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Abstract

When imaging in scattering media, there is poor visibility which hiders both human assisted op-

erations and computer vision. Most computer vision methods face significant difficulties if employed

directly underwater. This is due to the particularly challenging environmental conditions, which

complicate image matching and analysis. The problem is even more severe when using artificial

illumination- strong backscatter veils the object signal. In this work we analyze image formation

under wide-band wide-field artificial illumination. We suggest a visibility recovery approach. Our

approach first estimates the backscatter component. Based on that component, it estimates a rough

3D scene structure. The method is simple and requires compact hardware, using active wide field

polarized illumination. Two images of the scene are instantly taken, with different states of a

camera-mounted polarizer. A recovery algorithm then follows. We demonstrate the approach in

underwater field experiments and analyze limits concerns to acquisition noise.

1 Introduction

Scattering media exist in bad weather, liquids and biological tissue. Images taken in scattering media

characterize in from poor visibility and loss of contrast. Light passing through undergoes absorption

and scattering, causing changes in color and brightness. Moreover, light that is scattered back from the

medium along the light of sight (backscatter) veils the object, degrading visibility and contrast. There-

fore, applying traditional computer vision methods in such environments is difficult. Nevertheless,

there is a strong need to perform vision tasks in these media. Examples include vision through biolog-

ical tissues[12], underwater applications like port construction and inspections, measuring ecological

systems, etc. [11], and navigation in bad weather [1].

Previous works tackled this challenge in various ways. Some recovered visibility as well as the

three dimensional (3D) structure of underwater sites [33] under distant natural illumination. However,

application fields operating in highly turbid media use artificial illumination sources at short distances,

be it underwater or in the human body. However, artificial lighting usually causes a strong backscatter.

Backscatter can be modulated and then compensated for in image post-processing. Such current

methods require acquisition of long image sequences by structured light [17, 19, 27] or time-gating [5,
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7, 10, 38, 40]. Ref. [28] required many frames as well, to achieve quality results. Such sequences may

lengthen the overall acquisition time. Moreover, such systems are very complex and expensive.

To counter these problems, we look at widefield (not scanning) illumination with a small (or no)

baseline, where the backscatter is modulated by polarization. Preliminary studies [8, 9, 20] indicated

that backscatter can be reduced by polarization. However, we go further. By post-processing we remove

residual backscatter that is not blocked by optical means. Moreover, a rough estimate of the 3D scene

structure may be obtained from the acquired frames. The acquisition setup is a simple modification

of instruments used routinely in such media: simply mounting two polarizers, one on the light source

and another on the camera. The acquisition process is instantaneous, i.e., requiring only two frames,

rather than scanning. In this paper, we describe and demonstrate each step separately.

The approach is based on several insights into the image formation process. We show that backscatter

and attenuation of artificial illumination can be well approximated by simple closed-form parametric

expressions. To incorporate polarization, we have performed empirical polarization measurements in

real underwater scenes: in a temperate latitude sea (Mediterranean), a tropical sea (the Red Sea), in

a murky lake (Sea of Galilee) and a swimming pool.

This paper first describes the scientific model of the imaging system, and sets the grounds for

polarization imaging. The reconstruction is done in two steps: first, we recover the object signal.

Then, we estimate the scene structure. Results follow each step. We conclude by analyzing the limits

of our method related ti imaging noise.

2 Statement of the Problem

Consider a perspective underwater camera (Fig. 1). Let X = (X,Y, Z) be the world coordinates of a

point in the water. We set the world system’s axes (X,Y ) to be parallel to the (x, y) coordinates at the

image plane, while Z aligns with the camera’s optical axis, and the system’s origin is at the camera’s

center of projection. The projection of X on the image plane is x = (x, y). In particular, an object

point at Xobj corresponds to an image point xobj. The line of sight (LOS) to the object is

LOS ≡ {X : Z ∈ [0, Zobj] , X = (Z/f)xobj , Y = (Z/f)yobj} , (1)

where f is the focal length of the camera. The measured image is

I(xobj) = S(xobj) + B(xobj) , (2)

where S(xobj) is the object signal and B(xobj) is the backscatter [13, 22, 24]. Before detailing these

components, note that backscatter is the major cause of contrast deterioration [14], rather than signal

blur. This was demonstrated in [33] using objective criteria. Interestingly, according to Ref. [43],
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Figure 1: A camera inside a dome port with a radius r. The variables are detailed in the text.
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Figure 2: Simulation of an underwater scene. The scene was assigned a linearly varying distance map ranging

between [0.2m, 1m]. (a) A uniformly lit clear scene. (b) The simulated attenuated signal. (c) The backscatter

component. (d) The sensed underwater scene, accounting for both scattering and attenuation.

human vision associates image quality mostly with contrast, rather than resolution. For these reasons,

we do not focus here on image blur or deblurring. Rather, we consider the prime effects associated

with turbidity to be backscatter and attenuation. Fig. 2 demonstrates these effects.

Define Lobj(xobj) as the object radiance we would have sensed had no disturbances been caused by

the medium along the LOS, and under uniform illumination. Propagation of light to the object and

then to the camera via the medium yields an attenuated [13, 22] signal

S(xobj) = Lobj(xobj)F (xobj) , (3)

where F is a falloff function described below.

