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Abstract— We consider the problem of universal simulation of
a memoryless source (with some partial extensions to Markov
sources), based on a training sequence emitted from the source.
The objective is to maximize the conditional entropy of the
simulated sequence given the training sequence, subject to a
certain distance constraint between the probability distribution
of the output sequence and the probability distribution of the
input, training sequence. We derive, for several distance criteria,
single–letter expressions for the maximum attainable conditional
entropy as well as corresponding universal simulation schemes
that asymptotically attain these maxima.

Index Terms: Universal simulation, distance measures, gen-

eralized divergence, ρ̄–distance, ǫ–contaminated model.

I. INTRODUCTION

Simulation of a source means artificial production of ran-

dom data with some probability law, by using a certain device

that is fed by a sequence of purely random bits. Simulation of

sources and channels is a problem that has been studied in a

series of works, see, e.g., [7], [15], [16], [17] and references

therein. In all these works, it was assumed that the probability

law of the desired process is perfectly known.

More recently, a universal version of this problem was

studied in [12], [13] (see also [10]), where the assumption of

perfect knowledge of the target probability law was relaxed.

Instead, the target source P to be simulated was assumed

in [12] to belong to a certain parametric family P , but is other-

wise unknown, and a training sequence Xm = (X1, . . . , Xm),
that has emerged from this source, is available. In addition, the

simulator is provided with a sequence of ℓ random key bits

U ℓ = (U1, . . . , Uℓ), which is independent of Xm. The goal

of the simulation scheme in [12] was to generate an output

sequence Y n = (Y1, . . . , Yn), n ≤ m, corresponding to the

simulated process, such that Y n = ψ(Xm, U ℓ), where ψ is a

deterministic function that does not depend on the unknown

source P , and which satisfies the following two conditions: (i)

the probability distribution of Y n is exactly the n-dimensional

marginal of the probability law P corresponding to Xm for

all P ∈ P , and (ii) the mutual information I(Xm;Y n) is as

small as possible, or equivalently (under (i)), the conditional

entropy H(Y n|Xm) is as large as possible, simultaneously for
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all P ∈ P (so as to make the generated sample path Y n as

“original” as possible). In [12], the smallest achievable value

of the mutual information (or, the largest conditional entropy)

was characterized, and simulation schemes that asymptotically

achieve these bounds were presented (see also [13]). It turns

out that for these optimal schemes, for ℓ large enough, the

normalized mutual information asymptotically vanishes. In

[11], the same simulation problem was studied in the regime of

a delay–limited system, in which the simulator produces output

samples on–line, as the training data is fed into the system

sequentially. The cost of limited delay was characterized and a

strictly optimum simulation system was proposed. A different

perspective on universal simulation was investigated in [14],

where xm was assumed to be an individual sequence not

originating from any probabilistic source.

In this work, we extend the scope of the universal simulation

problem in another direction, namely, relaxing the requirement

of exact preservation of the probability law at the output of the

simulator. In particular, we study the best achievable tradeoff

between the performance of the simulation scheme and the

distance (measured in terms of a certain metric) between the

probability law of the output and that of the input. Observe

that when the probability law of the simulated sequence is not

constrained to be identical to that of the training sequence,

the criteria min I(Xm;Y n) and maxH(Y n|Xm) are no

longer equivalent. While the former criterion aims at weak

dependency, it should be emphasized that, for a large enough

key rate, vanishing normalized mutual information was shown

to be achievable with exact preservation of the probability

law [12]. Therefore, under the min I(Xm;Y n) criterion, the

main objective of a relaxation of this requirement is to save on

the key rate necessary for the normalized mutual information

to vanish, as studied in [13] in the context of the ρ̄–distance

between probability distributions.1 On the other hand, the

asymptotic performance as given by the maxH(Y n|Xm)
criterion (as a measure of the “originality” or the “diversity”

of the typical sample paths generated by the simulator), on

which we focus in this paper, can potentially benefit from the

proposed relaxation.

For the class of discrete memoryless sources (DMSs), we

derive single-letter formulas for the maximum achievable

conditional entropy subject to various distance constraints

1In addition, it is conceivable that, by deviating from the input probability
law, a faster vanishing rate for the normalized mutual information is possible.
However, this aspect of the problem is not discussed in [13].
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(corresponding to different distance functions) and propose

corresponding simulation schemes that universally achieve

these bounds for large m and n. Some of the results have

extensions to more general families of sources, like the family

of Markov sources of a given order. We point out that here we

limit ourselves to focus only on optimum tradeoffs between

maximum achievable asymptotic values of H(Y n|Xm)/n and

the distance between the true source and the simulated source,

without an attempt to characterize optimum convergence rates,

and without taking into account key rate limitations, as op-

posed to [12] and [13]. The assumption that the simulator has

access to an unlimited stream of random bits is consistent with

the setting in [14] and [11].

