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Low-Complexity Policies for Energy-Performance Tradeoff  

in Chip-Multi-Processors 
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Abstract – Chip-Multi-Processors (CMP) utilize multiple energy-efficient Processing Elements (PEs) to deliver high 

performance while maintaining an an efficient ratio of performance to energy-consumption. In order to utilize 

CMP resources, the application software is split into multiple tasks that are executed in parallel on the PEs. 

Dynamic frequency-Voltage Scaling (DVS) balances performance and energy consumption by dynamically varying 

a PE's frequency-voltage workpoint in order to save energy while meeting performance requirements. This work 

addresses DVS policies for CMP. We consider multi-task CMP applications with unknown workloads. We 

dynamically set frequency-voltage workpoints for each PE in the CMP, attempting to minimize a defined energy-

performance criterion. Other DVS methods typically use high complexity optimization techniques, which limits the 

possibility of real-time implementation in performance-driven, energy-aware systems. In contrast, we investigate 

simple heuristic DVS policies for simplified serial/parallel task-graphs. We compare the results of our polices to a 

theoretical best-case solution and show that these lightweight heuristics achieve good results with low complexity. In 

most cases the simplest policy, named Constant, which usually keeps tasks running at a constant workpoint,  is the 

most cost-effective one. 

 

Index Terms – Chip-Multi-Processors, Dynamic Voltage Scaling, Slack Utilization, Low Power 

 

  

1. Introduction 
Chip-Multi-Processors (CMP) achieve high 

performance while maintaining an acceptable ratio of 

performance to energy consumption, in comparison to 

traditional single-core architectures. Performance 

improvement techniques of single-core architectures, 

mainly include (1) taking advantage of shrinking gate-

delays in order to increase the operating frequency, and 

(2) using the increased transistor density to add 

performance-enhancing microarchitecture features [1],. 

Increasing the operation frequency beyond a certain 

point is energy inefficient, since energy consumption is 

roughly quadratic in frequency. Features such as large 

caches, deep execution pipes and complex branch 

predictors yield a decreasing performance/energy return  

[2]. High energy consumption shortens the battery life of 

mobile devices, and may cause power delivery and heat 

dissipation problems, which consequently limit feasible 

frequencies and performance. CMP architectures, on the 
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other hand, integrate multiple relatively small and simple 

PEs, potentially enabling linear scaling of performance 

[3].  

Dynamic frequency-Voltage Scaling (DVS) is a 

widely practiced [4] and researched [5-7] technique for 

energy-performance tradeoff. When using DVS in CMP, 

a PE’s frequency is altered dynamically to meet current 

performance requirements while consuming no more 

energy than is necessary. PE supply voltage is also 

adjusted in conjunction with frequency; usually kept at 

the lowest feasible value that still enables circuit 

operation and timing at the current frequency. Scaling 

the frequency-voltage workpoint (f,V) can result in near-

quadratic energy savings [6]. 

In a CMP running multiple dependent tasks, DVS 

may save energy without degrading performance.  

Typically, at any given time, one or few tasks 

constitute(s) the performance bottleneck. Other PEs can 

be slowed down, saving energy without affecting total 

performance. We refer to the tactic of slowing down 

non-critical tasks as slack-utilization. 

When all task workloads are known in advance, the 

DVS policy sets PE frequencies to utilize precisely all 

available time-slacks and thus save the maximum 

possible energy without affecting performance. 
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However, task workloads are typically unknown in 

advance and efficient slack utilization is non-trivial. A 

DVS policy which assumes worst-case workloads 

achieves limited energy savings, since aggressive 

workpoints need to be set to maintain required 

performance in the worst case.  Conversely, 

overestimating slack can lead to performance 

degradation. When workloads are unknown they must be 

estimated, and the method of estimation is a primary 

factor of the efficiency of DVS policies. 

Selecting a criterion for DVS policy efficiency is not 

a clear-cut issue, since different DVS-capable CMPs for 

different applications have different energy- and power-

performance requirements. For example, mobile battery-

operated devices aim at long battery life as well as 

performance, while desktop systems and servers 

typically optimize power rather than energy 

consumption.  

Consider a system whose only objective is to 

maximize performance. The best policy would be to run 

at maximum frequency at all times (in this work we refer 

to this policy as the f-max policy). Conversely, a system 

which is concerned only with energy minimization 

should always run at the minimum frequency (f-min 

policy). A more interesting and more practical case is 

that of a system which strives to balance between the 

two: tuning up frequencies only to the point where the 

increased energy consumption is deemed justifiable, and 

likewise saving energy by running slower, but only to 

the point considered as tolerable performance. This 

choice is reflected in the criterion selected to assess 

alternative DVS policies, as discussed in Section  2.3.  

DVS policies vary in computational complexity. If 

the required calculations for policy implementation are 

to be integrated into the system itself and perform in 

real-time rather than offline and externally, then it is 

essential that the energy-consumption and delay of the 

calculation itself be minimal. Spending a substantial 

amount of execution time and energy just to calculate 

each workpoint may considerably offset the savings 

aimed at, making it impractical for use in a performance- 

and energy-aware system. Thus, a practical slack-

utilization computation must weigh savings 

accomplished versus its own complexity. 

