
TECHNICAL REPORT CCIT-629, ELECTRICAL ENGR. DEPT., TECHNION, JULY 2007 1

The TPT-RAID Architecture for Box-Fault Tolerant

Storage Systems
Yitzhak Birk and Erez Zilber

The Technion – Israel Institute of Technology

Abstract—TPT-RAID is a multi-box RAID wherein each ECC

group comprises at most one block from any given storage
box, and can thus tolerate a box failure. It extends the idea
of an out-of-band SAN controller into the RAID: data is sent
directly between hosts and targets and among targets, and the
RAID controller supervises ECC calculation by the targets. By
preventing a communication bottleneck in the controller, excellent
scalability is achieved while retaining the simplicity of centralized
control. TPT-RAID, whose controller can be a software module
within an out-of-band SAN controller, moreover conforms to
a conventional switched network architecture, whereas an in-
band RAID controller would either constitute a communication
bottleneck or would have to also be a full-fledged router.
The design is validated in an InfiniBand-based prototype using
iSCSI and iSER, and required changes to relevant protocols are
introduced.

Index Terms—RAID, SAN, out-of-band, iSCSI, iSER, InfiniBand,
RDMA.

I. INTRODUCTION

IN most current RAIDs [1], including very large ones, any

given error-correcting (ECC) 1 group resides in a single box.

Regardless of the degree of internal redundancy and reliability,

a single-box RAID is thus susceptible to box-level failures (e.g.,

cable disconnection, flood, coffee spill), as these render entire

ECC groups unavailable.

In a multi-box RAID, each ECC group uses at most one

block from each storage box, so the failure of such a box

does not render any data inaccessible. The controller must

be fault tolerant (e.g., by having a hot backup [2]), as must

the network [3]. Our work focuses on multi-box RAIDs with

centralized control, and we use the term Multi-box RAID to

refer to such systems.

Unlike a single-box RAID that uses a DMA engine for

internal data transfers, a multi-box RAID must use the network,

e.g., iSCSI over TCP, for all transfers. This requires extra data

copies that affect both throughput and latency, and moreover

burdens the CPUs. Overcoming the single point of storage-box

(“target”) failure by going to a multi-box RAID thus poses

several challenges: communication efficiency and prevention

of a controller bottleneck. Controller fault tolerance can be

handled through well-known mechanisms; it is not addressed

in this paper, as the proposed architecture does not place any

special demands in this respect.

1We focus on erasure correcting codes, mostly XOR, and use the term ECC

loosely. Nonetheless, TPT-RAID can be adapted to use any ECC.

A. In-band vs. Out-of-band RAID Controller

Current SAN (block-oriented) controllers are either “in-

band” (Fig. 1) or “out-of-band” (Fig. 2). In single-box RAIDs,

the RAID controller is naturally in the data path. In a multi-box

RAID, however, an in-band RAID controller is problematic:

– Connecting it to a single switch port renders it a communi-

cation bottleneck, as it is party to all communication.

– Connecting it via multiple ports may help but is costly,

requires load balancing among the ports, and its internal data

paths could be the bottleneck.

– Locating it inside the switch, acting as a router, would relieve

the bottleneck, but the “orthogonality” of communication and

other functions would be violated.

Fig. 1. In-Band controller

Fig. 2. Out-Of-Band controller

A multi-box RAID
2 comprising disk boxes and a con-

troller, all interconnected by a common network, naturally

admits an out-of-band RAID controller. However, this presents

performance challenges and raises the issue of locating ECC

calculations, which cannot be performed by such a controller.

B. Contributions of this work

We present the 3
rd Party Transfer multi-box RAID architec-

ture, TPT-RAID, which partitions the RAID controller functions:

the management functions are taken out of the targets and

placed in a centralized, out-of-band TPT-RAID controller, while

data transfers and ECC calculations are carried out directly

among targets and hosts and within targets, respectively, all

under centralized control. The controller only handles control

2We use RAID-5 as an example, and refer to it simply as “RAID”. However,
this work is equally applicable to other RAID types.
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messages (with the exception of unsolicited data). TPT-RAID

thus carries the idea of an out-of-band SAN controller one step

further, into the RAID itself, and is consequently also described

by Fig. 2. In fact, it can be implemented as a software module

inside such a SAN controller. Finally, since SANs and RAIDs

are often used as the back end of NAS and object based

systems, TPT-RAID is also relevant to those.

C. Related Work

Previous studies addressed the aforementioned problems

(the high price of RAIDs, tolerating a box failure and scalability

of the RAID controller), but did not simultaneously solve all

of them: several studies focused on multi-box (or distributed)

storage systems [4], [5], [6], [7], [8]; Gray et al [2] addressed

controller failures; the RAIN project [3] addressed network

failures; commercial storage solutions (Hitachi Lightning [9],

EMC Symmetrix DMX system [10]) address high availability.

Some commercial file systems focused on removing the

controller from the data path [11], [12], [13], [14]: clients

receive metadata from a metadata server, and data is trans-

ferred directly between clients and the actual storage. The

idea of moving the controller (or metadata server) out of the

data path is conceptually similar to our 3
rd Party Transfer,

but is applied at file level rather than at block level. We also

incorporate InfiniBand [15] and RDMA [16], and demonstrate

their efficiency.

Other commercial systems focused on removing the con-

troller from the data path at block level. SVM [17] is a SAN

appliance that provides virtual volume management and has

an out-of-band controller. However, it does not use RDMA,

so although data is sent directly between hosts and targets,

it is not transparent to the host because it has to explicitly

send/receive data packets to/from the storage. Also, when

using SVM for backup, the controller is in the data path. FAB

[18] is a distributed disk array that comprises multiple identical

storage servers. Each server can act as a gateway for requests

from clients.

