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Abstract

Universally achievable error exponents pertaining to certain families of channels
(most notably, discrete memoryless channels (DMC’s)), and various ensembles of ran-
dom codes, are studied by combining the competitive minimax approach, proposed by
Feder and Merhav, with Chernoff bound and Gallager’s techniques for the analysis of
error exponents. In particular, we derive a single–letter expression for the largest, uni-
versally achievable fraction ξ of the optimum error exponent pertaining to the optimum
ML decoding. Moreover, a simpler single–letter expression for a lower bound to ξ is
presented. To demonstrate the tightness of this lower bound, we use it to show that
ξ = 1, for the binary symmetric channel (BSC), when the random coding distribution
is uniform over: (i) all codes (of a given rate), and (ii) all linear codes, in agreement
with well–known results. We also show that ξ = 1 for the uniform ensemble of system-
atic linear codes, and for that of time–varying convolutional codes in the bit-error–rate
sense. For the latter case, we also show how the corresponding universal decoder can be
efficiently implemented using a slightly modified version of the Viterbi algorithm which
employs two trellises.

Index Terms: error exponent, universal decoding, generalized likelihood ratio test,
channel uncertainty, competitive minimax, Viterbi algorithm, maximum mutual infor-
mation decoding.
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1 Introduction

In many real–life situations, encountered in digital coded communication systems, channel

variability and uncertainty prohibit the use of the optimum maximum likelihood (ML)

decoder, and so, universal decoders, independent of the unknown channel parameters, are

sought.

The topic of universal coding and decoding for unknown channels has received con-

siderable attention in the last three decades. In [5], Goppa offered the maximum mutual

information (MMI) decoder, which decides in favor of the code vector with maximum em-

pirical mutual information with the channel output. Goppa showed that for DMC’s, MMI

decoding achieves capacity. Csiszár and Körner [2] also explored the universal decoding

problem for DMC’s with finite input and output alphabet. They showed that the random

coding error exponent associated with a uniform random coding distribution over a type

class achieves the optimum error exponent. Csiszár [1] proved that for any channel within

the class of DMC’s with additive noise, and the uniform random coding distribution over

linear codes, the optimum error exponent is achievable by a decoder minimizing the noise

empirical entropy, universally for all the channels in the class. Ziv [12] explored the univer-

sal decoding problem for finite state channels with finite input and output alphabets, for

which the next channel state is a deterministic (but unknown) function of the channel cur-

rent state and current inputs and outputs. For codes governed by a uniform random coding

over a given set, he proved that a decoder based on the Lempel-Ziv algorithm asymptoti-

cally achieves the error exponent associated with ML decoding. In [6], Ziv and Lapidoth

proved that the latter decoder is universal for a wider class of finite–state channels. In [3],

Feder and Lapidoth found sufficient conditions for families of channels, to have universal

decoders that asymptotically achieve the random coding error exponent associated with ML

decoding.

Universal coding and decoding were explored also with regard to the generalized likeli-

hood ratio test (GLRT). In this approach, each message is scored according to the maximum

likelihood (over the parameter space) of the channel output vector given the message, and

a decision is made in favor of the message that attains the highest maximum likelihood.

Although provably optimum in certain asymptotic situations [11], [2, p. 165, Theorem 5.2],

there are cases where the GLRT is strictly suboptimum [6, Sect. III, pp. 1754–1755], [4,
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Appendix].

The competitive minimax criterion, first presented in [4], is an attempt for a general

methodological approach to the problem of universal decoding. According to this approach,

the criterion is the minimum (over all decision rules) of the maximum (over all channels in

the family) of the ratio between the error probability associated with a given channel and

given decision rule, and the error probability of the ML decoder for that channel, raised

to some power ξ ∈ [0, 1] (cf. eq. (2) below). The largest power ξ = ξ∗ such that the value

of this minimax ratio does not grow exponentially with the block length, is the maximum

universally achievable fraction of the ML error exponent.

The main contribution of this paper is in deriving a single–letter expression to ξ∗, in

terms of the rate R and a general random coding distribution, for fairly general families

of channels and ensembles of random codes. While in previous works the universality was

proved for certain channel models (e.g. finite–state channels, etc.) and random coding

distributions (e.g. uniform distribution over a given type class, etc.), this work deals with

general families of DMC’s (cf. Sect. II) and general random coding distributions (cf. eq.

(7)). We should note that a similar technique can be used to broaden the result for ξ∗ to

other channel families, e.g. Markov channels, finite state channels, etc.

In addition, a single–letter expression for a lower bound to ξ∗ is presented, which is simpler

to work with, and is believed to be tight. This lower bound is true also for random coding

distribution over ensembles of linear code and systematic linear codes. The tightness of this

lower bound is demonstrated for the case of the BSC. For this model, we show that ξ∗ = 1,

when the random coding distribution is uniform over all codes and over all linear codes, in

agreement with well–known results. We also show that ξ∗ = 1 for the ensemble of systematic

linear codes, and for that of time–varying convolutional codes in the bit-error–rate sense.

Using the fact that in the case of the BSC, the minimax decoding metric degenerates to a

simpler metric, we propose an efficient implementation based on a slightly modified version

of the Viterbi algorithm.

The outline of the paper is as follows. In Section II, we establish the notation that will

be used throughout the paper and provide a formal definition of the universal decoding

problem. In Section III, the main results are stated and discussed. Section IV contains

a detailed proof of the single–letter expression for ξ∗ will be provided. In Section V, the

tightness of the lower bound to ξ∗ is demonstrated for the case of the BSC with an unknown
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crossover probability. In Section VI, we prove that for the ensemble of time-varying convo-

lutional codes and the BSC with an unknown crossover probability, the minimax decoder

achieves the same bit error exponent as the ML decoder, which is used when the parameter

is known.

2 Notation and Problem Definition

Throughout this paper, scalar random variables (RV’s) will be denoted by capital letters,

their sample values will be denoted by the respective lower case letters, and their alphabets

will be denoted by the respective calligraphic letters. A similar convention will apply to

random vectors of dimension N and their sample values, which will be denoted with same

symbols in the bold face font. The set of all N–vectors with components taking values in a

certain alphabet, will be denoted as the same alphabet superscripted by N .

Information theoretic quantities like entropies, conditional entropies, and mutual informa-

tions, will be denoted following the usual conventions of the information theory literature,

e.g., H(X), H(X|Y ), I(X;Y ), and so on. With a slight abuse of notation, when we wish

to emphasize the dependence of the entropy on the underlying probability distribution P ,

we denote it by H(P ).

The mutual information between the input and the output of the channel

{Pθ (y|x) , x ∈ X , y ∈ Y}, when the input is governed by Q, will be denoted by

Iθ (Q) =
∑
x∈X

∑
y∈Y

Q (x) Pθ (y|x) ln
Pθ (y|x)∑

x∈X Q (x) Pθ (y|x)
, (1)

and the capacity of the channel will be denoted by Cθ = maxQ Iθ (Q).

The number of occurrences of a letter a ∈ X in a vector x ∈ XN will be denoted by Nx(a).

The empirical distribution of x will be denoted by Px = {Px(a) = Nx(a)/N, a ∈ X}. The

type class of x is defined as Tx =
{
x′ : Px′ = Px

}
and Hx(X) = −

∑
a∈X Px (a) ln Px (a)

will denote the entropy of a random variable (RV) X, with distribution Px. Similarly, the

number of occurrences of a letter pair (a, b) ∈ X ×Y in the vector pair (x,y) will be denoted

by Nxy(a, b), Pxy =
{
Pxy (a, b) = Nxy(a, b)/N, (a, b) ∈ X × Y

}
will denote the joint

empirical distribution of (x,y), Txy =
{
x′,y′ : Px′,y′ = Pxy

}
will stand for the joint type

class of (x,y), and Hxy(X, Y ) = −
∑

a,b∈X×Y Pxy (a, b) ln Pxy (a, b) will denote the joint

entropy of RV’s (X, Y ) with joint distribution Pxy. We will use Tx|y =
{
x′ : Px′y = Pxy

}
to denote the conditional type class of x given y, Px|y (a|b) = Nxy(a, b)/Ny(b), (a, b) ∈
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X × Y, to denote the conditional empirical distribution related to (a, b) ∈ X × Y, and

Hxy(X|Y ) = −
∑

a,b∈X×Y Pxy (a, b) ln Px|y (a|b) to denote the conditional entropy of X

given Y , induced by the joint distribution Pxy. The empirical mutual information between

RV’s X and Y with joint distribution Pxy will be denoted by Ixy(X;Y ) = Hx(X) −

Hxy(X|Y ).

The expectation of a function F (X, Y ), where X and Y are RV’s distributed according to

the empirical distribution of x and y, will be denoted by

Êxy {F (X, Y )} =
∑
a∈X

∑
b∈Y

Pxy(a, b)F (a, b).

The notation EQ {F (X)} will be used for the expectation of a function F (X), where the

random vector X is governed by Q.

The Hamming distance between two vectors x and y will be denoted by d(x,y), and its

normalization by N will be denoted by δ(x,y). For a finite set A, |A| will stand for its

cardinality. The divergence between two probability measures P and Q over an alphabet U

will be denoted by D (P ||Q) =
∑

u∈U P (u) ln P (u)
Q(u) , where 0 ln 0 and 0 ln 0

0 are defined as 0,

and P ln P
0 for P > 0 is defined as ∞. For two positive sequences {AN}N≥1 and {BN}N≥1,

the notation AN
·= BN will express the fact that {AN}N≥1 and {BN}N≥1 are of the same

exponential order, i.e.,

lim
N→∞

1
N

ln (AN/BN ) = 0.

Consider a DMC with a finite input alphabet X , a finite output alphabet Y, and single

letter transition probabilities {Pθ (y|x) , x ∈ X , y ∈ Y}, where θ is an unknown parameter

vector, taking values in some set Θ. The channel is fed by an input vector of length N ,

x ∈ XN , and generates an output vector y ∈ YN according to Pθ(y|x) =
∏N

i=1 Pθ(yi|xi). A

rate-R block code of length N consists of M = eNR N–vectors xm ∈ XN , 0 ≤ m ≤ M − 1,

representing M different messages. A decoder Ω is a partition of YN into M regions,

Ω0,Ω1, . . . ,ΩM−1, such that if y falls into Ωm, a decision is made in favor of message m.

Given a code C, the competitive minimax criterion [4] is defined as

SN
∆= min

Ω
max
θ∈Θ

{
PE (Ω|θ)
[PE

∗ (θ)]ξ

}
, 0 ≤ ξ ≤ 1, (2)

where PE (Ω|θ) = 1
M

∑M−1
m=0

∑
y∈Ωc

m
Pθ(y|xm) is the error probability related to a decoder

Ω for a given value of θ, and P ∗
E (θ) = minΩ PE(Ω|θ) is the ML decoding error probability

when θ is known.
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The ratio PE (Ω|θ)/[PE
∗ (θ)]ξ designates the loss in error probability, caused by using a

universal decoder which is ignorant of θ, relative to the optimal ML decoding for that θ.

The parameter ξ can be interpreted as the fraction of the optimal error exponent to which

the universal decoder error exponent is compared. In order to minimize this loss uniformly

over all Θ, a decoder Ω which minimizes the worst case of that ratio (i.e., its maximum), is

sought.

As SN addresses the ratio between the error probabilities, it corresponds to the differ-

ence between the error exponents related to these errors. It is well known that for most

channels, the decoding error decays exponentially with the block length N . Therefore, if

the value of SN , for a decision rule Ω achieved by (2), grows sub–exponentially with N ,

i.e., limN→∞
1
N lnSN = 0, it means that, uniformly over Θ, the error probability associated

with Ω decays with an exponential rate which is at least a fraction ξ of the error exponent

rate of PE
∗ (θ).