Previously published DVS policies for CMP 

formulate precise optimization problems [8-10] seeking 

optimal solutions, typically at the cost of high 

computational complexity. In contrast, we introduce 

lightweight heuristic DVS-polices, and show that they 

achieve good results compared to theoretical bounds. We 

show further that in most cases the simplest policy is the 

most cost-effective one. 

This paper is organized as follows. Section  0 defines 

the minimization criterion and formulates the DVS 

minimization problem. The various lightweight heuristic 

DVS policies are presented in Section  3, and analyzed in 

Section  4. Summary and conclusions are drawn in 

Section  5. 

2. Definitions and Problem 
Formulation 

Consider a CMP platform running a multi-task 

application. At any given time, each PE accommodates 

one software task. Each PE is independently DVS-

capable, i.e., the workpoint of each PE is controlled 

independently of the other PEs. A DVS policy 

dynamically assigns (f,V) workpoints to each PE, in 

order to minimize a specified performance and energy-

consumption criterion.  

For simplicity, all PEs are identical, although these 

results can be generalized to heterogeneous-PE systems 

[3, 11, 12] in future research, by incorporating varying 

Intruction-Per-Cycle co-factors to represent each core’s 

throughput, and varying power function fitting 

parameters a and b (see below) to represent each core’s 

power efficiency. 

2.1. DVS Hardware Model 

DVS-Capable PE Model 

We assume that each PE in the system is capable of 

operating at a clock frequency within the range 
cycles

, ]  secmin max
[f f f∈ , and may also be in a standby 

mode. At any frequency, the PE operates at the 

minimum feasible supply voltage, defining a frequency-

voltage (f,V) operation curve (see [13] for details). Note 

that for simplicity we employ a continuous frequency 

model, while typical processors operate at only a finite 

set of discrete frequencies. The rate of changing the 

frequency is also limited in practice due to transition cost 

in both energy and performance, and also complexity of 

frequent recalculation of the workpoint. It is unrealistic 

to change the frequency too often, and we assume a 

small number of frequency changes, therefore we can 

neglect the transition overhead. 

PE Power, Energy, and Execution Time 

We denote the total power consumption of a PE by 

( ) joules
sec P f , where f  is the PE's current frequency. As 
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mentioned above, the operating frequency implicitly 

defines a corresponding supply voltage. We consider 

( )0P  to be the standby power, consumed by the PE 

when it is not doing any work. We further define the 

energy consumed per cycle, denoted by ( ) joules
cycle e f . 

By definition: 

 ( ) ( )P f

fe f = . (1) 

For a task of unknown workload, the cumulative 

density function ( )Wcdf w  of the workload W is defined 

as the probability that the task will be completed within 

w  cycles or fewer: ( )( ) PrWcdf w W w= ≤ . Hence the 

probability that the task will take w  cycles or more to 

execute is  1 ( 1)Wcdf w− − . Some example distributions 

are displayed in Figure 1 below, which shows 

probability density functions, conventionally defined as 

( ) ( )W Wpdf w cdf w′= . These distributions are used in our 

simulations, as described in Section  4. 

 

(i) 

 

(ii) 

 

(iii) 

 

(iv) 

 

(v) 
Figure 1: Workload distributions: Examples on a 6-PE 

CMP.  

If the cumulative density and energy-per-cycle 

functions are known, we can formulate the expected 

energy required to execute a task of workload W on a PE 

p  by the following expression: 

 ( )[ ]
1

1 ( 1)p w W

w

E e f cdf w
∞

=

= − −∑ , (2) 

where wf  is the frequency at cycle w . Eq. (2) sums 

the energy-per-cycle times the probability that the task 

will still be running at that cycle. Convergence is assured 

since the task completes within a finite number of 

cycles. 

Suppose that the task starts at time 0t =  and 

completes by time t = T . If it completes before that 

time, the PE goes to a standby state until t = T . We can 

reformulate Eq. (2) to include the energy consumed 

when the PE is in standby, by dividing the power into 

standby power ( )0P  and active power 

( ) ( ) ( )0actP f P f P= − . If we define the corresponding 

active energy-per-cycle ( ) ( )actP f

facte f =  then total 

energy can be rewritten as: 

 ( )[ ] ( )
1

1 ( 1) 0p act w W

w

E e f cdf w P
∞

=

= − − +∑ T . (3) 

The energy-per-cycle functions e(f) and eact(f) are 

computed from the PE power function P(f). We used 

( ) 3P f af b= +  as the PE power function for our 

simulations in Section  4. This power function is justified 

as an approximation, since the scaling of the operating 

voltage is proportional to the frequency scaling, while 

dynamic power consumption is proportional to 

frequency times the voltage squared, hence the power is 

approximately proportional to the third power of 

frequency. In [13] we show that with correct choice of 

fitting parameters a and b, ( ) 3P f af b= +  is 

empirically quite close to real power measurements, 

although the fitting parameters do not represent 

meaningful dynamic or static power coefficients. 

Alternatively, any other power function can be used with 

the formulations herein, whether in closed or numeric 

form. 

To obtain the task execution expected time, Tp, we 

sum the delay-per-cycle times the probability that the 

task will still be executing at that cycle, in a manner 

similar to Eq. (2): 

 
1

1 ( 1)W

p

w w

cdf w
T

f

∞

=

− −
=∑ . (4) 

2.2. DVS Application Model 
In this study we model the application as an 

execution timeline comprising of alternating serial and 

parallel phases [3], as shown in Figure 2(a), and focus on 
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DVS policies for the parallel phases.  This simple 

execution model is appropriate for numerous 

applications [14, 15] and programming models [16]. 