A point X in the water is at total distance ‖X‖ from the camera. If the camera is enclosed in a

dome port as in [33], then the distance from the dome to X is

Rcam(X) = ‖X‖ − r , (4)

where r is the dome’s radius. Consider for the moment a single illumination point source. From
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this source, light propagates a distance Rsource to Xobj. Free space propagation creates a 1/R2
source

irradiance falloff. Yet, there is turbidity, characterized by an attenuation coefficient c. Hence

F (xobj) =
exp {−c [Rsource(Xobj) + ‖Xobj‖ − r]}

R2
source(Xobj)

Q(Xobj) . (5)

Here Q(X) expresses the non-uniformity of the scene irradiance, solely due to the inhomogeneity of

the illumination. It similarly exists if the water is clear, i.e., c = 0, and can thus be pre-calibrated in

clear water. For multiple illumination sources, or for a wide spread source Eq. (5) is derived for each

point source, and then all F ’s are summed up. This can be generalized to include illumination due to

multiple scattering [39].

In order to calculate the backscatter that appears in Eq. (2), define first Isource as the irradiance of

a point in the volume [13] by a small illumination source of radiance Lsource:

Isource(X) = Lsource
[

1/R2
source(X)

]

exp[−cRsource(X)]Q(X) . (6)

Then, the backscatter is given [13, 41] by integration along the LOS

B(xobj) =

∫ Rcam(Xobj)

Rcam=0
b[θ(X)]Isource(X) exp[−cRcam(X)]dRcam , X ∈ LOS (7)

where θ ∈ [0, π] is the scattering angle, and b is the scattering coefficient1 of the medium: it expresses

the ability of an infinitesimal medium volume to scatter flux to θ. Eq. (7) applies to each illumination

source: accumulating the results yields the total backscatter. Note that the integration in Eq. (7) stops

when it reaches the object in the LOS. Therefore, the backscatter accumulates (increases) with the

object distance. If there is no object on the LOS, the integration in Eq. (7) continues to an infinite

distance. The value of B then increases until it reaches a saturation value. We term the distance in

which B effectively saturates as the saturation distance zsat.

Our goal in this research is two-fold: first, to estimate the backscatter component, in order to remove

it from the raw image and reveal the object signal. Second, to study the potential use of the backscatter

component for extracting information about the distance map of the scene. Sec. 3 describes how we

achieve the first goal by polarizing the light source.

3 Polarization Imaging

As mentioned earlier, we suggest modulating the light by polarizing the light source and imaging

through a camera-mounted polarizer (analyzer) in two orthogonal polarization states. The system

setup is depicted in Figs. 1 and 3. By mounting a polarizer (either linear or circular) on the light

source, we polarize the illumination. The polarized light propagates to illuminate the scene and part

1Note that b(θ) and c depend on the wavelength. Thus each available wavelength band is analyzed independently.
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Figure 3: A single-lamphead version of our system.

of it is scattered back by particles in the medium towards the camera. During this propagation, some

energy of the light becomes unpolarized (a process termed depolarization). This process is complex and

depends on the distribution of particle types and sizes [15, 21, 31]. Apparently, this process affects each

polarization type differently: some studies suggest that depolarization during propagation is weaker

in circular polarization [15, 21, 25, 31], while Refs. [15, 31] suggest weaker depolarization of linear

polarization in dense tissues. An empirical study [37] has looked at the the rate of depolarization

with distance in seawater. A preliminary empirical study [9] done decades ago has shown that if

the illumination is circularly polarized, then it flips handedness upon backscattering. Thus, Ref. [9]

achieved significant improvement in image contrast in an optical method, where it used an analyzer

having the same handedness as the illumination polarizer.

That said, despite the scientific efforts that have been invested by various researchers (see for example

[29]). The known art has not supplied a clear answer as to which polarization type is preferable in the

true environments we worked in, and how the depolarization rate can be determined by the scattering

and attenuation coefficients in those environments. Therefore, we tested our method with either linear

or circular polarization in different locations. In the case of linear polarization we mount a linear

polarizer on the light source and a linear analyzer on the camera. Then, an orthogonal image pair is

taken by either rotating the polarizer or the analyzer. Specifically, we chose to rotate the analyzer, as

it was easier in our setup. When using circular polarization, orthogonal states result from switching

handedness rather than rotating the polarizers. As a consequence, linear polarization is easier to

use. Moreover, wideband and widefield circular polarization is difficult to create. In any case, raw

polarization data still contains significant backscatter. Therefore, there is a need for post processing,

as we describe in Sec. 4. The post processing we perform does not depend on the polarization type

used.
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4 Backscatter Removal by Polarization

This section describes and demonstrates through experiments visibility enhancement by active polar-

ization imaging. This is done by separating the signal and the backscatter components. Later, in

Sec. 5.1, we explain how the estimated backscatter may be used for estimating the 3D structure of the

scene.