The specification of SCSI [19] contains block commands

that support parity calculation by the disk drive itself. This

can be used to distribute the ECC work among targets and to

reduce the overall required data movement.

The remainder of the paper is organized as follows. Section

II briefly presents modern storage communication protocols

and shows how they can be used to increase communication

efficiency. Section III presents our 3
rd Party Transfer multi-

box RAID architecture (TPT-RAID). Section IV presents our

TPT-RAID prototype and some performance measurements.

Throughout this document, we mostly use RAID-5 when

discussing TPT RAID. Section V presents a brief description

of how these ideas may be implemented in other RAID types.

Finally, section VI offers concluding remarks.

II. STORAGE-ORIENTED COMMUNICATION

INFRASTRUCTURE

Storage protocols (like SCSI) have specific communication

requirements such as high data rate and efficient data transfer

(minimal loading of the CPU); the latter is sometime ac-

complished using “protocol offload” engines. Presently, target

boxes have large caches, and future storage may even have

low access times, so low latency of storage communication

has also become important.

Presently, Fibre Channel (FC) is still the most prominent

high-end storage communication interconnect, with data rates

of up to 4 Gbit/s. FC fabric is a managed network where

endpoints need to log in to the network, so that switches can

optimize paths. Each node has a FC Host Bus Adapter (HBA)

containing a DMA engine. The DMA engine is used for data

transfers between the HCA and the node’s own memory. FC

equipment is very expensive and the data rate lower than those

of more modern I/O communication interconnects.

The transition to SAN and NAS (block-oriented and file-

oriented networked storage, respectively) that share the com-

munication infrastructure with inter-computer communication

has been accompanied by the emergence of high-performance

communication infrastructure for storage. An increasing frac-

tion of networked storage systems use the Internet SCSI [20]

(iSCSI) protocol for sending SCSI commands and data over a

network. Some systems use the remote DMA [16] (RDMA)

mechanism provided by interconnects like InfiniBand [15]

and iWARP (a protocol suite that provides the Remote Direct

Memory Access support [16] (RDMAP), the Marker PDU

Aligned Framing for TCP support [21] (MPA) and the Direct

Data Placement support [22] (DDP)). The iSCSI Extensions for

RDMA protocol [23] (iSER) or SCSI RDMA Protocol [24] (SRP)

are used in order to harness RDMA for storage communication

purposes. In the remainder of this section, we elaborate on

modern interconnects and communication protocols that will

be relevant for a multi-box RAID. These protocols, described

briefly below, can be used to dramatically improve communi-

cation efficiency over simplistic use of iSCSI over TCP.

A. InfiniBand and RDMA

Several interconnects have been developed for computer

clusters: Myrinet (By Myricom) [25], QsNet (by Quadrics)

[26] and InfiniBand [15]. Of these, the most interesting and

relevant to storage appears to be InfiniBand.

InfiniBand is a recent industry-standard architecture for

server I/O and inter-server communication. It provides high

reliability, availability, performance (10 − 60 Gbit/s end-to-

end) and scalability, featuring full protocol offloading. It

also allows user-level networking and supports quality-of-

service differentiation. ( In conformance with common storage

implementations, we use InfiniBand only in kernel mode.)

Communication over TCP/IP requires many copy operations,

which increase latency and consume significant CPU and mem-

ory resources. RDMA eliminates some of them by allowing an

application to read or write data from/to a remote computer’s

memory with minimal demands on memory bus bandwidth

and CPU processing overhead.

RDMA support is an important advantage of InfiniBand over

communication protocols such as 10Gb/s Ethernet and Fibre

Channel that are used for storage communication. Another

advantage is that its data rate has been increasing more rapidly

than those of other communication solutions.
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B. iSCSI Extensions for RDMA (iSER)

iSCSI was originally developed to run over a conventional

TCP network. iSER is an IETF standard that maps the iSCSI

protocol over a network that provides RDMA services (like

TCP with RDMA services (iWARP) or InfiniBand). Another

motivation for iSER is the problem of out-of-order delivery of

TCP segments in the traditional iSCSI model. These segments

have to be stored and reassembled before the iSCSI layer

can place the data in the iSCSI buffers, which degrades

performance due to the extra data copying. When iSCSI is

combined with iSER, Data is sent between the initiator and

target I/O buffers without intermediate data copies.

The iSER transport resides under a layer called Datamover

Architecture (DA). This layer logically separates the movement

of actual data between iSCSI end nodes from the rest of

the iSCSI protocol, though the same physical path may be

used for both data and control messages. This enables iSCSI

to dynamically select the best available transport for data

transfers.

The main difference between standard iSCSI and iSCSI over

iSER in the execution of SCSI READ/WRITE commands is

that with iSER, data transfers (with the exception of iSCSI

unsolicited data) are performed by issuing RDMA write/read

operations, respectively. Another difference is that iSER is an

asymmetric protocol, whereby the target initiates most of the

actual data transfer (except for iSCSI unsolicited data). This

reduces the host CPU usage.

C. Multi-box RAID with iSER

The use of RDMA may be viewed as a substitute for the

DMA engine that is used by a single-box RAID, and its use in

conjunction with iSCSI and iSER is highly beneficial However,

other problems of the multi-box system remain unsolved:

– The control/data separation offered by iSER is really a

protocol separation over the same physical path. All data

transfers go via the controller.

– ECC calculations require additional data transfers between

the controller and the disks as well as calculations by the

controller.

We will use iSCSI over iSER with an in-band controller

as a baseline for comparison (the Baseline system). We next

introduce TPT-RAID, which extends the use of RDMA to

address the remaining problems.

