
1

Low-Complexity Policies for Energy-Performance Tradeoff

in Chip-Multi-Processors

Avshalom Elyada, Ran Ginosar, Uri Weiser

Abstract – Chip-Multi-Processors (CMP) utilize multiple energy-efficient Processing Elements (PEs) to deliver high

performance while maintaining an an efficient ratio of performance to energy-consumption. In order to utilize

CMP resources, the application software is split into multiple tasks that are executed in parallel on the PEs.

Dynamic frequency-Voltage Scaling (DVS) balances performance and energy consumption by dynamically varying

a PE's frequency-voltage workpoint in order to save energy while meeting performance requirements. This work

addresses DVS policies for CMP. We consider multi-task CMP applications with unknown workloads. We

dynamically set frequency-voltage workpoints for each PE in the CMP, attempting to minimize a defined energy-

performance criterion. Other DVS methods typically use high complexity optimization techniques, which limits the

possibility of real-time implementation in performance-driven, energy-aware systems. In contrast, we investigate

simple heuristic DVS policies for simplified serial/parallel task-graphs. We compare the results of our polices to a

theoretical best-case solution and show that these lightweight heuristics achieve good results with low complexity. In

most cases the simplest policy, named Constant, which usually keeps tasks running at a constant workpoint, is the

most cost-effective one.

Index Terms – Chip-Multi-Processors, Dynamic Voltage Scaling, Slack Utilization, Low Power

1. Introduction
Chip-Multi-Processors (CMP) achieve high

performance while maintaining an acceptable ratio of

performance to energy consumption, in comparison to

traditional single-core architectures. Performance

improvement techniques of single-core architectures,

mainly include (1) taking advantage of shrinking gate-

delays in order to increase the operating frequency, and

(2) using the increased transistor density to add

performance-enhancing microarchitecture features [1],.

Increasing the operation frequency beyond a certain

point is energy inefficient, since energy consumption is

roughly quadratic in frequency. Features such as large

caches, deep execution pipes and complex branch

predictors yield a decreasing performance/energy return

[2]. High energy consumption shortens the battery life of

mobile devices, and may cause power delivery and heat

dissipation problems, which consequently limit feasible

frequencies and performance. CMP architectures, on the

The authors are with the Electrical Engineering Department,

Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:

avshael@tx.technion.ac.il).

other hand, integrate multiple relatively small and simple

PEs, potentially enabling linear scaling of performance

[3].

Dynamic frequency-Voltage Scaling (DVS) is a

widely practiced [4] and researched [5-7] technique for

energy-performance tradeoff. When using DVS in CMP,

a PE’s frequency is altered dynamically to meet current

performance requirements while consuming no more

energy than is necessary. PE supply voltage is also

adjusted in conjunction with frequency; usually kept at

the lowest feasible value that still enables circuit

operation and timing at the current frequency. Scaling

the frequency-voltage workpoint (f,V) can result in near-

quadratic energy savings [6].

In a CMP running multiple dependent tasks, DVS

may save energy without degrading performance.

Typically, at any given time, one or few tasks

constitute(s) the performance bottleneck. Other PEs can

be slowed down, saving energy without affecting total

performance. We refer to the tactic of slowing down

non-critical tasks as slack-utilization.

When all task workloads are known in advance, the

DVS policy sets PE frequencies to utilize precisely all

available time-slacks and thus save the maximum

possible energy without affecting performance.

lesley
Text Box
CCIT Report #630July 2007

2

However, task workloads are typically unknown in

advance and efficient slack utilization is non-trivial. A

DVS policy which assumes worst-case workloads

achieves limited energy savings, since aggressive

workpoints need to be set to maintain required

performance in the worst case. Conversely,

overestimating slack can lead to performance

degradation. When workloads are unknown they must be

estimated, and the method of estimation is a primary

factor of the efficiency of DVS policies.

Selecting a criterion for DVS policy efficiency is not

a clear-cut issue, since different DVS-capable CMPs for

different applications have different energy- and power-

performance requirements. For example, mobile battery-

operated devices aim at long battery life as well as

performance, while desktop systems and servers

typically optimize power rather than energy

consumption.

Consider a system whose only objective is to

maximize performance. The best policy would be to run

at maximum frequency at all times (in this work we refer

to this policy as the f-max policy). Conversely, a system

which is concerned only with energy minimization

should always run at the minimum frequency (f-min

policy). A more interesting and more practical case is

that of a system which strives to balance between the

two: tuning up frequencies only to the point where the

increased energy consumption is deemed justifiable, and

likewise saving energy by running slower, but only to

the point considered as tolerable performance. This

choice is reflected in the criterion selected to assess

alternative DVS policies, as discussed in Section 2.3.

DVS policies vary in computational complexity. If

the required calculations for policy implementation are

to be integrated into the system itself and perform in

real-time rather than offline and externally, then it is

essential that the energy-consumption and delay of the

calculation itself be minimal. Spending a substantial

amount of execution time and energy just to calculate

each workpoint may considerably offset the savings

aimed at, making it impractical for use in a performance-

and energy-aware system. Thus, a practical slack-

utilization computation must weigh savings

accomplished versus its own complexity.

Previously published DVS policies for CMP

formulate precise optimization problems [8-10] seeking

optimal solutions, typically at the cost of high

computational complexity. In contrast, we introduce

lightweight heuristic DVS-polices, and show that they

achieve good results compared to theoretical bounds. We

show further that in most cases the simplest policy is the

most cost-effective one.

This paper is organized as follows. Section 0 defines

the minimization criterion and formulates the DVS

minimization problem. The various lightweight heuristic

DVS policies are presented in Section 3, and analyzed in

Section 4. Summary and conclusions are drawn in

Section 5.