4.1 Model and Algorithm

Former studies have used polarized illumination for backscatter removal. Ref. [41] assumed that objects

back-reflect unpolarized light to the camera. On the other hand, studies using polarization difference

imaging (PDI) assume the contrary- that the light reflected from the objects is polarized and that the

backscatter is almost unpolarized. Here we give a more general model. Fortunately, if the object yields

polarized specular reflection, it behaves similarly to the backscatter: out of the two frames, generally,

the one in which the backscatter is brighter is also the one in which the object back-reflection is

brighter.2

As described in Sec. 3, we take two images of the same scene using two orthogonal polarization states

of the polarizer. Had the backscattered light completely retained its polarization, it could have been

optically eliminated by the analyzer. We discovered that a substantial degree of polarization (DOP)

is maintained upon backscattering. We exploit this phenomenon.3 Consequently, placing an analyzer

in the orthogonal state to the backscatter’s polarization state yields an image with minimum visible

backscatter. We denote this image as Imin. Imaging with the opposite orthogonal state, denoted Imax,

maximizes the backscatter.

We expand Eq. (2) to the polarized components Bmax, Bmin, Smax, Smin. Thus, the raw images are:

Imax(xobj) = Smax(xobj) + Bmax(xobj) , Imin(xobj) = Smin(xobj) + Bmin(xobj) . (8)

The DOP of the signal pobj and the DOP of the backscatter pscat are defined as:

pobj(xobj) =
Smax(xobj) − Smin(xobj)

Smax(xobj) + Smin(xobj)
, pscat(xobj) =

Bmax(xobj) − Bmin(xobj)

Bmax(xobj) + Bmin(xobj)
. (9)

In the following (xobj) is omitted for simplicity. We end up with two equations for the two unknown

fields - S and B:

Imax + Imin = B + S (10)

Imax − Imin = pscatB + pobjS . (11)

2Empirically, we never encountered a reversed polarization of the signal relative to the backscatter.
3Polarization has also aided other computer vision aspects [2, 4, 6, 23, 34, 44].
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The last equation is derived from plugging Eq. (9) into Eq. (8). The solution to this equation set is:

Ŝ =
1

pscat − pobj
[Imin(1 + pscat) − Imax(1 − pscat)] (12)

B̂ =
1

pscat − pobj
[Imax(1 − pobj) − Imin(1 + pobj)] . (13)

This is a general result, enabling separation of B and S from the two raw images, given the DOPs pobj

and pscat.

A very important property of Eq. (12) is that pobj contributes only a scale factor to the signal

reconstruction Ŝ. Suppose that pobj is approximately constant across the scene, but it is unknown.

Then, the signal estimation (12) is consistent with the true S up to a scale. For purposes of visibility

enhancement, the scaled Ŝ is sufficient: the backscatter is removed, and missing parts are revealed.

Furthermore, the backscatter is usually not uniform across the image; some regions have high intensity

backscatter, and others have low intensity backscatter (see Fig. 2). This hampers standard image

enhancement techniques. Therefore, removing separating the backscatter results in a signal estimation

Ŝ with a more uniform intensity. Thus, further image improvement may be obtained by applying

standard image enhancement techniques to Ŝ, rather than applying them to I or Imin.

As pobj changes only the scale of Ŝ, good results can be achieved [33, 35, 41] based on the assumption

that pobj = 0. In this case, Eqs. (12,13) reduce to:

Ŝ = [Imin(1 + pscat) − Imax(1 − pscat)]/pscat (14)

B̂(x, y) = (Imax − Imin)/pscat . (15)

Note, that in this case,

Imin = [B(1 − pscat) + S]/2 , Imax = [B(1 + pscat) + S]/2 . (16)

Now, let us examine what is the consequence of using the assumption pobj = 0 in Eq. (13), when

image creation (Eq. 8) experienced pobj 6= 0 . This case yields a false estimation of the backscatter, B̃:

B̃ =
Imax − Imin

pscat
= B̂ +

Smax − Smin

pscat
= B̂ +

pobj

pscat
S . (17)

The last equality results from plugging in the DOP pobj from Eq. (9). As discussed in Sec. 2, B

increases with the distance. From Eq. (5), when the camera and the light sources are on the same side

of the object (a common scenario), S decreases with the distance. In that case, a result of Eq. (17) is

that B̃ is no longer monotonic with Zobj.

As opposed to the assumption pobj = 0, methods based on PDI [42] assume that pscat/pobj → 0.

Plugging pscat/pobj → 0 to Eqs. (12,13) results in:

Ŝ =
1

pobj
[Imax − Imin] , (18)

B̂ =
1

pobj
[Imin(1 + pobj) − Imax(1 − pobj)] . (19)

7



Note that in this case, Eq. (18) is a scaled version of the polarization difference image. Here we see that

Eqs. (12,13) unify both the dehazing methods [33, 35, 41], in which pobj = 0, and the PDI methods

where pscat/pobj → 0.

Using Eqs. (12,13) without such approximations requires the estimation of the DOPs. Sec. 7 describes

how the DOPs are estimated in the general case. First, however, we demonstrate backscatter removal

in experiments.

4.2 Experiments

The method described above is general and it does not assume a specific medium. However, as dis-

cussed in Sec. 3, depolarization depends on the medium [18]. Therefore, in order to demonstrate the

effectiveness of the method in real world situations, we embarked on underwater dives rather than using

indoor tanks. Particles in substances (like milk, lipids, etc.) used for diluting water in indoor tanks are

usually homogeneous and sometimes symmetric [15, 30] while oceanic particles are heterogeneous [24].

