games). We first explore a campus-scale WMN (600 APs) with topology and mobility traces drawn
from the public CRAWDAD database [1]. Since our main interest is in large-scale networks, we
also study a citywide WMN (4000 APs) with highly mobile users. To this end, we experiment with
two user populations: (1) a near-uniform distribution, generated by the popular random waypoint
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(RWP) mobility model [30], and (2) a more realistic distribution biased toward the residential
centers, induced by an alternating weighted waypoint (AWWP) model for urban traffic [21]. The
numerical results demonstrate QMesh’s significant advantage over näıve nearest-gateway assign-
ment for all workloads. The QoS achieved by QMesh is close to that of a theoretical BestMatch
algorithm that uses instantaneous perfect information. Finally, we show that QMesh adjusts its
overhead to workload in a scalable way.

2 Related Work

Handoff optimizations in mobile systems have been extensively addressed since the early 1990’s,
mostly in the context of cellular networks (e.g., [26]). These studies primarily focused on optimizing
the network capacity. Handoffs in cellular networks are triggered by physical metrics, and are
handled at the link layer. Our work is different, because we consider the network layer and above.
In this context, handoffs are optional, they can improve the QoS over time, but their potential
performance hit is not negligible.

Recently, Amir et al. presented a design and implementation of SMesh - a prototype WMN with
mobility support [10]. They concentrated on seamless mobility of users between mesh access points.
SMesh adopts the nearest-gateway handoff policy, i.e., the users of each AP are automatically
assigned to the gateway closest to this AP. This approach is appropriate in a small-size installation
described in that paper (about 20 access points and two gateways on the same LAN segment).
However, this policy can lead to poor QoS in a wide-area mesh, as shown herein.

Many mature networking solutions address QoS optimizations as as a traffic engineering (TE)
problem on top of the existing routing infrastructure (e.g., MPLS in carrier networks [23]). Almost
all modern routing protocols (e.g., OSPF [25]) are traffic-independent, thus separating the concern
of optimizing the QoS of individual flows to higher-level TE solutions. A different approach, adap-
tive QoS routing, has been actively studied by the research community (e.g., [20, 24]), originating at
Gallagher’s seminal work on minimum delay routing [18]. Many load-adaptive routing algorithms
are designed for static or quasi-static workloads and suffer from slow convergence in highly dynamic
situations. Moreover, they are complex to implement, and their behavior is hard to predict and
manage. QMesh’s design adopts the first approach for WMNs.

While most TE solutions optimize the unicast OoS, the problem of instantaneously optimal
gateway assignment is equivalent to anycast routing [31] that seeks connecting each user to some
service node among a given set, so as to minimize the average delay. However, we are not aware of
any work that handles dynamic anycast of flows with mobile endpoints while considering handoff
costs, and proposes scalable real-time solutions.

Adaptive probing of multiple mobile anchor points (MAPs) was proposed in the context of hier-
archical mobile IPv6 routing [16]. However, in that work, handoffs are fully dictated by geography
(rather than by QoS), and the simulation scale is small (a few MAPs, and a few tens of users).
Ganguly et al. [19] suggested a number of VoIP performance optimizations in a WMN. In partic-
ular, they proposed maintaining the assignment of each flow to a single gateway, while constantly
probing multiple user-gateway paths and opportunistically re-routing the traffic through the best
path. Unlike QMesh, this approach tightly couples between gateway selection and routing, and
induces non-scalable host-specific paths within the mesh.

We studied a theoretical problem of online assignment of a mobile users to service points while
balancing between network distances and migration costs [12]. However, that work completely
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ignored the issue of load. We also addressed the problem of assigning multiple static users to servers
so as to minimize the maximum service delay [13] which was modeled as a sum of a network-incurred
delay, depending on the number of hops to the server, and a server-incurred delay, stemming from
the load on the server. This delay model may be inaccurate for WMNs since it does not consider
congestion delays within the network. Moreover, the algorithms presented in both papers are
centralized, and their running time is inadequate for real-time systems. In the current work, we use
realistic delay models and workloads, and employ a fundamentally different approach of adaptive
probing to achieve scalability.

3 Design Goals

The QMesh framework handles dynamic assignment of mobile users to WMN gateways. We pursue
the following goals for this service:

• Satisfying application QoS requirements as closely as possible, in the presence of user mobility.

• Handling a variety of applications with different QoS requirements and handoff penalties.

• Maximizing the service capacity in the presence of load peaks.

• Low-overhead, scalable, and fully distributed network management.

• No proprietary client protocol stack extensions.

4 QMesh Framework

In this section, we introduce the QMesh solution, which implements the design goals listed in
Section 3. Section 4.1 outlines the QMesh network architecture, and describes the methods and
parameters that must be deployed within a WMN to support QMesh. Section 4.2 introduces
QMesh’s gateway assignment protocol.

