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Abstract

Measuring a sequence of quantities is central to many

problems. Namely, it is very useful for imaging applications

in a variety of modalities, e.g. X-ray imaging, spectroscopy,

infra-red (IR), multi-spectral imaging etc. Originally uti-

lized for X-ray telescopy, multiplexing measurements is rec-

ognized by a growing number of methods as beneficial. For

example, when multiplexing radiation sources, rather than

measuring each source at a time, the benefits include in-

creased signal-to-noise ratio and accommodation of scene

dynamic range. However, existing multiplexing schemes are

inhibited by fundamental limits set by noise characteristics

and by sensor saturation. The prior schemes, including

Hadamard-based codes may actually be counterproductive

due to these effects. We aim to derive multiplexing codes

that are optimal under these fundamental effects. Our ap-

proach is to find a lower bound on the mean square error

(MSE) of the de-multiplexed data as well as the necessary

conditions to attain this bound for every desired number of

radiation sources. We then show a class of multiplexing

codes that follow these conditions and can be used for opti-

mal multiplexing. Our work is also applicable for verifying

the optimality of any multiplexing code suggested in the fu-

ture.

1. Optical Multiplexing

A fundamental task in imaging is to minimize the mea-

surement errors, expressed as image noise [2, 4, 9, 12, 14,

16, 17]. This is true for practically every imaging modality

e.g. X-Ray [9, 16], spectroscopy [9], visible light [14, 17]

and Infra-Red (IR) [2]. It is important to realize that mea-

surement fluctuation are an inherent part of the imaging pro-

cess, partly regardless of sensor quality. These fluctuations

result from the quantum mechanical nature of photon flux

itself.

A straightforward way of compensating for the measure-

ment fluctuations is to measure the same scene repeatedly

and average the acquired measurements. Alternatively, the

integration time can be lengthen. Both these methods have

the drawback of not being able to cope with highly dynamic

scenes. A better way of handling measurement noise is to

multiplex the measured sources [13, 14, 17]. This means

that a combination of several energy sources are measured

simultaneously in each measurement, then the results are

computationally de-multiplexed to yield an estimate for the

intensity of each individual source.

The question is, given all possibilities of simultaneous

operation of sources, what is the optimal way to multi-

plex them. Ref. [14] suggested that Hadamard-based codes

should be used. However, its analysis did not account for

a very important problem: acquisition noise depends on the

acquired irradiance itself. This might cause Hadamard mul-

tiplexing to become counter productive, as was later experi-

enced by [17]. Ref. [18] has recently dealt with the problem

of multiplexing under signal-dependent noise but it limited

itself to a very small set of solutions. Namely, the mul-

tiplexing codes obtained by [18] are based on cyclic ma-

trices only and are applicable to very specific numbers of

sources. Ref. [13] devised a numerical optimization prob-

lem that yields multiplexing matrices, accounting for both

saturation and photon noise. However, it is not guaranteed

that those multiplexing matrices are indeed optimal.

Our approach to overcome the fundamental imaging lim-

lesley
Text Box
CCIT Report #628July 2007



itations i.e. photon noise and saturation, agrees with the ap-

proach taken by Ref. [13]. We propose that optimal multi-

plexing codes must be constructed such that they are adapt-

able to every desired amount of radiance in each measure-

ment. Such codes will allow the adjustment of the radiance

used in each measurement to avoid saturation and minimize

the degradation from photon noise.

In this work we make a crucial step towards achieving

optimal multiplexing matrices. We derive necessary condi-

tions on the optimality of a multiplexing code in the general

case of C out of N radiating sources used in each measure-

ment. Once formed, these conditions are used to construct

optimal multiplexing codes. These conditions can also be

used to verify the optimality of any offered multiplexing

codes. For example, the codes obtained by the numerical

optimization procedures offered by Ref. [13].

2. Theoretical Background

2.1. Multiplexing

Consider a setup of N radiation sources. Let

i = (i1, i2, . . . , iN )
t

be a set of object radiance values as

measured from a certain location. Each element in this set

corresponds to radiating by any individual source in this

setup. Here, t denotes transposition.

In general, several sources can be turned on in each mea-

surement (multiplexing). Define an N × N multiplexing

matrix W. It is often referred to as a “multiplexing code”.