Therefore, we were concerned that polarization experiments done with diluted substances would not

represent correctly the properties and the variety of the media in the field, e.g., seawater. We have

done experiments while scuba diving at night in various environments, in a pool, the Red Sea, the

Mediterranean and the Sea of Galilee (Fig. 4).

4.3 Equipment

The system we used is shown in Fig. 3. It consists of two main parts:

• An SLR camera with an underwater housing. We use a Nikon D100 camera, which has a linear

response [33]. The camera is placed in a Sealux underwater housing with a mounted polarizer.

The considerations for choosing a camera, an underwater housing and mounted polarizers are

detailed in [33].

• Underwater AquaVideo light sources, with 80W Halogen bulbs. A polarizer is mounted on the

lighthead. We had special consideration behind the selection of the lighting setup, as detailed

in [41].

We used standard off-the-shelf polarizers of Schneider and Tiffen. The camera was mounted on a

tripod. To safely transport this amount of equipment while diving, we used a 50kg lift-bag (Fig. 4).

The tripod was set to resist swell by attaching weights on its lower part.

4.4 Real World Results

Fig. 5 shows the results of applying Eqs. (14,15) on images taken during four different experiments we

have performed. We tested the method using different light source locations. The left column presents
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Figure 4: [Left] Scuba diving with a lift-bag, towards night experiments in the Red Sea. [Right] Preparations

for an experiment in the Sea of Galilee.

the raw images I. The center column shows Ŝ (where the estimated backscatter is removed). The

right column shows the estimated backscatter component B̂. The experiments in the three top rows

were performed in the Mediterranean in three different occasions. In all these three cases, using linear

polarizers have yielded a DOP of pscat ≈ 65%. In experiment 1 we used two light sources, shining

from above and below the camera. Here, Zobj < 3m. Notice the revealed rock in the upper left part,

the sand in the right side, the rocks on the bottom and the distant part of the tube. In experiment 2,

Zobj ∈ [0.5m, 6m]. Here, we used a single light source, coming from the top right. Notice the revealed

rectangle rock in the background. The revealed objects in the background are dark, as at this distance

they receive only dim irradiance from the sources. Experiment 3 shows a scene illuminated from the

bottom right. As a consequence, the lower parts have a lot of backscatter, hence poor visibility. Our

method enhanced the visibility in this part. Experiment 4 shows a result of an experiment done in

the Sea of Galilee, a very murky lake. The light source is placed above the camera. Here, Zobj ≈ 0.5m,

which was the maximum visibility distance. Here, circular polarization yielded pscat ≈ 9% while linear

polarization yielded pscat ≈ 5%. Despite the difficult conditions, the method revealed the imaged

object, its rough contour and its colors. Notice that in both experiments 2 and 4, the upper part of

the raw frame is very bright, due to backscatter. This may cause the viewer to falsely assume there

is a bright object in that part of the scene. After removing the backscatter, these areas become dark,

as there is actually no light reflecting from objects there. After removing the backscatter, we expect

the scene radiance to act according to Eq. (5). Indeed, in experiment 2, the brightest part of Ŝ is the

lower, close sand.

In the field experiments we did, both types of polarization (linear and circular) yielded good results.

When visibility was moderate (in the Mediterranean), linear polarization retained pscat ≈ 60% − 70%,

higher than circular polarization, for which pscat ≈ 50%. In the murky Sea of Galilee, on the other hand,

circular DOP was higher than the linear one. There, hardly any perceptual difference existed between

the raw frames, due to the low DOP value. Nevertheless, our method still enhanced Ŝ significantly.
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Figure 5: Results of four different experiments. [Left] The raw images I. [Middle] The recovered signals Ŝ.

[Right] The estimated backscatter field B̂.

5 Range and Falloff

5.1 Range

Having an estimation for the backscatter B̂ in a scene, we now wish to know if we may leverage it to

estimate the 3D structure of the scene. We now present a general approach for exploiting B̂ to estimate

Zobj. It does not depend on the algorithm used for extracting B̂ itself.

Similarly to [3, 26, 33, 35], the backscatter B increases with the distance Zobj, hence it can indicate

the distance. Previously [33, 35], this principle was developed in the simple special case of distant
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Figure 6: The backscatter given by Eq. (7) as approximated by Eq. (21), with c = 0.1m−1.

illumination sources (natural light), where the following relation holds:

B = B∞{1 − exp[−cRcam(x, y, Zobj)]} ≈ B∞{1 − exp[−cZobj(x, y)]]} . (20)

Such an estimation can be generalized to the use of sources close to the camera. We found numeri-

cally [41] that in widefield lighting, Eq. (7) can be approximated as

B(xobj) ≈ B∞(xobj) (1 − exp {−k(xobj)[Zobj(xobj) − Z0(xobj)]}) , (21)

resembling Eq. (20). Fig. 6 presents an approximation done for a particular setup. A major difference

between Eqs. (20) and (21) is that in Eq. (21) B∞ is space variant. Eq. (21) introduces two new

space-variant parameters, Z0(xobj) and k(xobj). These parameters (B∞, Z0, k) depend on the lighting

geometry, the non-uniformity (anisotropy) Q(Xobj) of the illumination sources and on the medium

parameters c and b (described in Sec. 2). They do not depend on Zobj.