In [4], the following decision rule has been shown to be asymptotically optimal in the

minimax sense for a given ξ:

Ωm =
{
y|f(xm,y) ≥ f(xm′ ,y), ∀m′ 6= m

}
(3)

with ties broken arbitrarily, where

f(x,y) ∆= max
θ∈Θ

fθ(x,y), (4)

fθ(x,y) ∆=
1
N

ln Pθ (y|x) + ξE∗(θ), (5)

and E∗(θ) stands for the asymptotic exponent associated with P ∗
E (θ). A decoder Ω, defined

by (3), will be called the minimax decoder hereafter.

A natural question that may arise, at this point, is with regard to the choice of the

free parameter ξ. As mentioned above, the main guideline proposed in [4] is to seek the

maximum value ξ∗ of ξ such that SN would still grow sub–exponentially with N .

In the random coding regime, the error probabilities at the numerator and the denomi-

nator of (2) are replaced by the corresponding average error probabilities, i.e.,

SN
∆= min

Ω
max
θ∈Θ

{
PE (Ω|θ)
[PE

∗ (θ)]ξ

}
(6)

and the decoder (3) is used, with E∗(θ) being replaced by E∗
r (θ), the random coding error

exponent associated with P
∗
E (θ).
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The main purpose of this paper is to translate the above–mentioned guideline for the

choice of ξ into a concrete single–letter formula for the random coding regime.

3 Statement of Results

In this section, by evaluating the exponential order of SN , we derive a formula for ξ∗, the

largest value of ξ for which SN is sub–exponential in N . Moreover, an expression for the

lower bound to ξ∗ is also derived, and its tightness is demonstrated for the BSC model and

for several ensembles of random codes.

3.1 General codes

We begin with a few definitions. For every positive integer N , let QN be a random coding

distribution for N–vectors, of the following form:

QN (x) =
QN (Tx)
|Tx|

, (7)

i.e., uniform distribution for all the vectors within the same type class. Of course,

∑
Tx

QN (Tx) = 1.

Now, let

∆N (Px) = − 1
N

lnQN (Tx),

and let ∆∗
N (P ) be an extension of the function ∆N (Px) that is defined over the continuum

of probability distributions over X (rather than just the set of rational probability distri-

butions with denominator N). We next define the class Q of sequences of random coding

distributions {QN} as follows: A sequence of random coding distributions {QN}N≥1 is said

to belong to the class Q if there exists such an extension ∆∗
N (P ) that converges, as N →∞,

to a certain non–negative functional ∆∗(P ), uniformly over all probability distributions {P}

over X .

It is easy to see that the class Q essentially covers all random coding distributions that

are customarily used (and much more). In particular, to approximate a random coding

distribution which is uniform within a small neighborhood of one type class – correspond-

ing to a probability distribution P0, and which vanishes elsewhere, we set ∆∗(P ) = 0

for every P in that neighborhood of P0, and ∆∗(P ) = ∞ elsewhere. For the case where
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Q is i.i.d., ∆∗(P ) = D(P‖Q). In particular, if Q(x) = 1/|X |N for all x ∈ XN , then

∆∗(P ) = ln |X | −H(P ).

Given a joint distribution PXY , a real α, and a value of θ ∈ Θ, let

A(θ, α, PXY ) ∆= I(X;Y ) + ∆∗

∑
b∈Y

PY (b)PX|Y (·|b)

− αE lnPθ(Y |X), (8)

where E{·} is the expectation and I(X;Y ) is the mutual information w.r.t. a generic joint

distribution PXY (a, b) = PY (b)PX|Y (a|b) of the RV’s (X, Y ).

Next, for distributions PY ,PX|Y and PX′|Y , two parameters θ, θ′ ∈ Θ, and reals 0 ≤ ρ ≤ 1

and s ≥ 0, define:

B(θ, θ′, PY , PX|Y , PX′|Y , s, ρ) ∆= A(θ, 1− sρ, PXY ) + ρ ·A(θ′, s, PX′Y )−H(Y ), (9)

where H(Y ) is the entropy of Y induced by PY . Finally, let

ξ∗(R) = min
PXY

min
θ′∈Θ

max

{
min
θ∈Θ

max
0≤ρ≤1

0≤s≤1/ρ

min
PX′|Y

B(θ, θ′, PY , PX|Y , PX′|Y , s, ρ)− ρR

(1− ρs)E∗
r (θ) + ρsE∗

r (θ′)
,

max
θ∈Θ

max
0≤ρ≤1

s≥1/ρ

min
PX′|Y

B(θ, θ′, PY , PX|Y , PX′|Y , s, ρ)− ρR

(1− ρs)E∗
r (θ) + ρsE∗

r (θ′)

}

(10)

Our main result, in this section, is the following:

Theorem 1 Consider a sequence of ensembles of codes, where each codeword is drawn

independently, under a distribution QN , and the sequence {QN}N≥1 is a member of the

class Q. Then,

1. For every ξ ≤ ξ∗ (R), limN→∞
1
N lnSN ≤ 0.

2. There exists a sequence of encoders {CN}N≥1 and minimax decoders {ΩN}N≥1 with

ξ = ξ∗ (R), for which:

lim inf
N→∞

[
− 1

N
lnPE (ΩN |θ)

]
≥ ξ · E∗(θ)

uniformly over θ ∈ Θ.

3. For every ξ > ξ∗ (R), limN→∞
1
N lnSN > 0.
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The proof of Theorem 1 appears in Section IV.

We now pause to discuss Theorem 1 and some of its aspects.

The theorem suggests a conceptually simple strategy for universal decoding: Given R and

the sequence {QN}N≥1, first, compute ξ∗ (R) using eq. (10). This may require some non-

trivial optimization procedures, but it has to be done only once. It should be mentioned that

if closed–form analytic expression does not seem available, the computation can be carried

out at least numerically, since this is a single–letter expression. Once ξ∗ (R) has been

computed, apply the minimax decoding rule with ξ = ξ∗ (R) and the theorem guarantees

that the resulting random coding error exponent associated with the decoder is as specified

in the second item of that theorem. Moreover, the third item of the theorem implies that in

the random coding regime, ξ∗ (R) is the largest fraction of E∗(θ) that is uniformly achievable

by a universal decoder.

As mentioned earlier, when Q is uniform i.i.d., ∆∗(P ) = ln |X | − H(X) (where X is

governed by P ), and therefore

A(θ, α, PXY ) = ln |X | −H(X|Y )− αE lnPθ(Y |X). (11)

This observation will be used in Section V which deals with the BSC model, as well as in

Section A.1 of the Appendix (ensembles of linear and systematic linear codes), as they both

assume a binary i.i.d. random coding distribution.

The theorem is interesting, of course, only when ξ∗ (R) > 0, which is the case in many

situations, at least as long as R is not too large. It should be pointed out that the exponential

rate ξ∗ (R) ·E∗(θ), guaranteed by Theorem 1, is only a lower bound to the real exponential

rate (as the minimax criterion is aimed to consider all θ ∈ Θ), and that true exponential

rate, at some points in Θ, might be larger.

As mentioned above, the exact formula for ξ∗, given in eq. (10), includes many opti-

mizations and hence might be complicated for calculation. Therefore, we next present a

simpler expression for a lower bound to ξ∗, denoted by ξ∗LB (R), which we believe is tight

at least for several families of channels. Another motivation for presenting ξ∗LB (R) is that

it holds also for ensembles of linear and systematic linear codes, as we will shall in the next

subsection. The expression for ξ∗LB (R) will be derived from ξ∗ (R) by: (i) avoiding the inner

maximization between two terms in (10) by choosing the left term, and (ii) interchanging

9



between the minimization over PX|Y and the maximization over λ and ρ, i.e:

ξ∗LB (R) ∆= min
PY

min
θ∈Θ

min
θ′∈Θ

max
0≤ρ≤1

0≤λ≤1/ρ

min
PX|Y

min
PX′|Y

B(θ, θ′, PY , PX|Y , PX′|Y , λ, ρ)− ρR

(1− λρ) · E∗
r (θ) + λρ · E∗

r (θ′)
. (12)

As ξ∗LB (R) is a lower bound to ξ∗, it is obvious to see that parts 1 and 2 of Theorem 1 hold

for it as well.

3.2 Linear codes

We next provide a variation of ξ∗LB (R) for ensembles of linear codes and systematic linear

codes. Prior to that, we first define these ensembles. A linear code is defined by mapping

each of the M = 2K binary information (row) vectors um, 0 ≤ m ≤ M − 1, of length K,

into its corresponding code (row) vector vm, of length N , in the following way:

vm = umG⊕ v0, m = 0, 1, . . . ,M − 1,

where G is a binary generator matrix of dimension K ×N and v0 is an additive vector of

length N . The ⊕ operation denotes a summation modulo 2 and the multiplication between

um and G is conducted over the field GF (2). A systematic linear code is defined in the

same manner, with the restriction that the left K × K block of G (the systematic part

of G) forms the identity matrix (thus, the first K bits of each code vector, vm, form the

corresponding information vector, um).

We now consider a random coding distribution, which is i.i.d. over the ensemble of linear

codes (or systematic linear codes), for which the elements of G (or G̃, the non-systematic

part of G, in the case of systematic linear codes) and v0 are drawn independently using a

uniform single–letter distribution Q∗ =
{

1
2 , 1

2

}
(fair coin tossing). We also define the family

of the binary-input, output-symmetric (BIOS) channels, as channels with a binary input

alphabet X (”0” and ”1”), an output alphabet Y (possibly infinite), where the transition

probabilities satisfy P (y|0) = P (−y|1),∀y ∈ Y, for a well defined operation ”−” (note that

the definition of symmetry can be used as long as each y ∈ Y satisfies that −y ∈ Y as

well). For example, the BSC, when mapping ”0” → +1 and ”1” → −1, is a BIOS channel.

The additive Gaussian channel with two antipodal input letters, x1 and x2, is also a BIOS

channel.

The following theorem is stated with regard to codes governed by the above mentioned

ensembles and transmitted via a BIOS channel:

10



Theorem 2 Consider the sequence of ensembles of linear or systematic linear codes, where

the elements of G (or G̃) and v0 are drawn independently by fair coin tossing. Let {Pθ, θ ∈

Θ} be a family of BIOS DMC’s. Then, the lower bound ξ∗LB (R) of eq. (12), continues to

hold, with ∆∗(P ) = ln 2−H(P ).

Theorem 2 is proved in Section A.1 of the Appendix.

The single–letter expression derivation for ξ∗LB (R) is carried out (see Section A.1 of

the Appendix) using the same techniques as in Gallager’s classical work, which are tight

in the random coding sense. We therefore believe that the achievable lower bounds to the

real exponential rates are tight as well. To demonstrate the tightness of the lower bounds

suggested in (12) (for general codes) and in Theorem 2 (for linear and systematic linear

codes), we have the following lemma:

Lemma 1 Consider the family of BSC’s parameterized by the crossover probability θ. Then,

ξ∗LB (R) = 1 and hence ξ∗ (R) = 1, in the following cases:

(i) The ensemble of all codes with QN (x) = 2−N for all x.

(ii) The ensemble of linear codes and systematic linear codes, as in Theorem 2, with

∆∗(P ) = ln 2−H(P ).

Lemma 1 is proved in Section V.

It should be mentioned that proving that under the BSC model ξ∗ = 1 is universally

achievable by random coding over general codes and linear codes is by no means new, as

it was already proved and discussed in [1]. Nevertheless, it demonstrates the tightness of

ξ∗LB (R). However, to the best of our knowledge, the same result regarding ensembles of

systematic linear codes has not been proved yet and is first shown here.

3.3 Convolutional codes

For the special case of the BSC mentioned above, we now introduce the following result,

related to ensembles of time-varying convolutional codes, when the minimax decoding is

used. Prior to that, we first define this ensemble and the bit error exponent related to it.