2. Definitions and Problem
Formulation

Consider a CMP platform running a multi-task

application. At any given time, each PE accommodates

one software task. Each PE is independently DVS-

capable, i.e., the workpoint of each PE is controlled

independently of the other PEs. A DVS policy

dynamically assigns (f,V) workpoints to each PE, in

order to minimize a specified performance and energy-

consumption criterion.

For simplicity, all PEs are identical, although these

results can be generalized to heterogeneous-PE systems

[3, 11, 12] in future research, by incorporating varying

Intruction-Per-Cycle co-factors to represent each core’s

throughput, and varying power function fitting

parameters a and b (see below) to represent each core’s

power efficiency.

2.1. DVS Hardware Model

DVS-Capable PE Model

We assume that each PE in the system is capable of

operating at a clock frequency within the range
cycles

,] secmin max
[f f f∈ , and may also be in a standby

mode. At any frequency, the PE operates at the

minimum feasible supply voltage, defining a frequency-

voltage (f,V) operation curve (see [13] for details). Note

that for simplicity we employ a continuous frequency

model, while typical processors operate at only a finite

set of discrete frequencies. The rate of changing the

frequency is also limited in practice due to transition cost

in both energy and performance, and also complexity of

frequent recalculation of the workpoint. It is unrealistic

to change the frequency too often, and we assume a

small number of frequency changes, therefore we can

neglect the transition overhead.

PE Power, Energy, and Execution Time

We denote the total power consumption of a PE by

() joules
sec P f , where f is the PE's current frequency. As

3

mentioned above, the operating frequency implicitly

defines a corresponding supply voltage. We consider

()0P to be the standby power, consumed by the PE

when it is not doing any work. We further define the

energy consumed per cycle, denoted by () joules
cycle e f .

By definition:

 () ()P f

fe f = . (1)

For a task of unknown workload, the cumulative

density function ()Wcdf w of the workload W is defined

as the probability that the task will be completed within

w cycles or fewer: ()() PrWcdf w W w= ≤ . Hence the

probability that the task will take w cycles or more to

execute is 1 (1)Wcdf w− − . Some example distributions

are displayed in Figure 1 below, which shows

probability density functions, conventionally defined as

() ()W Wpdf w cdf w′= . These distributions are used in our

simulations, as described in Section 4.

(i)

(ii)

(iii)

(iv)

(v)
Figure 1: Workload distributions: Examples on a 6-PE

CMP.

If the cumulative density and energy-per-cycle

functions are known, we can formulate the expected

energy required to execute a task of workload W on a PE

p by the following expression:

 ()[]
1

1 (1)p w W

w

E e f cdf w
∞

=

= − −∑ , (2)

where wf is the frequency at cycle w . Eq. (2) sums

the energy-per-cycle times the probability that the task

will still be running at that cycle. Convergence is assured

since the task completes within a finite number of

cycles.

Suppose that the task starts at time 0t = and

completes by time t = T . If it completes before that

time, the PE goes to a standby state until t = T . We can

reformulate Eq. (2) to include the energy consumed

when the PE is in standby, by dividing the power into

standby power ()0P and active power

() () ()0actP f P f P= − . If we define the corresponding

active energy-per-cycle () ()actP f

facte f = then total

energy can be rewritten as:

 ()[] ()
1

1 (1) 0p act w W

w

E e f cdf w P
∞

=

= − − +∑ T . (3)

The energy-per-cycle functions e(f) and eact(f) are

computed from the PE power function P(f). We used

() 3P f af b= + as the PE power function for our

simulations in Section 4. This power function is justified

as an approximation, since the scaling of the operating

voltage is proportional to the frequency scaling, while

dynamic power consumption is proportional to

frequency times the voltage squared, hence the power is

approximately proportional to the third power of

frequency. In [13] we show that with correct choice of

fitting parameters a and b, () 3P f af b= + is

empirically quite close to real power measurements,

although the fitting parameters do not represent

meaningful dynamic or static power coefficients.

Alternatively, any other power function can be used with

the formulations herein, whether in closed or numeric

form.

To obtain the task execution expected time, Tp, we

sum the delay-per-cycle times the probability that the

task will still be executing at that cycle, in a manner

similar to Eq. (2):

1

1 (1)W

p

w w

cdf w
T

f

∞

=

− −
=∑ . (4)

2.2. DVS Application Model
In this study we model the application as an

execution timeline comprising of alternating serial and

parallel phases [3], as shown in Figure 2(a), and focus on

4

DVS policies for the parallel phases. This simple

execution model is appropriate for numerous

applications [14, 15] and programming models [16].

.

Figure 2: An execution timeline with (a) equal workloads,

and (b) unequal workloads. Slack in (b) is utilized in (c) to

save energy with no performance degradation. Reduced

frequencies are indicated by thinner lines.

Tasks of equal workloads running on identical PEs at

the same frequency-voltage work-point will achieve

identical run-times, as shown in Figure 2(a). A typical

example is multiple task instances performing the same

work in parallel on different, equally sized data-sets (i.e.,

Data Decomposition [17]). In such symmetrical cases,

there is no slack to utilize – although the work-point can

be controlled, any energy saved will necessarily come at

the expense of performance. A timeline of unequal

workloads, as shown in Figure 2(b), exhibits slack and

thus presents opportunity for energy saving without

performance degradation. Unequal workloads can occur

when tasks execute in parallel on different data sizes or

when different types of tasks execute in parallel (i.e.,

Functional Decomposition [17]). A timeline such as

Figure 2(b) can also occur in a heterogeneous-PE system

[3, 11] where the PEs have unequal computation

throughput. Combinations of the factors mentioned

above are also possible.