4.1 Network Architecture

QMesh provides mobile mesh users with access to real-time application services. The users perceived
the WMN as a standard 802.11 LAN, and are oblivious to the mesh’s internal multihop structure.
At all times, each user associates at the link level with some mesh router within the radio trans-
mission range, called the user’s current AP. APs provide basic connectivity within the WMN. As
the user moves out of the radio range of its current AP, it associates with a new AP to preserve
connectivity. Upon initial connection, QMesh associates each user with a single gateway, which
provides it with the high-level service (e.g., Internet access, SIP proxy, or game server). QMesh
may later migrate this user to a new gateway when the QoS of the original one becomes poor due
to mobility or congestion, while considering an application-specific handoff penalty. QMesh gate-
way handoffs (macro-mobility) are completely independent of the underlying WMN’s AP handoffs
(micro-mobility).

Applications that seek optimal QoS must explicitly register with QMesh to receive gateway
identity change notifications. This can be done through the application’s standard signaling proto-
col, e.g., SIP. For traditional applications that cannot function correctly in the presence of gateway
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Method Semantics Example Implementation
monitor(u) return the monitored QoS of user u’s gateway. VoIP delay/jitter RTCP within the user’s flow
probe(g) query the prospective QoS of gateway g VoIP delay/jitter RTCP over a test connection
cost(q) return the cumulative cost incurred by the QoS measure q VoIP packet loss

Parameter Semantics
τm Monitoring interval: the rate of running monitor().
Tmin, Tmax The lower and upper bounds on the probing rate

(the actual interval τp is set adaptively, depending on the QoS level).
P The number of simultaneous random probes

(a larger P can offer better QoS at the cost of higher overhead).
H Handoff threshold: the cumulative cost since the last transition that triggers a gateway handoff

(a smaller H means more aggressive handoffs).
∆ QoS threshold for the probing rate control

(the probes are run more frequently if the QoS is poor).

Figure 1: Methods and parameters deployed at the mesh nodes by applications using
QMesh.
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(a) Initial connection
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(b) After micro-mobility
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(c) After macro-mobility

Figure 2: Handoff of a VoIP session between two NAT gateways in QMesh. (a) Initial
assignment to GW1 by access point AP1. (b) Micro-mobility to access point AP2, in
parallel with monitoring and probing. (c) Macro-mobility to gateway GW3. GW2 is
congested and consequently not selected.

handoffs, QMesh can be configured to either never re-assign the gateway, or to employ tunneling
through the initially assigned one (e.g., [11]), at the cost of QoS degradation. Below, we focus on
the former kind of applications.

Application Deployment: QMesh offers a generic framework for supporting multiple appli-
cations. The needs of each application are captured by its service cost which combines multiple
QoS-degrading factors. This cost is accumulated over time. For example, the cost of a VoIP ap-
plication can be reflected as the number of dropped or late voice packets. We distinguish between
continuous costs, which stem from network distances and load peaks, and one-time costs incurred
upon gateway transitions. The gateway assignment algorithm balances the tradeoff between these
two kinds of cost. Figure 1 specifies the methods and parameters that applications using QMesh
deploy at the mesh nodes.
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4.2 Gateway Assignment Protocol

QMesh manages gateway handoffs in a fully distributed fashion, by running the assignment protocol
independently on each mesh router. Each AP router performs the protocol on behalf of its users.
Handoff management entails two kinds of decisions for each user, namely, when to request a gateway
handoff, and which gateway to transition to. The first decision is driven by monitoring the user’s
recent QoS (e.g, by tracking the RTCP control packets within a VoIP media flow). The second one
is based on probing multiple gateways (e.g., by testing the user-gateway delay over a low-bandwidth
dedicated connection, or by applying a standard application resource monitoring (ARM) API [28] to
read response time statistics from a server application). Monitoring and probing are performed by
each AP in the background, transparently to the mobile users. When the QMesh algorithm decides
to migrate a user between two gateways, it opportunistically assigns this user to the gateway that
offered the best QoS in the last probe.

Figure 2 illustrates a handoff of a media session (e.g., VoIP). The gateways provide an Internet
connection service. Each gateway is attached to a different IP subnet, and functions as a NAT
router. Initially, the mobile user is served by access point AP1, which associates it with gateway
GW1 (Figure 2(a)). The second party resides in the public Internet and communicates with the user
through GW1’s IP address. The user then moves to access point AP2 (Figure 2(b)), which forwards
its packets to GW1 over mesh links. Consequently, the packet latency is degraded. AP2 monitors
the session’s quality, and in parallel probes gateways GW2 and GW3 for their prospective QoS. At
some point, AP2 decides to transfer the user from GW1 to GW3. GW2 is not selected despite its
proximity to AP2 because it is currently congested with other users. AP2 sends a notification with
GW3’s IP address to the user, through the application’s natural signaling protocol (e.g., SIP). In
parallel, it re-routes the UDP media flow within the mesh via the new gateway (Figure 2(c)). The
user re-registers its new IP address with its peer. Before the re-registration is complete, the peer’s
traffic continues to arrive to GW1, and is dropped there. This loss is the handoff cost.