.  

 

 
Figure 2: An execution timeline with (a) equal workloads, 

and (b) unequal workloads. Slack in (b) is utilized in (c) to 

save energy with no performance degradation. Reduced 

frequencies are indicated by thinner lines. 

 

Tasks of equal workloads running on identical PEs at 

the same frequency-voltage work-point will achieve 

identical run-times, as shown in Figure 2(a). A typical 

example is multiple task instances performing the same 

work in parallel on different, equally sized data-sets (i.e., 

Data Decomposition [17]). In such symmetrical cases, 

there is no slack to utilize – although the work-point can 

be controlled, any energy saved will necessarily come at 

the expense of performance. A timeline of unequal 

workloads, as shown in Figure 2(b), exhibits slack and 

thus presents opportunity for energy saving without 

performance degradation. Unequal workloads can occur 

when tasks execute in parallel on different data sizes or 

when different types of tasks execute in parallel (i.e., 

Functional Decomposition [17]). A timeline such as 

Figure 2(b) can also occur in a heterogeneous-PE system 

[3, 11] where the PEs have unequal computation 

throughput. Combinations of the factors mentioned 

above are also possible. 

Usually, an application does not provide information 

about its tasks’ workloads, so the actual workload of a 

task is known only once the task completes. We 

therefore use statistical methods to estimate a current 

task’s workload, and use this workload estimation in 

order to assign frequencies and corresponding voltages. 

A basic assumption is that the progress in cycles of each 

currently running task is known and that task completion 

times are known at the times of their completion. We 

further assume that tasks can be classified into types and 

that there is statistical correlation between the workload 

of a task and recent tasks of the same type. We collect 

statistical information of recent completed tasks of each 

type and use it to model the distribution of task 

workloads of that type. The actual information required 

depends on the frequency assignment policy used: one of 

our policies requires a complete pdf for each task, while 

the others require only the the mean and standard 

deviation, as described in Section  3. Once a statistical 

basis exists, the workload may be estimated using some 

pre-selected method. 

2.3. CMP Problem Formulation 
The total system energy E  of a parallel phase is the 

sum of the energies of all PEs 1..p N= , while the 

combined execution time T  of the parallel period is the 

maximum of task execution times: 

 
1..

1

  ,   max
N

p p
p N

p

E T
=

=

= =∑E T . (5) 

T  is determined by the completion time of the last 

task, i.e. the critical task running on the critical PE. Note 

that it is wasteful for any PE to complete before the 

combined execution time T , since it potentially could 

have run slower and consumed less energy, finishing at 

time T  and causing no performance degradation. We 

would like to utilize the slack of non-critical tasks in 

order to save energy. This notion is illustrated in Figure 

2(c), where the reduced frequencies are indicated by 

thinner lines. 

Alternative DVS policies are judged according to the 

balance that they manage to achieve between energy and 

performance. Different criteria may assign different 

weight to energy and performance. In this study we 

employ the criterion of minimal expected value of α
ET , 

i.e., minimize the product of energy E , and execution-

time T  to some power α. The exponent α is used to 

control the relative weight of execution time and energy. 

We prefer ρ=2, since 2
ET  has the useful characteristic 

of frequency invariance [18], making it specifically 

relevant to comparing DVS policies, since 2
ET  

measures policy quality regardless of the actual 

frequencies used. The frequency (and therefore voltage) 

invariance of 2
ET  makes it a widely used criterion for 

(c) 

(a) 

(b) 
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design-spaces where scaling of frequency-voltage is 

considered, both at the circuit level [19], and at the 

system level [20]. A task's energy consumption is 

approximately proportional to the square of the voltage, 

which is in turn approximately proportional to the 

frequency, hence 2
E f∝ . On the other hand, 1

f
T ∝  so 

2
ET f

ρ ρ−∝ . When measuring other ρ
ET  metrics 

where ρ≠2, we find in our simulations that using ρ < 2 

gives inherent advantage to the f-min policy, while ρ > 2 

favors the f-max policy. Furthermore we find that any 

policy which always uses a single constant frequency 

(for example f-min and f-max, see Figure 9) achieves a 

constant 2
ET  measure, regardless of frequency. 

Optimization 

A straightforward approach to finding an optimal 

policy is to solve the following minimization problem: 

 [ ]

2

min max

min

. .  ( ) 0 , ,

1.. ,  1,2..

ps t f w f f

p N w

∈ ∪

∀ = ∀ = ∞

ET

 (6) 

Namely, minimize 2
ET  while frequencies are 

constrained to an operating range, or 0 if the PE is idle. 

Substituting E  and T  from Eqs. (5) into Eq. (6), 

and further substituting pE  and pT  (the individual PE 

energy and delay) from Eq. (3) and (4), we note that the 

ensuing stochastic optimization problem seems very 

hard, despite the simplifications already assumed in the 

model. Rigorous analysis of this minimization problem 

is beyond the scope of the present work. Moreover, we 

suggest that although this problem may be solvable, 

yielding some optimal frequency assignment per set of 

task distributions, the computation required is likely to 

be too great to justify implementation in any practical 

system. In a performance-driven energy-aware system, 

and assuming frequency assignment is integrated as part 

of the system’s computational requirements in real-time, 

we must weigh the improvement that a computation 

offers versus the cost of the computation itself, both in 

energy and performance. This observation rationalizes 

the approach of searching for simple lightweight 

heuristic DVS policies. 