Each element of its mth row represents the radiation power

of a source in the mth measurement. The power is mea-

sured relative to its maximum value. Hence, 0 states that

the source is completely off while 1 indicates a fully acti-

vated source. The sequential measurements acquired at a

detector are denoted by the vector a = (a1, a2, . . . , aN )
t
.

It is given by

a = Wi + υ , (1)

where υ is the measurement noise. Any bias to this noise is

assumed to be compensated for. Let the noise υ be uncorre-

lated in different measurements with variance of σ2
a.

Once measurements have been acquired under multi-

plexed sources, they are de-multiplexed computationally.

This derives estimates for the radiance values of the indi-

vidual radiation sources î. The best linear estimator in the

sense of mean square error (MSE) for the radiance of the

individual-sources is

î = W
−1

a . (2)

The MSE of this estimator [9, 14] is

MSE
î
=

σ2
a

N
trace

[

(

W
t
W

)−1
]

. (3)

This is the expected noise variance of the recovered sources.

In this paper we seek a lower bound on Eq. (3) and derive

conditions on W to attain this bound, hence minimizing

MSE
î
.

2.2. Eigenvalues and Singular Values

In this section we briefly review elementary definitions

and results from linear algebra that will later be used for

our analysis.

Definition 2.1. Let Λ = {λf}N

f=1
be the set of the eigen-

values (EVs) of a matrix W. The multiplicity of λf ∈ Λ is

the number of repetitions of the value of λf in Λ.

Lemma 2.1. If R and S are matrices such that RS is a

square matrix, then [11]

trace(RS) = trace(SR) . (4)

Lemma 2.2. Let W be a non-singular N × N matrix. Its

EVs are λ1 6 . . . 6 λN . Then (See for example Ref. [10])

i)

trace(W) =

N
∑

f=1

λf (5)

ii) The EVs of W−1 are λ−1
N 6 . . . 6 λ−1

1 .

Definition 2.2. The singular values (SVs) of W are the

square root of the EVs of W
t
W.

Ref. [5] quotes the following theorem.

Theorem 2.3. (Weyl-Horn) Let ξ1 6 . . . 6 ξN be the SVs

of W, then

N
∏

m=f

ξm >

N
∏

m=f

|λm| ∀f ∈ {2, . . . , N} (6)

and
N
∏

m=1

ξm =

N
∏

m=1

|λm| . (7)

Note that if W is symmetric, then

ξm = |λm| ∀m . (8)

2.3. Strongly Regular Graphs

We now refer to some elementary definitions from graph

theory. We will use them when seeking optimal solutions to

the multiplexing problem. We quote some basic definitions

from Ref. [7].

Consider a graph G = (V, E), where V is a set of N
vertices. Here E is the set of edges connecting a pair of

vertices.

Definition 2.3. Two vertices p, q are said to be adjacent or

neighbors if they are connected by an edge.



Figure 1. An example of a strongly regular graph (Peterson) [3].

This graph has the parameters (N = 10; k = 3; α = 0; β = 1).

Definition 2.4. The N×N adjacency matrix Ω of the graph

G is composed of elements

ωp,q =

{

1 if p and q are neighbors

0 otherwise
(9)

Definition 2.5. The complement of a graph G is a graph Ḡ
where its adjacency matrix of Ω̄, is composed of elements

ω̄p,q =

{

1 if ωp,q = 0 and p 6= q

0 otherwise .
(10)

Definition 2.6. If all the vertices of G have the same num-

ber of neighbors k, then G is k-regular. In this case

N
∑

q=1

ωp,q = k ∀p . (11)

Definition 2.7. A strongly regular graph (SRG) [3] with

parameters (N ; k; α;β) is a k-regular graph that has the fol-

lowing properties:

• Any two adjacent vertices have exactly α common

neighbors (neighbors of both vertices).

• Any two non-adjacent vertices have exactly β common

neighbors.

For example, consider the graph in Fig. 1. The adjacent

vertices 5 and 10 have no common neighbors and this rela-

tion also applies to all the other adjacent pairs in the graph.

Hence, here α = 0. Moreover, vertices 5 and 3 have a

single common neighbor, 9, and so are all other analogous

pairs. Hence, here β = 1.