A handoff management algorithm must balance the tradeoff between two conflicting goals. On
the one hand, it would like to always assign each user to the best gateway, in order to minimize
continuous costs. On the other hand, one would like to decrease the number of handoffs, in order to
reduce one-time costs. QMesh balances this tradeoff by controlling the fraction of one-time costs in
the total cost. The algorithm is configured with a handoff threshold H. QMesh monitors each user’s
cumulative cost since the last handoff, and allows a new transition only when this cost exceeds H.
For example, if the application-dependent handoff cost is C, then the total cost of each assignment
period (including the handoff in the end) is bounded by C +H, and therefore, the fraction of the
handoff cost within the total cost is bounded by C

C+H .
The pseudocode of the QMesh assignment protocol appears in Figure 3. Cost monitoring (Lines

2–7) happens every τm time units. Once the cumulative cost of user u, denoted cost[u], exceeds
H, the user’s gateway is re-assigned. cost[u] is tracked by its current AP and sent to the new one
upon an AP handoff (Lines 8–9).

The AP runs the gateway selection procedure nextchoice() (Lines 18–33) once in τp time
units, independently of cost monitoring. nextchoice() selects the next assignment for all local
users jointly. The GWID variable holds the selected gateway’s identity, and is used upon subsequent
handoffs of all users served by this AP. Waiting a long time between invocations results in using stale
choices, which translates to suboptimal assignments in dynamic workloads. On the other hand,
running nextchoice() at a high rate incurs undesirable control overhead. In order to balance
between the two, each AP sets the value of τp adaptively, using the feedback on the quality of
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1: {Cost monitoring - per user}
2: Every τm time do for user u
3: cost[u]← cost[u] + cost(monitor(u))
4: q[gwid[u]]← monitor(u)
5: if cost[u] ≥ H then
6: gwid[u]← GWID

7: cost[u]← 0

8: upon AP handoff(u) do
9: send(cost[u]) to the new AP

10: Every τp time do
11: {Gateway selection - shared for all users}
12: nextchoice()
13: {Adjust the invocation period}
14: if (q[GWID] < ∆) then
15: τp ← max(τp/2, Tmin)
16: else
17: τp ← min(τp + 1, Tmax)

18: procedure nextchoice()
19: G′ ← ∅
20: D ← ming∈G distance(g)
21: repeat
22: ring← {g ∈ G|D

2
< distance(g) ≤ D}

23: if (ring 6= ∅) then
24: choices← {P random choices from ring}
25: results← probe(choices)

S{q[GWID]}
26: best← c with the best results[c]
27: if best 6= GWID then
28: GWID← best

29: else
30: return
31: D ← 2D
32: G′ ← G′

S
ring

33: until (G′ 6= G)

Figure 3: The QMesh gateway assignment.
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Figure 4: Selecting candidates for a probe in the QMesh gateway assignment protocol.
The number of random probes in each phase is P = 1. The selection process stops
after probing the third gateway that fails to provide a better QoS than the second
one.

the current choice. If the QoS below a configured threshold ∆, then τp is exponentially reduced,
otherwise, it is linearly increased. The possible values of τp are constrained by the lower and upper
bounds Tmin and Tmax, respectively.

Most QoS metrics are distance-sensitive, i.e., an optimal gateway is likely to be near to the
user, and the primary reason for picking a remote gateway is network congestion around the close
ones. Therefore, QMesh always probes the nearest gateway first, and probes further gateways
only if they can help dissipating the local load. More distant gateways are probed only if moving
further continues to improve QoS (which happens in case of high load peaks). Remote gateways
are randomly load-balanced.

Assume that the distance between the AP and the closest gateway is D network hops. The
algorithm works in phases. In phase i ≥ 0, it probes in parallel P random candidates at distances
2i−1D < d ≤ 2iD from the AP. That is, the candidates are drawn from concentric rings of doubling
width around the AP – see Figure 4 for illustration. The number of these rings is logarithmic with
the network diameter. Note that in the first phase, only the nearest gateway is probed. A gateway
chosen multiple times is probed only once. The algorithm stops either if the result of a phase does
not improve the result of the previous phases, or if all the rings are sampled. Using a small number
of probes is the key to the algorithm’s scalability with the network size. We later show through
simulation (Section 5) that using P = 1 suffices for most workloads, and the average number of
probes overall is very close to 2, i.e., far below the logarithmic upper bound.