III. TPT-RAID

A. Overview

TPT-RAID, depicted in Fig. 3, is a multi-box RAID that

combines a central out-of-band controller with RDMA-based

data transfer. RDMA is both efficient and obviates the need

for the hosts to be aware of the details of the operation. ECC

calculation is performed by the storage targets. TPT-RAID uses

iSCSI for sending commands and data. Other than the required

changes in iSCSI, all its features can be used without change.

TPT-RAID features two main elements: 3
rd Party Transfer

(TPT) and ECC calculation by the targets.

TPT. Read/write data passes directly between the host and

the targets under controller command, and data for parity

Fig. 3. TPT-RAID

calculation is sent among targets under controller command.

Only control messages pass through the controller (with the

exception of unsolicited data in WRITE requests as explained

later in this section).

ECC calculation by the targets is carried out in one of the

following ways, both of which employ RDMA:

• Star topology: per command instance, one of the targets is

chosen as the “calculator”. It fetches all required blocks

from other targets, computes the ECC information and

writes it to its own disk or to another target(s). With a

single calculation point, this approach is simple and can

be used with any error/erasure correcting code. Also, it

minimizes the total amount of communication. Finally,

the ad hoc selection of the “calculator” is used to balance

the load among targets.

• Binary tree: multiple targets participate in any given ECC

calculation (under controller supervision). This scheme is

less general and more complex, but may reduce latency

in certain low-load situations.

In the remainder of this section, we describe the operation of

TPT-RAID, addressing login and logout, I/O request execution

and error handling.

B. Login and logout

The login and logout phases in TPT-RAID are different from

a SAN with single-box RAIDs and an out-of-band controller:

the controller has to establish a connection with each target,

and each target has to establish a connection with all other

targets and with each host3. The TPT-RAID architecture also

raises some potential security problems during connection

establishment and login phases (unless the hosts, controller and

targets all reside in a trusted environment). The possible threats

are rogue targets that may establish connections to other targets

and hosts. We next go over the connection establishment and

login phases, and show how these problems are handled:

• Connection establishment between targets: in order to

prevent a situation wherein a rogue target connects to

other targets, the controller sends a list of all targets to

each target. A target will not accept a connection request

unless it is part of a full login phase with a controller or

a connection request from a target that is on the target

list (an anti-spoofing mechanism is required).

3The target-target and host-target connections are used only for RDMA

operations. No buffers need to be allocated for these connections on both
sides. Therefore, these connections hardly consume any resources.
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• Connection establishment between targets and hosts: in

order to prevent a situation wherein a rogue target con-

nects to a host, the host and the controller agree on a

secret key, which is unique to the host and the controller.

The controller sends the key to all targets. When a host

receives a connection request, it accepts it only if it

contains the key.

In order to achieve an even higher level of security, the

security mechanisms offered by iSCSI may be used. However,

this requires target-target and target-host login sessions.

We now describe the steps of the login and logout phases:

1) When the controller is started:

a) Controller logs in to the targets (conventional iSCSI

login).

b) During the login phase, Controller sends the list of

targets to each target. (A new type of message.)

c) When a target receives the target list, it connects to

the other targets. This is only a connection, without

any login phase. A target decides whether to accept

a connection based on the list that it received from

the controller.

2) When a host logs in to the controller:

a) Host logs in to Controller. (iSCSI login.)

b) Host and Controller agree on a secret key.

c) Controller instructs the targets to connect to Host.

d) Each target connects to Host (no login session, only

connection). Host accepts the connection request

iff it contains the secret key that was agreed on

with Controller.

3) When a host logs out:

a) Host logs out. (conventional iSCSI logout.)

b) Controller requests the targets to disconnect from

Host.

c) Each target disconnects from Host.

4) When the controller is stopped: If a host is still con-

nected, the controller initiates a logout phase with the

host. Then, the controller logs out from the targets.

When a target receives a logout request, it disconnects

from all other targets.

C. Request execution

WRITE requests. Data may be sent to a target as unsolicited

data and/or as solicited data [20]. In TPT-RAID, we only

modify solicited writes. Unsolicited data is sent from the host

to the controller as a Protocol Data Unit (PDU) without using

RDMA services, rendering 3
rd Party Transfer irrelevant.

For WRITEs, we refer to stripes in which not all data blocks

need to be written as partial stripes, as opposed to full stripes.

Fig. 4 provides a step-by-step description of writing a single

block to Target 0. Referring to the numbered steps: 1) Host

sends a WRITE command to Controller; 2) Controller instructs

Target 0 (data target) to read the new block directly from

Host and the old block from the disk (XDWRITE command);

3) Target 0 reads the new block from Host with an RDMA

read operation. 4) Target 0 also reads the old block from its

disk and calculates the bit-by-bit XOR of the two blocks. 5)

Meanwhile, Controller instructs Target 4 (parity target) to read

the old parity block (that needs to be updated) from its disk

(PRE-FETCH command); 6) Target 4 reads the old parity block

from its disk. 7) The new parity block is calculated by the

targets using the Distributed Parity Calculation mechanism:

the controller instructs Target 4 to read a block from Target

0 (READ PARITY PART BLOCK command). 8) Target 4 reads

the result of the XOR operation from Target 0 with an RDMA

read operation. Target 4 XORs the block from target 0 with the

old parity block. This is the new parity block; 9) Controller

instructs Targets 0 and 4 to write the new data to their disks

(WRITE NEW DATA command); 10) Targets 0 and 4 write the

new data to their disks.

Multi-stripe WRITEs comprise 0-2 partial stripes and full

stripes. They are handled as 0-2 partial-stripe requests and at

most one multiple-full-stripe request. Handling of the latter is

optimized by reading the blocks of any given target for parity

calculation with a single command, so different commands are

used for partial and full stripes.