A convolutional code of rate b/n (b, n – positive integers) and constraint length Kb is

defined as one for which at each time instant t ≥ 0, the code vector of length n, vt, is

obtained by

vt =
min{t,K−1}∑

j=0

ut−jGj ⊕ v0, (13)
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where ut−j is a binary information row vector of length b at time t− j, Gj , 0 ≤ j ≤ K − 1,

are binary matrices with b rows and n columns each, and v0 is a vector of length n.

Let us now consider a code C, governed by i.i.d. random coding over the ensemble of

time-varying convolutional codes, whose code vector of time instant t ≥ 0, vt, is obtained

by

vt =
min{t,K−1}∑

j=0

ut−jG
t
j ⊕ vt

0, (14)

where at each time instant t, the elements of Gt
j , 0 ≤ j ≤ K − 1 and vt

0 are drawn indepen-

dently using the uniform single–letter distribution
{

1
2 , 1

2

}
.

The average bit error probability, Pb(ΩK), associated with a sequence of decoders ΩK =

{ΩK,N}∞N=1 of block length N and constraint length K, and averaged over the ensemble of

time-varying convolutional codes, is defined as the expected relative frequency of bit errors

in the decoded information stream, i.e.

Pb(ΩK) = lim sup
N→∞

Pb(ΩK,N ). (15)

The bit error exponent associated with a sequence of decoders Ω = {ΩK}∞K=1 is defined as

Eb(Ω) = − lim sup
K→∞

1
K

lnPb(ΩK). (16)

Theorem 3 Consider the sequence of ensembles of time–varying convolutional codes of

rate b/n and constraint length Kb (with K → ∞), described as in the previous paragraph,

and assume a family of BSC’s parameterized by the crossover probability θ.

The achievable bit error exponent (as defined in (16)) using the minimax decoder is equal

to the one when θ is known and the ML decoder is used.

The proof of this theorem is based on the following observation:

Under the BSC model with an unknown crossover probability θ, the minimax decision rule

(as defined in (3)) is equivalent to a decision rule, denoted by Λ, and defined as:

Λm =
{
y|ρ(xm,y) ≤ ρ(xm′ ,y), ∀m′ 6= m

}
, (17)

with ties broken arbitrarily, where

ρ(x,y) = min {δ(x,y), 1− δ(x,y)} . (18)

As mentioned in Section II, δ(x,y) denotes the normalized Hamming distance between x

and y. This equivalence is proved in Section A.7 of the Appendix. We should note that

12



for this case, the minimax decoder coincides with the MMI decoder as well. Based on

this equivalence, the full proof of Theorem 3 is given in Section VII. We also introduce an

efficient implementation of minimax decoding, based on a slightly modified version of the

Viterbi algorithm. This is done by applying the Viterbi algorithm twice: first for minimum

Hamming distance, and then for maximum Hamming distance. This process results in two

survivors and the selection between them is done in favor of the one whose normalized

Hamming metric is more distant from 1
2 (the one with the minimal ρ).

4 Proof of Theorem 1

We first observe that for a DMC, {Pθ (y|x) , x ∈ X , y ∈ Y}, and for each vector pair (x,y),

the minimax metric for a given θ, fθ(x,y), depends on x and y only via their joint empirical

distribution:

fθ(x,y) = Êxy lnPθ(Y |X) + ξE∗
r (θ). (19)

We, therefore, conclude that the value of θ maximizing fθ(x,y) also depends on x

and y only via their joint empirical distribution. Let ΘN denote the subset of Θ with

values of θ that achieve maxθ fθ(x,y) = f(x,y) as (x,y) exhaust XN × YN . In the

decoding process, maximization over θ can be achieved only by points in ΘN . Since the

number of joint empirical distributions of (x,y) is upper bounded by (N + 1)|X||Y |, then

|ΘN | ≤ (N + 1)|X||Y | as well.

As a first step, we assume given channel input and output vectors, x and y, respectively.

Considering a random coding distribution, QN , we exponentially evaluate the probability

of having another codeword x′ that is preferred by the minimax decoder over x. This

probability will be denoted by a(x,y).

a(x,y) = QN {f(X′,y) ≥ f(x,y)}

= QN

{
max

θ′∈ΘN

fθ′(X′,y) ≥ f(x,y)
}

(a)
·= max

θ′∈ΘN

QN {fθ′(X′,y) ≥ f(x,y)}

= max
θ′∈ΘN

QN

{
N∑

i=1

lnPθ′(yi|X ′
i) ≥ −NξE∗

r (θ′) + N · f(x,y)

}
(b)
·= max

θ′∈ΘN

min
s≥0

EQN

[
exp

{
s[

N∑
i=1

lnPθ′(yi|X ′
i) + NξE∗

r (θ′)]
}]

· exp {−sNf(x,y)}

13



= max
θ′∈ΘN

min
s≥0

EQN
esNfθ′ (X

′,y) · e−sNf(x,y), (20)

where (a) is true since

max
θ′∈ΘN

QN {fθ′(X′,y) ≥ f(x,y)} ≤ QN

{
max

θ′∈ΘN

fθ′(X′,y) ≥ f(x,y)
}

= QN

 ⋃
θ′∈ΘN

fθ′(X′,y) ≥ f(x,y)


≤

∑
θ′∈ΘN

QN {fθ′(X′,y) ≥ f(x,y)}

= |ΘN | · max
θ′∈ΘN

QN {fθ′(X′,y) ≥ f(x,y)} , (21)

and in (b) we used the Cheroff bound, which is tight in the exponential sense.

By using the method of types, it is proved in Section A.3 of the Appendix that for any

real α,

EQN
[eNαfθ(X ,y)] ·= e

N[αξE∗
r (θ)−minPx|y A(θ,α,Pxy)]

, (22)

where the function A(θ, α, Pxy) is defined as in (8).

Using this observation, we can continue to evaluate a(x,y) as follows:

a(x,y) ·= max
θ′∈ΘN

min
s≥0

exp
{
N [sξE∗

r (θ′)− min
P
x′|y

A(θ′, s, Px′y)]
}
· exp {−sNf(x,y)}

= max
θ′∈ΘN

min
s≥0

exp
{
−N [−sξE∗

r (θ′) + min
P
x′|y

A(θ′, s, Px′y) + sf(x,y)]
}

∆= max
θ′∈ΘN

min
s≥0

exp
{
−N [G(θ′, s, ξ, Pxy)]

}
. (23)

Therefore, the probability that the decoder will prefer any of the other M − 1 codevectors

rather than the transmitted codevector x can be evaluated as follows:

1− (1− a(x,y))M−1
(a)
·= min{1, eNR · a(x,y)}
·= min

{
1, max

θ′∈ΘN

min
s≥0

exp
{
−N [G(θ′, s, ξ, Pxy)−R]

}}
= max

θ′∈ΘN

min
s≥0

exp
{
−N · max

0≤ρ≤1
ρ[G(θ′, s, ξ, Pxy)−R]

}
= max

θ′∈ΘN

min
0≤ρ≤1

s≥0

exp
{
−N · [ρG(θ′, s, ξ, Pxy)− ρR]

}
, (24)

where the equivalence in (a) (see [9], Section V, and [8], Section A.2 p. 109-110) implies

that the union bound in the random coding error exponent is tight.
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Now, we will evaluate SN , the average of the minimax criterion over the ensemble of

codebooks governed by a random coding distribution, for the minimax decoder defined in

(3):

SN
·= max

θ∈Θ

{
PE (Ω|θ)
e−NξE∗

r (θ)

}

= max
θ∈Θ

eNξE∗
r (θ)

∑
x∈XN

QN (x)
∑

y∈YN

Pθ(y|x)
[
1− (1− a(x,y))M−1

]
·= max

θ∈Θ

 ∑
x∈XN

QN (x)
∑

y∈YN

eNfθ(x,y) max
θ′∈ΘN

min
0≤ρ≤1

s≥0

exp
{
−N [ρ G(θ′, s, ξ, Pxy)− ρR]

}
(a)
·= max

θ∈Θ

{ ∑
Txy⊂XN×YN

QN (Tx)
∣∣∣Ty|x

∣∣∣ eNfθ(x,y) max
θ′∈ΘN

min
0≤ρ≤1

s≥0

eNρsξE∗
r (θ′) · e

−Nρ minP
x′|y

A(θ′,s,P
x′y

)

· e−Nρsf(x,y) · eNρR

}
·= max

Pxy

{
e−N∆∗

N (Px) · eNHxy(Y |X)
[
max
θ∈ΘN

eNfθ(x,y)
]

max
θ′∈ΘN

min
0≤ρ≤1

s≥0

max
P
x′|y

eNρsξE∗
r (θ′) · e

−NρA(θ′,s,P
x′y

)
·
[

max
θ′′∈ΘN

eNfθ′′ (x,y)
]−ρs

· eNρR

}
(b)
·= max

Pxy
max

θ′∈ΘN

min
0≤ρ≤1

s≥0

max
P
x′|y

{
e−N∆∗(Px)eNHxy(Y |X)eNρsξE∗

r (θ′)e
−NρA(θ′,s,P

x′y
)

[
max
θ∈ΘN

eNfθ(x,y)
]1−ρs

eNρR

}

= max
Pxy

max
θ′∈ΘN

min
0≤ρ≤1

s≥0

max
P
x′|y

{
exp

{
N [−∆∗(Px) + Hxy(Y |X) + ρsξE∗

r (θ′)

−ρA(θ′, s, Px′y) + ρR]
}[

max
θ∈ΘN

eNfθ(x,y)
]1−ρs

}
∆= max

Pxy
max

θ′∈ΘN

min
0≤ρ≤1

s≥0

max
P
x′|y

{
exp

{
N · T (θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)

}
[
max
θ∈ΘN

eNfθ(x,y)
]1−ρs

}
, (25)

where in (a) we switched to a summation over the joint empirical types of x and y (which

is legitimate since both fθ(x,y) and G(θ′, s, ξ, Pxy) depend on x and y via their joint

empirical distribution), and in (b), we used the convergence assumption of the random

coding distributions within the class Q to claim that ∆∗
N (Px) → ∆∗(Px) as N → ∞

independently of Px, and also united the optimizations over θ and θ′′.
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We should observe that:

min
0≤ρ≤1

s≥0

max
P
x′|y

{
exp

{
N · T (θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)

} [
max
θ∈ΘN

eNfθ(x,y)
]1−ρs

}
=

= min

{
min
0≤ρ≤1

0≤s≤1/ρ

max
P
x′|y

max
θ∈ΘN

exp
{

N
[
T (θ′, Py, Px|y, Px′|y, s, ρ, ξ, R) + fθ(x,y)(1− ρs)

]}
,

min
0≤ρ≤1

s≥1/ρ

max
P
x′|y

min
θ∈ΘN

exp
{

N
[
T (θ′, Py, Px|y, Px′|y, s, ρ, ξ, R) + fθ(x,y)(1− ρs)

]}}

(a)
= min

{
max
θ∈ΘN

min
0≤ρ≤1

0≤s≤1/ρ

max
P
x′|y

exp
{

N
[
T (θ′, Py, Px|y, Px′|y, s, ρ, ξ, R) + fθ(x,y)(1− ρs)

]}
,

min
θ∈ΘN

min
0≤ρ≤1

s≥1/ρ

max
P
x′|y

exp
{

N
[
T (θ′, Py, Px|y, Px′|y, s, ρ, ξ, R) + fθ(x,y)(1− ρs)

]}}

(26)

∆= min

{
max
θ∈ΘN

min
0≤ρ≤1

0≤s≤1/ρ

max
P
x′|y

exp
{
N · T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)

}
,

min
θ∈ΘN

min
0≤ρ≤1

s≥1/ρ

max
P
x′|y

exp
{
N · T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)

}}
, (27)

where in (a), two interchanges are made: one between the minimization over ρ and s

and the maximization over θ in the left term of the outer minimization, and one between

the maximization over Px′|y and the minimization over θ in the right term of the outer

minimization. The first interchange is justified in the Appendix, Section A.2. The second

interchange is possible since the term to be optimized is a product of two exponential

terms, one depends on Px′|y and one depends on θ, therefore the optimizations can be

done independently.