Usually, an application does not provide information

about its tasks’ workloads, so the actual workload of a

task is known only once the task completes. We

therefore use statistical methods to estimate a current

task’s workload, and use this workload estimation in

order to assign frequencies and corresponding voltages.

A basic assumption is that the progress in cycles of each

currently running task is known and that task completion

times are known at the times of their completion. We

further assume that tasks can be classified into types and

that there is statistical correlation between the workload

of a task and recent tasks of the same type. We collect

statistical information of recent completed tasks of each

type and use it to model the distribution of task

workloads of that type. The actual information required

depends on the frequency assignment policy used: one of

our policies requires a complete pdf for each task, while

the others require only the the mean and standard

deviation, as described in Section 3. Once a statistical

basis exists, the workload may be estimated using some

pre-selected method.

2.3. CMP Problem Formulation
The total system energy E of a parallel phase is the

sum of the energies of all PEs 1..p N= , while the

combined execution time T of the parallel period is the

maximum of task execution times:

1..

1

 , max
N

p p
p N

p

E T
=

=

= =∑E T . (5)

T is determined by the completion time of the last

task, i.e. the critical task running on the critical PE. Note

that it is wasteful for any PE to complete before the

combined execution time T , since it potentially could

have run slower and consumed less energy, finishing at

time T and causing no performance degradation. We

would like to utilize the slack of non-critical tasks in

order to save energy. This notion is illustrated in Figure

2(c), where the reduced frequencies are indicated by

thinner lines.

Alternative DVS policies are judged according to the

balance that they manage to achieve between energy and

performance. Different criteria may assign different

weight to energy and performance. In this study we

employ the criterion of minimal expected value of α
ET ,

i.e., minimize the product of energy E , and execution-

time T to some power α. The exponent α is used to

control the relative weight of execution time and energy.

We prefer ρ=2, since 2
ET has the useful characteristic

of frequency invariance [18], making it specifically

relevant to comparing DVS policies, since 2
ET

measures policy quality regardless of the actual

frequencies used. The frequency (and therefore voltage)

invariance of 2
ET makes it a widely used criterion for

(c)

(a)

(b)

5

design-spaces where scaling of frequency-voltage is

considered, both at the circuit level [19], and at the

system level [20]. A task's energy consumption is

approximately proportional to the square of the voltage,

which is in turn approximately proportional to the

frequency, hence 2
E f∝ . On the other hand, 1

f
T ∝ so

2
ET f

ρ ρ−∝ . When measuring other ρ
ET metrics

where ρ≠2, we find in our simulations that using ρ < 2

gives inherent advantage to the f-min policy, while ρ > 2

favors the f-max policy. Furthermore we find that any

policy which always uses a single constant frequency

(for example f-min and f-max, see Figure 9) achieves a

constant 2
ET measure, regardless of frequency.

Optimization

A straightforward approach to finding an optimal

policy is to solve the following minimization problem:

 []

2

min max

min

. . () 0 , ,

1.. , 1,2..

ps t f w f f

p N w

∈ ∪

∀ = ∀ = ∞

ET

 (6)

Namely, minimize 2
ET while frequencies are

constrained to an operating range, or 0 if the PE is idle.

Substituting E and T from Eqs. (5) into Eq. (6),

and further substituting pE and pT (the individual PE

energy and delay) from Eq. (3) and (4), we note that the

ensuing stochastic optimization problem seems very

hard, despite the simplifications already assumed in the

model. Rigorous analysis of this minimization problem

is beyond the scope of the present work. Moreover, we

suggest that although this problem may be solvable,

yielding some optimal frequency assignment per set of

task distributions, the computation required is likely to

be too great to justify implementation in any practical

system. In a performance-driven energy-aware system,

and assuming frequency assignment is integrated as part

of the system’s computational requirements in real-time,

we must weigh the improvement that a computation

offers versus the cost of the computation itself, both in

energy and performance. This observation rationalizes

the approach of searching for simple lightweight

heuristic DVS policies.

3. DVS Policies
In this section we describe a group of relatively

simple frequency assignment policies for a CMP. Since

all policies share the same outline and differ only in

certain details, we first describe the common outline and

then specify the differences for each policy.

3.1. Common Outline for All
Policies

At the t=0 fork-point of the parallel phase in the

timeline, all policies perform the same steps:

(1) Find the PE (task) estimated to have the most

remaining work, which is referred to as the

estimated-critical PE (ECP).

(2) Set a joint-target-time (JTT) for all PEs to

complete their tasks, and assign PE frequencies

(and voltages).

(3) Run until the ECP finishes (or time interval

elapsed).

(4) Update workload estimations.

(5) Loop back to Step (1) above.

In Step (1): We compute the expected value of the

(remaining) estimated work for all PEs (currently

running tasks):

 , ,
ˆ [|]p rem p p compW E W W= (7)

Note that at time t=0, the completed work

, 0p compW = . From this estimation we find the ECP, the

PE for which the estimated work is maximal:

, ,

1..

,
1..

ˆ ˆmax{ }

ˆarg max{ }

ECP rem p rem
p N

p rem
p N

W W

ECP W

=

=

=

=
. (8)

In Step (2): The ECP is assigned
maxf . Intuitive

reasoning for this is that 2
ET is frequency invariant if

we ignore (0)P , which means that results depend solely

on the amount of utilized slack, while actual PE

frequencies are insignificant. However, (0)P cannot be

ignored. Therefore, assigning
maxf to the ECP, i.e.,

running as fast as possible, will clearly minimize standby

energy consumption. Optimality of assigning
maxf to the

critical PE is proven in Section 3.2 for a case of known

workloads.

To utilize the available time-slack, we want all the

other (non-critical) PEs to complete together with the

critical PE. We therefore set a joint-target-time for all

PEs, which is the expected completion time of the ECP:

�

,

max

ECP remW
JTT

f
= , (9)

where � ,ECP remW is the estimated (remaining) work of

the ECP. Frequency assignment of the other (non-

critical) PEs is described per each policy below.