Theorem 2.4. The parameters (N ; k; α; β) of a strongly

regular graph satisfy [3] the constraint

k(k − α − 1) = (N − k − 1)β (12)

In the following, we make use of a theorem due to Sei-

del [15]:

Theorem 2.5. Let G be a strongly regular graph with pa-

rameters (N ; k; α;β). Its adjacency matrix Ω has generally

three distinct EVs,

λΩ

1 =
(α − β) +

√
∆

2
(13)

λΩ

2 =
(α − β) −

√
∆

2
(14)

λΩ

3 = k , (15)

were,

∆ ≡ (α − β)2 + 4(k − β) . (16)

The multiplicity of λΩ
3 is 1.

From Eq. (9), Ω is symmetric. Thus, Eq. (8) applies to

the SVs of Ω.

ξΩ

f = |λΩ

f | ∀f . (17)

Since the EVs of Ω indicate its SVs, Theorem 2.5 can be

applied to the SVs of Ω. In particular, the multiplicity of

EVs in Theorem 2.5 generally applies to the SVs of Ω.

3. Optimal Power-Regulated Multiplexing

3.1. Problem Formulation

We seek multiplexing codes under fixed power. Such a

property is desired to avoid the saturation of the detector.

Here, saturation means that the number of electrons gener-

ated in the detector exceeds the capacity of the circuitry that

translates it into gray levels. The property of fixed power is

useful for other reasons, such as curbing photon noise, as

we shall detail later.

A trivial way to multiplex sources such that the total

power is fixed is to equally reduce the power of each of

the sources. However, as the number of sources increases,

Refs. [13, 14] proved that such a step should be avoided.1

A better solution is to decrease the number of radiation

sources C used in each measurement. If all measured

sources radiate similarly, then C expresses units of sources

and is equivalent to a restriction on the power. This de-

crease, however, is not easy to accomplish. The reason is

that current codes in the literature [9, 18] do not support

multiplexing of arbitrary number of C out of N sources.

Rather, optimal codes were derived for special cases. For

instance, in Hadamard based codes, C = (N + 1)/2. This

raises the need to extend the set of multiplexing codes, that

comply with a constraint on the number of simultaneously

activated sources C.2

1This is true under the assumption that the power limitation is insensi-

tive to the specific identities of the radiation sources. Hence, the saturation

concerns only the total measured power.
2We note that Ref. [13] suggests a numerical search for such codes.

However, here we show a closed form solution and an analysis of the lim-

itations of this solution.



Power is fixed by setting

N
∑

s=1

wm,s = C ∀m ∈ {1, 2, . . . , N} . (18)

Recall that each source can be activated with some portion

of its maximum power i.e.

0 6 wm,s 6 1 ∀m, s ∈ {1, 2, . . . , N} . (19)

We use Eq. (3) to formulate a minimization task for the re-

construction MSE
î
. We slightly modify MSE

î
for the cost

function. To simplify the analysis, define

M̃SE ,
MSE

î

σ2
a

=
1

N
trace

[

(

W
t
W

)−1
]

} . (20)

The minimization of M̃SE is the same as minimization of

MSE itself, if σ2
a is constant. The influence of σ2

a will be

later discussed in Sec. 5. The constraints for our problem

are taken from Eqs. (18,19). Thus, the optimization prob-

lem is

min
W

M̃SE ,
1

N
trace

[

(

W
t
W

)−1
]

(21)

s.t.

N
∑

s=1

wm,s − C = 0 ∀m ∈ {1, . . . , N} (22)

− wm,s 6 0 ∀m, s ∈ {1, . . . , N} (23)

wm,s − 1 6 0 ∀m, s ∈ {1, . . . , N} . (24)

We shall now derive sufficeint conditions for a matrix W to

solve Eqs. (21,22,23,24).

3.2. Conditions for a Global Optimum

A numerical procedure has been tailored to the optimiza-

tion problem (21) in Ref. [13]. It is preferable however, to

reach a closed-form solution, if it exists. This is done by

deriving sufficient conditions for the optimality of a given

W. Such conditions allow us to identify an optimal solu-

tion to the problem, if encountered. Indeed, in this paper we

show that these conditions are satisfied by matrices W orig-

inally developed in graph theory. We can also apply these

conditions to verify that a matrix reached by numerical op-

timization is indeed the global optimum.