5 Evaluation

We empirically compare QMesh to alternative assignment policies, through extensive simulations.
Most of our simulation focus is on VoIP. We study the algorithms’ QoS and service capacity, as
well as their adaptiveness to mobility and load. Section 5.1 presents our cost model for VoIP QoS
evaluation, and Section 5.2 describes two policies that QMesh is compared to.

We first evaluate the protocols in a campus network with real user mobility traces extracted
from a public dataset (Section 5.3). However, the scale of this network is around 600 APs, and
a limited capacity (150 users). Therefore, we turn to simulating a projected citywide mesh (Sec-
tion 5.4) with 4096 APs, and address two spatial distributions of mobile users: a near-uniform
distribution, as induced by the widely adopted random waypoint (RWP) mobility model [30], and
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a more realistic distribution with load peaks in residential and business centers, produced by an
Alternating Weighted Waypoint (AWWP) model of urban traffic. Finally (Section 5.5), we show
the importance of service-specific handoff policies using an example an application which is more
sensitive to handoffs (e.g., an online game).

5.1 VoIP Traffic and Cost Model

We consider RTP-over-UDP VoIP flows generated by a standard G.729 codec, i.e., a constant bit
rate (CBR) flow of 50 packets per second (20ms inter-packet delay). The typical one-way delay
required to sustain a normal conversation quality is 100ms [19]. A VoIP packet is considered lost
if it fails to arrive to its destination within an admissible delay. We attribute most of the delay to
the mesh infrastructure, and set the admissible threshold to 80 ms, thus allowing a small slack for
additional delay incurred by the wired Internet.

We evaluate the VoIP QoS in terms of average packet loss ratio, which is the most dominant
component in Mean Opinion Score (MOS) – the standard VoIP quality metric [4]. MOS values
range from 0 to 5; values above 3.8 are considered acceptable; values above 4.0 are considered good.
For a given workload, we define the service capacity as the maximum number of users that can be
served within an acceptable MOS. In order to visualize our simple metric, we draw two MOS levels,
4.0 (corresponding to 1% of loss) and 3.8 (2% of loss) on most of our performance plots.

We focus on VoIP calls between mesh users and peers in the public Internet. In this context, a
gateway handoff involves a change in the user’s external IP address, and triggers application-level
signaling to re-route the traffic. This results in one second of connectivity loss, during which all
the VoIP packets are lost. Thus, the handoff cost is C = 50 (packets).

A VoIP flow starts losing packets if its path to the currently assigned gateway becomes long or
congested. Excessive packet delays are the primary reason for continuous loss. Network delay is
incurred by accessing the various kinds of mesh links (user, backbone, and gateway connection),
and by queuing at the mesh routers.

In order to allow for large-scale simulations with thousands of users and access points, we
developed a flow-level mesh network simulator, MeshSim. Packet-level simulation tools [7, 3] cannot
handle such a scale. MeshSim models the delays incurred to VoIP flows at each infrastructure node
and link. It uses an accurate 802.11 link delay model [29], counts for cross-link interference, and
implements state-of-the-art optimizations like VoIP aggregation (e.g., [19], and also supported by
the 802.11n standard). We describe MeshSim in more detail in Appendix A.

5.2 Assignment Policies

We compare QMesh to two simple assignment policies, NearestGateway and BestMatch. Near-
estGateway assigns the user to the gateway closest to its current AP. That is, gateway handoffs
are tightly bound to AP transitions. The BestMatch policy is a realistically impossible variant
of QMesh, which runs the greedy selection procedure upon every handoff request, and assumes
instantaneous correct information. That is, it performs an exhaustive search of the best candidate
rather than random sampling of one, and moreover never uses stale information.

QMesh and BestMatch are instantiated with cumulative packet loss as the QoS cost function.
The handoff threshold is set to H = 10 packets. This relatively small value is chosen because the
handoff cost is low (C = 50 packets), and given the user speeds, the loss of 10 packets is a sufficient
indication for changing the assignment. QMesh uses a single probe in each phase of nextchoice()
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Figure 5: Scalability evaluation of the gateway assignment algorithms in an unplanned
campus WMN, with topology and user mobility traces drawn from the Dartmouth
CRAWDAD public dataset.

(i.e., P = 1). It adaptively adjusts the interval between invocations of nextchoice() within the
range [Tmin = 1sec, Tmax = 15sec]. The QoS threshold for accelerating the probes is ∆ = 50 ms.