Consequently, we conclude that:

SN
·= max

Pxy
max

θ′∈ΘN

min

{
max
θ∈ΘN

min
0≤ρ≤1

0≤s≤1/ρ

max
P
x′|y

exp
{
N · T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)

}
,

min
θ∈ΘN

min
0≤ρ≤1

s≥1/ρ

max
P
x′|y

exp
{
N · T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)

}}

= max
Pxy

max
θ′∈ΘN

min

{
exp

{
N · max

θ∈ΘN

min
0≤ρ≤1

0≤s≤1/ρ

max
P
x′|y

T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)
}

,

exp
{

N · min
θ∈ΘN

min
0≤ρ≤1

s≥1/ρ

max
P
x′|y

T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)
}}
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= exp

{
N ·max

Pxy
max

θ′∈ΘN

min
{

max
θ∈ΘN

min
0≤ρ≤1

0≤s≤1/ρ

max
P
x′|y

T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R),

min
θ∈ΘN

min
0≤ρ≤1

s≥1/ρ

max
P
x′|y

T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)
}}

.

(28)

Now,

T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R) =

= −∆∗(Px) + Hy(Y )− Ixy(X;Y ) + ρsξE∗
r (θ′)− ρA(θ′, s, Px′y)

+(1− ρs)Êxy lnPθ(Y |X) + (1− ρs)ξE∗
r (θ) + ρR

= −A(θ, 1− ρs, Pxy)− ρA(θ′, s, Px′y) + Hy(Y ) + ρsξE∗
r (θ′)

+(1− ρs)ξE∗
r (θ) + ρR

= −B(θ, θ′, Py, Px|y, Px′|y, s, ρ) + ρsξE∗
r (θ′) + (1− ρs)ξE∗

r (θ) + ρR,

(29)

where the function B(θ, θ′, Py, Px|y, Px′|y, s, ρ) is defined as in (9).

Therefore, in order for SN to grow sub–exponentially with N , we seek the maximal ξ

such that:

max
Pxy

max
θ′∈ΘN

min
{

max
θ∈ΘN

min
0≤ρ≤1

0≤s≤1/ρ

max
P
x′|y

T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R),

min
θ∈ΘN

min
0≤ρ≤1

s≥1/ρ

max
P
x′|y

T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R)
}
≤ 0 (30)

As the empirical distributions become dense in continuum of probability distributions as

N →∞, and since the function T̃ (θ, θ′, Py, Px|y, Px′|y, s, ρ, ξ, R) is continuous in Py, Px|y

and Px′|y, it is equivalent to perform the above optimizations over continuous distributions

rather than empirical distributions. The same token can be used in order to broaden the

maximization space for θ and θ′ from ΘN to Θ. Thus, the condition becomes:

max
PXy

max
θ′∈Θ

min
{

max
θ∈Θ

min
0≤ρ≤1

0≤s≤1/ρ

max
PX′|y

T̃ (θ, θ′, Py, PX|y, PX′|y, s, ρ, ξ, R),

min
θ∈Θ

min
0≤ρ≤1

s≥1/ρ

max
PX′|y

T̃ (θ, θ′, Py, PX|y, PX′|y, s, ρ, ξ, R)
}
≤ 0 (31)
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In other words, a maximal ξ is sought such that:

∀PXy,∀θ′ ∈ Θ

max
θ∈Θ

min
0≤ρ≤1

0≤s≤1/ρ

max
PX′|y

T̃ (θ, θ′, Py, PX|y, PX′|y, s, ρ, ξ, R) ≤ 0 (32)

or

min
θ∈Θ

min
0≤ρ≤1

s≥1/ρ

max
PX′|y

T̃ (θ, θ′, Py, PX|y, PX′|y, s, ρ, ξ, R) ≤ 0 (33)

An equivalent condition is:

∀PXy,∀θ′ ∈ Θ

ξ ≤ min
θ∈Θ

max
0≤ρ≤1

0≤s≤1/ρ

min
PX′|y

B(θ, θ′, Py, PX|y, PX′|y, s, ρ)− ρR

(1− ρs)E∗
r (θ) + ρsE∗

r (θ′)
(34)

or

ξ ≤ max
θ∈Θ

max
0≤ρ≤1

s≥1/ρ

min
PX′|y

B(θ, θ′, Py, PX|y, PX′|y, s, ρ)− ρR

(1− ρs)E∗
r (θ) + ρsE∗

r (θ′)
(35)

Therefore,

ξ∗(R) = min
PXy

min
θ′∈Θ

max
{
min
θ∈Θ

max
0≤ρ≤1

0≤s≤1/ρ

min
PX′|y

B(θ, θ′, Py, PX|y, PX′|y, s, ρ)− ρR

(1− ρs)E∗
r (θ) + ρsE∗

r (θ′)
,

max
θ∈Θ

max
0≤ρ≤1

s≥1/ρ

min
PX′|y

B(θ, θ′, Py, PX|y, PX′|y, s, ρ)− ρR

(1− ρs)E∗
r (θ) + ρsE∗

r (θ′)

}
. (36)

5 Example - the BSC

In this section, we demonstrate that for the special case of BSC with an unknown crossover

probability, and a uniform random coding distribution, ξ∗LB(R) = 1 and hence ξ∗(R) = 1,

in agreement with well known results [1].

Consider the lower bound (12) and choose the uniform single–letter random coding

distribution Q∗ = {1
2 , 1

2}.

Now, the value of A(θ, α, PXY ) is (see (11)):

A(θ, α, PXY ) = ln 2−H(X|Y )− αE lnPθ(Y |X) (37)
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Therefore,

min
PX|Y

A(θ, α, PXY ) = ln 2−max
PX|Y

{H(X|Y ) + αE lnPθ(Y |X)} (38)

In addition, for the case of BSC with an unknown crossover probability, θ, we have (see [7],

Section VI):

max
PX|Y

{
H(X|Y ) + αE lnPθ(Y |X)

}
= ln[(1− θ)α + θα]

∆= V(θ, α) (39)

From these two observations, we conclude that:

min
PX|Y

A(θ, α, PXY ) = ln 2− V(θ, α) (40)

Using (9), we get:

ξ∗LB (R) = min
PY

min
θ,θ′∈Θ

max
0≤ρ≤1

0≤λ≤1/ρ

min
PX|Y

min
PX′|Y

A(θ, 1− λρ, PXY ) + ρA(θ′, λ, PX′Y )−H(Y )− ρR

(1− λρ) · E∗
r (θ) + λρ · E∗

r (θ′)

= min
PY

min
θ,θ′∈Θ

max
0≤ρ≤1

0≤λ≤1/ρ

(1 + ρ) ln 2− V(θ, 1− λρ)− ρV(θ′, λ)−H(Y )− ρR

(1− λρ) · E∗
r (θ) + λρ · E∗

r (θ′)

≥ min
θ,θ′∈Θ

max
0≤ρ≤1

0≤λ≤1/ρ

min
PY

(1 + ρ) ln 2− V(θ, 1− λρ)− ρV(θ′, λ)−H(Y )− ρR

(1− λρ) · E∗
r (θ) + λρ · E∗

r (θ′)

= min
θ,θ′∈Θ

max
0≤ρ≤1

0≤λ≤1/ρ

ρ ln 2− V(θ, 1− λρ)− ρV(θ′, λ)− ρR

(1− λρ) · E∗
r (θ) + λρ · E∗

r (θ′)
. (41)

Now, the random coding error exponent associated with ML decoding, E∗
r (θ), to which

the minimax decoding error exponent is compared, is achieved for the BSC model by the

following optimization (see [10, Sect. 3.1, 3.2 and 3.4]):

E∗
r (θ) = max

0≤ρ≤1
max

Q

{
− ln

∑
y∈{0,1}

[ ∑
x∈{0,1}

Q(x) · Pθ (y|x)
1

1+ρ

]1+ρ
− ρR

}
(a)
= max

0≤ρ≤1

{
ρ ln 2− (1 + ρ) ln

[
(1− θ)

1
1+ρ + θ

1
1+ρ

]
− ρR

}
= max

0≤ρ≤1

{
ρ ln 2− (1 + ρ)V

(
θ,

1
1 + ρ

)
− ρR

}
∆= max

0≤ρ≤1
Er(θ, ρ), (42)

where in (a), the inner maximization is achieved by taking Q∗ = {1
2 , 1

2} ([10, Sect. 3.4]).

Let us now define ρ′ = λρ
1−λρ and ρ′′ = 1

λ − 1, and rewrite the numerator of (41) as follows:
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ρ ln 2− V(θ, 1− λρ)− ρV
(
θ′, λ

)
− ρR =

= ρ ln 2− V
(

θ,
1

1 + ρ′

)
− ρV

(
θ′,

1
1 + ρ′′

)
− ρR

= (1− λρ)
[
ρ′ ln 2− (1 + ρ′)V

(
θ,

1
1 + ρ′

)
− ρ′R

]
+

λρ
[
ρ′′ ln 2− (1 + ρ′′)V

(
θ′,

1
1 + ρ′′

)
− ρ′′R

]
= (1− λρ) · Er

(
θ, ρ′

)
+ λρ · Er

(
θ′, ρ′′

)
= (1− λρ) · Er

(
θ,

λρ

1− λρ

)
+ λρ · Er

(
θ′,

1
λ
− 1

)
. (43)

Finally, we get that

ξ∗LB (R) ≥ min
θ,θ′∈Θ

max
0≤ρ≤1

0≤λ≤1/ρ

(1− λρ) · Er(θ, λρ
1−λρ) + λρ · Er(θ′, 1

λ − 1)

(1− λρ) · E∗
r (θ) + λρ · E∗

r (θ′)
. (44)

Now, by choosing λ = 1
1+ρ̃ , where ρ̃ is the achiever of E∗

r (θ′) = max0≤ρ≤1 Er(θ′, ρ), and

ρ = ρ̂
1+ρ̂(1 + ρ̃), where ρ̂ is the achiever of E∗

r (θ) = max0≤ρ≤1 Er(θ, ρ) (observing that
ρ̂

1+ρ̂(1 + ρ̃) ≤ 1, therefore this choice is feasible), we get that both the numerator and the

denominator of (44) equal to (1− λρ) · Er(θ, ρ̂) + λρ · Er(θ′, ρ̃), and so, ξ∗LB (R) = 1.

We should note that for the BSC model, the same conclusion (i.e., ξ∗ = 1) holds also for

linear codes and systematic linear codes (as the optimal random coding distribution that

was used is Q∗ = {1
2 , 1

2} (see (42)).

6 Proof of Theorem 3

First, consider a given channel output related to the entire transmitted sequence of infor-

mation. Without loss of generality, the all-zero message will be assumed to be transmitted.

Let us now consider a segment of length K + l, l ≥ 0, of the transmitted information vector,

and any other incorrect path diverging from it at node j and emerging at node j + K + l

(note that the minimum length of a diverging path is K since after a non-zero vector is

inserted to the encoder, K − 1 zero vectors are needed in order to return to the all-zero

state).

We observe that the information sequence related to such an incorrect path has the

following structure (we ignore the values of the information sequence outside the range
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(j, j + K + l − 1)):

uj ,uj+1, . . . ,uj+l,0, . . . ,0︸ ︷︷ ︸
K−1

where all of the vectors are of length b.