3. DVS Policies 
In this section we describe a group of relatively 

simple frequency assignment policies for a CMP. Since 

all policies share the same outline and differ only in 

certain details, we first describe the common outline and 

then specify the differences for each policy. 

3.1. Common Outline for All 
Policies 

At the t=0 fork-point of the parallel phase in the 

timeline, all policies perform the same steps: 

(1) Find the PE (task) estimated to have the most 

remaining work, which is referred to as the 

estimated-critical PE (ECP). 

(2) Set a joint-target-time (JTT) for all PEs to 

complete their tasks, and assign PE frequencies 

(and voltages). 

(3) Run until the ECP finishes (or time interval 

elapsed). 

(4) Update workload estimations.  

(5) Loop back to Step (1) above. 

In Step (1): We compute the expected value of the 

(remaining) estimated work for all PEs (currently 

running tasks): 

 , ,
ˆ [ | ]p rem p p compW E W W=  (7) 

Note that at time t=0, the completed work 

, 0p compW = . From this estimation we find the ECP, the 

PE for which the estimated work is maximal: 

 
, ,

1..

,
1..

ˆ ˆmax{ }

ˆarg max{ }

ECP rem p rem
p N

p rem
p N

W W

ECP W

=

=

=

=
. (8) 

In Step (2): The ECP is assigned 
maxf . Intuitive 

reasoning for this is that 2
ET  is frequency invariant if 

we ignore (0)P , which means that results depend solely 

on the amount of utilized slack, while actual PE 

frequencies are insignificant. However, (0)P  cannot be 

ignored. Therefore, assigning 
maxf  to the ECP, i.e., 

running as fast as possible, will clearly minimize standby 

energy consumption. Optimality of assigning 
maxf  to the 

critical PE is proven in Section  3.2 for a case of known 

workloads. 

To utilize the available time-slack, we want all the 

other (non-critical) PEs to complete together with the 

critical PE. We therefore set a joint-target-time for all 

PEs, which is the expected completion time of the ECP: 

 
�

,

max

ECP remW
JTT

f
= , (9) 

where � ,ECP remW  is the estimated (remaining) work of 

the ECP. Frequency assignment of the other (non-

critical) PEs is described per each policy below. 

In Step (3): All PEs run at their assigned frequencies 

until the ECP completes. (In case of the Interval policy 

described in  3.4, re-estimation and re-assignment are 

performed also at intermediate fixed time intervals.) The 
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ECP is expected to complete last by definition, and this 

will typically be the case. However since workloads are 

statistical it is possible that the ECP will complete before 

other PEs. 

In Step (4): If the ECP completes (or a time-interval 

elapses) while other PEs still have remaining work, re-

estimation is performed, taking into account the work 

done by each PE so far. The cycle is repeated until all 

PEs have completed their work. 

Figure 3 shows a flowchart of the common outline. 

The specific variations of the policies are described next. 

 
Figure 3: Flowchart of common outline for all polices 

3.2. The "Oracle" Policy 
The Oracle policy is a non-causal, hypothetical 

policy which assumes future knowledge of the 

workloads. When simulating the Oracle policy we still 

generate workloads statistically, however we assume that 

the workloads are known in advance, before run time. 

We use the Oracle policy results as a lower bound for 

comparing to causal, implementable policies in which 

the exact workloads are not known in advance. 

Given that the workloads are known, we calculate the 

optimal frequencies pf  to assign to each PE 1..p N= . 

In particular we show that maxf  is optimal for the critical 

PE. We denote the known task workloads on each PE 

pW , and define T to be the joint execution time for all 

PEs. Because the workload of each PE is known and the 

execution time is set, energy can be minimized by 

running at a constant frequency that is just fast enough to 

finish the task by its deadline. This is a well established 

result which is due to the convexity of e(f), the energy-

per-cycle [21]. Therefore we assign constant frequencies 
pW

p T
f =  to each PE. We initially assume that 

frequencies are not restricted to any range, and later 

incorporate frequency bounds. All PEs complete exactly 

at T, so that full slack utilization is attained. 

Assuming that there exists a T as above and it 

minimizes 2
ET , that T can be found by differentiating 

2
ET  w.r.t. T and equating the derivative to 0:  

 

( )

( ) ( )

( )

2 2 2

1 1

2

1

2

2
1

2 2

1 1

0

2 0

0

2 3 (0)

N N
p

p p act

p p

N
p

p act

p

N
p p

p act

p

N N
p p

p act p act

p p

W
T E T W e NP T

T

Wd
T W e NP T

dT T

W W
T W e NP

T T

W W
T W e W e NP T

T T

= =

=

=

= =

  
= = + ⇒  

   

  
= + +  

   

   
′+ − + =   

    

   
′= − +   

   

∑ ∑

∑

∑

∑ ∑

ET

ET

  