For full stripes, the controller sends a PREP WRITE com-

mand for each block to the target whose disk contains that

block. These commands are required for the targets to read the

data from the host. A command is required for each block (and

therefore, some targets may receive more than a single PREP

WRITE command) because although the data is contiguous in

the host, it may be non-contiguous in the targets (e.g., in RAID-

5).

Multi-stripe WRITEs require more (amortized) parity calcu-

lations than does a single-stripe WRITE (using READ PARITY

PART TMP and READ PARITY PART BLOCK commands for

partial stripes and READ PARITY COMP TMP and READ PARITY

COMP BLOCK commands for full stripes). As mentioned

before, we either calculate the new parity blocks for a given

request in a single target (star topology) or parallelize the

parity calculation by using the binary tree scheme.

It should be noted that even for full-stripe writes, the only

way to transfer fewer blocks than does TPT-RAID is to let the

host compute the ECC, thereby blurring the boundary between

the compute host and the storage subsystem.

READ requests. This is simpler than WRITEs: 1) Host re-

quests a block from Controller; 2) Controller instructs the

target to send the data directly to Host (PREP READ command).

3) The target reads the requested data from its disk and writes

it to Host with an RDMA write operation. Again, this is done

using 3
rd Party Transfer.

For multi-block READS, similarly to WRITEs, Controller

sends a PREP READ command for each block to the target

possessing that block. A target reads the requested data from

its disk only after receiving its last PREP READ command for

the request. This optimizes disk access by only requiring a

single disk access (for contiguous data).

D. Error handling

In this section, we show that TPT-RAID does not generate

new problems when errors occur.

1) Target failure: The controller must be able to detect and

overcome at least a single target-machine failure. If a target
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(a) (b)

Fig. 4. Single-block WRITE with TPT-RAID

is executing a command that does not involve other targets

and becomes faulty, it sends a response to the controller with

an error code if possible. If the faulty target cannot send a

response, the controller uses the standard SCSI error handling

mechanism to detect that the target is down.

If a target (active target) is executing a command that

involves an RDMA operation with another target (passive

target) and the RDMA operation fails, the active target sends

a response to the controller with an error code that indicates

that the passive target may be down. The controller uses the

standard SCSI error handling mechanism to check if the passive

target is down.

2) Controller failure: A failure of the controller itself is

equivalent to a failure of a controller in any other single-

box or multi-box RAID, and TPT-RAID does not generate a

new problem. Existing techniques for controller fault-tolerance

such as hot standby [2] may thus be employed. The details are

outside the scope of this paper.

3) Network failure: The network may also fail. A possible

solution is to have an alternative network as do other multi-

box storage systems [3]. Each machine (controller and targets)

uses two network interfaces on different subnets. If the primary

subnet fails, the controller and targets switch to the secondary

subnet. The full description of this mechanism is outside the

focus of this work.

4) Request execution failure: If a failure occurs during

a READ, no data is lost. For WRITEs, we must guarantee

atomicity; i.e., upon failure, a request must either be completed

or rolled back, and the controller must be advised accordingly.

When a WRITE request is executed in TPT-RAID, no data is

written to the disks until the controller instructs the targets

to write the new data and parity blocks to the local storage.

The WRITE NEW DATA command is sent simultaneously to

all targets. The targets release the buffers that contain the

data that is written to the disks after the WRITE NEW DATA

command is done as conventional systems do after the WRITE

command is done. The controller sends a response to the host

only after receiving a response from each target that a WRITE

NEW DATA command was sent to. This ensures the atomicity

of a WRITE request. Assuming (as do all RAID systems) that at

most one disk failure occurs during a given WRITE request, the

controller will be able to instruct the targets how to complete

the request. If a target fails to operate, TPT-RAID switches to

degraded mode, which is discussed next.
5) Degraded mode: When the TPT-RAID controller detects

the failure of one of the targets, the system switches to

degraded mode. Failure detection is similar to that in the

Baseline system. When the system is in degraded mode, a

background process of reconstruction onto a spare disk or one

with free space (in the same target box or in a different one that

is not part of the same ECC group) begins. (This is similar to

the procedure in the Baseline system.) Then, WRITE requests

may be executed as in normal mode. Reading data blocks from

the operational targets is left unchanged. Reading a single data

block from the faulty target is done as follows:

1) The data block is calculated by calculating the parity of

all other blocks in the stripe, exactly like the calculation

of the parity block in WRITEs.

2) The target that holds the result of the parity calculation

(which is the requested block) writes it to the host with

an RDMA operation.

The comparison between the two systems in terms of the

amount of transferred data and the number of operations

during the execution of READ requests is very similar to the

comparison for WRITE requests in normal mode. Therefore,

the performance improvement for READs in degraded mode is

the same as for WRITEs in normal mode. Reconstruction of

the faulty target is very similar to the handling of READs in
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degraded mode.

E. Theoretical comparison with the Baseline system

We now compare TPT-RAID with the Baseline system (in-

band controller with RDMA). We compare the amount of

transferred data and the required number of operations for a

single-block WRITE/READ and for a full-stripe WRITE/READ.

The operations that are counted are sending a PDU and

initiating an RDMA operation 4.

Table I presents a comparison of the number of transferred

blocks during READ and WRITE requests. Table II compares

the number of operations during READ and WRITE requests.

We now go over the different request types and describe the

calculations in detail.

Single-block WRITE

• Baseline RAID: The host sends a WRITE command to the

controller. The controller reads the new data block from

the host and sends a command to the data target and

parity target. The targets write the old data block and the

old parity block to the controller, and each target sends

a response. The controller calculates parity and sends a

command to the data target and parity target. The targets

read the new data block and the new parity block from the

controller, write the new data to their disks and each target

sends a response to the controller. Then, the controller

sends a response to the host.