In order for the incorrect path to diverge exactly from node j to node j + K + l, uj and

uj+l can be any of the 2b − 1 non-zero vectors (thus, there are (2b − 1)2 possibilities for

their values), and each of the l−1 information vectors uj+1, . . . ,uj+l−1 can be any binary

vector of length b, with the restriction of no more than K − 2 consecutive all-zero vectors

(thus, there are less than 2b(l−1) possibilities for their values). Therefore, the number of

such incorrect paths, denoted by M , is upper-bounded by

M ≤
(
2b − 1

)2
2b(l−1) ≤

(
2b − 1

)
2bl (45)

We next upper bound the probability that an incorrect path is preferred by the minimax

decoder (minimizing the metric ρ) over the correct path, and then average this probability

over the ensemble of time–varying convolutional codes.

We will use Vj = [vj ,vj+1, . . . ,vj+K+l−1] to denote the code vector of length N = n(K+l)

that corresponds to the correct all-zeros path, while V ′
j and V ′′

j will be used to denote code

vectors that correspond to other incorrect paths. The notation V j will be used for the

complement vector of Vj . A segment of length N of the corresponding channel output will

be denoted by Yj , and Q∗ will be used to denote the random coding distribution.

Pr
{
ρ(V ′

j ,Yj) ≤ ρ(Vj ,Yj)|θ
}

=

=
∑

Vj ,V ′
j

Q∗(Vj ,V
′

j ) Pr
{
ρ(V ′

j ,Yj) ≤ ρ(Vj ,Yj)|θ
}

(a)
= 2−2N

∑
Vj ,V ′

j

Pr
{
ρ(V ′

j ,Yj) ≤ ρ(Vj ,Yj)
}

= 2−2N
∑

Vj ,V ′
j

Pr
{
min

{
δ(V ′

j ,Yj), 1− δ(V ′
j ,Yj)

}
≤ min {δ(Vj ,Yj), 1− δ(Vj ,Yj)}

}

= 2−2N
∑

Vj ,V ′
j

Pr
{[

δ(V ′
j ,Yj) ≤ min {δ(Vj ,Yj), 1− δ(Vj ,Yj)}

]
⋃[

δ(V ′
j ,Yj) ≤ min {δ(Vj ,Yj), 1− δ(Vj ,Yj)}

]}
(b)

≤ 2−2N
∑

Vj ,V ′
j

Pr
{
δ(V ′

j ,Yj) ≤ δ(Vj ,Yj)
⋃

δ(V ′
j ,Yj) ≤ δ(Vj ,Yj)

}
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(c)

≤ 2−2N
∑
Vj

∑
V ′

j

Pr
{
δ(V ′

j ,Yj) ≤ δ(Vj ,Yj)
}

+ 2−2N
∑
Vj

∑
V ′

j

Pr
{
δ(V ′

j ,Yj) ≤ δ(Vj ,Yj)
}

(d)
= 2−2N

∑
Vj

∑
V ′

j

Pr
{
δ(V ′

j ,Yj) ≤ δ(Vj ,Yj)
}

+ 2−2N
∑
Vj

∑
V ′′

j

Pr
{
δ(V ′′

j ,Yj) ≤ δ(Vj ,Yj)
}

= 2 · 2−2N
∑
Vj

∑
V ′

j

Pr
{
δ(V ′

j ,Yj) ≤ δ(Vj ,Yj)
}

(e)

≤ 2 · 2−2N
∑
Vj

∑
V ′

j

∑
Yj

√
Pθ(Yj |Vj)Pθ(Yj |V ′

j )

(f)
= 2

∑
y

[∑
v

1
2

√
Pθ(y|v)

]2


N

·= e−NRθ,0(Q∗), (46)

where

Rθ,0

(
Q∗
)

= − ln
∑
y

[∑
v

1
2

√
Pθ(y|v)

]2

.

In (a) we used the fact that both Vj and V ′
j can attain each of their 2N possible values

equiprobably and independently. This claim for Vj (which corresponds to the all–zero path)

can be justified due to the fact that the elements of Gt
j , 0 ≤ j ≤ K−1 and vt

0 are repeatedly

randomized at each time instant (see (14)). Therefore, ∀ 0 ≤ i ≤ K + l,vj+i = vj+i
0 , thus

each one of these vectors is likely to attain each of its 2n values equiprobably. This claim for

V ′
j (which correspond to the incorrect path) can be justified since uj and uj+l are non–zero

and uj+1, . . . ,uj+l−1 cannot include more than K − 2 consecutive all–zero vectors. Thus,

each code vector of v′
j+i, 0 ≤ i ≤ K + l is formed by the modulo-2 sum of vj+i

0 with at

least one of the rows of Gj+i
0 ,Gj+i

1 , . . . ,Gj+i
K−1 and is therefore likely to attain each of its

2n values with equal probability as well and independently with the other code vectors (this

fact is dealt in details in [10, Sect. 5.1]). (b) is true since we switched into looser conditions

inside each event in the probability term. In (c) we used the union bound. In (d) we used

the fact that observing δ(V j ,Yj), when summing up over all of Vj ’s possible values, is

equivalent to observing δ(Vj ,Yj) (since in both cases, each of the 2N values of the vector is

covered by the summation). In (e) we used the Bhattacharyya bound for the pairwise error

probability when using ML decision rule, and (f) is true since the channel is memoryless.

We proved that the probability that other code segment would be preferred by the

minimax decoder over the correct segment, when averaged over the ensemble of time-varying
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convolutional codes, is upper bounded by twice the bound achieved for ML decoder in [10].

Thus, it is exponentially of the same order. The subsequent steps in deriving an upper

bound to the bit error exponent for rates R ≤ Rθ,0 (Q∗) are identical to that of ML decoder

(see [10, Sect. 5.1]) and the final result is the same.

Therefore, it was proved that when using the minimax decoder, the achievable exponent

for bit error probability is no less than when the channel parameter is known and the ML

decoder is used. The same error exponent was proved to be achievable for rates up to

Rθ,0 (Q∗).

In order to extend the average upper bound for the bit error probability to rates higher

than Rθ,0 (Q∗), we will use a slightly different technique.

First, we upper bound πl,θ(j), the probability that a branch in the minimax based decoding

path will occur by any one of the other possible paths, starting at node j and reemerging

after K + l branches. We should observe, as mentioned in (45), that the number of such

diverging paths satisfies M ≤
(
2b − 1

)
2bl. The code segments associated with these M

incorrect paths will be denoted by V
(1)

j , . . . ,V
(M)

j , respectively.

πl,θ(j) =

= Pr
{
∃ 1 ≤ i ≤ M : ρ(V (i)

j ,Yj) ≤ ρ(Vj ,Yj)
}

= Pr
{
∃ 1 ≤ i ≤ M : min

{
δ(V (i)

j ,Yj), 1− δ(V (i)
j ,Yj)

}
≤ min {δ(Vj ,Yj), 1− δ(Vj ,Yj)}

}
= Pr

{
∃ 1 ≤ i ≤ M : δ(V (i)

j ,Yj) ≤ min {δ(Vj ,Yj), 1− δ(Vj ,Yj)}
⋃

δ(V (i)
j ,Yj) ≤ min {δ(Vj ,Yj), 1− δ(Vj ,Yj)}

}
(a)

≤ Pr
{
∃ 1 ≤ i ≤ M : δ(V (i)

j ,Yj) ≤ δ(Vj ,Yj)
⋃

δ(V (i)
j ,Yj) ≤ δ(Vj ,Yj)

}
(b)

≤ Pr
{
∃ 1 ≤ i ≤ M : δ(V (i)

j ,Yj) ≤ δ(Vj ,Yj)}+

Pr
{
∃ 1 ≤ i ≤ M : δ(V (i)

j ,Yj) ≤ δ(Vj ,Yj)
}

(c)

≤
∑
Yj

Pθ(Yj |Vj)
1

1+ρ

[ M∑
i=1

Pθ(Yj |V
(i)

j )
1

1+ρ

]ρ
+
∑
Yj

Pθ(Yj |Vj)
1

1+ρ

[ M∑
i=1

Pθ(Yj |V
(i)
j )

1
1+ρ

]ρ
, (47)

where (a) is true since we increased the right terms of the two inequalities, and thus increased

the probability for union of these two events, in (b), the union bound was used, and in (c),

we used the Gallager bound for the error probability when using the ML decision rule. This

error was used for each of the two error probabilities.
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We now move to upper bound the average of πl,θ(j) over the ensemble of time-varying

colvolutional codes:

πl,θ(j) =

(a)
=

∑
Vj

2−N
∑

V
(1)

j

. . .
∑

V
(M)

j

2−NMπl,θ(j)

(b)

≤
∑
Yj

∑
Vj

2−NPθ(Yj |Vj)
1

1+ρ
∑

V
(1)

j

. . .
∑

V
(M)

j

2−NM

[[ M∑
i=1

Pθ(Yj |V
(i)

j )
1

1+ρ

]ρ
+
[ M∑
i=1

Pθ(Yj |V
(i)
j )

1
1+ρ

]ρ]
(c)
= 2 ·

∑
Yj

∑
Vj

2−NPθ(Yj |Vj)
1

1+ρ
∑

V
(1)

j

. . .
∑

V
(M)

j

2−NM
[ M∑
i=1

Pθ(Yj |V
(i)

j )
1

1+ρ

]ρ
(d)

≤ 2 ·
∑
Yj

∑
Vj

2−NPθ(Yj |Vj)
1

1+ρ

[ M∑
i=1

∑
V

(1)
j

. . .
∑

V
(M)

j

2−NMPθ(Yj |V
(i)

j )
1

1+ρ

]ρ
, 0 ≤ ρ ≤ 1

(e)
= 2 ·

∑
Yj

∑
Vj

2−NPθ(Yj |Vj)
1

1+ρ

[ M∑
i=1

∑
V

(i)
j

2−NPθ(Yj |V
(i)

j )
1

1+ρ

]ρ
, 0 ≤ ρ ≤ 1

(f)

≤ 2 ·
(
2b − 1

)
2blρ

∑
Yj

∑
Vj

2−NPθ(Yj |Vj)
1

1+ρ

[ ∑
V

(i)
j

2−NPθ(Yj |V
(i)

j )
1

1+ρ

]ρ
, 0 ≤ ρ ≤ 1

= 2 ·
(
2b − 1

)
2blρ

∑
Yj

[∑
Vj

2−NPθ(Yj |Vj)
1

1+ρ

]1+ρ
, 0 ≤ ρ ≤ 1

(g)
= 2 ·

(
2b − 1

)
2blρ

{∑
y

[∑
v

2−NPθ (y|v)
1

1+ρ

]1+ρ
}N

, 0 ≤ ρ ≤ 1

·=
(
2b − 1

)
2blρe−(K+l)nEθ,0(ρ,{ 1

2
, 1
2}), 0 ≤ ρ ≤ 1, (48)

where

Eθ,0 (ρ,Q∗) = − ln
∑
y

[∑
v

2−NPθ (y|v)
1

1+ρ

]1+ρ
.

In (a), we sum over all possible code vectors associated with the different paths in the

trellis. As explained earlier, each code vector can attain all of its 2N values equiprobably

and independently with the other code vectors. In (b), we used the result from (47). (c) is

true since examining Pθ(Yj |V
(i)
j ), 1 ≤ i ≤ M , when summing up over all of V

(1)
j , . . . ,V

(M)
j

possible values, is equivalent to the examination of Pθ(Yj |V
(i)

j ), 1 ≤ i ≤ M . In (d), we
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bound ourselves to 0 ≤ ρ ≤ 1 and use Jensen’s inequality. (e) is true since for a fixed

i, Pθ(Yj |V
(i)

j ) depends only on V
(i)

j , and is enumerated for the 2N(M−1) possibilities of

V
(1)

j , . . . ,V
(i−1)

j ,V
(i+1)

j , . . . ,V
(M)

j . In (f), we upper bound M by
(
2b − 1

)
2bl, and (g) is

true since the BSC is memoryless.