Now if we assume the power model described in 

Section  2.1, then 2( ) , ( ) 2act acte x ax e x ax′= =  and 

substituting in (10) we find that the two sums cancel out: 

 

( )
2

2 2 2

1 1

2

2 2 3 (0)

3 (0)

N N
p p

p p

p p

W Wd
T W a W a NP T

dT T T

NP T

= =

   
= − +   

   

=

∑ ∑ iET

. (11) 

Note that if P(0)=0 then this means the criterion is 

truly frequency invariant, since the measure does not 

depend on the operating frequencies. Otherwise, T=0 is 

required in order to minimize the criterion, but since that 

is not possible, the shortest execution time we can set is 

( ) maxmax pT W f= , so all frequencies are 

correspondingly set as follows: 

 

max
,  1..

max( )

p

p

p

p
p

W
f map

T

W
map f p N

W

 
= = 

 

 
  =
 
 

. (12) 

No re-estimation is necessary since all task 

workloads are known. The ()map  function maps the 

frequency in (12) to a feasible frequency. In the simple 

case of a continuous frequency range, this merely means 

trimming out-of-range values to 
minf  and 

maxf  

correspondingly. (Also note that in the particular case of 

Eq. (12) the inner result is already bounded by 
maxf .) All 

PEs complete precisely at T, with the exception of non-

critical PEs with a small workload which run at 

minf according to Eq. (12), finishing before T. 
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3.3. The Constant Policy 
The Constant policy is a simple policy in which a 

constant frequency is assigned to each PE. After 

calculating the JTT and assigning the ECP to run at the 

maximum frequency
maxf , we set non-critical PE 

frequencies with an aim to complete at the joint-target-

time: 

 

� �

� �

�

, ,

, ,

max

,

( )

( )  ,  1..

p rem p rem

p

p rem p rem

ECP rem

W
f map

JTT

W
map f p N

W

λσ

λσ

+
= =

+
=

 (13) 

where � ,p remW  is the remaining work estimation of PE 

p, � ,p remσ  is the standard deviation of ,p remW , and 0λ ≥  

is the bias parameter. At time t=0 no work has been done 

so the remaining work is the total work. The ()map  

function maps the result of Eq. (13) to a feasible PE 

frequency as described above. 

For 0λ = , 
pf  is set so that PE p  completes � ,p remW  

work during the time it takes the ECP to complete 
�

,ECP remW  work. However since delay outweighs energy 

for the 2
ET criterion, we can achieve better results by 

setting the bias parameter 0λ > , as described below in 

Section  4.1. 

Note that the critical PE frequency can also be 

formulated using Eq. (13) if we assume 0λ ≥  and 

substitute � ,p remW  with � ,ECP remW . 

Early Completion of the Estimated-

critical PE 

If the ECP completes while other PEs still have 

remaining work (step (3) in the outline), then the 

assumptions by which frequencies were assigned in step 

(2) no longer hold. In this case we update the estimations 
�

,p remW  � ,p remσ  to reflect the work done so far, Wp,comp, 

and repeat steps (1) and (2): set a new joint-target-time 

and a new ECP, and assign new PE frequencies. We 

continue steps (1) to (4) repeatedly until all PEs have 

completed. 

Figure 4 shows an example of applying the Constant 

policy in a 3-PE system. Figure 4(a) shows the workload 

distributions, and then two scenarios are illustrated. In 

Figure 4(b), the workloads are such that the ECP (red, 

dotted) completes last. This is the expected, common 

scenario. In Figure 4(c), the ECP unexpectedly finishes 

first, causing re-estimation; a new ECP is selected 

(green, dashed) and work-points are reassigned.  

If we regard the complexity of one (f,V) work point 

assignment (including the preceding remaining workload 

estimation) as O(1), then the complexity of the Constant 

policy can be approximately regarded as O(N), N being 

the number of PEs in the system. This approximation 

ignores the occasional work-point re-estimation that is 

required when the ECP completes before other PEs. 

However, this is justified since the probability of this 

scenario is (a) generally small, (b) distribution 

dependent, (c) very hard to calculate and incorporate into 

complexity estimations, and (d) common among all 

described policies, so it generally shouldn’t affect 

comparing them. 

 

 

(a) 

 

(b) 

 

(c) 
Figure 4: Constant policy example with three PEs: (a) 

workload distributions, (b) the ECP (red, dotted) finishes 

last as expected, (c) the ECP finishes first, re-estimation is 

performed. 

3.4. The Interval Policy 
The Interval policy is an enhancement of the 

Constant policy described above. The Interval policy 

assigns constant frequencies in the same way as the 

Constant policy. But in the Interval policy, the critical 

PE is re-chosen and frequencies are reassigned at 

intermediate fixed time intervals. For each time interval, 

estimated remaining workloads are used to choose the 

critical PE and frequencies for the next interval. Re-

estimating remaining workloads and re-assigning work-

points following the re-estimation may offer a significant 

advantage: the difference between the estimated 

remaining workloads at time t=0, compared to the 

estimations at a later time when all PEs have done a 

certain amount of work, may be substantial. Interval can 

be viewed as a refinement of the Constant policy: the 

shorter the time interval, the more accuracy can be 

achieved. 
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Note that it is possible to calculate frequency 

assignments not just for the current interval but for 

future intervals as well, since all the needed information 

is available at time t=0. The only information that is not 

available at time t=0 is actual task workloads. So at any 

given time we can calculate frequencies to be assigned 

for future intervals, and these calculations will be valid 

until the time the ECP completes. Therefore, although it 

is easier to understand Interval as a process of 

recalculating frequencies at each interval, in practice 

Interval calculates frequencies at time t=0, and 

recalculates only when an ECP completes. 