• TPT-RAID: This was described earlier in this section. It

is important to note that a target-target RDMA operation

is counted twice (only for transferred data calculation)

because one target sends data and another target receives

it. For each RDMA operation between two targets, both

targets use their memory and network link.

Single-stripe WRITE

• Baseline RAID: The host sends a WRITE command to

the controller. The controller reads N-1 blocks from the

host, computes parity and sends a command to N-1 data

targets and the parity target. Each target reads a single

block from the controller, writes it to its disk and sends

a response to the controller. Then, the controller sends a

response to the host.

• TPT-RAID: This was described earlier in this section. In

order to calculate the new parity block (using the star

topology scheme), a single target (the parity target5) reads

N-1 data blocks from all other targets. These target-target

RDMA operations are counted twice as explained above

(only for transferred data calculation).

Single-block READ

4Sending an iSCSI PDU or initiating an RDMA operation roughly require
the same amount of CPU work. Therefore, we treat both as ”operations”.
Receiving an iSCSI PDU is ignored because it does not require a large amount
of work. e.g.: a target receives a single command. 3 RDMA operations are
performed as part of the command execution and a single iSCSI response PDU

is sent. The number of operations in the target is 4.
5If the request contains multiple full stripes, the selected target will not

always be the parity target. This will require another RDMA operation for
each stripe in order to send the new parity block to its parity target.

• Baseline RAID: The host sends a READ command to the

controller. The controller sends a command to the target.

The target writes the requested data block to the controller

and sends it a response. The controller writes the data to

the host and sends it a response.

• TPT-RAID: The host sends a READ command to the

controller. No data passes through the controller. The

controller sends a command to the target. The target

writes a single block directly to the host using RDMA and

sends a response to the controller. The controller sends a

response to the host.

Single-stripe READ

• Baseline RAID: The host sends a READ command to the

controller. The controller sends a command to N-1 data

targets. Each data target writes the requested data block

to the controller and sends it a response. The controller

writes the data to the host and sends it a response.

• TPT-RAID: The host sends a READ command to the

controller. No data passes through the controller. The

controller sends a command to N-1 data targets. Each

data target writes the requested data block directly to the

host and sends a response to the controller. The controller

sends a response to the host.

TABLE I
DATA TRANSFERS (IN BLOCKS) DURING REQUEST EXECUTION (“STAR”)

Entity
READ requests WRITE requests

Single Full Single Full
block stripe block stripe

Baseline

Host 1 N − 1 1 N − 1
Controller 2 2 · (N − 1) 5 2 · N − 1

Targets 1 N − 1 4 N

Total 4 4 · (N − 1) 10 4 · N − 2

TPT-RAID

Host 1 N − 1 1 N − 1
Controller 0 0 0 0

Targets 1 N − 1 3 3 · (N − 1)
Total 2 2 · (N − 1) 4 4 · (N − 1)

TABLE II
OPERATIONS DURING REQUEST EXECUTION

Entity

READ requests WRITE requests

Single Full Single Full
block stripe block stripe

Baseline

Host 1 1 1 1
Controller 3 N+1 6 N+2

Targets 2 2 · (N − 1) 8 2 · N

Total 6 3 · N 15 3 · (N + 1)

TPT-RAID

Host 1 1 1 1
Controller 2 N 6 3 · N − 1

Targets 2 2 · (N − 1) 7 5 · N − 4
Total 5 3 · N − 1 14 8 · N − 4

The comparison for READs and WRITEs shows that the

amount of data transferred through the controller is reduced to

zero in TPT-RAID. For the host, there is no difference between

the two systems. In READs, the amount of data transferred

through the targets is the same for the two systems. In WRITEs,

the amount of data transferred through the targets is increased

in TPT-RAID. Also, more control messages are sent in TPT-

RAID between the controller and targets. The number of
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control messages sent between hosts and the controller does

not change. We will see in section IV that the extra data

transfers and control messages are negligible when considering

the performance improvement achieved by removing the RAID

controller from the data path and moving the ECC calculation

to the targets.

F. Cost comparison with standard storage boxes

A storage system based on TPT-RAID should not be more

expensive than one based on multiple single-box RAIDs, and

in fact may be less expensive. In a SAN environment, the

TPT-RAID controller can be integrated into an out-of-band

SAN controller. At the most, this requires the SAN controller

to have moderately higher performance, because it is not

involved in data transfers and ECC calculations. Also, the

reliability of the SAN controller and the network will provide

the required reliability for the TPT-RAID function. As for the

target boxes, they clearly needn’t be as reliable as a single-

box RAID because the failure of a single box does not cause

data loss. Therefore, even if the performance required of each

TPT-RAID target box is similar to that required of each box in

a system comprising multiple single-RAID boxes, it will still

be less expensive than the latter.

G. Required protocol changes

Support of 3
rd Party Transfer and ECC calculation in the

targets requires some protocol changes and extensions, mostly

in order to enable the controller to instruct the targets to

do things that they are already capable of doing in principle

(e.g., parity calculation). The changes are confined to software

layers, and do not complicate the standards. We now list the

required changes.

SCSI: The additional commands are sent only from the RAID

controller to the target. They are used by the target only for

software purposes (i.e. the SCSI hardware that the target is con-

nected to does not need to support these commands). Some of

the commands perform XOR operations, but are different from

the SCSI XOR commands (although we do use the XDWRITE

command). This is because the XOR commands in SCSI were

designed for a scheme with an in-band controller while our

scheme uses an out-of-band controller. However, if the disks

in a TPT-RAID are capable of performing XOR operations, our

new commands may use them in a similar manner to their

use by SCSI XOR commands. The new commands (command

parameters in parentheses) are:

1) PREP READ (logical block address, final, group number,

transfer length): The target prepares to read a data block

from its disk and write it to the host: it saves the logical

block address (LBA) of the data block and the data that

was received in the iSER header. When a target receives

its last PREP READ command for a request, it reads the

data from the disk and writes it to the host according to

the information in each PREP READ command for that

request.