5.3 Campus Scale Simulation (CRAWDAD)

Our first case study is mobile VoIP performance in an unplanned mesh deployed within a large
neighborhood or a campus. We draw the network topology and the mobile users’ motion traces
from CRAWDAD [1], a community resource for archiving wireless data at Dartmouth college, thus
avoiding the need to speculate about the simulation’s input. The original Dartmouth network is
a single-hop WLAN. The network includes over 600 irregularly placed access points. While in a
WLAN, APs are connected via a wired infrastructure, in our WMN setting, they communicate
through wireless interfaces. All routers use omnidirectional antennas with a transmission radius
of 133m – a minimal value for which the network remains connected. We place the Internet
gateways in a way that minimizes the mean distance (in the number of hops) from each AP to
the nearest gateway. For this purpose, the network is partitioned into 5 clusters using a K-Means
algorithm [22], and within each cluster, the router closest to the centroid as selected to serve as a
gateway. Figure 5(a) illustrates the WMN’s topology (the campus map is due to [2]). The APs are
depicted as dark dots, and the selected gateways as triangles with a dot in the middle.

We employ a movement dataset [27] that contains the mobility traces of more than 6200 users,
collected over a period of many months. Each trace contains a sequence of (timestamp, AP id)
pairs that describe the history of the user’s associations with wireless APs. The majority of users
are either static or quasi-static (occasionally hopping between close APs) most of the time. Their
locations are heavily biased toward the faculty buildings.

We explore the scalability the assignment policies of with network load, as follows. For each
data point L, we builds a set of scenarios in which L users generate a continuous VoIP stream, as
follows. We extract from the trace a set of time intervals, all at least 10 minutes long, in which the
number of online users is exactly L. Since the database is very large, each set contains hundreds
of intervals for each L. We simulate NearestGateway, BestMatch and QMesh on the traces of 50
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intervals selected uniformly at random from each set, and average the loss rates among the runs.
Figure 5(b) depicts the results. The loss of BestMatch and QMesh remains acceptable as long
as the number of users does not exceed 125 (the service capacity). Only under high loads, some
differentiation between the two appears, because the latter searches for the candidate more carefully
and locates it immediately. On the other hand, NearestGateway cannot handle even 25 users, due
to its inability to load-balance among multiple gateways.

Following this, we examine QMesh’s scalability in the presence of concurrent TCP flows gen-
erated by traditional data applications. We repeat the previous experiment, for a varying number
of TCP connections (0% to 20% of the number of users, with the rest running VoIP flows). All
TCP flows are handled in a traditional way, namely, each of them is initially assigned to the closest
gateway, and never reassigned again. In order to prevent starvation of the VoIP traffic by TCP
flows, we allocate the latter with at most 50% of available transmission bandwidth, and schedule
their packets at a lower priority. Thus, the VoIP capacity of the shared links decreases, but the
QoS of the admitted flows is guarantee. Figure 5(c) shows that the average loss ratio increases with
the fraction of TCP flows, but the impact is not dramatic within the admissible load range.

5.4 City Scale Simulation

Our ultimate goal is studying the performance of QMesh in a very large-scale WMN with highly
mobile users. For this, we turn to simulating a citywide mesh that exceeds the campus deployment
by an order of magnitude in the spanned area and the population.

We consider an urban geography of size 8 × 8 km2. There are five population areas – four
residential neighborhoods and a commercial downtown. User locations within each area are follow
a Gaussian distribution around the area’s center with variance σ, which is called the area’s effective
radius. The downtown’s effective radius is 1km, and its center is co-located with the center of the
grid at coordinates (4km, 4km). Each neighborhood’s effective radius is 500m, and their centers are
located at coordinates (1km,1km), (1km, 7km), (7km, 1km), and (7km, 7km). Figure 6(a) depicts
this topology. Areas are depicted as circles, and gateways as small triangles. The Internet access
is provided through a regular grid of 64 gateways, spaced 1km apart. The wireless backbone is a
fine grid of 4096 mesh routers, spaced 125m apart. The transmission radius is 125m.

Our simulation employs two stationary distributions of mobile users, each generated by a dif-
ferent mobility model:

1. A near-uniform distribution, produced by the popular random waypoint model (RWP) [30].
The node uniformly chooses the destination and moves toward it at a constant speed v = 20
m/s (an urban driving speed).

2. A more realistic distribution that biases the users toward the population areas (e.g., neigh-
borhoods or downtown), produced by the projected alternating weighted waypoint (AWWP)
model. At any given time, a mobile node is either stationary in some area, or moving on a
highway between two areas at a constant speed v = 20 m/s. The popularity of different areas
varies during the day.