A bias parameter λ  exists also for the Interval policy 

and allows tuning in the same way as for the Constant 

policy. Figure 5 shows an example of the Interval policy 

with 2 PEs. 

 

(a) 

 

(b) 

 

(c) 
Figure 5 : Interval policy example with two PEs: (a) 

workload distributions, (b) the ECP (green, dashed) 

finishes last as expected, (c) the ECP finishes first. 

In typical examples, the frequency of non-critical 

PEs increases with time, as shown in Figure 5. This 

behavior is similar to the behavior of PACE [22], as 

explained in the following section. However, decreasing 

frequencies can occur, since PE frequencies are a 

function of the estimated remaining workload relative to 

the estimated remaining workload of the ECP at each 

interval. Notably, when there is a substantial difference 

in both the mean and variance of workload distributions, 

both increasing and decreasing frequencies can occur, as 

shown in Figure 6 below.  

Note that in Figure 6, there is an ECP switch at a 

certain time during the run. The ECP (green, dashed) is 

initially estimated to have more remaining work, and 

thus it is designated as the ECP and assigned fmax. 

However as time progresses the ECP does more work 

relative to the other (blue, solid) PE, until a time where 

the other PE’s estimated remaining work surpasses that 

of the ECP, thus the other (blue, solid) PE is designated 

the new ECP. 

 

 

(a) 

 

(b) 
Figure 6: Another interval policy example, with 2 PEs 

having substantial difference in both the mean and 

variance of their workload distributions, (a). Both 

increasing and decreasing frequencies are observed, (b). 

The PE marked in dashed green is initially the ECP, but 

after some time the PE marked in blue becomes the new 

ECP. 

Since the complexity of the Constant policy is O(N), 

the complexity of the Interval policy is O(kN), where k is 

the number of time intervals at which re-estimation 

occurs. 

3.5. The Multi-PACE Policy 
Energy-performance tradeoff in a single standalone 

PE has been studied extensively [9, 23-26]. A new 

Multi-PACE policy presented in this section is an 

attempt to generalize from the well-known single-

processor approach PACE [22] onto CMP systems. 

PACE Scheduling for a Single Processor 

Consider a task of given workload probability 

distribution ( )Wpdf w , running on a PE with a 

continuous frequency range min, max[ ]f f f∈ , with some 

soft deadline D, i.e. a deadline that is required to be 

attained only in a certain fraction of cases, not 

necessarily all the time. We represent this by the 

probability PMD (Probability of Meeting the Deadline). 

Given ( )Wpdf w of a task, a deadline D, and PMD, we 

can find the maximum workload PMDw  for which a task 

will meet its deadline. 

The PACE scheme is an analytically optimal method 

for minimizing the expected energy subject to 
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probabilistically meeting the deadline [22]. Given the 

above inputs, PACE computes the optimal frequency 

schedule per cycle: 

 
min, max

( )

([ ], ( ), , ),

[0, ]

W

PMD

f w

PACE f f pdf w D PMD

w w

=

∈

. (14) 

Conversion from f(w), which expresses the frequency 

as a function of work cycles done, to a more intuitive f(t) 

time function, is straightforward. 

As mentioned above in Section  3.2, running at a 

constant frequency is optimal in case workloads are 

known, but not so when workloads are unknown. PACE 

stands for Processor Acceleration to Conserve Energy, 

reflecting the fact that the optimal frequency schedule is 

an increasing function when workloads are unknown 

[22]. An intuitive explanation for this is that a task 

workload may be small or large, so it is worthwhile to 

run slowly at first. If the workload is small then the task 

can easily complete by the deadline, saving energy by 

running at a low frequency. As the deadline approaches, 

if the task has not yet completed the frequency is 

gradually increased in order to assure meeting the 

deadline with probability PMD. 

Multi-PACE (f,V) Work-point Assignment 

We introduce Multi-PACE, which utilizes PACE to 

form a DVS policy for a CMP, as follows. After setting 

the ECP to run at 
maxf and setting the JTT as in Eq. (9), 

non-critical PE frequencies are set according to PACE 

with the JTT as a deadline: 

 
,min, max

( )

([ ], ( ), , ),

[0, ]

p rem

p

W

PMD

f w

PACE f f pdf w JTT PMD

w w

=

∈

. (15) 

To clarify, note that JTT is not an application 

deadline. Rather, it is computed following Eq. (9). We 

use the PACE deadline mechanism to synchronize 

completion times between PEs.  

PACE does not specifically define which frequency 

to use for the post-deadline part (i.e., cycles greater 

than
PMDw ). Multi-PACE runs at 

maxf  during the cycles 

subsequent to 
PMDw  in an attempt to minimize delay past 

the JTT. Figure 7 shows an example of applying Multi-

PACE, using the same workload distributions as in 

Figure 4(a). 

 

(a) 

 

(b) 
Figure 7: Multi-PACE example with two PEs, workload 

distributions as in Workload distributions are as in Figure 

4. (a) the ECP (green, dashed) finishes last as expected; 

(b) the ECP finishes first. 