Our approach to deriving the optimality conditions is as

follows: first, we find a tight lower bound on M̃SE. Then,

we formulate a necessary and sufficient condition to attain

this bound. Finally, we minimize the bound itself, with re-

spect to the elements of W.

3.2.1 The Cost as a Function of Singular Values

First, we express Eq. (21) in terms of the SVs of W. We

use Lemma 2.2. Hence,

M̃SE ,
1

N
trace

[

(

W
t
W

)−1
]

=
1

N

N
∑

f=1

1

µf

, (25)

where µ1 6 . . . 6 µN are the EVs of W
t
W. Recall the

definition in Theorem 2.3, that {ξf}N
f=1 are the SVs of W.

Thus, in light of definition 2.2.

µf ≡ ξ2
f ∀f ∈ {1, . . . , N} . (26)

We show an implication of constraints (22,23,24) on

the SVs of W. This will allow us to better streamline

(22,23,24) into Eq. (25), forming a lower bound on the

MSE. To understand the connection between these con-

straints and the SVs of W, we cite the following theorem

[8]:

Theorem 3.1. Let W be constrained by Eqs. (22,23,24).

Then, C is an EV of W. Furthermore, let λm be an EV of

W. Then, |λm| 6 C. The proof is given in App. A.

Theorem 3.1 deals with the EVs of W. This has an im-

plication on the corresponding SVs, which are used in (25).

This implication stems from Theorem 2.3. Let us set f = N
in Eq. (6). Then,

ξN > |λN | . (27)

Now, following Theorem 3.1, λN = C. Hence, using

Eqs. (26,27)

µN , ξ2
N > C2 . (28)

Eq. (28) constrains the largest SV of W. Therefore, we

separate it from the rest of the SVs in Eq. (25). The advan-

tage of this move will be clarified shortly. Thus we rewrite

Eq. (25) as

M̃SE =
1

NµN

+
1

N

N−1
∑

f=1

1

µf

. (29)

for a reason that will be clarified next.

3.2.2 Optimality of the Singular Values

In this paper we seek the tight lower bound on MSE
î
. To

achieve this we have first expressed M̃SE by Eq. (29), in

terms of the SVs of W. We now seek to minimize Eq. (29)

as a function of these SVs. Apparently, M̃SE in Eq. (29) is

reduced if we simply increase any single SV, µf , while the

rest are constant. Can we do this arbitrarily? The answer is

no. The reason is that Eqs. (22,23,24) bound the domain of

W, hence, bounding the domain of its SVs. Therefore, any



Figure 2. M̃SE as a function of {µf}
N
f=1. The green dots mark

the vectors in µ domain that minimize M̃SE, when S is fixed.

The highlighted line marks the optimal value of S. The green dot

along this line marks the global minimum M̃SE. The minimum is

derived in closed form and thus, not affected by local minima of

M̃SE.

µf cannot be arbitrarily increased. The SVs are mutually

coupled. To express the coupling, we first use a normaliza-

tion, by setting

S ,

N
∑

f=1

µf (30)

and setting it to be a constant. Later we alleviate the need

for this normalization as demonstrated in Fig. 2.

Now, we show that under the constraint S ≡ Const,

min
µN







1

NµN

+
1

N

N−1
∑

f=1

1

µf







=
1

NC2
+

1

N

N−1
∑

f=1

1

µf

.

(31)

This observation is now clarified (see Fig. 3). The mini-

mization in Eq. (31) is only over the value of µN . If µN is

decreased by some small quantity ∆µN then, to conserve

S in Eq. (30), the value of at least one other µf should in-

crease. An increase of µf by ∆µN reduces M̃SE since,

∆M̃SE =
∂M̃SE

∂µf

∆µN = − 1

Nµ2
f

∆µN . (32)

We seek the strongest reduction of M̃SE. Clearly, in

Eq. (32), the reduction ∆M̃SE is strongest if ∆µN affects

the lowest µf , which is µ1. Overall, decreasing µN and

increasing µ1 by ∆µN yields a reduction of

∆M̃SE = −∆µN

N

(

1

µ1

− 1

µN

)

< 0 . (33)