In Step (3): All PEs run at their assigned frequencies

until the ECP completes. (In case of the Interval policy

described in 3.4, re-estimation and re-assignment are

performed also at intermediate fixed time intervals.) The

6

ECP is expected to complete last by definition, and this

will typically be the case. However since workloads are

statistical it is possible that the ECP will complete before

other PEs.

In Step (4): If the ECP completes (or a time-interval

elapses) while other PEs still have remaining work, re-

estimation is performed, taking into account the work

done by each PE so far. The cycle is repeated until all

PEs have completed their work.

Figure 3 shows a flowchart of the common outline.

The specific variations of the policies are described next.

Figure 3: Flowchart of common outline for all polices

3.2. The "Oracle" Policy
The Oracle policy is a non-causal, hypothetical

policy which assumes future knowledge of the

workloads. When simulating the Oracle policy we still

generate workloads statistically, however we assume that

the workloads are known in advance, before run time.

We use the Oracle policy results as a lower bound for

comparing to causal, implementable policies in which

the exact workloads are not known in advance.

Given that the workloads are known, we calculate the

optimal frequencies pf to assign to each PE 1..p N= .

In particular we show that maxf is optimal for the critical

PE. We denote the known task workloads on each PE

pW , and define T to be the joint execution time for all

PEs. Because the workload of each PE is known and the

execution time is set, energy can be minimized by

running at a constant frequency that is just fast enough to

finish the task by its deadline. This is a well established

result which is due to the convexity of e(f), the energy-

per-cycle [21]. Therefore we assign constant frequencies
pW

p T
f = to each PE. We initially assume that

frequencies are not restricted to any range, and later

incorporate frequency bounds. All PEs complete exactly

at T, so that full slack utilization is attained.

Assuming that there exists a T as above and it

minimizes 2
ET , that T can be found by differentiating

2
ET w.r.t. T and equating the derivative to 0:

()

() ()

()

2 2 2

1 1

2

1

2

2
1

2 2

1 1

0

2 0

0

2 3 (0)

N N
p

p p act

p p

N
p

p act

p

N
p p

p act

p

N N
p p

p act p act

p p

W
T E T W e NP T

T

Wd
T W e NP T

dT T

W W
T W e NP

T T

W W
T W e W e NP T

T T

= =

=

=

= =

= = + ⇒

= + +

′+ − + =

′= − +

∑ ∑

∑

∑

∑ ∑

ET

ET

Now if we assume the power model described in

Section 2.1, then 2() , () 2act acte x ax e x ax′= = and

substituting in (10) we find that the two sums cancel out:

()
2

2 2 2

1 1

2

2 2 3 (0)

3 (0)

N N
p p

p p

p p

W Wd
T W a W a NP T

dT T T

NP T

= =

= − +

=

∑ ∑ iET

. (11)

Note that if P(0)=0 then this means the criterion is

truly frequency invariant, since the measure does not

depend on the operating frequencies. Otherwise, T=0 is

required in order to minimize the criterion, but since that

is not possible, the shortest execution time we can set is

() maxmax pT W f= , so all frequencies are

correspondingly set as follows:

max
, 1..

max()

p

p

p

p
p

W
f map

T

W
map f p N

W

= =

 =

. (12)

No re-estimation is necessary since all task

workloads are known. The ()map function maps the

frequency in (12) to a feasible frequency. In the simple

case of a continuous frequency range, this merely means

trimming out-of-range values to
minf and

maxf

correspondingly. (Also note that in the particular case of

Eq. (12) the inner result is already bounded by
maxf .) All

PEs complete precisely at T, with the exception of non-

critical PEs with a small workload which run at

minf according to Eq. (12), finishing before T.

7

3.3. The Constant Policy
The Constant policy is a simple policy in which a

constant frequency is assigned to each PE. After

calculating the JTT and assigning the ECP to run at the

maximum frequency
maxf , we set non-critical PE

frequencies with an aim to complete at the joint-target-

time:

� �

� �

�

, ,

, ,

max

,

()

() , 1..

p rem p rem

p

p rem p rem

ECP rem

W
f map

JTT

W
map f p N

W

λσ

λσ

+
= =

+
=

 (13)

where � ,p remW is the remaining work estimation of PE

p, � ,p remσ is the standard deviation of ,p remW , and 0λ ≥

is the bias parameter. At time t=0 no work has been done

so the remaining work is the total work. The ()map

function maps the result of Eq. (13) to a feasible PE

frequency as described above.

For 0λ = ,
pf is set so that PE p completes � ,p remW

work during the time it takes the ECP to complete
�

,ECP remW work. However since delay outweighs energy

for the 2
ET criterion, we can achieve better results by

setting the bias parameter 0λ > , as described below in

Section 4.1.

Note that the critical PE frequency can also be

formulated using Eq. (13) if we assume 0λ ≥ and

substitute � ,p remW with � ,ECP remW .

Early Completion of the Estimated-

critical PE

If the ECP completes while other PEs still have

remaining work (step (3) in the outline), then the

assumptions by which frequencies were assigned in step

(2) no longer hold. In this case we update the estimations
�

,p remW � ,p remσ to reflect the work done so far, Wp,comp,

and repeat steps (1) and (2): set a new joint-target-time

and a new ECP, and assign new PE frequencies. We

continue steps (1) to (4) repeatedly until all PEs have

completed.

Figure 4 shows an example of applying the Constant

policy in a 3-PE system. Figure 4(a) shows the workload

distributions, and then two scenarios are illustrated. In

Figure 4(b), the workloads are such that the ECP (red,

dotted) completes last. This is the expected, common

scenario. In Figure 4(c), the ECP unexpectedly finishes

first, causing re-estimation; a new ECP is selected

(green, dashed) and work-points are reassigned.