The value of PMD has a significant effect on the 

overall results. If PMD is too high, multi-PACE sets 

overly aggressive frequency schedules, resulting in 

excessive energy consumption. On the other hand, 

choosing PMD too low increases the probability of 

missing the JTT, causing increased overall execution 

time. In Section  4.1 we experiment with different PMD 

values for Multi-PACE. The use of PMD is similar to the 

use of the λ  bias parameter for the Constant and 

Interval policies. 

Multi-PACE requires PEs to have a continuous 

frequency range and to be able to change frequency 

every cycle, but this is not practical for reasons 

previously discussed. Practical methods of implementing 

PACE, which can apply to Multi-PACE as well, are 

described in [22, 25]. 

As explained above, the complexities of the Constant 

and Interval policies are O(N) and O(kN) respectively, 

where N is the number of PEs and k is the number of 

intervals. In principle, frequencies are recalculated in 

Multi-PACE for each cycle. In a practical system, 

however, the workload distributions would be built by 

collecting data into a histogram, and their granularity 

would therefore be according to the number of histogram 

bins, denoted by B. Thus the number of frequency 

changes in multi-PACE is in practice proportional to B, 

and thus the complexity of the multi-PACE policy is 

O(BN) [22]. 

4. Simulations and Results 
In this section we present simulation results of the 

proposed DVS policies. We used a few sets of synthetic 

probability distributions to represent the task workloads, 

as shown above in Figure 1.  
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We simulated a system with six identical PEs, each 

with a continuous frequency range of 0.32GHz to 

1.5GHz. Energy was calculated using the power model 

of 3( )P f af b= +  with [ ]30.8 ,  0.2Watt

GHz
a b Watt = =   as 

fitting parameters, as described in section  2.1. 

4.1. Choosing Bias Parameters 
Prior to comparing the policies, we consider the issue 

of selecting bias parameters: λ  for Constant and 

Interval policies, and PMD for Multi-PACE. As 

previously mentioned, setting PE work-points so tasks 

complete their estimated workloads at the JTT is sub-

optimal. Delay outweighs energy for the 2
ET criterion, 

therefore missing the JTT by a certain time margin 

incurs a greater penalty than finishing before the JTT by 

that same time margin. Better results can be achieved by 

setting the bias parameter 0λ >  in Eq. (13), thereby 

running faster. A similar effect can be achieved for the 

Multi-PACE policy by tweaking the PMD parameter in 

Eq. (15). 

Figure 8 shows policy results, in terms of 
2

ET values, normalized to the Oracle policy, for 

distributions (i), (ii), and (v) of Figure 1, using different 

bias values λ and PMD. As can be seen in Figure 8, each 

case shows a certain optimal choice of the bias 

parameters λ and PMD. However, the results are not 

very sensitive to small variations, and thus it is 

reasonable to use the same bias parameter ( λ or PMD) 

for all distributions. Empirically, a good choice lies in 

the range of 0.5-0.8. The effect of λ  on 2
ET  is less 

accentuated in Interval than in Constant, since Interval 

performs periodic re-estimations of ( )i

remW  and ( )i

remσ .  

 

(a) Constant

1
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1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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dist. (ii)
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Normalized 
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2
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(b) Interval
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1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4
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(c) Multi-PACE

1

1.2

1.4

1.6

1.8

0.5 0.6 0.7 0.8 0.9 0.98

dist. (i)

dist. (ii)
dist. (v)

Normalized 

ET
2
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Figure 8: Comparison of bias values for policies (a) 

Constant, (b) Interval (50ms), and (c) Multi-PACE 

policies. Distributions (i), (ii), and (v) (see Figure 1) are 

shown. 

4.2. DVS Policy Comparison 
We simulated each of the workload distributions 

shown in Figure 1 using Oracle, Constant, Multi-PACE, 

and Interval policies. For Interval, we used intervals 

lengths of 50, 100, 150 and 200 milliseconds which 

correspond to roughly 16, 8, 4, and 2 intervals 

throughout the simulated execution time. We chose bias 

parameters 0.8λ =  for Constant, 0.5λ =  for Interval 

and PMD=80% for Multi-PACE, following the 

conclusions of Section  4.1.  

Policy Comparison

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(i) (ii) (iii) (iv) (v)

distribution

ET
2

 (Normalized)

Multi-PACE

Constant

Interval  50ms

Interval 100ms

Interval 150ms

Interval 200ms

Oracle

F-min

F-max

 
Figure 9: ET2 compared across all policies 

For each distribution, Figure 9 shows 2
ET  

compared across all policies, normalized as above to the 

results of Oracle, which we regard as a lower bound. 
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Additionally, the results show that f-min and f-max 

policies reach the same results in 2
ET  for all 

distributions. This follows from the approximate 

frequency invariance of 2
ET , and likewise holds for any 

other policy that always uses a single constant 

frequency. Thus we expect our policies to achieve results 

that are in between Oracle and f-max/f-min, i.e., better 

than running at an arbitrary constant frequency (which 

we regard as 0% improvement), but worse than the 

optimal policy in which exact workloads are known in 

advance (100%). As can be seen, this is indeed the case. 