2) PREP WRITE (logical block address, final, group number,

transfer length): The target prepares to read a data block

that belongs to a full stripe from the host: it saves the

LBA of the data block and the data that was received

in the iSER header. When a target receives its last PREP

WRITE command for a request, it reads the data from

the host according to the information in all PREP WRITE

commands for that request. This data is buffered in the

target.

3) READ NEW BLOCK (logical block address, group num-

ber, transfer length): The target reads a data block that

belongs to a partial stripe from the host and buffers it.

4) READ PARITY PART TMP (logical block address, parity

mode, group number, transfer length): The target reads a

block that belongs to a partial stripe from another target

and XORs it with its own data and buffers it.

5) READ PARITY COMP TMP (logical block address, group

number, transfer length): The target reads block(s) that

belong(s) to full stripe(s) from another target, XORs it

with its own data and buffers it.

6) READ PARITY PART BLOCK (logical block address, par-

ity mode, group number, transfer length): A parity target

reads a block that belongs to a partial stripe from

another target, XORs it with its own data and buffers

it. The result is the new parity block.

7) READ PARITY COMP BLOCK (logical block address,

group number, transfer length): A parity target reads the

new parity block that belongs to a full stripe(s) from

another target and buffers it.

8) WRITE NEW DATA (logical block address, group number,

transfer length): A target writes data (and/or parity) to

its disk.

Remark: the SCSI XDWRITE command is used for reading

a data block from the disk and one from the host, and

performing an XOR operation between them without writing

anything to the disk (the DISABLE WRITE bit is set to ’1’).

This command is used for partial stripes. Since in TPT-RAID

XOR operations are performed by the target machines (not

the target disks) and since most disks do not support the

XDWRITE command, this command is sent only between

the controller and targets. It is not sent by the target to its disk.

iSCSI: the 3
rd Party Transfer mechanism requires a SCSI

command PDU that is sent from the controller to the targets

to contain an extra field, indicating the identity of the passive

side (another target or a host) of the RDMA operation that

will be carried out by the receiving target. SCSI commands

PDUs sent from hosts to the controller remain unchanged. For

the required changes to login/logout, see section III-B.

iSER: Small changes are required in iSER primitives in support

of 3
rd Party Transfer, but the RDMA mechanism itself remains

unchanged. Our proposed changes and additions are:

1) Register Buffer: Used by the target to register a buffer

for later use in a 3
rd Party Transfer.

2) Deregister Buffer: Used by the target to deregister such

a buffer.

3) Send Control: an additional Steering Tag (STag) input

qualifier, used by the target to notify the RAID controller

of a registered target buffer. The controller may use the
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STag later for 3
rd Party Transfer between the target and

another target. The STag input qualifier is also used by

the controller when it sends commands to targets. The

controller does not need to register buffers. Instead, it

uses STags that were received from hosts or targets.

4) Put Data: Additional STag input qualifier. It is used

by the target when executing RDMA write operations

according to the data that was received in all PREP READ

commands for a single request.

5) Get Data: Additional STag input qualifier. It is used

by the target when executing RDMA read operations

according to the data that was received in all PREP

WRITE commands for a single request.

IV. TPT-RAID PROTOTYPE AND PERFORMANCE

In order to validate the TPT-RAID architecture, assess its

performance relative to the Baseline in-band controller and

its scalability, we constructed prototypes of the two systems

using identical hardware for all types of boxes and for both

prototypes. Each system comprises a single host, a RAID

controller and 5 targets. Each machine has dual Intel Pentium 4

XEON 3.2GHz processors with 2MB L2 cache and an 800 MHz

front side bus. Each machine contains a Mellanox MHEA28-

1T 10Gb/sec full duplex Host Channel Adaptor (HCA) with

a PCI-Express X8 interface. All machines are connected to a

Mellanox MTS2400 InfiniBand switch.

We used the Linux SuSE 9.1 Professional operating system

with 2.6.4-52 kernel. Voltaire’s InfiniBand host and iSER [27]

were used for InfiniBand. The host, controller and targets were

implemented in kernel space.

We next present a performance comparison between the

Baseline system and TPT-RAID in terms of scalability and

latency. Since the target machines have low end SATA disks

that may limit performance, we simulate targets containing

multiple disks and large caches by not sending the SCSI

commands to the disk. Instead, a successful SCSI response

is returned immediately. (The returned data blocks contain

random data.)

Also, the TPT-RAID prototype is not a complete system and

is not fully connected to the Linux SCSI subsystem. Therefore,

low-level throughput and latency tests were carried out in lieu

of standard benchmarks.

A. Scalability study

Let request size denote the amount of data requested in

the command sent by the host, block size — the striping

granularity, and target set — N targets comprising a parity

group.

Figs. 5 and 6 present a scalability comparison for READ

and WRITE requests, respectively, with unlimited numbers of

hosts and targets and the “star” parity calculation. Here, the

controller itself or its communication links are the bottleneck.

Several request and block sizes are considered.

Maximum READ throughput (Fig. 5).

Baseline system: changing the block size hardly affects the

system’s scalability. For a small request size, the controller

is limited by its CPU, which is busy sending commands

to the targets. The number of commands sent per request

does not depend on the block size, so changing it hardly

affects the supported throughput. As request size increases, the

controller’s InfiniBand link becomes a bottleneck, preventing

throughput from exceeding 920MB/sec.

Fig. 5. READ scalability

TPT-RAID: the system is limited by the controller’s CPU,

most of whose work is dedicated to sending commands to

the targets. With larger blocks, there are fewer commands

per request of any given size, so the maximum throughput

enabled by the controller increases with increasing block size.