As in the above proof for rates up to Rθ,0 (Q∗) , the subsequent steps in deriving an

upper bound to the bit error exponent for rates Rθ,0 (Q∗) ≤ R ≤ Cθ for the minimax

decoder are identical to that of ML decoder (see [10, Sect. 5.1]) and the final result is the

same. This completes the proof that the achievable exponent for bit error probability of

the minimax decoder is equal to that of the ML decoder, for all rates up to capacity.

A. Appendix

A.1 Proof of eq. (12) for ensembles of Linear and Systematic Linear Codes

In this section, we examine the performance of the minimax decoding rule with respect to

uniform i.i.d. random coding over ensembles of linear codes and systematic linear codes.

We will prove that for a family of BIOS channels, the same single–letter formula for the

lower bound to the achievable fraction ξ∗ is obtained, with uniform i.i.d. random coding

distribution Q∗ =
{

1
2 , 1

2

}
(i.e. ∆∗(P ) = ln 2−H(P )).

Using Gallager’s techniques, we first upper bound the decoding error probability given

that the m-th message was sent for a given θ in the following way:

PEm (Ω|θ) =
∑

y∈YN

Pθ(y|vm)1
{
∃m′ 6= m : max

θ′∈ΘN

fθ′(vm′ ,y) ≥ max
θ′′∈ΘN

fθ′′(vm,y)
}

=
∑

y∈YN

Pθ(y|vm)1
{
∃θ′,∃m′ 6= m : fθ′(vm′ ,y) ≥ max

θ′′∈ΘN

fθ′′(vm,y)
}

(a)
=

∑
y∈YN

Pθ(y|vm) max
θ′∈ΘN

1
{
∃m′ 6= m : fθ′(vm′ ,y) ≥ max

θ′′∈ΘN

fθ′′(vm,y)
}

=
∑

y∈YN

Pθ(y|vm) max
θ′∈ΘN

1
{
∃m′ 6= m :

fθ′(vm′ ,y)
maxθ′′∈ΘN

fθ′′(vm,y)
≥ 1

}
(b)

≤
∑

y∈YN

Pθ(y|vm) max
θ′∈ΘN

min
λ≥0

ρ≥0

[ ∑
m′ 6=m

( eNfθ′ (vm′ ,y)

maxθ′′∈ΘN
eNfθ′′ (vm,y)

)λ
]ρ

, (49)

where ρ ≥ 0 and λ ≥ 0 are free parameters.

(a) is true since if we denote with A(θ) an event dependent on θ ∈ ΘN , and denote with C

a constant, then

1 {∃θ ∈ ΘN : A(θ) > C} = max
θ∈ΘN

1 {A(θ) > C} .
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(b) is true since if we denote with f1(m′) and f2(m) two non–negative functions of m′ and

m respectively, then (using Gallager’s technique)

1

{
∃m′ 6= m :

f1(m′)
f2(m)

≥ 1
}
≤ min

λ≥0

ρ≥0

 ∑
m′ 6=m

(
ef1(m′)

ef2(m)

)λ
ρ

.

Based on (49), we now develop an upper bound to the minimax criterion related to a specific

linear code (i.e., specific values of G and v0, thus denoted by SN (v0,G)):

SN (v0,G) = max
θ∈Θ

{ PE (Ω|θ)
[PE

∗ (θ)]ξ

} ·= max
θ∈Θ

{ PE (Ω|θ)
e−NξE∗

r (θ)

}
≤ max

θ∈Θ

{
1
M

M−1∑
m=0

∑
y∈YN

eNξE∗
r (θ)Pθ(y|vm) max

θ′∈ΘN

min
λ≥0

ρ≥0 ∑
m′ 6=m

[
eNfθ′ (vm′ ,y)

maxθ′′∈ΘN
eNfθ′′ (vm,y)

]λ
ρ}

= max
θ∈Θ

{
1
M

M−1∑
m=0

∑
y∈YN

eN ·fθ(vm,y) max
θ′∈ΘN

min
λ≥0

ρ≥0 ∑
m′ 6=m

[
eNfθ′ (vm′ ,y)

maxθ′′∈ΘN
eNfθ′′ (vm,y)

]λ
ρ}

(a)

≤ 1
M

M−1∑
m=0

∑
y∈YN

(
max
θ∈ΘN

eNfθ(vm,y)
)

max
θ′∈ΘN

min
λ≥0

ρ≥0


[ ∑
m′ 6=m

eNλfθ′ (vm′ ,y)

]ρ
(
maxθ′′∈ΘN

eNfθ′′ (vm,y)
)λρ


(b)

≤ 1
M

M−1∑
m=0

∑
y∈YN

max
θ′∈ΘN

min
λ≥0

ρ≥0

{[
max
θ∈ΘN

eNfθ(vm,y)
]1−λρ

[ ∑
m′ 6=m

eNλfθ′ (vm′ ,y)
]ρ }

(c)

≤ 1
M

M−1∑
m=0

∑
y∈YN

max
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ

max
θ∈ΘN

{
eN(1−λρ)fθ(vm,y)

[ ∑
m′ 6=m

eNλfθ′ (vm′ ,y)
]ρ }

(d)
=

1
M

M−1∑
m=0

∑
y∈YN

max
θ∈ΘN

max
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ

{
eN(1−λρ)fθ(vm,y)

[ ∑
m′ 6=m

eNλfθ′ (vm′ ,y)
]ρ }

.

(50)

The passages (a)–(d) are explained as follows: In (a) we used the fact that the maximum of

an expectation is no greater than the expectation of the maximum and changed the maxi-

mization of θ to be over ΘN . (b) is true since θ and θ′′ maximize two identical expressions,

and therefore can be united. In (c) we restricted the range of the optimization to 1−λρ ≥ 0
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(⇒ λ ≤ 1/ρ). In (d) we used the fact that for given vm, y and θ′

min
ρ≥0

0≤λ≤1/ρ

max
θ∈ΘN

{
eN(1−λρ)fθ(vm,y)

[ ∑
m′ 6=m

eNλfθ′ (vm′ ,y)
]ρ }

=

max
θ∈ΘN

min
ρ≥0

0≤λ≤1/ρ

{
eN(1−λρ)fθ(vm,y)

[ ∑
m′ 6=m

eNλfθ′ (vm′ ,y)
]ρ }

. (51)

This interchange between the minimization over λ and ρ and the maximization over θ is

justified in the Appendix, Section A.2.

Prior to deriving the single–letter formula for the lower bound to ξ∗, we first present

the following claim:

Lemma 2 When a linear code is used for a BIOS channel and minimax decoding is used,

the error probability for the m-th message is equal for all 0 ≤ m ≤ M − 1.

This lemma is proved in Section A.4 of the Appendix.

Based on this observation, we can assume, without loss of generality, that u0 = 0 was

transmitted, and then the upper bound to SN can be expressed as:

SN (v0,G) ≤
∑

y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ

{
eN(1−λρ)fθ(v0,y)

[M−1∑
m=1

eNλfθ′ (vm,y)
]ρ }

(52)

In the following subsections, we will use the same technique to derive two upper bounds

on the minimax criterion, one for the ensemble of linear codes and one for the ensemble of

systematic linear codes.

Linear Codes

By averaging SN over the ensemble of linear codes:

SN
(a)
= 2−(K+1)N

∑
v0,G

SN (v0,G)

≤ 2−(K+1)N
∑

v0,G

∑
y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ

{
eN(1−λρ)fθ(v0,y)

[
M−1∑
m=1

eNλfθ′ (vm,y)

]ρ }

(53)
(b)

≤ 2−(K+1)N
∑

v0,G

∑
y∈Y N

∑
θ∈ΘN

∑
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ

{
eN(1−λρ)fθ(v0,y)

[
M−1∑
m=1

eNλfθ′ (vm,y)

]ρ }
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(c)

≤
∑

y∈Y N

∑
θ∈ΘN

∑
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ{
2−(K+1)N

∑
v0,G

(
eN(1−λρ)fθ(v0,y)

[
M−1∑
m=1

eNλfθ′ (vm,y)

]ρ)}
(d)

≤ |ΘN |2
∑

y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ{
2−N

∑
v0

eN(1−λρ)fθ(v0,y)2−KN
∑
G

[
M−1∑
m=1

eNλfθ′ (vm,y)

]ρ}
(54)

(e)

≤ |ΘN |2
∑

y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
2−N

∑
v0

eN(1−λρ)fθ(v0,y)

[
2−KN

∑
G

M−1∑
m=1

eNλfθ′ (vm,y)

]ρ}

= |ΘN |2
∑

y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
2−N

∑
v0

eN(1−λρ)fθ(v0,y)

[
2−KN

M−1∑
m=1

∑
G

eNλfθ′ (vm,y)

]ρ}
(f)
= |ΘN |2

∑
y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
2−N

∑
v0

eN(1−λρ)fθ(v0,y)

[
(M − 1) 2−N

∑
v

eNλfθ′ (v,y)

]ρ}
≤ |ΘN |2

∑
y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
Mρ

[
2−N

∑
v

eN(1−λρ)fθ(v,y)

]
·
[
2−N

∑
v′

eNλfθ′
(
v′,y

)]ρ}
,

(55)

where the steps (a)–(f) are as follows: The equality in (a) is obtained by averaging over

2(K+1)N equiprobable values of v0 and G. (b) and (d) follow from the fact that for a

non-negative function f(θ), non-negative function f(θ),

max
θ∈ΘN

f(θ) ≤
∑

θ∈ΘN

f(θ) ≤ |ΘN | · max
θ∈ΘN

f(θ). (56)

(c) is true since an expectation of a minimum is upper-bounded by the minimum of the

expectation. In (e), we limit the optimization over ρ to 0 ≤ ρ ≤ 1 and use Jensen’s
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inequality. In (f), we used the following equivalence for the two inner summations:

M−1∑
m=1

∑
G

eNλfθ′ (vm,y) = (M − 1)2(K−1)N
∑
v

eNλfθ′ (v,y). (57)

This equivalence is proved in Section A.5 of the Appendix.

From (19), we conclude that the term inside the summation in (55) is identical for all

y’s of the same type class. Thus, the summation can be conducted over types. Using (22),

we continue to upper bound SN in the following way (note that the function A(θ, α, Pxy)

used here corresponds to a binary i.i.d. random coding distribution, as specified in (11)):

SN

(a)

≤ |ΘN |2
∑
Ty

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
eNρReNHy(Y )e

N

[
(1−λρ)ξE∗

r (θ)−minPx|y A(θ,1−λρ,Pxy)

]

e
N

[
λρξE∗

r (θ′)−ρ·minP
x′|y

A(θ′,λ,P
x′y

)

]}
= |ΘN |2

∑
Ty

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
exp

{
N [ρR + Hy(Y ) + (1− λρ)ξE∗

r (θ)− min
Px|y

A(θ, 1− λρ, Pxy)

+λρξE∗
r (θ′)− ρ · min

P
x′|y

A(θ′, λ, Px′y)]
}}

(b)

≤ |ΘN |2 (N + 1)|Y| max
Py

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
exp

{
N [ρR + Hy(Y ) + (1− λρ)ξE∗

r (θ)− min
Px|y

A(θ, 1− λρ, Pxy)

+λρξE∗
r (θ′)− ρ · min

P
x′|y

A(θ′, λ, Px′y)]
}}

= |ΘN |2 (N + 1)|Y| · exp
{

N ·max
Py

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ

max
Px|y

max
P
x′|y

[ρR + Hy(Y ) + (1− λρ)ξE∗
r (θ)−A(θ, 1− λρ, Pxy)

+λρξE∗
r (θ′)− ρ ·A(θ′, λ, Px′y)]

}
, (58)

where in (a) we upper bound |Ty| by eN ·Hy(Y ), and in (b) we upper bound the summation

of the functional over Ty by the product of the maximal value (achieved by a specific

distribution Py) with (N + 1)|Y|, which is an upper bound to the number of type classes{
Ty
}
.
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As explained earlier, we seek the maximal ξ such that SN grows sub–exponentially with

N . To this end, we can ignore the factor |ΘN |2 (N + 1)|Y| in (58), as it grows polynomially

with N . Moreover, as mentioned in Section V, the optimizations can be conducted over

continuous distributions and over the entire parameter space, Θ. Thus, a maximal ξ is

sought, such that (using (9)):

max
PY

max
θ,θ′∈Θ

min
0≤ρ≤1

0≤λ≤1/ρ

max
PX|Y

max
PX′|Y

[
ρR+(1−λρ)ξE∗

r (θ)+λρξE∗
r (θ′)−B(θ, θ′, PY , PX|Y , PX′|Y , λ, ρ)

]
≤ 0.