5.4.1 The Alternating Weighted Waypoint Model

AWWP is one plausible way to create a clustered user distribution. It is inspired in part by [21],
which explored preferences in choosing destinations of pedestrian mobility patterns. The nodes’
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transitions between the areas are governed by a Markov process that switches its transition proba-
bility matrix every 12 hours. The system is modeled by two super-states, each of which is a Markov
chain. Each state in a chain corresponds to a single area. Each probability matrix designates the
users’ preferred locations at a certain time of day. The moving node’s destination point within the
target area is a random variable, drawn from the Gaussian distribution described above. In the
morning, most users drive to the downtown and stay there during the working hours, whereas in
the evening, most users drive back to their neighborhood and stay at home during the night. Direct
transitions between the neighborhoods are not allowed.

Figure 6(b) depicts this random process. We denote the downtown by D, and neighborhood i
by Ni. The transition probabilities are (symmetric for all i):

Morning/day Evening/night
pNi,D 0.9 0.1
pD,Ni 0.025 0.225
pD,D 0.9 0.1
pNi,Ni 0.1 0.9
pNi,Nj 0 0

The stationary distributions of the Markov chains are:

Morning/day Evening/night
πD 0.9 0.1
πNi 0.025 0.225

A mobile user’s behavior is deterministic between transition times. Upon a self-transition, a
node remains at its current location for a period of t. In case of a transition of the user to another
area, it picks a destination point from the distribution induced by the destination area, and moves
to it with a speed of v. For simplicity, we assume that all users wait for the same time and move
with the same speed. We set t = 4 min. Note that the waiting time is equal to the driving time
between the centers of the downtown and neighborhood areas. In this setting, the motion can be
approximated as a discrete-time Markov chain, in which the time slot length is 4 min. All state
transitions (including the probability matrix switch) happen on slot boundaries. During a single
slot, the user either moves between two areas, or remains in one of them.

In each super-state (day or night), the users are mostly stationary, except in a short time after
the transition, when they mostly move to their new preferred areas. Upon switching the super-
state, the convergence to a new matrix’s stationary distribution is short (3-4 time slots). Therefore,
the 15 min following the super-state transition are considered a transition period, after which the
system enters a stable period.

We also experimented with richer models, e.g., non-straight movement trajectories, and con-
strained motion within the population areas. However, they yield almost the same results because
the most important factor is the load peaks. Hence, our simulations focus on the presented simple
model.

5.4.2 Numerical Results

We compare the loss rates and overhead of QMesh to BestMatch and NearestGateway, for the near-
uniform and skewed stationary distributions produced by the RWP and AWWP mobility models,
respectively. Every data point is averaged over 20 runs. For AWWP, we separately study four
different times of day: morning (neighborhoods-to-downtown movement), day (mostly staying in
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(a) City topology
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(b) Alternating Weighted Waypoint

Figure 6: Urban Simulation Settings: (a) The city’s topology (downtown and four
neighborhoods) and the gateway grid. (b) The random process behind the AWWP
mobility model.

the downtown), evening (downtown-to-neighborhoods movement), and night (mostly staying in the
neighborhoods). Day and night are stable periods, morning and evening are transition. The morn-
ing and evening scenarios are simulated for 15 min (the transition period time, see Section 5.4.1).
The day and night scenarios are insensitive to the measurement period; we used 30 min periods for
them. The RWP experiments were initialized with the uniform distribution of users, and preserved
it over time [30]. Each experiment simulated 15 min of user motion.

We first study the the dependency between load and loss for the three algorithms. Figure 7(a)
depicts their behavior for near-uniform distribution induced by the RWP mobility pattern, with
loads ranging from 200 to 2000 users. At all times, NearestGateway succeeds in accommodating
each user at the closest gateway, because no cell’s load exceeds its capacity. All loss is due to
handoffs, and depends only on the user’s speed, and hence, it is constant for all loads. The
BestMatch and QMesh policies incur identical costs, since upon a handoff, the local gateway is
almost always the best choice that cannot be improved by further probing. They improve the
loss over NearestGatewayby sustaining a user’s association with its gateway beyond the grid cell’s
boundaries, as long as the QoS permits. The maximal admissible user-gateway distance diminishes
with load, and hence, handoffs become more frequent, thus causing BestMatch’s and QMesh’s loss
rates.

The shortcomings of NearestGateway become evident as we apply the same experiment for a
more realistic biased distribution of load generated by the AWWP model. We separately explore
the morning scenario featuring a transition of load from the periphery to the center (Figure 7(b)),
and the day scenario that reflects a stationary congestion in the downtown (Figure 7(c)). In both
cases, NearestGateway does not scale beyond 300 users due to its inability to resolve the congestion
in the downtown area to the other gateways. On the other hand, QMesh can accommodate 600
users – just slightly below the baseline BestMatch.