For a given block size and a sufficiently large request size,

the controller has to do almost the same amount of work per

block and the work per request is negligible, so changing the

request size hardly changes the controller’s scalability.

Comparison. In order to compare the scalability of the two

systems, we need to compare the per-request work, per-block

work and per-byte work:

• Per-request work: the Baseline controller does more work

than the TPT-RAID controller. It has to send a PDU to

each participating target, while the TPT-RAID controller

doesn’t send any per-request PDUs to the targets.

• Per-block work: the Baseline controller does less work

than the TPT-RAID controller. It does not send any per-

block PDUs to the targets. The TPT-RAID controller sends

a PDU for each block.

• Per-byte work: obviously, the Baseline controller does

more work than the TPT-RAID controller. However, the

Baseline also uses RDMA, so we can ignore that work

whenever the InfiniBand hardware and memory are not a

bottleneck.

Consider the per-MB cost of each of the following as one

increases request size while keeping block size fixed:

• Per-request work: decreases (because the per-request

work is amortized over more data bytes).

• Per-block work: remains unchanged (no change in the

number of bytes per block).
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• Per-byte work: remains unchanged.

When the request is very small, the contribution of the per-

request work to the total work per byte is highest. Therefore,

since there is more per-request work in the Baseline scheme,

with a sufficiently small request, its throughput will be lower

than that of TPT-RAID.

As one increases the request size, the contribution of the

per-request work to the total work per byte decreases, while

the other two contributors remain unchanged. Thus, if the per-

request work in the Baseline is larger, then increasing request

size has a larger effect on the total work per byte than in the

TPT-RAID, so Baseline throughput rises more rapidly.

Indeed (Fig. 5), for small blocks (4KB), the TPT-RAID con-

troller enables higher throughput than the Baseline controller

for small requests (request size ≤ 64KB). For larger requests

(32KB, 128KB), the bottleneck in the Baseline controller

moves from the CPU to its InfiniBand link and it enables a

higher throughput than the TPT-RAID controller. For larger

blocks (and requests comprising one or more blocks), the TPT-

RAID controller needs to send fewer commands per request and

enables higher throughput than does the Baseline controller.

The difference between the two systems increases as the block

size increases.

Maximum WRITE throughput (Fig. 6).

Baseline system: the controller is limited by its CPU. For

small requests, the CPU is busy sending commands to the

targets. For larger requests, the CPU is busy performing XOR

operations. Even if the Baseline controller had dedicated

hardware for XOR operations, it would still have been limited

by its InfiniBand link.

Fig. 6. WRITE scalability

TPT-RAID: as was the case for READ requests, it is again

limited by the controller’s CPU. Most of the CPU work in

the controller is sending commands to the targets. With

larger blocks, fewer commands are required per request. As

described in section III-C, full stripes are handled in WRITE

requests as a single multi-stripe request. Therefore, with large

requests, the multi-stripe request contains more blocks and

fewer commands are required per block. Consequently, the

maximum throughput enabled by the controller increases with

increasing block size and request size.

Comparison. We now check the change in the amount of

work as we increase the request size:

• Baseline controller:

– Per-request work per MB: decreases with an increase

in request size. The controller sends the same number

of commands to the targets in order to read data

and parity blocks, regardless of the request size.

Therefore, fewer commands per MB are required.

– Per-block work per MB: no change (none).

– Per-byte work per MB: the bulk part of work (XOR

operations) is constant. The one exception is update

of the parity blocks which in the case of partial

stripes is amortized over fewer blocks. This effect

is most pronounced in small requests (smaller than

a full stripe).

• TPT-RAID controller:

– Per-request work per MB: decreases with an increase

in request size. The controller sends the same number

of commands to the targets for ECC calculation and

in order to write the new data to the disks. However,

since we treat all full stripes as a single big stripe,

fewer commands per MB are required. For small

blocks, this decrease is almost negligible.

– Per-block work per MB: doesn’t change. The con-

troller sends a PDU per block.

– Per-byte work per MB: no change (none).

Our measurements (Fig. 6) reflect the aforementioned in-

sights.

The Baseline controller’s throughput increases with an in-

crease in request size up to approximately 512KB, and then

flattens out. In the < 512KB range, the measured bottleneck

(not shown in the figure) is the thread that sends commands to

the targets, a fixed number of commands per request and thus

fewer per MB as request size increases. For larger requests,

the bottleneck is the thread that performs XOR calculations, a

fixed amount of work per MB. The two threads run on different

CPUs, hence the observed behavior.

We also note an unexpected result, namely that the through-

put of the Baseline controller decreases with an increase in

block size. This is apparently due to the limited size of the

L1 cache of the processor executing the XOR operations, and

can be rectified with more careful programming. (This does

not happen for Reads because there the data is not operated

upon, and does not happen in the TPT-RAID controller as it is

out of the data path.)

For small blocks (4KB), the TPT-RAID controller’s through-

put is hardly affected by an increase in request size: the

controller has fewer per-request commands per MB, but the

per-request work is negligible relative to the per-block work

(which, per MB, is independent of block size). Consequently,

the Baseline curve has a higher slope than the TPT-RAID curve.

For larger blocks, the per-request work (which, per MB,

decreases with an increase in request size), constitutes a larger

fraction of the TPT-RAID controller’s work, so its throughput
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rises faster with an increase in request size. Also, since

its per-block work per MB is smaller for larger blocks, it

enables higher throughput than does the Baseline controller.

The difference between the two systems increases as the block

size and request size increase.

Table III summarizes the maximum number of hosts that can

be connected to a single-controller TPT system that comprises

a single/multiple target sets (N = 5) without having the

controller or the targets become a bottleneck. (Using multiple

target sets means that the targets do not limit performance).