Delivering a net benefit of M̃SE.
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µ
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Figure 3. An illustration for the solution of Eq. (31). The black

vertical lines indicate an instantaneous state of the SVs of W. If

the largest SVs is reduces by ǫ and the smallest SV is increased by

the same amount, the total sum of the cost function (31) is reduced

Since a benefit stems from a reduction of µN , then µN

should be as low as possible. From Eq. (28), the lowest

possible value of µN is C2. To recap, in an optimal multi-

plexing code W, the largest SV satisfies

ξN = C (34)

i.e.,

µN = C2 . (35)

This leads to Eq. (31)

After determining µN , we turn to the other SVs. Triv-

ially,

1

N

N−1
∑

f=1

1

µf

≡ N − 1

N





1

N − 1

N−1
∑

f=1

1

µf



 . (36)

The parenthesis on the right hand side of (36) expresses the

reciprocal harmonic mean of {µf}N−1

f=1
. The inequality of

means [1] states that:

1

N − 1

N−1
∑

f=1

1

µf

>
N − 1

∑N−1

f=1 µf

. (37)

Using Eqs. (30,35) in Eq. (37) yields,

1

N − 1

N−1
∑

f=1

1

µf

>
N − 1

S − C2
. (38)

Combining Eqs. (31,36,38) into (29) yields

M̃SE > B (39)

where B is the lower bound of M̃SE, given by

B =
1

NC2
+

(N − 1)2

N(S − C2)
. (40)



The lower bound B is constant as long as S in fixed. We

wish that M̃SE will actually attain this fixed lower bound.

Equality in Eq. (39) is obtained if equality holds in (37),

which occurs when {µf}N−1

f=1
are all equal. We recap with

the following corollary.

Corollary 3.2. An ideal multiplexing matrix W is such that

all its SVs (but the largest one) {ξf}N−1

f=1
, are equal to each

other. Its largest SV equals C.

Note that we refer to matrices that attain the lower bound

B as ideal. It is not guaranteed however, that such matrices

exist for all values of N and C. Matrices that minimize

M̃SE without reaching B are simply referred to as optimal.

3.2.3 The Optimal Variable S

We have shown in Sec. 3.2.2 that for a specific S, the MSE

is minimized by matrices that comply with the terms in

Corollary 3.2. We now relieve the constraint of a fixed S.

Hence, S may vary (see Fig. 2). Furthermore, we derive the

best value for S. This yields a condition on the elements of

W. Following Lemma 2.2,

trace
(

W
t
W

)

=

N
∑

k=1

µk = S . (41)

Following Lemma 2.1,

trace
(

W
t
W

)

= trace
(

WW
t
)

. (42)

The diagonal elements of WW
t are

(

WW
t
)

m,m
=

N
∑

s=1

w2
m,s . (43)

Due to Eq. (19),

w2
m,s 6 wm,s . (44)

From Eqs. (18,43,44),

(

WW
t
)

m,m
6

N
∑

s=1

wm,s = C . (45)

From Eqs. (41,42,45)

S = trace
(

WW
t
)

=

N
∑

m=1

(WW
t)m,m 6 NC . (46)

Note that equality holds in (46) if and only if equality also

holds in Eq. (44). Trivially, this happens if all elements of

W are either 1’s or 0’s. In this case Eq. (46) yields

Soptimal = NC . (47)

0 10 20 30 40 50 60

0.1

0.2

0.3
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M
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n
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Figure 4. Bound of M̃SE, for N = 63. Here C varies from 1 to 63.

Eq. (46) alleviates the need for a fixed S.

From Eqs. (40,46,47)

B > Bmin (48)

where

Bmin =

[

1

NC2
+

(N − 1)2

N(NC − C2)

]

. (49)

Equality holds if wm,s ∈ {0, 1} ∀m, s. In other words B
reaches its lowest potential value Bmin, if S is given by

Eq. (47).

Corollary 3.3. The lower bound on M̃SE is achieved using

binary multiplexing matrices W.

We now combine the results of Corollaries 3.2 and 3.3.

From Eqs. (3,39,40,48,49),

MSE
î
> σ2

aBmin . (50)

The low bound σ2
aBmin is obtained by a matrix W, if this

matrix complies with both Corollaries 3.2 and 3.3.

The result in Eqs. (49,50) is very useful. Being a tight

bound, Bmin determines the behavior of MSE
î

as a function

of both N and C. Furthermore, if W satisfies the optimality

conditions, then σ2
aBmin is exactly the expected value of

MSE
î
. In Fig. 4 we illustrate the behavior of M̃SE for a

specific value of N and a rage of values of C.