Eq. (21) is easy to invert, deriving an estimate Ẑobj(xobj) as a function of B̂(xobj):

Ẑobj(xobj) = Z0(xobj) −

[

ln

(

1 −
B̂(xobj)

B∞(xobj)

)]

1

k(xobj)
. (22)

This, of course, requires calibration of the spatially varying parameter fields B∞, k and Z0. An

important parameter is B∞. It expresses the backscatter at xobj, had there been no object in the LOS.

Therefore, the relation

Brel(xobj) =
B̂(xobj)

B∞(xobj)
, (23)

indicates how much the backscatter has reached its saturation value B∞. Thus, Brel is monotonic with

Zobj. The parameters k and Z0 function as scaling factors in Eq. (22). It is easy [41] to determine the

field B∞ by taking a photograph in the medium, where the camera is pointing “no-where” (to infinity).

By approximating that k and Z0 to be uniform and plugging in typical values for them in Eq. (22), a

rough distance map can be estimated.

We simulated similar setups to those we used in our experiments. To simplify the analysis, let us

assume that the backscatter coefficient b(θ) is uniform in the range of angles we use. This assumption is
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Figure 7: Estimation of a distance map. [Top] The different components of Eqs. (21,23) in an underwater

experiment. The image Brel is scaled to yield an estimation of the distance map. [Bottom] Views from different

elevations of the reconstructed 3D scene composed of the recovered signal and the estimated distance map.

supported by [18], which shows that in oceanic water the function b(θ) is insensitive to θ at backscatter

angles (θ ≥ π/2). Fig. 7 shows a distance map we derived by applying Eqs. (22,23) on an underwater

scene. For Eq. (22) we used the values Z0 = 20cm and k = 0.6. Those values were chosen based on

a numerical analysis of setups where the light source was in proximity to the camera. This analysis

showed that Z0 ranges between 10cm − 30cm and k ranges between 0.4 − 5.

5.2 Falloff

Sec. 5.1 described the estimation of Ẑobj(xobj). Based on Ẑobj(xobj), we may now estimate the falloff,

using Eq. (5). Here we need three additional parameters. First is the attenuation coefficient c, which

can be measured by a transmissiometer. Second, we need Q(Xobj). This can be pre-calibrated once

per light source. In addition, there is a need to know Rsource. It is derived based on a-priori knowledge

about the system baseline [39]: it is sufficient to know the camera-light-source baseline Rsc, and the

angle between this source and the LOS, γ (See Fig. 1). Then,

Rsource =
√

R2
sc + R2

cam − 2RcamRsc cos γ . (24)

The value of R̂cam is estimated by setting z = Ẑobj in Eq. (4). Then Eq. (24) derives R̂source. The use

of Ẑobj and R̂source in Eq. (5), derives an estimate for the falloff F̂ (xobj). Compensating for the falloff

by inverting Eq. (3) yields

L̂object(xobj) = Ŝ(xobj)/F̂ (xobj) . (25)

To illustrate this, Fig. 8 shows a simulation of the entire recovery method. A simulated object

was assigned a non-trivial distance map and artificial noise was added with standard deviation of
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Figure 8: Simulated backscatter removal, 3D recovery and falloff compensation of a noisy object. (a) An object

was assigned a distance map varying linearly to 1m with a sticking rectangle at a distance of 0.3m. (b) The

simulated underwater raw frame I, with added noise. (c) The estimated distance map Ẑobj. (d) The recovered

object radiance L̂object. In (c) and (d) the noise is amplified in the distant parts.

obj[ ]Z m

relB

Figure 9: The relative backscatter Brel as a function of the object distance. The values for b and c are taken

from [24]. The backscatter saturates within a range of 1.5m. Moreover, the saturation distance zsat is similar in

all three different water types.

σImin
= σImax

= 1 grey level (out of 256 gray levels in the raw frames Imin, Imax). Fig. 8d shows

L̂object(xobj) after both removal of the estimated backscatter and falloff compensation. While the

image is enhanced relative to the simulated I, there is noise amplification in the distant parts [16, 32].

6 Effectiveness Under Noise

An important question to ask is how distant can objects be, and still be recovered? Even in a non-

scattering medium, widefield illumination is limited by the free-space falloff term 1/R2
source. This poses

an inherent limit on all approaches that use widefield illumination. Objects at long distances, which

are not lit effectively, cannot be reconstructed. Moreover, no imaging system is free of noise. As a

consequence, when the signal is in the order of the noise, reconstruction is limited. For example, in our

system, the recorded intensity of objects further than 6−7[m] was too low to be recovered by removing

the backscatter component.
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As for distance recovery, a major concern is the resolution of the function B̂(Zobj). The function in

Eq. (21) is approximately linear at short distances, yielding good distance resolution. However, very

quickly Eq. (21) saturates, thus losing the capacity for proper recovery. Again, when the resolution is in

the magnitude of the noise, the reconstruction may become fruitless. What are the typical saturation

distances? Fig. 9 depicts Brel as a function of the object distance. It is a result of simulations based

on three classes of values for b and c, taken from [24], which are typical to seawater at different

environments. The light source was placed 15cm above and to the left of the camera. We can see that

zsat does not vary much with the water properties. In any case, after ≈ 1.5[m] the backscatter is already

saturated and is thus uninformative with respect to Zobj. Therefore, exact distance reconstruction based

on backscatter is limited to the close distances. Sections 6.1 and 6.2 analyze the limits as a function of

various medium and imaging parameters.