If we regard the complexity of one (f,V) work point

assignment (including the preceding remaining workload

estimation) as O(1), then the complexity of the Constant

policy can be approximately regarded as O(N), N being

the number of PEs in the system. This approximation

ignores the occasional work-point re-estimation that is

required when the ECP completes before other PEs.

However, this is justified since the probability of this

scenario is (a) generally small, (b) distribution

dependent, (c) very hard to calculate and incorporate into

complexity estimations, and (d) common among all

described policies, so it generally shouldn’t affect

comparing them.

(a)

(b)

(c)
Figure 4: Constant policy example with three PEs: (a)

workload distributions, (b) the ECP (red, dotted) finishes

last as expected, (c) the ECP finishes first, re-estimation is

performed.

3.4. The Interval Policy
The Interval policy is an enhancement of the

Constant policy described above. The Interval policy

assigns constant frequencies in the same way as the

Constant policy. But in the Interval policy, the critical

PE is re-chosen and frequencies are reassigned at

intermediate fixed time intervals. For each time interval,

estimated remaining workloads are used to choose the

critical PE and frequencies for the next interval. Re-

estimating remaining workloads and re-assigning work-

points following the re-estimation may offer a significant

advantage: the difference between the estimated

remaining workloads at time t=0, compared to the

estimations at a later time when all PEs have done a

certain amount of work, may be substantial. Interval can

be viewed as a refinement of the Constant policy: the

shorter the time interval, the more accuracy can be

achieved.

8

Note that it is possible to calculate frequency

assignments not just for the current interval but for

future intervals as well, since all the needed information

is available at time t=0. The only information that is not

available at time t=0 is actual task workloads. So at any

given time we can calculate frequencies to be assigned

for future intervals, and these calculations will be valid

until the time the ECP completes. Therefore, although it

is easier to understand Interval as a process of

recalculating frequencies at each interval, in practice

Interval calculates frequencies at time t=0, and

recalculates only when an ECP completes.

A bias parameter λ exists also for the Interval policy

and allows tuning in the same way as for the Constant

policy. Figure 5 shows an example of the Interval policy

with 2 PEs.

(a)

(b)

(c)
Figure 5 : Interval policy example with two PEs: (a)

workload distributions, (b) the ECP (green, dashed)

finishes last as expected, (c) the ECP finishes first.

In typical examples, the frequency of non-critical

PEs increases with time, as shown in Figure 5. This

behavior is similar to the behavior of PACE [22], as

explained in the following section. However, decreasing

frequencies can occur, since PE frequencies are a

function of the estimated remaining workload relative to

the estimated remaining workload of the ECP at each

interval. Notably, when there is a substantial difference

in both the mean and variance of workload distributions,

both increasing and decreasing frequencies can occur, as

shown in Figure 6 below.

Note that in Figure 6, there is an ECP switch at a

certain time during the run. The ECP (green, dashed) is

initially estimated to have more remaining work, and

thus it is designated as the ECP and assigned fmax.

However as time progresses the ECP does more work

relative to the other (blue, solid) PE, until a time where

the other PE’s estimated remaining work surpasses that

of the ECP, thus the other (blue, solid) PE is designated

the new ECP.

(a)

(b)
Figure 6: Another interval policy example, with 2 PEs

having substantial difference in both the mean and

variance of their workload distributions, (a). Both

increasing and decreasing frequencies are observed, (b).

The PE marked in dashed green is initially the ECP, but

after some time the PE marked in blue becomes the new

ECP.

Since the complexity of the Constant policy is O(N),

the complexity of the Interval policy is O(kN), where k is

the number of time intervals at which re-estimation

occurs.

3.5. The Multi-PACE Policy
Energy-performance tradeoff in a single standalone

PE has been studied extensively [9, 23-26]. A new

Multi-PACE policy presented in this section is an

attempt to generalize from the well-known single-

processor approach PACE [22] onto CMP systems.

PACE Scheduling for a Single Processor

Consider a task of given workload probability

distribution ()Wpdf w , running on a PE with a

continuous frequency range min, max[]f f f∈ , with some

soft deadline D, i.e. a deadline that is required to be

attained only in a certain fraction of cases, not

necessarily all the time. We represent this by the

probability PMD (Probability of Meeting the Deadline).

Given ()Wpdf w of a task, a deadline D, and PMD, we

can find the maximum workload PMDw for which a task

will meet its deadline.

The PACE scheme is an analytically optimal method

for minimizing the expected energy subject to

9

probabilistically meeting the deadline [22]. Given the

above inputs, PACE computes the optimal frequency

schedule per cycle:

min, max

()

([], (), ,),

[0,]

W

PMD

f w

PACE f f pdf w D PMD

w w

=

∈

. (14)

Conversion from f(w), which expresses the frequency

as a function of work cycles done, to a more intuitive f(t)

time function, is straightforward.

As mentioned above in Section 3.2, running at a

constant frequency is optimal in case workloads are

known, but not so when workloads are unknown. PACE

stands for Processor Acceleration to Conserve Energy,

reflecting the fact that the optimal frequency schedule is

an increasing function when workloads are unknown

[22]. An intuitive explanation for this is that a task

workload may be small or large, so it is worthwhile to

run slowly at first. If the workload is small then the task

can easily complete by the deadline, saving energy by

running at a low frequency. As the deadline approaches,

if the task has not yet completed the frequency is

gradually increased in order to assure meeting the

deadline with probability PMD.