As a closure for this section, we find the value of C that

minimizes the bound Bmin. We denote this value by Copt.

It is stressed out that this value does not necessarily corre-

spond to a multiplexing matrix that meets the bound Bmin.

Such a matrix might not at all exist e.g. if Copt is not an

integer. However, it might give us a clue about the best pos-

sible multiplexing matrix, given no other considerations in

selecting C e.g. photon noise.

We now see a proper time to remind that if C is free

to vary, the optimal multiplexing matrices for a subset of



values of N are already known. These matrices are based

on the Hadamard matrices and are known as the S-matrices

[9]. It can easily be shown that those matrices comply with

our conditions for attaining the lower multiplexing bound.

An interesting characteristic of these matrices is that if they

exist, they have exactly N+1
2

elements valued 1 in each row

and the rest are 0. In other words they have CHad = N+1
2

.

We now turn to find Copt. This is done by differentiating

Bmin with respect to C and equalizing it to 0.

∂Bmin

∂C
= − 2

NC3
− (N − 1)2(N − 2C)

N(NC − C2)2
= 0 . (51)

Eq. (51) yields Copt.

Copt =
−3 + N2 − 2N ±

√

(N2 − 2N + 9)(N − 1)2

4N − 8
(52)

A careful examination of Copt in Eq. (52) reveals that it is

actually not very far from N+1
2

. This value, as mentioned

earlier is proven to be the best C for multiplexing in cases

where S-matrices exist. In fact, as N approaches infinity we

have

lim
N→∞

Copt =
N

2
. (53)

So asymptomatically

lim
N→∞

Copt = lim
N→∞

CHad . (54)

This last observation sums up nicely our analytical

derivations. It relates our lower bound to multiplexing ma-

trices that are long ago known to be optimal. We see that not

only the S-matrices attain our MSE bound, they also attain

this bound very close to its lowest point. From the optimal-

ity of the S-matrices we can conclude that the lowest point

of our bound is indeed very close to the global optimum of

the MSE.

4. Some Ideal Solutions

4.1. Strongly Regular Graphs as A Solution

Sec. 3 derived a lower bound on MSE
î
, which can be

obtained by multiplexing. We also presented the conditions

that a multiplexing code should satisfy in order to attain this

bound. However, it is not obvious that such ideal codes

exist. Here, we show that indeed there is a class of matrices

that satisfy these optimality conditions.

The adjacency matrix Ω described in Theorem 2.5 can be

used as the desired multiplex matrix W, sought in Sec. 3,

as we now detail.

• The matrix Ω is is an adjacency matrix, therefore it is

binary. Hence, it satisfies Corollary 3.3.

Figure 5. An example for a strongly regular graph with parame-

ters (45; 12; 3; 3) developed by Ref. [6]. Here 1s appear as white

squares while 0s appear as black squares. Since in this graph

α = β = 3, it satisfies the conditions of Theorem 4.1.

• The highest SV of the desired W is C, with multiplic-

ity which is generally 1 (See Corollary 3.2). Similarly,

the highest SV of Ω is k, with the same multiplicity.

• Setting the parameters α = β in Eqs. (13,14) yields

|λΩ
1 | = |λΩ

2 | =
√

∆
2

. Using Eq. (17), all SVs of Ω

are equal to
√

∆
2

but the largest SV, which equals k.

Namely,

ξΩ

1 =
√

C − β (55a)

ξΩ

2 = C . (55b)

Therefore, Ω satisfies the conditions of Corollary 3.2.

To summarize,

Theorem 4.1. Let Ω be the adjacency matrix of a

(N ;C;α; α) strongly regular graph. Then, Ω is an ideal

matrix W solving Eqs. (21, 22, 23, 24) .

Recall that an SRG is subject to a constraint given in (12)

on the values of its parameters. If α = β as in Theorem 4.1,

then Eq. (12) takes the following form

α =
k(k − 1)

(N − 1)
. (56)

As an example, consider the (45; 12; 3; 3) SRG [6]. This

is a class of graphs, determined up to a isomorphism. One

representative of this class is shown as a binary image

in Fig. 5. Note that the parameters of this graph satisfy

Eq. (56).