The Interval policy usually achieves the best results 

while Constant, the simplest policy, usually achieves the 

worst results. However, the difference between the 

policies is generally quite small, with no more than 4-

13% difference between the best and worst policies 

(except for example iv, which is discussed next.) 

Despite the above similarities, distribution (iv) of  

Figure 1 is an example where the Interval policy stands 

out. As can be seen in Figure 1(iv), two of the six task 

workloads of example (iv) have a bimodal distribution 

( 51 10i  or 510 10i cycles) while the other four are known 

( 57.5 10i cycles). At time t=0, the estimated critical 

workload is 57.5 10i cycles. However, once the bimodal-

distributed tasks complete 510 cycles work, the 

estimation may change to 610 cycles, enabling the 

known-workload tasks to run slower, saving 

considerable energy. Interval performs much better than 

all other policies since it is the only policy that re-

estimates the critical workload. 

With further regard to the Interval policy, we note 

that increasing the interval resolution (increasing the 

number of re-estimations) provides only minor, 

insignificant improvement. A few re-estimations over a 

relatively large period of time can drastically change the 

outcome, as demonstrated by example (iv), while 

additional re-estimations have only a marginal effect. 

Multi-PACE on the whole achieves better results 

than Constant and worse than Interval in the simulated 

examples. Multi-PACE is more dependent on correct 

estimation of the critical task than the other policies, and 

therefore produces slightly better results in cases where 

there is little uncertainty regarding the critical task (v), 

compared to cases where the uncertainty is greater (iii). 

Computational Complexity  

In Section  3, we concluded that the complexities of 

Constant, Interval, and Multi-PACE are O(N), O(kN), 

and O(BN), respectively; where N is the number of PEs, 

k the number of intervals, and B the number of workload 

histogram bins. Since increasing the number of intervals 

for the Interval policy beyond a small number provides 

only marginal improvement (note the marginal 

improvement when using shorter intervals in Figure 9), it 

is reasonable to assume small values for k. On the other 

hand, Multi-PACE performs no re-estimation, so it needs 

a considerable large number of bins B [22]. B does not 

necessarily need to be of cycle granularity, but will be 

several orders larger than k, i.e., k<<B. Following this 

reasoning, we conclude that the relative complexity of 

the policies is O(N) < O(kN) << O(BN). 

5. Summary and Conclusions 
In this work, we started by formulating an energy-

performance tradeoff optimization problem of an 

application running on a CMP. We noted the complexity 

of the problem, which makes it virtually impractical for 

implementation. 

As an alternative to direct optimization, we described 

several simple heuristic DVS policies for energy-

performance tradeoff. These policies try to utilize 

available time-slack in order to save energy in a 

performance-aware manner. The frequency-invariant 
2

ET  criterion was employed for comparing the policies. 

The policies described were: Constant, a policy that tries 

to estimate the best constant frequency to assign to each 

PE; Interval, which works in a manner similar to 

Constant but reassigns new frequencies at fixed time 

intervals, and Multi-PACE, applying PACE, an optimal 

scheme for a single-core system with a deadline 

requirement, for use in a CMP. 

We compared these policies using various 

distributions, and presented several examples. We 

showed that, except for some isolated cases, all policies 

reach comparable results. Increasing the number of re-

estimations (using Interval) improves results compared 

to estimating merely once at the beginning (using 

Constant). However, the marginal return sharply 

diminishes with the number of re-estimations. Multi-

PACE produces results that are anywhere between 

Interval and Constant, occasionally appearing at the top 

or bottom of the results list, depending on the 

distribution. 

We analyzed the policy complexities, and showed 

that Constant is the least complex, followed by Interval, 

while Multi-PACE has the highest complexity, 

significantly higher than Constant and Interval. For 

several distributions, the results are usually quite close 
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for all policies, thus we conclude that the least complex 

policy, Constant, is usually preferred. In individual 

cases, such as distribution (iv) shown in Figure 1, there 

is justification for using Interval. Based on these 

findings, a scheme could be contemplated whereby the 

number of intervals is chosen dynamically based on 

certain characteristics of the distribution, or 

alternatively, start with a default number of intervals, 

and assess the result over time to determine if the 

number of intervals can be decreased. Multi-PACE 

generally does not achieve better results than any of the 

other two, and has a very high complexity, thus it is not 

preferred.  

Frequency-voltage transitions, which are not 

considered in this work, may degrade the results since 

each transition is accompanied by performance and 

energy penalties [6]. When the cost of transitions is 

considered, simple policies such as Constant become 

even more attractive because they use fewer transitions. 

The following topics may be dealt with in future 

research: 

1. Study of more complex task-graphs. 

2. Discrete (f-V) workpoint sets. 

3. With regard to  2 above, the interval policy may be 

enhanced to consider re-estimation at flexible times. 

Such an interval policy would determine when to jump 

to an adjacent discrete workpoint, rather than directly 

calculating a new workpoint at an arbitrary time. 

4. Test cases based on real application traces.  

5. Applications may produce indications assisting 

the estimation of their own remaining work, which can 

improve the accuracy of remaining workload 

estimations. 

6. Real-time applications, which need to achieve a 

periodic deadline, can be modeled by replacing the 

execution time T  in the criterion with a relative 

D−T  measure which results in penalty only to the 

extent by which the application missed its deadline. 
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