Multi-PACE (f,V) Work-point Assignment

We introduce Multi-PACE, which utilizes PACE to

form a DVS policy for a CMP, as follows. After setting

the ECP to run at
maxf and setting the JTT as in Eq. (9),

non-critical PE frequencies are set according to PACE

with the JTT as a deadline:

,min, max

()

([], (), ,),

[0,]

p rem

p

W

PMD

f w

PACE f f pdf w JTT PMD

w w

=

∈

. (15)

To clarify, note that JTT is not an application

deadline. Rather, it is computed following Eq. (9). We

use the PACE deadline mechanism to synchronize

completion times between PEs.

PACE does not specifically define which frequency

to use for the post-deadline part (i.e., cycles greater

than
PMDw). Multi-PACE runs at

maxf during the cycles

subsequent to
PMDw in an attempt to minimize delay past

the JTT. Figure 7 shows an example of applying Multi-

PACE, using the same workload distributions as in

Figure 4(a).

(a)

(b)
Figure 7: Multi-PACE example with two PEs, workload

distributions as in Workload distributions are as in Figure

4. (a) the ECP (green, dashed) finishes last as expected;

(b) the ECP finishes first.

The value of PMD has a significant effect on the

overall results. If PMD is too high, multi-PACE sets

overly aggressive frequency schedules, resulting in

excessive energy consumption. On the other hand,

choosing PMD too low increases the probability of

missing the JTT, causing increased overall execution

time. In Section 4.1 we experiment with different PMD

values for Multi-PACE. The use of PMD is similar to the

use of the λ bias parameter for the Constant and

Interval policies.

Multi-PACE requires PEs to have a continuous

frequency range and to be able to change frequency

every cycle, but this is not practical for reasons

previously discussed. Practical methods of implementing

PACE, which can apply to Multi-PACE as well, are

described in [22, 25].

As explained above, the complexities of the Constant

and Interval policies are O(N) and O(kN) respectively,

where N is the number of PEs and k is the number of

intervals. In principle, frequencies are recalculated in

Multi-PACE for each cycle. In a practical system,

however, the workload distributions would be built by

collecting data into a histogram, and their granularity

would therefore be according to the number of histogram

bins, denoted by B. Thus the number of frequency

changes in multi-PACE is in practice proportional to B,

and thus the complexity of the multi-PACE policy is

O(BN) [22].

4. Simulations and Results
In this section we present simulation results of the

proposed DVS policies. We used a few sets of synthetic

probability distributions to represent the task workloads,

as shown above in Figure 1.

10

We simulated a system with six identical PEs, each

with a continuous frequency range of 0.32GHz to

1.5GHz. Energy was calculated using the power model

of 3()P f af b= + with []30.8 , 0.2Watt

GHz
a b Watt = = as

fitting parameters, as described in section 2.1.

4.1. Choosing Bias Parameters
Prior to comparing the policies, we consider the issue

of selecting bias parameters: λ for Constant and

Interval policies, and PMD for Multi-PACE. As

previously mentioned, setting PE work-points so tasks

complete their estimated workloads at the JTT is sub-

optimal. Delay outweighs energy for the 2
ET criterion,

therefore missing the JTT by a certain time margin

incurs a greater penalty than finishing before the JTT by

that same time margin. Better results can be achieved by

setting the bias parameter 0λ > in Eq. (13), thereby

running faster. A similar effect can be achieved for the

Multi-PACE policy by tweaking the PMD parameter in

Eq. (15).

Figure 8 shows policy results, in terms of
2

ET values, normalized to the Oracle policy, for

distributions (i), (ii), and (v) of Figure 1, using different

bias values λ and PMD. As can be seen in Figure 8, each

case shows a certain optimal choice of the bias

parameters λ and PMD. However, the results are not

very sensitive to small variations, and thus it is

reasonable to use the same bias parameter (λ or PMD)

for all distributions. Empirically, a good choice lies in

the range of 0.5-0.8. The effect of λ on 2
ET is less

accentuated in Interval than in Constant, since Interval

performs periodic re-estimations of ()i

remW and ()i

remσ .

(a) Constant

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dist. (i)
dist. (ii)
dist. (v)

Normalized

 ET
2

Bias

(b) Interval

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4

dist. (i)

dist. (ii)

dist. (v)

Normalized

 ET
2

Bias

(c) Multi-PACE

1

1.2

1.4

1.6

1.8

0.5 0.6 0.7 0.8 0.9 0.98

dist. (i)

dist. (ii)
dist. (v)

Normalized

ET
2

PMD

Figure 8: Comparison of bias values for policies (a)

Constant, (b) Interval (50ms), and (c) Multi-PACE

policies. Distributions (i), (ii), and (v) (see Figure 1) are

shown.

4.2. DVS Policy Comparison
We simulated each of the workload distributions

shown in Figure 1 using Oracle, Constant, Multi-PACE,

and Interval policies. For Interval, we used intervals

lengths of 50, 100, 150 and 200 milliseconds which

correspond to roughly 16, 8, 4, and 2 intervals

throughout the simulated execution time. We chose bias

parameters 0.8λ = for Constant, 0.5λ = for Interval

and PMD=80% for Multi-PACE, following the

conclusions of Section 4.1.

Policy Comparison

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(i) (ii) (iii) (iv) (v)

distribution

ET
2

 (Normalized)

Multi-PACE

Constant

Interval 50ms

Interval 100ms

Interval 150ms

Interval 200ms

Oracle

F-min

F-max

Figure 9: ET2 compared across all policies

For each distribution, Figure 9 shows 2
ET

compared across all policies, normalized as above to the

results of Oracle, which we regard as a lower bound.