6.1 Ŝ and B̂

Suppose we have two statistically independent intensity measurements, Imax and Imin with noise vari-

ances σImax
and σImin

respectively. Let variable v be a function of Imax and Imin. Then, its noise

variance is given by:

σ2
v =

(

∂v

∂Imin

)2

σ2
Imin

+

(

∂v

∂Imax

)2

σ2
Imax

. (26)

Using Eqs. (12,13), the noise variances in Ŝ and B̂ are:

σ2
Ŝ

=

(

1 + pscat

pobj − pscat

)2

σ2
Imin

+

(

1 − pscat

pobj − pscat

)2

σ2
Imax

(27)

σ2
B̂

=

(

1 + pobj

pobj − pscat

)2

σ2
Imin

+

(

1 − pobj

pobj − pscat

)2

σ2
Imax

. (28)

It is obvious that if pobj ≈ pscat, {σŜ
, σ

B̂
} → ∞, hence the reconstruction is unstable. Thus, the method

will work best if the medium and object differ significantly in their DOPs. Specifically, in a medium

where pscat is relatively high (usually in good visibility), the method is stronger with depolarizing

objects. While in a strongly depolarizing medium (low pscat) the objects will be reconstructed better if

they are polarizing. Note that in Eqs. (27,28), the noise component due to Imin is amplified more than

that of Imax. For example, consider σ2
Ŝ
. If pscat = 0.5, then σ2

Imin
is amplified 9 times more than σ2

Imax
.

Let us look for a moment on a case when signal-independent noise dominates. Then,

σImax
= σImin

= σ0, and

σ2
Ŝ

= 2σ2
0

[

1 + p2
scat

(pobj − pscat)2

]

, σ2
B̂

= 2σ2
0

[

1 + p2
obj

(pobj − pscat)2

]

. (29)

Fig. 10 depicts σ
Ŝ
/σ0 and σ

B̂
/σ0 from Eq. (29). The cases [pscat, pobj] = [0, 1] and [pscat, pobj] = [1, 0]

are two local minima. In other words, it is preferable that polarization of either the backscatter or
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Figure 10: The noise standard deviations σ
B̂

and σ
Ŝ

as a function of σ0, pobj and pscat. The diagonal pobj = pscat

is unstable and therefore cut for illustration.

the backreflection would be high and exclusive. In any case, {σ
B̂

, σ
Ŝ
} > 1, i.e., even in the best case

scenario, the noise is amplified.

In reality, σImax
6= σImin

due to imaging noise. Define gelectr as the number of photo-generated

electrons required to change a unit gray-level. Following [36], the noise variance of a pixel gray level in

an image I can be modeled as:

σ2
I = ρ2/g2

electr + Dt/g2
electr +

I(Xobj)

gelectr
. (30)

The electronic readout noise, ρ, is induced by electronic circuity in the camera system. The dark

current noise Dt is related to the exposure time, t, and the detector dark current D. In Eq. 30, the

first two terms are signal-independent. The third term is photon noise, which is signal-dependent. As

in [36], we encompass the signal independent components as:

κ2
gray = ρ2/g2

electr + Dt/g2
electr . (31)

assuming the same acquisition time for all frames. Plugging Eqs. (30,31) into Eq. (27,28) yields:

σ2
Ŝ
(xobj) =

(

1 + pscat

pobj − pscat

)2 [

κ2
gray +

Imin(xobj)

gelectr

]

+

(

1 − pscat

pobj − pscat

)2 [

κ2
gray +

Imax(xobj)

gelectr

]

(32)

σ2
B̂

(xobj) =

(

1 + pobj

pobj − pscat

)2 [

κ2
gray +

Imin(xobj)

gelectr

]

+

(

1 − pobj

pobj − pscat

)2 [

κ2
gray +

Imax(xobj)

gelectr

]

. (33)

Let us look at the simple case of pobj = 0. From Eq. (16), Eq. (32) then becomes,

σ2
Ŝ
(xobj) =

1

p2
scat

{[

2κ2
gray +

S(xobj)

gelectr

]

(1 + p2
scat) +

B(xobj)

gelectr
(1 − p2

scat)

}

, (34)

while Eq. (33) becomes,

σ2
B̂

(xobj) =
1

p2
scat

[

2κ2
gray +

I(xobj)

gelectr

]

. (35)

It is interesting to see that σ2
Ŝ

depends also on the backscatter component B̂. Therefore, it is

beneficial to reduce B̂ during acquisition.
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Figure 11: Standard deviations of the reconstruction noise of Ŝ for different values of k. The effective distances

are in the range of a few meters. The value of k is higher for pixels closer to the light source.