In the next experiments, we continue using the more challenging AWWP workload. Figure 8(a)
depicts the distribution of costs achieved by NearestGateway, BestMatch and QMesh by the time
of day, for a load of 600 users. Note that NearestGateway’s loss is even higher during the day than
in the morning, due to the stationary congestion in the downtown. The price of this congestion
is higher than the cost of excessive handoffs during the morning transition. Since the measured
transition period also captures some resting time in the steady-state area for most nodes, Nearest-
Gateway’s loss in the morning is higher than in the evening, when these areas are not congested.
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(a) RWP model
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(b) AWWP model, morning
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(c) AWWP model, day

Figure 7: Scalability evaluation of the gateway assignment algorithms in a citywide
WMN, for different workloads: (a) Near-uniform distribution (RWP mobility model);
(b) Clustered distribution (AWWP model) – transition period. (c) Clustered distri-
bution (AWWP model) – stable state.

The same disadvantage of NearestGateway is observed when we examine the relationship between
a user’s mobility level (the fraction of time in which the user changes its location) and its loss
rate. Figure 8(b) and Figure 8(c) depict the distribution of loss among the mostly stationary users
(below 20% mobility) and the mostly mobile ones (above 20%) achieved by NearestGateway and
QMesh, respectively. Note that QMesh has the desirable property that the stationary users expe-
rience smaller loss rates than the mobile ones. That is, most of the mobile users’ packet loss stems
from handoffs (which do not happen to the stationary users), while the congestion-oriented loss is
minimized for both categories thanks to opportunistic assignment. In contrast, under NearestGate-
way, stationary users in congested areas suffer from continuous loss, which exceeds the occasional
handoff-related loss incurred to mobile users.

Following this, we examine QMesh’s control overhead – the average number of probes per minute
performed by each AP. We focus on the day scenario when the network congestion is most heavy.
The overhead depends on the number of probes per selection as well as on the probing rate. Our
measurements show that for most values of load, it is enough to apply nextchoice() once in 15
seconds to achieve an acceptable loss ratio. The average number of probes applied upon gateway
selection never exceeds 2.5, as opposed to the theoretical limit of the logarithm of the network
size. Moreover, for most values of the load, the number of probes is almost exactly 2 – the minimal
possible value. Figure 9(a) summarizes these results in a single plot, which shows that the overhead
is very small for most workloads.

Finally, we study the potential QoS benefit of increasing the number of random probes made
by QMesh. We compare two instantiations of the algorithm using P = 1 and P = 2, in the day
scenario. Figure 9(b) shows that increasing P does not bring any performance impact for light
loads (below 400), and has a minor impact for heavy loads. Moreover, QMesh partially masks
the disadvantage of applying a single random probe by adaptively adjusting the probing interval
τp. Note that at a load of 600, QMesh with P = 1 starts increasing its probing rate due to QoS
degradation, which reduces the gap between it and QMesh with P = 2.
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Figure 8: Average loss ratio distribution by the time of day, for the a skewed workload
of 600 users (AWWP mobility model): (a) Comparison between 3 assignment policies,
(b,c) Comparison between the mostly stationary (below 20% mobility) and the mostly
mobile users, for two separate policies.
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Figure 9: QMesh’s control overhead and its effect on the loss ratio: (a) Scalability of
the number of probes per minute with load, (b) Impact of increasing the number of
simultaneous probes P .

5.5 Service-Specific Handoff Policies

In all the above experiments, QMesh used a very low handoff threshold, and migrated each user
almost immediately as the user’s delay became inadmissible. Setting a low threshold (H = 10)
was correct because the handoff cost was also low (C = 50), and hence, there was no benefit in
delaying the new assignment. However, this policy is not necessarily true if the handoff cost is very
high, e.g., in an online game, in which a handoff entails a substantial state transfer. Consider, for
example, the same traffic model as described in Section 5.1, the same continuous cost (1 lost packet
= 1 unit), and the handoff cost of C ′ = 50000 units. We provide this example for insight only, and
do not claim that a realistic online game’s traffic/cost model is used.

Figure 10 illustrates the comparison between two instances of QMesh parametrized by H = 10
and H = 10000, respectively, under a light load (400 users). The second instance, which is much
more conservative in applying costly handoffs, consistently achieves a better cost with all mobility
patterns. Hence, tuning the handoff threshold in accordance with the application-specific handoff
cost is crucial for achieving a good overall cost.
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Figure 10: Tuning the handoff threshold for an application with a high handoff cost
(50000): aggressive policy (H = 10) vs. conservative policy (H = 10000).