11

Additionally, the results show that f-min and f-max

policies reach the same results in 2
ET for all

distributions. This follows from the approximate

frequency invariance of 2
ET , and likewise holds for any

other policy that always uses a single constant

frequency. Thus we expect our policies to achieve results

that are in between Oracle and f-max/f-min, i.e., better

than running at an arbitrary constant frequency (which

we regard as 0% improvement), but worse than the

optimal policy in which exact workloads are known in

advance (100%). As can be seen, this is indeed the case.

The Interval policy usually achieves the best results

while Constant, the simplest policy, usually achieves the

worst results. However, the difference between the

policies is generally quite small, with no more than 4-

13% difference between the best and worst policies

(except for example iv, which is discussed next.)

Despite the above similarities, distribution (iv) of

Figure 1 is an example where the Interval policy stands

out. As can be seen in Figure 1(iv), two of the six task

workloads of example (iv) have a bimodal distribution

(51 10i or 510 10i cycles) while the other four are known

(57.5 10i cycles). At time t=0, the estimated critical

workload is 57.5 10i cycles. However, once the bimodal-

distributed tasks complete 510 cycles work, the

estimation may change to 610 cycles, enabling the

known-workload tasks to run slower, saving

considerable energy. Interval performs much better than

all other policies since it is the only policy that re-

estimates the critical workload.

With further regard to the Interval policy, we note

that increasing the interval resolution (increasing the

number of re-estimations) provides only minor,

insignificant improvement. A few re-estimations over a

relatively large period of time can drastically change the

outcome, as demonstrated by example (iv), while

additional re-estimations have only a marginal effect.

Multi-PACE on the whole achieves better results

than Constant and worse than Interval in the simulated

examples. Multi-PACE is more dependent on correct

estimation of the critical task than the other policies, and

therefore produces slightly better results in cases where

there is little uncertainty regarding the critical task (v),

compared to cases where the uncertainty is greater (iii).

Computational Complexity

In Section 3, we concluded that the complexities of

Constant, Interval, and Multi-PACE are O(N), O(kN),

and O(BN), respectively; where N is the number of PEs,

k the number of intervals, and B the number of workload

histogram bins. Since increasing the number of intervals

for the Interval policy beyond a small number provides

only marginal improvement (note the marginal

improvement when using shorter intervals in Figure 9), it

is reasonable to assume small values for k. On the other

hand, Multi-PACE performs no re-estimation, so it needs

a considerable large number of bins B [22]. B does not

necessarily need to be of cycle granularity, but will be

several orders larger than k, i.e., k<<B. Following this

reasoning, we conclude that the relative complexity of

the policies is O(N) < O(kN) << O(BN).

5. Summary and Conclusions
In this work, we started by formulating an energy-

performance tradeoff optimization problem of an

application running on a CMP. We noted the complexity

of the problem, which makes it virtually impractical for

implementation.

As an alternative to direct optimization, we described

several simple heuristic DVS policies for energy-

performance tradeoff. These policies try to utilize

available time-slack in order to save energy in a

performance-aware manner. The frequency-invariant
2

ET criterion was employed for comparing the policies.

The policies described were: Constant, a policy that tries

to estimate the best constant frequency to assign to each

PE; Interval, which works in a manner similar to

Constant but reassigns new frequencies at fixed time

intervals, and Multi-PACE, applying PACE, an optimal

scheme for a single-core system with a deadline

requirement, for use in a CMP.

We compared these policies using various

distributions, and presented several examples. We

showed that, except for some isolated cases, all policies

reach comparable results. Increasing the number of re-

estimations (using Interval) improves results compared

to estimating merely once at the beginning (using

Constant). However, the marginal return sharply

diminishes with the number of re-estimations. Multi-

PACE produces results that are anywhere between

Interval and Constant, occasionally appearing at the top

or bottom of the results list, depending on the

distribution.

We analyzed the policy complexities, and showed

that Constant is the least complex, followed by Interval,

while Multi-PACE has the highest complexity,

significantly higher than Constant and Interval. For

several distributions, the results are usually quite close

12

for all policies, thus we conclude that the least complex

policy, Constant, is usually preferred. In individual

cases, such as distribution (iv) shown in Figure 1, there

is justification for using Interval. Based on these

findings, a scheme could be contemplated whereby the

number of intervals is chosen dynamically based on

certain characteristics of the distribution, or

alternatively, start with a default number of intervals,

and assess the result over time to determine if the

number of intervals can be decreased. Multi-PACE

generally does not achieve better results than any of the

other two, and has a very high complexity, thus it is not

preferred.

Frequency-voltage transitions, which are not

considered in this work, may degrade the results since

each transition is accompanied by performance and

energy penalties [6]. When the cost of transitions is

considered, simple policies such as Constant become

even more attractive because they use fewer transitions.

The following topics may be dealt with in future

research:

1. Study of more complex task-graphs.

2. Discrete (f-V) workpoint sets.

3. With regard to 2 above, the interval policy may be

enhanced to consider re-estimation at flexible times.

Such an interval policy would determine when to jump

to an adjacent discrete workpoint, rather than directly

calculating a new workpoint at an arbitrary time.

4. Test cases based on real application traces.

5. Applications may produce indications assisting

the estimation of their own remaining work, which can

improve the accuracy of remaining workload

estimations.

6. Real-time applications, which need to achieve a

periodic deadline, can be modeled by replacing the

execution time T in the criterion with a relative

D−T measure which results in penalty only to the

extent by which the application missed its deadline.

References
[1] F. Pollack, "New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies," in

Micro 32, 1999.

 http://www.intel.com/research/mrl/Library/micro32Keynote.pdf

[2] E. Grochowski, R. Ronen, J. Shen, and H. Wang, "Best of Both Latency and Throughput," in Proceedings of the

IEEE International Conference on Computer Design (ICCD'04): IEEE Computer Society, 2004.