(59)

An equivalent condition to (59) is

∀ PY , ∀ θ, θ′ ∈ Θ, ∃ 0 ≤ ρ ≤ 1, 0 ≤ λ ≤ 1/ρ: ∀ PX|Y , ∀ PX′|Y

ρR + (1− λρ)ξE∗
r (θ) + λρξE∗

r (θ′)−B(θ, θ′, PY , PX|Y , PX′|Y , λ, ρ) ≤ 0

or,

∀ PY , ∀ θ, θ′ ∈ Θ, ∃ 0 ≤ ρ ≤ 1, 0 ≤ λ ≤ 1/ρ: ∀ PX|Y , ∀ PX′|Y

ξ ≤
B(θ, θ′, PY , PX|Y , PX′|Y , λ, ρ)− ρR

(1− λρ) · E∗
r (θ) + λρ · E∗

r (θ′)
.

Consequently, for ensembles of linear codes and BIOS channels, the lower bound to ξ∗ is

the same as in (12), with a uniform i.i.d. random coding distribution, Q∗ =
{

1
2 , 1

2

}
.

Systematic Linear Codes

A similar technique will be used now to achieve identical results for the ensemble of sys-

tematic linear codes.

By averaging SN over this ensemble:

SN
(a)
= 2−K(N−K)2−N

∑
˜G

∑
v0

SN (v0,G)

≤ 2−K(N−K)2−N
∑
˜G

∑
v0

∑
y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
ρ≥0

0≤λ≤1/ρ{
eN(1−λρ)fθ(v0,y)

[
M−1∑
m=1

eNλfθ′ (vm,y)

]ρ}
(b)

≤ |ΘN |2
∑

y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ{
2−N

∑
v0

eN(1−λρ)fθ(v0,y)

[
2−K(N−K)

M−1∑
m=1

∑
˜G

eNλfθ′ (vm,y)

]ρ}
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(c)
= |ΘN |2

∑
y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ

{
2−N

∑
v0

eN(1−λρ)fθ(v0,y)

[
2−(N−K)

∑
v

eNλfθ′ (v,y)

]ρ}

(d)
= |ΘN |2

∑
y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ

{
2−N

∑
v0

eN(1−λρ)fθ(v0,y)

[
M2−N

∑
v

eNλfθ′ (v,y)

]ρ}

= |ΘN |2
∑

y∈Y N

max
θ∈ΘN

max
θ′∈ΘN

min
0≤ρ≤1

0≤λ≤1/ρ

{
Mρ

[
2−N

∑
v

eN(1−λρ)fθ(v,y)
][

2−N
∑
v′

eNλfθ′
(
v′,y

)]ρ
.

}
(60)

The equality in (a) is obtained by averaging over 2K(N−K) and 2N equiprobable values of v0

and G̃ (the non–systematic part of G), respectively. (b) is obtained by taking identical steps

as done for ensemble of linear codes in the previous subsection (see the inequalities between

(53) and (54)). In (c), we used the following equivalence for the two inner summations:

M−1∑
m=1

∑
˜G

eNλfθ′ (vm,y) = 2(K−1)(N−K)
∑
v

eNλfθ′ (v,y). (61)

This equivalence is proved in Section A.6 of the Appendix. In (d), we used the equality

M = 2K .

Finally, the upper bound to SN achieved in (60) is identical to the one related to

ensembles of linear codes (see (55)), and therefore the final lower bound to ξ∗ for the

case of systematic linear codes is also identical to (12) with uniform i.i.d. random coding

distribution, Q∗ =
{

1
2 , 1

2

}
.

A.2 Proof of eq. (26) and eq. (51)

Let θ∗ maximize fθ(vm,y), and let F (λ, ρ) be a nonnegative function. Then,

min
ρ≥0

0≤λ≤1/ρ

max
θ∈ΘN

{
eN(1−λρ)fθ(vm,y) · F (λ, ρ)

}
=

= min
ρ≥0

0≤λ≤1/ρ

{
eN(1−λρ)fθ∗ (vm,y) · F (λ, ρ)

}

(a)

≤ max
θ∈ΘN

min
ρ≥0

0≤λ≤1/ρ

{
eN(1−λρ)fθ(vm,y) · F (λ, ρ)

}

≤ min
ρ≥0

0≤λ≤1/ρ

max
θ∈ΘN

{
eN(1−λρ)fθ(vm,y) · F (λ, ρ)

}
, (62)
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where (a) is true since the value of the function for a specific θ∗ in ΘN is always upper–

bounded by the maximization of the function over θ ∈ ΘN . Thus, all inequalities must be

achieved with equalities.

A.3 Proof of eq. (22)

For α ∈ < and y ∈ YN , we exponentially evaluate E[eNαfθ(x,y)] , where the average is

calculated over the ensemble of random coding distribution of the form: QN (x) = QN (Tx)
|Tx| ,

(as described in (22)):

E[eNαfθ(X ,y)] =
∑

x∈XN

QN (x)eNαfθ(x,y)

(a)
=

∑
Tx|y⊂XN

∣∣∣Tx|y

∣∣∣QN (x)eNαfθ(x,y)

=
∑

Tx|y⊂XN

∣∣∣Tx|y

∣∣∣ e−N∆∗
N (Px)

|Tx|
eNαfθ(x,y)

(b)
=

∑
Tx|y⊂XN

∣∣∣Tx|y

∣∣∣ e−N(∆∗(Px)−ε̃N )

|Tx|
eNαfθ(x,y), (63)

where ε̃N → 0 as N →∞ independently of Px.

We should note that (a) is true since fθ(x,y) depends on x and y only via their joint

empirical distribution and the summation can be conducted over types instead, and since

the average is calculated for a given y, we sum over Tx|y. In (b) we used the convergence

assumption for the random coding distributions withing the class Q.

Thus, we continue to evaluate E[eNαfθ(x,y)] as follows:

E[eNαfθ(x,y)]
(a)
·=

∑
Tx|y⊂XN

exp
{
N [−Ixy(X;Y )−∆∗(Px) + αfθ(x,y)]

}
(b)
·= exp

{
N · max

Px|y
[−Ixy(X;Y )−∆∗(Px) + αfθ(x,y)]

}
(c)
= exp

{
N · max

Px|y
[−Ixy(X;Y )−∆∗(Px)

+αÊxy lnPθ(Y |X) + αξE∗
r (θ)]

}
= exp

{
N [αξE∗

r (θ)− min
Px|y

{Ixy(X;Y )

+∆∗(Px)− αÊxy lnPθ(Y |X)}]
}

= e
N[αξE∗

r (θ)−minPx|y A(θ,α,Pxy)]
, (64)
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where in (a), we used the facts that
∣∣∣Tx|y

∣∣∣ ·= eN ·Hxy(X|Y ) and |Tx|
·= eN ·Hx(X). (b) is true

since the summation of the functional over Tx|y ⊂ XN is lower bounded by its maximal

value (achieved by a specific distribution Px|y), and upper bounded by the product of its

maximal value with (N + 1)|X ||Y|. In (c), we expressed the minimax metric in terms of the

joint empirical distribution as described in (19).

A.4 Proof of Lemma 2

In this section, we prove that when a linear code is used for a BIOS channel and the minimax

decision rule is used (denoted by Ω), the error probability for the m-th message (of length

N), vm = (vm0, . . . , vm(N−1)), is the same for all m, that is,

PEm (Ω|θ) = PE (Ω|θ) for 0 ≤ m ≤ M − 1. (65)

Considering a binary input channel, we denote the channel crossover probabilities for a

single letter as Pθ(y|v = 0) ∆= Pθ,0(y) and Pθ(y|v = 1) ∆= Pθ,1(y).

If the channel is also output symmetric then,

Pθ,1(y) = Pθ,0(−y), ∀y ∈ Y

The error probability for the m-th message using minimax decoding is:

PEm (Ω|θ) =
∑

y∈Λm
c

Pθ(y|vm)

=
∑

y∈Λm
c

∏
n:vmn=0

Pθ,0(yn)
∏

n:vmn=1

Pθ,1(yn)

=
∑

y∈Λm
c

∏
n:vmn=0

Pθ,0(yn)
∏

n:vmn=1

Pθ,0(−yn),

(66)

where

Λm
c =

{
y : max

θ′

{
1
N

lnPθ′(y|vm′) + ξE∗
r (θ′)

}
≥ max

θ′′

{
1
N

lnPθ′′(y|vm) + ξE∗
r (θ′′)

}
,

for some m′ 6= m

}

=

{
y : max

θ′

{
N−1∑
n=0

lnPθ′ (yn|vm′n) + NξE∗
r (θ′)

}
≥

max
θ′′

{
N−1∑
n=0

lnPθ′′ (yn|vmn) + NξE∗
r (θ′′)

}
, for some m′ 6= m

}
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=

{
y : max

θ′

{ ∑
t: vmt=0

vm′t=0

lnPθ′,0(yt) +
∑

t: vmt=0

vm′t=1

lnPθ′,1(yt) +
∑

t: vmt=1

vm′t=0

lnPθ′,0(yt) +

∑
t: vmt=1

vm′t=1

lnPθ′,1(yt) + NξE∗
r (θ′)

}
≥

max
θ′′

{ ∑
t: vmt=0

vm′t=0

lnPθ′′,0(yt) +
∑

t: vmt=0

vm′t=1

lnPθ′′,0(yt) +
∑

t: vmt=1

vm′t=0

lnPθ′′,1(yt) +

∑
t: vmt=1

vm′t=1

lnPθ′′,1(yt) + NξE∗
r (θ′′)

}
, for some m′ 6= m

}

=

{
y : max

θ′

{ ∑
t: vmt=0

vm′t=0

lnPθ′,0(yt) +
∑

t: vmt=0

vm′t=1

lnPθ′,0(−yt) +
∑

t: vmt=1

vm′t=0

lnPθ′,0(yt) +

∑
t: vmt=1

vm′t=1

lnPθ′,0(−yt) + NξE∗
r (θ′)

}
≥

max
θ′′

{ ∑
t: vmt=0

vm′t=0

lnPθ′′,0(yt) +
∑

t: vmt=0

vm′t=1

lnPθ′′,0(yt) +
∑

t: vmt=1

vm′t=0

lnPθ′′,0(−yt) +

∑
t: vmt=1

vm′t=1

lnPθ′′,0(−yt) + NξE∗
r (θ′′)

}
, for some m′ 6= m

}
. (67)

Using the following transformation to dummy variables

zn =

{
yn, ∀n :vmn=0

−yn, ∀n : vmn = 1

we get that

PEm (f |θ) =
∑

z∈Λm
c

∏
n:vmn=0

Pθ,0(zn)
∏

n:vmn=1

Pθ,0(zn)

=
∑

z∈Λm
c

N−1∏
n=0

Pθ,0(zn), (68)

where

Λm
c =

{
z : max

θ′

{ ∑
t: vmt=0

vm′t=0

lnPθ′,0(zt) +
∑

t: vmt=0

vm′t=1

lnPθ′,0(−zt) +
∑

t: vmt=1

vm′t=0

lnPθ′,0(−zt) +

∑
t: vmt=1

vm′t=1

lnPθ′,0(zt) + NξE∗
r (θ′)

}
≥

max
θ′′

{ ∑
t: vmt=0

vm′t=0

lnPθ′′,0(zt) +
∑

t: vmt=0

vm′t=1

lnPθ′′,0(zt) +
∑

t: vmt=1

vm′t=0

lnPθ′′,0(zt) +
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∑
t: vmt=1

vm′t=1

lnPθ′′,0(zt) + NξE∗
r (θ′′)

}
, for some m′ 6= m

}

=

{
z : max

θ′

{ ∑
p:vmp=vm′p

lnPθ′,0(zp) +
∑

q:vmq 6=vm′q

lnPθ′,0(−zq) + NξE∗
r (θ′)

}
≥

max
θ′′

{ ∑
p:vmp=vm′p

lnPθ′′,0(zp) +
∑

q:vmq 6=vm′q

lnPθ′′,0(zq) + NξE∗
r (θ′′)

}
,

for some m′ 6= m

}
. (69)

Now, on the one hand, (68) and (69) describe PEm(f |θ) and Λm
c, respectively, for each

0 ≤ m ≤ M − 1. On the other hand, we should note that the terms for PE0(f |θ) and Λ0
c

(describing the case where v0 = 0 is transmitted) are obtained by assigning m = 0 in (66)

and (67). By doing that, the result terms coincide with (68) and (69), respectively (which,

as mentioned before, correspond to the m-th message). This observation completes the

proof.