6 Conclusions

Future mesh networks will be expected to accommodate a high capacity of mobile users run-
ning media-rich applications. In order to satisfy the QoS requirements of such applications, gate-
way assignment policies will need to take into consideration factors like load peaks, mobility, and
application-specific handoff costs. Future WMN architectures will need to employ scalable mech-
anisms to this end. We introduced QMesh, a novel scalable solution for dynamic assignment of
mobile users to gateways in a large-scale WMN, which can be instantiated with application-specific
handoff policies. We studied QMesh through simulation in different settings of a wide-area urban
WMN. Our results show that QMesh scales well and adapts to network loads. It satisfies application
QoS requirements for service capacities significantly exceeding those of traditional policies.
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A Delay Modeling in MeshSim

We briefly describe the delay models used by MeshSim, a flow-level simulator we developed to
provide network scalability beyond that of packet-level simulation tools [7, 3].

MAC Architecture and Link Delays: We assume that each router is equipped with distinct
interfaces for user access (802.11b) and backbone (802.11a) communication. These interfaces use
different wireless bands, and hence, the access and backhaul traffic flows do not interfere. 802.11a
is chosen for its abundance of orthogonal wireless channels (12), which are exploited to minimize
interference among the mesh links (this is also a common practice in commercial WMNs [6]). A
router employs two cards for communicating within the mesh - one for egress traffic and the other
for ingress traffic. This facilitates a parallel transmission and reception at the backbone, and hence,
a simultaneous upstream and downstream forwarding. The ingress interface is operated at a fixed
wireless channel. Whenever a router needs to communicate with some neighbor, it switches its
egress interface to the channel of this neighbor’s ingress card. Hence, a single ingress interface is
shared by the links emerging from the router’s neighbors.

The low-degree topologies utilized by our experiments1 and a substantial number of available
channels allow performing ingress channel assignment in a way that no pair of routers within two
hops from each other share the same ingress channel. Therefore, the only kind of MAC contention
at the backbone arises when two nodes simultaneously transmit to the same neighbor. That is, we
assume that no interference exists between two backbone links without a common endpoint.

Since at each mesh node, all the incoming backbone links share the same ingress interface,
the delay on each outgoing link depends on the cumulative load on this link’s target. The mesh
forwards each flow along the shortest path between its AP and gateway. Therefore, a particular
assignment of users to gateways determines the load on each link, and hence, the total link delay
incurred to each user. We use the model by Tickoo and Sikdar [29] to compute the expected latency
of traversing a shared 802.11 link (either access or backbone).

VoIP Aggregation and Queueing Delays: We assume that VoIP flow aggregation(e.g., [19],
also adopted by 802.11n) is employed in order to overcome the capacity limitation that is inherent
to wireless VoIP, namely, a high overhead of transmitting small packets over the 802.11 medium.
The VoIP traffic at mesh routers is handled through a VoIP-specific scheduling policy. A packet
that needs to be forwarded over an egress link is placed into the queue of this link. The link’s
scheduler sets the time for transmitting the next outgoing packet. At this time, the queued packets
are aggregated into a super-packet, which is transmitted over the medium as a single frame. Upon

1A sparse subnetwork of the Dartmouth WMN (Section 5.3) or a grid (Section 5.4)
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arrival to the neighbor, the super-packet is de-multiplexed, and the individual packets are handled
independently.

By rate-limiting the super-packet generation process, the scheduler controls the capacity/delay
tradeoff at the wireless link. The scheduler transmits a single packet in a fixed-length time slot,
which can be implemented, e.g., through a simple token-based traffic shaping. With this policy,
if the arrival rate exceeds the transmission rate, the packets are queued on average for a half-slot
time, and otherwise, they are forwarded immediately.

In the chosen delay model [29], a link can sustain an inter-packet delay of 20ms for at most
10 independent flows without dropping packets. For the backbone links, we take a conservative
approach, and rate-limit each egress queue to one packet in 10ms. Since the maximal node degree is
4, at most 8 (aggregated) packets contend for each shared ingress link in 20ms, thus approximating
the behavior of eight concurrent VoIP flows. The average queueing time is therefore 5ms for a fully
backlogged egress queue.

The maximal capacity of the backbone links is constrained by the number of RTP packets that
can be multiplexed into a single super-packet. The size of an RTP packet with a G.729 voice payload
is 60 bytes. Assuming the super-packet size of 1500 bytes, without RTP header compression [19],
the number of voice packets that can be multiplexed into a super-packet is 25. Since a single
egress queue schedules transmissions each 10ms (twice the packet arrival rate in a single flow), its
capacity is 2×25 = 50. Hence, the capacity of a shared ingress link is 4×50 = 200 flows (4.7 Mbps
bandwidth).

Finally, the gateway connection introduces its own delay, which depends on the wired link’s
capacity. Since a typical WMN is expected to use an available inexpensive wired infrastructure,
assume the use of the ADSL technology, in which the uplink is the bandwidth bottleneck. The
fastest available ADSL2 uplink rate today is 3.5 Mbps. We assume that it supports 120 flows (2.75
Mbps effective bandwidth), and employ the M/M/1 model for delay calculation.
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