We can further use Eqs. (5,21) to calculate the dependency of σ
Ŝ

on Zobj:

σ2
Ŝ
(xobj) =

1

p2
scat

[

{2κ2
gray +

Lobj(xobj)e
−2cZobj/Z2

obj

gelectr
}(1 + p2

scat) +
B∞[1 − e−k(Zobj−Z0)]

gelectr
(1 − p2

scat)

]

.(36)

To gain insight, in Fig. 11 we plot Eq. (36) in two cases. The first takes into consideration only signal-

independent noise κgray. The second case accounts for all noise effects, using Eq. (30). Let B∞ = 255, a

saturated backscatter value. We chose a moderate DOP pscat = 0.5, attenuation coefficient c = 0.2m−1

and Z0 = 0.2m. For acquisition noise we use typical values from [36]: κgray = 0.4, gelectr = 50. For the

falloff calculation we assumed the simple case of collinear camera and light source, and a uniform light

source.

As expected, taking into consideration photon noise, the effective distances shorten. There is a small

difference between the effective distance for different values of k. The value of k changes between

different illumination-camera setups. It also changes spatially in the image, pixels closer to the light

source having a higher k. Therefore, for these pixels, the reconstruction will be noisier.

6.2 Noise in Ẑobj

The estimated B̂ does not statistically depend on B∞, as both are based on different measurements.

Therefore, as for Ẑobj, in analogy to Eq. (26),

σ2
Ẑobj

=

(

∂Ẑobj

∂B̂

)2

σ2
B̂

+

(

∂Ẑobj

∂B∞

)2

σ2
B∞

. (37)

From Eq. (22):

∂Ẑobj

∂B̂
=

[

1

k(1 − Brel)

]

1

B∞

,
∂Ẑobj

∂B∞

=

[

−
Brel

k(1 − Brel)

]

1

B∞

. (38)
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Figure 12: Standard deviations of the reconstruction noise of Ẑobj for different values of k. The effective

distances are in the range of a few meters. The value of k is higher for pixels close to the light source.

Thus,

σ2
Ẑobj

=

[

1

k(1 − Brel)B∞

]2

(σ2
B̂

+ B2
rel · σ

2
B∞

) =

[

1

kB∞

ek(Zobj−Z0)
]2 {

σ2
B̂

+ [1 − e−k(Zobj−Z0)]2σ2
B∞

}

.

(39)

As expected, σ
Ẑobj

→ ∞ the noise is amplified as Brel → 1, i.e. when Zobj ≫ Z0, destabilizing the

reconstruction.

We plot in Fig. 12 the dependency of σ
Ẑobj

in Zobj in the cases of signal-independent and signal-

dependent noise. We use the same values used for Fig. 11. In addition, we used Imax, Imin ∈ [0, 255]. For

the signal independent case we take the best case scenario following Sec. 6.1, σ
B̂

= 2κgray (Fig. 10). As

in Fig. 11, taking into consideration photon noise, the effective distances shorten. This time, changing

k significantly changes the effective distance. Therefore, if reconstruction is in mind, it is preferable to

design the imaging setup according to the location of the object in the scene.

7 Estimation of the DOPs

In Sec. 4 we use the parameters pscat and pobj to reconstruct S and B. This section describes ways for

estimating these parameters.

7.1 Extraction of pscat

We found empirically that the value of pscat is practically constant across the field of view (FOV) in

seawater.4 This makes it is easier to estimate. Note that light depolarizes as it propagates [37]. There-

fore, it is reasonable to expect pscat to be non uniform. A possible explanation to our experience with

the contrary, is that the backscatter usually saturates fast and therefore maybe the light depolarization

4We found it is constant up to ≈ 24◦ relative to the optical axis.
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does not influence our measurements.

The value of pscat can be retrieved in one of two ways:

1. Measure it from an area in the FOV in which there is no signal, or,

2. Rigidly shift the camera/illuminator system, to point to a void region in the medium (where no

object is in sight) like in Sec. 5.1. Then, take an image pair Imax, Imin . Measure the DOP out

that image pair.

In both cases, there is no object in the region of interest at (xobj). Therefore, I = B and

p̂scat =
Imax(xobj) − Imin(xobj)

Imax(xobj) + Imin(xobj)
. (40)

The above methods rely on the assumption that pscat is uniform across the scene. Nevertheless, if a

spatially varying pscat is experienced, it can be calibrated exactly. This can be done by taking an image

pair Imax, Imin of a void region (like B∞) and calculating pscat according to Eq. (9).

Let us analyze the consequences of a mistake in the estimation of pscat, i.e. ptrue
scat = ψp̂scat. From

Eq. (15), in the case where pobj = 0 the expression for B̃ will then be

B̃ =
Imax − Imin

ψp̂∞
=

1

ψ
B , (41)

yielding the erroneous signal:

S̃ = I −
1

ψ
B = S +

(

1 −
1

ψ

)

B . (42)

The errors in the estimated components will be:

EB

B
=

B̃ − B

B
=

1

ψ
− 1 (43)

ES

S
=

S̃ − B

B
= 1 −

1

ψ
. (44)

Fig. 13 depicts |EB

B
| = |ES

B
|, the absolute value of the relative error. The error in the estimation of

pscat can be either up ψ > 1 or down ψ < 1. From Fig. 13 the error is smaller when (ψ > 1). Therefore,

it is better to overestimate pscat rather than to underestimate it.