For the Baseline system, the controller is always a bottleneck,

even if only a single host is connected to it.

TABLE III
RAID CONTROLLER SCALABILITY

Block Req READ requests WRITE requests
(KB) (KB) Multi Single Multi Single

4 any < 1 < 1 < 1 < 1
32 ≥ 128 2 2 < 1 < 1
128 ≥ 512 8 5 2 2

It is important to note that the results in this section were

measured with targets that use memory disks. In practice, the

physical storage is expected to be slower, so a single controller

may be connected to even more targets without becoming a

bottleneck.

The maximum throughput of the TPT system is affected

by the block size (and also by the request size for WRITE

requests): a larger block size reduces the CPU usage in the

controller (fewer commands per request), thereby increas-

ing maximum throughput. In the baseline system, maximum

throughput is largely independent of block size. (As mentioned

earlier, the observed dependence in our prototype is due to

suboptimal programming and the small L1 cache.) For block

size ≥ 32KB and request size ≥ 64KB, the TPT controller

enables higher throughput than does the Baseline controller.

B. Latency

We measured the zero-load latency of the two systems. As

block size increases, the READ request zero-load latency in

TPT-RAID becomes lower than the in the Baseline RAID. This

is because the controller has to send fewer commands (for the

same request size). Although more commands are sent in TPT-

RAID than in the Baseline RAID, the data transfer latency in

TPT-RAID is lower because the data is sent directly between

hosts and targets.

For WRITE requests, parity calculations are required. When

measuring zero-load latency on the “star” configuration that

we used, it was similar for both systems. This is expected

because a single entity performs all the parity calculations.

In heavily loaded systems, TPT-RAID has a latency ad-

vantage because the dominant latency component is queuing

delay. As the load increases, the relative load on TPT-RAID

is much lower due to its higher capacity, so its queuing delay

will be much shorter. TPT-RAID thus outperforms the Baseline

system in terms of latency.

The actual results are strictly hardware dependant and are

thus irrelevant, so they are not displayed.

V. OTHER RAID TYPES

3
rd Party Transfer and ECC calculation in the targets may be

used for other RAID types. We next briefly address mirroring

and Row-Diagonal Parity [28] (RDP). The latter is similar to

RAID-5, but provides protection from two errors. RDP was

chosen because it is presently the best, and provably optimal

by certain measures, 2-error handling scheme.

A. Mirroring

When using mirroring with 3
rd party transfer, data is sent

directly between hosts and targets. Unlike RAID-5, the data

isn’t striped, so a target can read/write data from/to a host

with a single RDMA operation. Therefore, the CPU usage of

the controller is lower than in the RAID-5 controller.

When the number of hosts and targets is unlimited, the

only possible bottleneck is the CPU in the controller. Since

the CPU usage per request is very low, TPT-RAID’s scalability

is excellent. (300 hosts may be connected to the system that

we used as a prototype without having the controller become

a bottleneck.) The Baseline system, in contrast, still scales

poorly because all the data must pass through the controller,

whose communication link is the bottleneck.

B. RDP

The Row-Diagonal Parity [28] (RDP) algorithm is an exten-

sion of RAID-5, featuring a second independent distributed

parity scheme and providing protection from two erasures.

Data and parity are striped with single-block granularity across

multiple array members, just like in RAID-5, and a second set

of parity is calculated and written across all the drives.

Handling of READs is identical to RAID-5, so we focus on

WRITEs. Clearly, RDP requires more parity calculations than

RAID-5. Therefore, the controller must send more commands

and the CPU usage per request is higher. In the Baseline

system, the controller has to perform more XOR operations

per request and the CPU usage per request is higher than in

RAID-5.

Our measurements show that with the Baseline system,

when a single host is connected the controller is a bottleneck

even for a large request size and block size (because the CPU

is busy with parity calculations). With TPT-RAID, up to 3

hosts (with the system that we used as a prototype) may be

connected without having the controller or targets become a

bottleneck. (In an actual system, scalability is likely to be

better due to the mix of read and write operations.)

VI. CONCLUSION

TPT-RAID takes the idea of an out-of-band SAN controller

one step further, into the RAID, and a TPT-RAID controller can

in fact be implemented as a software component of an out-

of-band SAN controller. It enables the construction of high-

performance, box-fault tolerant SAN-based storage systems

from relatively simple and inexpensive components while

retaining simplicity. TPT-RAID enables higher throughput than

the Baseline in-band controller whenever block (and request)

sizes exceed 32KB, in which case the savings in controller
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data-communication and parity calculation work outweigh

the larger control-message work. This performance advantage

increases with further increases in block or request size.

TPT-RAID’s two main underlying mechanisms, 3
rd-party

transfer and ECC calculation by the targets, do not require

hardware changes and only few changes are required in

SCSI, iSCSI and iSER protocols. While any communication

infrastructure can be used, the advantage of using ones like

InfiniBand that support RDMA is clear.

One might claim that storage server performance, in par-

ticular latency, is limited by disk access time, rendering all

else negligible. However, given that large memory buffers

and caches are quite common in such servers, and substantial

flash memory buffers are even included in some disk drives,

this is not necessarily the case. It is moreover important to

remember that our main intended contribution is tolerating

box failures while preserving or even improving scalability

and without causing latency problems. Therefore, the case of

storage servers with large caches is the difficult one, and we

have shown that we are doing fine. Moreover, even when

latency is dominated by the disk drives, the (throughput)

scalability benefits remain.

Our performance measurements focused on the basic oper-

ations. In view of the promising results, it will be interesting

to experiment with TPT-RAID as part of a full-fledged system,

running standard benchmarks and operating in various modes.
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