A.5 Proof of eq. (57)

First, by the way of constructing the linear code, we know that:

vm′ = um′G⊕ v0, ∀ 0 ≤ m′ ≤ M − 1 (70)

Since 1 ≤ m′ ≤ M − 1 implies um′ 6= 0, then for each information vector in this set there is

at least one index i for which um′i = 1. Consequently, the construction of each code vector

vm′ , 1 ≤ m′ ≤ M − 1, can be written in the following way:

vm′ = um′G⊕ v0 = gi ⊕
[∑
j 6=i

um′jgj

]
⊕ v0,

where gi stands for the i-th row in G.

Therefore:

M−1∑
m′=1

∑
G

eNλfθ′ (vm′ ,y) =
M−1∑
m′=1

∑
G\gi

∑
gi

exp
{
Nfθ′(gi ⊕

[∑
j 6=i

um′jgj

]
⊕ v0,y)λ

}
(a)
=

M−1∑
m′=1

∑
G\gi

∑
v

eNfθ′ (v,y)λ

=
M−1∑
m′=1

2(K−1)N
∑
v

eNfθ′ (v,y)λ
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= (M − 1)2(K−1)N
∑
v

eNfθ′ (v,y)λ,

(71)

where (a) is true since for fixed values of m′, G\gi (in the outer summations) and v0, the

row vector, which is denoted by v, is fixed, causing gi to sum up over all the binary vectors

of length N .

A.6 Proof of eq. (61)

In this section, we prove the equality, which is given in (61), and used in (60).

First, by the way of constructing a systematic linear code:

vm′ = um′G⊕ v0

=
[
um′ ;

K∑
i=1

um′ig̃i

]
⊕ v0

=
[
um′ ;

N−K︷ ︸︸ ︷
0 . . . 0

]
⊕
[ K︷ ︸︸ ︷
0 . . . 0;

K∑
i=1

um′ig̃i

]
⊕ v0, ∀ 0 ≤ m′ ≤ M − 1, (72)

where g̃i stands for the i’th row in G̃ (the non-systematic part of G).

We observe that for 1 ≤ m′ ≤ M − 1, um′ 6= 0. Thus, for each information vector in this

set there’s at least one index i for which um′i = 1. Consequently, the construction of each

code vector vm′ , 1 ≤ m′ ≤ M − 1, can be written in the following way:

vm′ =
[
um′ ; g̃i

]
⊕
[ K︷ ︸︸ ︷
0 . . . 0;

∑
j 6=i

um′j g̃j

]
⊕ v0.

Therefore:
M−1∑
m′=1

∑
˜G

eNfθ′ (vm′ ,y)λ =
M−1∑
m′=1

∑
˜G\g̃i

∑
g̃i

exp
{

Nfθ′

(
[um′ ; g̃i]⊕

[
0 . . . 0;

∑
j 6=i

um′j g̃j

]
⊕ v0,y

)
λ

}

(a)
=

∑
˜G\g̃i

M−1∑
m′=1

∑
g̃i

e
Nfθ′

(
[um′ ;g̃i]⊕v,y

)
λ

(b)

≤
∑
˜G\g̃i

M−1∑
m′=0

∑
g̃i

e
Nfθ′

(
[um′ ;g̃i]⊕v,y

)
λ

(c)
=

∑
˜G\g̃i

∑
v

eNfθ′(v,y)λ

= 2(K−1)(N−K)
∑
v

eNfθ′(v,y)λ, (73)
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where (a) is true since for fixed values of m′, G̃\g̃i (in the outer summations) and v0, the

row vector, which is denoted by v, is fixed. In (b), m′ = 0 was added to the summation, and

since the inner term in the summation is always non-negative the result cannot get smaller.

(c) is true since for a fixed v, summing up over 0 ≤ m′ ≤ M − 1 and g̃i is equivalent to the

summation over all the possibilities for a vector of length N .

A.7 Equivalence between decision rules - Ω and Λ

In this section, we prove the equivalence between the minimax decision rule, Ω, maximizing

the metric f(x,y) (as defined in (3)), and a decision rule Λ, minimizing ρ(x,y) (as defined

in (17)). We will prove that for a given output y ∈ Y, each x1,x2 ∈ X satisfy:

f(x1,y) ≥ f(x2,y) ⇐⇒ ρ(x1,y) ≤ ρ(x2,y). (74)

First, we should note that f(x,y) satisfies:

f(x,y) = max
0≤θ≤1

fθ(x,y)

= max
0≤θ≤1

{ 1
N

[lnPθ(y|x) + NξE∗
r (θ)]

}
(a)
= max

0≤θ≤1

{ 1
N

[
d(x,y) ln θ + (N − d(x,y)) ln (1− θ) + NξE∗

r (θ)
]}

= max
0≤θ≤1

{
δ(x,y) ln θ + (1− δ(x,y)) ln (1− θ) + ξE∗

r (θ)
}

= max
0≤θ≤1

fθ (δ(x,y)) , 0 ≤ δ(x,y) ≤ 1

= f (δ(x,y)) , 0 ≤ δ(x,y) ≤ 1. (75)

In (a), we used the following representation for the BSC transition probability:

Pθ(y|x) = θd(x,y) (1− θ)N−d(x,y) .

We conclude that the value of f(x,y) is equal for all code vectors with the same (normalized)

Hamming distance from y, and therefore can be defined as f(δ(x,y)), 0 ≤ δ(x,y) ≤ 1.

Next, we now prove that f(x,y) has the same value for a code vector x and its comple-

ment, x:

f(x,y) = f(δ(x,y))

= f(1− δ(x,y))

= max
0≤θ≤1

fθ(1− δ(x,y))
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= max
0≤θ≤1

{
(1− δ(x,y)) ln θ + δ(x,y) ln (1− θ) + ξE∗

r (θ)
}

(a)
= max

0≤θ̃≤1

{
(1− δ(x,y)) ln

(
1− θ̃

)
+ δ(x,y) ln θ̃ + ξE∗

r (1− θ̃)
}

(b)
= max

0≤θ̃≤1

{
(1− δ(x,y)) ln

(
1− θ̃

)
+ δ(x,y) ln θ̃ + ξE∗

r (θ̃)
}

= max
0≤θ̃≤1

fθ̃(δ(x,y))

= f(δ(x,y))

= f(x,y). (76)

In (a), we changed the variable in the maximization, θ̃ = 1− θ, and (b) is true since for the

BSC model the ML error exponent, E∗
r (θ), is symmetric around θ = 1

2 (see (42)).

Using the fact that both f(δ(x,y)) and ρ(δ(x,y)) are equal for δ(x,y) and 1− δ(x,y),

it is sufficient to prove (74) for x1 and x2 satisfying δ(x1,y) ≤ 1
2 and δ(x2,y) ≤ 1

2 (and

thus ρ(x1,y) = δ(x1,y) , ρ(x2,y) = δ(x2,y) ).

In the rest of the proof, we will denote δ(x1,y) ∆= δ1 , δ(x2,y) ∆= δ2. It is therefore

sufficient to show that

f(δ1) ≥ f(δ2) ⇐⇒ 0 ≤ δ1 ≤ δ2 ≤
1
2
. (77)

This equivalence will be shown in two steps:

First, we note that 0 ≤ δ1 ≤ δ2 ≤ 1
2 satisfy that ∀ 0 ≤ θ ≤ 1

2 :

δ1 ln
(

θ

1− θ

)
≥ δ2 ln

(
θ

1− θ

)
. (78)

By adding ln (1− θ) + ξE∗
r (θ) to both sides of (78) we get:

δ1 ln
(

θ

1− θ

)
+ ln (1− θ) + ξE∗

r (θ) ≥ δ2 ln
(

θ

1− θ

)
+ ln (1− θ) + ξE∗

r (θ) (79)

or

δ1 ln θ + (1− δ1) ln (1− θ) + ξE∗
r (θ) ≥ δ2 ln θ + (1− δ2) ln (1− θ) + ξE∗

r (θ). (80)

This inequality is true for the values of θ, which maximize the both sides of (80). i.e.:

max
0≤θ≤ 1

2

{δ1 ln θ + (1− δ1) ln (1− θ) + ξE∗
r (θ)} ≥

max
0≤θ≤ 1

2

{δ2 ln θ + (1− δ2) ln (1− θ) + ξE∗
r (θ)} (81)

or

max
0≤θ≤ 1

2

fθ (δ1) ≥ max
0≤θ≤ 1

2

fθ (δ2) . (82)
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In order to complete the proof, one must broaden the maximization ranges over θ in (82)

into 0 ≤ θ ≤ 1. In order to justify that this broadening is possible, we present the following

observation:

Each 0 ≤ δ ≤ 1
2 satisfy that ∀1

2 ≤ θ ≤ 1:

δ ln
(

θ

1− θ

)
≤ (1− δ) ln

(
θ

1− θ

)
. (83)

By adding ln (1− θ) + ξE∗
r (θ) to both sides of (83) we get:

δ ln
(

θ

1− θ

)
+ ln (1− θ) + ξE∗

r (θ) ≤ (1− δ) ln
(

θ

1− θ

)
+ ln (1− θ) + ξE∗

r (θ) (84)

or

δ ln θ + (1− δ) ln (1− θ) + ξE∗
r (θ) ≤ δ ln (1− θ) + (1− δ) ln θ + ξE∗

r (θ). (85)

Using the fact that for the BSC model the ML error exponent, E∗
r (θ), is symmetric around

θ = 1
2 (see (42)), we can rewrite (85) as:

δ ln θ + (1− δ) ln (1− θ) + ξE∗
r (θ) ≤ δ ln (1− θ) + (1− δ) ln θ + ξE∗

r (1− θ) (86)

or

fθ (δ(x,y)) ≤ f1−θ (δ(x,y)) . (87)

The meaning of (87) is that when 0 ≤ δ ≤ 1
2 , for each 1

2 ≤ θ ≤ 1, fθ (δ) is always upper

bounded by f1−θ (δ) where 0 ≤ 1 − θ ≤ 1
2 . Thus, maximization of fθ (δ) over 0 ≤ θ ≤ 1 is

obviously accomplished by θ in
[
0, 1

2

]
.

Therefore, (82) finally becomes:

max
0≤θ≤1

fθ (δ1) ≥ max
0≤θ≤1

fθ (δ2) (88)

thus,

0 ≤ δ1 ≤ δ2 ≤
1
2

⇔ f (δ1) ≥ f (δ2) , (89)

and the proof is complete.
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