[3] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade, "Performance, Power Efficiency and

Scalability of Asymmetric Cluster Chip Multiprocessors," IEEE Computer Architecture Letters, vol. 5, 2006.

[4] "Intel Enhanced SpeedStep(R) Technology"

 http://www.intel.com/support/processors/mobile/pentium4/sb/CS-007499.htm

http://www.intel.com/support/processors/mobile/pm/sb/CS-007981.htm

[5] T. Pering, T. Burd, and R. Brodersen, "The simulation and evaluation of dynamic voltage scaling algorithms," in

Proceedings of the 1998 international symposium on low power electronics and design. Monterey, California,

United States, 1998, pp. 76-81.

[6] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw, "Combined dynamic voltage scaling and adaptive body

biasing for lower power microprocessors under dynamic workloads," in Proceedings of the 2002 IEEE/ACM

international conference on Computer-aided design. San Jose, California, 2002.

[7] K. Flautner, S. Reinhardt, and T. Mudge, "Automatic performance setting for dynamic voltage scaling," Wireless

Networks, vol. 8, pp. 507-520, 2002.

[8] S. Yaldiz, A. Demir, S. Tasiran, P. Ienne, and Y. Leblebici, "Characterizing and exploiting task load variability

and correlation for energy management in multi core systems," in 3rd Workshop on Embedded Systems for Real-

Time Multimedia, 2005, 2005, pp. 135-140.

[9] Y. Zhang, X. S. Hu, and D. Z. Chen, "Task scheduling and voltage selection for energy minimization," in

Proceedings of the 39th conference on Design automation. New Orleans, Louisiana, USA, 2002, pp. 183-188.

[10] A. Andrei, M. Schmitz, P. Eles, Z. Peng, and B. M. Al-Hashimi, "Overhead-conscious voltage selection for

dynamic and leakage energy reduction of time-constrained systems," Computers and Digital Techniques, IEE

Proceedings-, vol. 152, pp. 28-38, 2005.

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas, "Single-ISA Heterogeneous Multi-Core

Architectures for Multithreaded Workload Performance," in Proceedings of the 31st annual international

symposium on Computer architecture. Munchen, Germany: IEEE Computer Society, 2004.

ii

[12] S. Ghiasi, T. Keller, and F. Rawson, "Scheduling for heterogeneous processors in server systems," in Proceedings

of the 2nd conference on Computing frontiers. Ischia, Italy, 2005, pp. 199-210.

[13] A. Elyada, U. C. Weiser, and R. Ginosar, "Low Complexity Policies for Energy-Performance Tradeoff in Chip-

Multi-Processors," in Electrical Engineering: Techion, Israel Institute of Technology, 2007.

 http://avshalom.elyada.googlepages.com/LowComplexDVSPoliciesCMP_Elyada2007.pdf

[14] M. L. Crow and M. Ilic, "The parallel implementation of the waveform relaxation method for transient stability

simulations," IEEE Trans. on Power Systems, vol. 5, pp. 922-932, Aug 1990.

[15] R. A. Saleh, K. A. Gallivan, M.-C. Chang, I. N. Hajj, D. Smart, and T. N. Trick, "Parallel circuit simulation on

supercomputers," Proceedings of the IEEE, vol. 77, pp. 1915-1931, Dec 1989.

[16] L. Dagum and R. Menon, "OpenMP: an industry standard API for shared-memory programming," in

Computational Science and Engineering, IEEE, vol. 5, 1998, pp. 46-55.

[17] J. Ross, "Media Applications Shine with Pipelined Data Domain Decomposition Threading"

 http://www.intel.com/cd/ids/developer/asmo-na/eng/dc/digitalmedia/success/52517.htm

[18] A. J. Martin, M. Nystroem, and P. Penzes, "ET2: A metric for time and energy efficiency of computation," in

Power Aware Computing, Series in Computer Science, R. Graybill and R. Melhem, Eds. Norwell, MA: Kluwer

Academic Publishers, 2002, pp. 293-315.

[19] J. Hensley, A. Lastra, and M. Singh, "An area- and energy-efficient asynchronous Booth multiplier for mobile

devices," in IEEE International Conference on Computer Design (ICCD'04), vol. 00: IEEE Computer Society,

2004, pp. 18-25.

[20] V. Salapura, R. Bickford, M. Blumrich, A. A. Bright, and D. Chen, "Power and performance optimization at the

system level," in Proceedings of the 2nd Conference on Computer Frontiers. Ischia, Italy: ACM Press, 2005, pp.

125-132.

[21] J. Blazewicz, K. H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz, Scheduling Computer and Manufacturing

Processes. Berlin, Germany: Springer-Verlag, 1996.

[22] J. R. Lorch and A. J. Smith, "PACE: a new approach to dynamic voltage scaling," IEEE Transactions on

Computers, vol. 53, pp. 856-869, 2004.

[23] R. Jejurikar, C. Periera, and R. Gupta, "Leakage aware dynamic voltage scaling for real-time embedded systems "

Proceedings of the 41st annual conference on Design automation pp. 275-280, 2004.

[24] R. Xu, D. Mosse, and R. Melhem, "Minimizing expected energy in real-time embedded systems," in Proceedings

of the 5th ACM international conference on Embedded software. Jersey City, NJ, USA, 2005, pp. 251-254.

[25] R. Xu, C. Xi, R. Melhem, and D. Moss, "Practical PACE for embedded systems," in Proceedings of the 4th ACM

international conference on Embedded software. Pisa, Italy, 2004, pp. 54-63.

[26] D. Zhu, R. Melhem, and B. Childers, "Scheduling with Dynamic Voltage/Speed Adjustment Using Slack

Reclamation in Multi-Processor Real-Time Systems," IEEE Trans. on Parallel and Distributed Systems, 2003.