7.2 Estimating pobj

Sec. 4 shows that for purposes of signal reconstruction, it is possible to assume that pobj = 0. But, from

Eq. (13), this assumption damages the estimation of B̂. As a consequence, it damages the estimation

of the object distances Zobj out of B̂, as described in Sec. 5.1. Methods using polarized light under

natural illumination [33, 35] assumed that pobj = 0 also for distance estimation. In the case of artificial

illumination, however, the light source is polarized and the objects are closer. Therefore, significant
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Figure 13: Influence of wrongly estimating pscat. The error is smaller when the estimated pscat is higher than

the real one, rather than lower than the real value.
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Figure 14: An image of Brel for an underwater scene. (a) Assuming pobj = 0. (b) Using an estimated pobj. On

the left image areas in proximity to the camera (lower part of the image) are falsely assigned a high value unlike

the correct low values in the right image. Assuming pobj is constant across the scene, areas that do not comply

to this assumption damage the monotonicity of Brel(Zobj) (blue ellipses).

values for pobj can be expected. For example, in a scene which we present in the following, the rocks

were ≈ 30% polarized. Failing to estimate pobj correctly damages the monotonic relation between the

estimated backscatter and the object distance from Eq. (21). Fig. 14 demonstrates that. In Fig. 14(a)

B̂rel is estimated under the assumption that pobj = 0. Here B̂rel is uniform, despite variations of Zobj.

On the other hand, when taking into consideration pobj, Fig. 14(b) has a strong dependency on Zobj.

There are a few cases when pobj can be sampled directly from the scene. When the light source

lights from one side of the FOV to another, the objects in the far end are lit but no backscatter reaches

the camera (like in [27]). For example, the area like the upper left part of the scene in Fig. 15. When

sampling areas like this one I = S and similarly to Eq. (40),

pobj =
Imax(clear area) − Imin(clear area)

Imax(clear area) + Imin(clear area)
. (45)

For example, in the scene presented in Fig. 15, the measured values were pobj[Red,Green,Blue] = [0.22, 0.27, 0.34].
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Figure 15: (a) A raw image I of an underwater scene. (b) Estimated B̂ with the assumption of pobj = 0. (c) B∞

of that setup. (d) B̂ using an estimation for pobj. (e) MI calculated between B̂ and Ŝ using different values of

pobj = 0. Minimum values of the MI in each color channel correspond to the pobj values of the scene.

7.2.1 Automatic estimation

We present here a general automatic approach for the estimation of pobj. It is based on the observation

that using a wrong value for pobj results in a high mutual information (MI) between the backscatter B̂

and the signal component Ŝ. The MI is a quantity that measures mutual dependency of two variables

V1, V2. It is defined as:

MI(V1,V2) =
∑

v1∈V1

∑

v2∈V2

pr(v1, v2)log

[

pr(v1, v2)

pr(v1)pr(v2)

]

, (46)

where pr(v1, v2) is the joint probability distribution function of V1 and V2. The marginal distribution

functions of V1 and V2 are defined as pr(v1) and pr(v2) respectively. Thus, the value of pobj that

minimizes the mutual information between B̂ and Ŝ is the value of pobj we are looking for.
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p̂obj = arg max
p

{

MI[B̂(p), Ŝ(p)]
}

, p ∈ [0, 1] , (47)

For example, Fig. 15(a) shows a raw image I of an underwater scene. Notice that the rock in the

top left part of the image (circled) is clearly lit but has no backscatter. Fig. 15(b) shows the estimated

backscatter B̂ calculated with the assumption that pobj = 0 (Eq. 15). Note that the value of B̂ in the

circled area is high. In fact, a rock from I can be seen there. Fig. 15(c) shows B∞ for this setup. The

value of the circled part in B̂ is almost as high as its value in B∞. This falsely indicates a far object.

Fig. 15(d) shows B̂ with an estimation of pobj (Eqs. 13, 47). Now the circled part has a low value, as

expected for a close object. Fig. 15(e) depicts the mutual information calculated between Ŝ and B̂ of

this scene, for different values of pobj. In each color channel there is one value of pobj which yields the

minimal MI. These values were used in Eq. (13) to calculate B̂ in Fig. 15(d). Note, that these values

are almost identical to the values acquired by sampling (Eq. 45).

The problem becomes more complicated when the DOP of the objects varies across the scene. In

Fig. 14 we can see (in blue ellipses) two objects with a significantly different DOP than the rest of the

scene. It causes distortions in backscatter image. In this case, we assigned these objects their exact

DOP (0) in order to get an estimation of the distance map shown in Fig. 7.

8 Summary

We presented a polarization-based method for visibility enhancement and distance estimation in scat-

tering media. We demonstrated the method in real-life experiments. Our method uses two frames

taken with widefield polarized illumination. Therefore, it is fast and simple. We use wide band light

sources, enabling colorful results. The visibility enhancement range depends on the range of the light

source. However, the distance reconstruction is effective only in a range of 1− 2m in water. While we

performed experiments in the underwater domain, the formulation of most of our problems is general

and is thus applicable to other media. Hence, we hope to perform tests in at least another medium

(fog or biological tissue). In the future, it would be beneficial to expand the work to deal with objects

having reflectance with spatially varying pobj.
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