4.2. Solutions from Complement Graphs

In Sec. 4.1 we have devised a set of solutions for the

sought optimal W. In the following section we shall see

that this set directly yields yet another set of solutions.

Refs. [3, 6] formalize the following theorem:



Theorem 4.2. A graph G is strongly regular with

parameters (N ; k; α;β) if and only if its comple-

ment Ḡ is also strongly regular, with parameters

(N ; N − k − 1; N − 2k + β − 2; N − 2k + α).
In our context, Theorem 4.2 means that given an SRG, Ḡ

with parameters (N ; C̄; ᾱ; ᾱ+2), there exists a complement

SRG, G. This graph G has the parameters (N ; C; α; α),
where C = N − C̄ − 1 and α = N − 2C̄ + ᾱ. Hence, us-

ing Theorem 4.1, G is a solution for Eqs. (21, 22, 23, 24).

5. Photon noise

In this section, we present a multiplexing application that

benefits from our analytical derivation. Namely, it applies

the MSE lower bound derived in Sec. 3 to illumination mul-

tiplexing.

Consider a setup of N light sources, spread in various

directions relative to a scene. Such a setup is often used for

the acquisition of images of a scene under variable illumi-

nation [13, 14].

It has already been recognized Refs. [14] that multiplex-

ing the light sources in each image acquisition, is highly

beneficial to the SNR of the desired, single source images.

Although this is generally true, the presence of photon

noise in the acquired images inhibits the multiplexing gain.

Intuitively, when the noise is signal dependent, increasing

the radiance put in each measurement, also increases the

noise. This effect downgrades the multiplexing gain, some-

times even causing it to be counterproductive.

As in [13] we use an affine noise model

σ2
a = κ2

gray + Cη . (57)

Ref. [13] minimizes the MSE of the decoded images, given

that they were acquired under the affine noise in eq. (57).

This minimization is based on a numerical procedure with

its cost function given by eq.(3). Since this cost function is

not unimodal, it is not guaranteed that its global minimum

will be achieved. We use the analytic bound to examine the

quality of the multiplexing codes obtained by the procedure

depicted in [13].

6. Discussion

We have formulated an optimization problem that is the

key in finding optimal multiplexing codes that are tailored

to fundamental inherent constraints in radiometric measure-

ments. This optimization problem is multimodal. Our work

finds the necessary and sufficient conditions for a given

multiplexing code to be an optimal solution for the problem.

Those conditions are general in reference to both the total

number of radiation sources N and the radiance allowed for

every single measurement.

In addition we have presented a set of matrices that obey

these constraints and can be used as optimal multiplexing

codes. These matrices are taken from the discipline of

graph theory. Specifically they are the adjacency matrices

of strongly regular graphs.
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A. Proof of Theorem 3.1

To make the paper self-contained, we prove

Theorem 3.1. This derivation is a variation of a proof

that appears in [8]. Define

W
offset , W − CI . (58)

Let woffset
m,s be the elements of W

offset. Following Eq. (18),

N∑

s=1

woffset
m,s = 0 ∀m ∈ {1, 2, . . . , N} . (59)

Hence, one of the EVs of W
offset is 0. In other words,

det(Woffset) = 0. By the definition in (58), this means that

det(W − CI) = 0, i.e., C is an EV of W. This proves the

first part of Theorem 3.1.

Suppose that uf = (uf
1 , . . . , u

f
N )t is an eigenvector cor-

responding to λf ; without loss of generality we may nor-

malize u
f such that

max
m∈{1,...,N}

|uf
m| = 1 . (60)

Hence, uf
m = 1 for a certain m ∈ {1, . . . , N}. From

Eqs. (19,60)

|wm,su
f
m| 6 1 ∀m, s ∈ {1, . . . , N} . (61)

Eqs. (18,61) directly lead to a constraint on the absolute

value of the sth component of Wu
f .

|(Wu
f )m| = |

N∑

s=1

wm,su
f
s | 6

N∑

s=1

|wm,su
f
s | 6 C .

(62)

In addition, uf is an eigenvector. Hence,

|(Wu
f )m| = |λfu

f |m = |λfuf
m| . (63)

Recall that uf
m = 1. Hence (63) becomes

|(Wu
f )m| = |λf | . (64)

Using Eq. (64) in (62) yields

|λf | 6 C . (65)

This proves the second half of Theorem 3.1.
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