The remainder of this paper is organized as follows: In

Section II, we establish notation conventions and formulate

the problem. The other sections of the paper are devoted

to single–letter characterizations of optimum performance for

various kinds of distance measures between probability distri-

butions: In Section III, we investigate the tradeoff between the

maximum conditional entropy and a distance function that is

referred to as generalized divergence, and a few examples are

worked out in full detail, as well as an outline of a possible

extension to Markov sources. In Section IV, we focus on the ρ̄–

distance measure (see also [13]), and finally, in Section V, we

consider the ǫ–contaminated model, a notion rooted in robust

statistics [8],[9].

II. NOTATION AND PROBLEM FORMULATION

Throughout the paper, random variables will be denoted by

capital letters, specific values they may take will be denoted

by the corresponding lower case letters, and their alphabets,

as well as some other sets, will be denoted by calligraphic

letters. Similarly, random vectors, their realizations, and their

alphabets, will be denoted, respectively, by capital letters, the

corresponding lower case letters, and calligraphic letters, all

superscripted by their dimensions. For example, the random

vector Xm = (X1, . . . , Xm), (m – positive integer) may take

a specific vector value xm = (x1, . . . , xm) in Am, the m-th

order Cartesian power of A, which is the alphabet of each

component of this vector. For i ≤ j (i, j – integers), xj
i will

denote the segment (xi, . . . , xj), where for i = 1 the subscript

will be omitted. For typographical convenience, x and X will

sometimes be used as alternative notations for xm and Xm,

respectively. Similar conventions will apply to the vector yn (n
– positive integers), its boldface notation y, the corresponding

uppercase notations Y n and Y, their empirical distributions,

etc.

Let P denote the class of all DMS’s with a finite alphabet

A, and let P denote a particular member of P . For a given

positive integer m, let Xm = (X1, X2, . . . , Xm), Xi ∈ A,

i = 1, . . . ,m, denote an m-vector drawn from P , namely,

Pr{Xi = xi, i = 1, . . . ,m} =
m
∏

i=1

P (xi)
∆
= P (xm)

for every (x1, . . . , xm), xi ∈ A, i = 1, . . . ,m. Let

H ≡ H(X) = −
∑

x∈A

P (x) logP (x)

denote the entropy of the source P , where here and throughout

the sequel log(·) ∆
= log2(·). When it is the dependence of the

entropy upon P that we wish to emphasize (rather than the

name of the random variable X), we denote the entropy by

H(P ), with a slight abuse of notation. Generic probability

distributions of vectors of n symbols in A will be denoted

by Qn, when we wish to emphasize the dependence on n.

When Qn is a memoryless source (e.g., Qn = Pn), then the

superscript n obtains the meaning of the n–th power of Q,

namely, the n–fold product of Q with itself n times. With a

slight abuse of notation, however, we will normally omit the

superscript n when referring to the probability of a certain

vector or event, relying on the fact that the dimensionality n
of the vector (or the event in the space of n–vectors) will be

clear from the argument of the probability function Q(·).
We will denote the type class of xm (with respect to P) by

Txm (or Tx), i.e., the set of all x̃m ∈ Am such that P (x̃m) =
P (xm) simultaneously for all DMS’s in P . In other words,

Txm is the set of all permutations of xm, or equivalently, the

set of all sequences with the same empirical distribution, Pxm .

For two positive integers m and n, let W (yn|xm) denote

the conditional probability of Y n = yn given Xm = xm

corresponding to the channel from Xm to Y n that is in-

duced by a simulation scheme, which has certain resources of

randomness. Let H(Y n|Xm) denote the conditional entropy

of Y n given Xm induced by this channel. The expectation

operator, denoted E{·}, will be understood to be taken with

respect to the joint distribution P×W of (Xm, Y n). As shown

in [6], the expected number of key bits required to implement

a channel W is approximately H(Y n|Xm), which can be

achieved via arithmetic decoding. However, for some sample

paths, the number of key bits required may be unlimited.

Let ρn(Pn, Qn) denote a distance function (not necessarily

a metric) between two probability measures on An, where Pn

is defined as the product probability measure of n–vectors,

whereas Qn does not necessarily have product form.

This paper is about the quest for a channel

{W (yn|xm), xm ∈ Am, yn ∈ An} that is independent

of the unknown P generating Xm and that satisfies the

following conditions:

C1. For every P ∈ P , the probability distribution

Qn(yn) =
∑

xm∈Am

P (xm)W (yn|xm)

of Y n obeys ρn(Pn, Qn) ≤ D, where D is a prescribed

constant.2

C2. The channel W maximizes H(Y n|Xm) simultaneously

for all P ∈ P among all mappings satisfying C1.

This problem formulation assumes that the key–bit supply

is in principle unlimited, and focuses only on the interplay

2We emphasize, once again, that Qn need not be necessarily memoryless.
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between conditional entropy and fidelity. However, notice that

the expected key rate consumed by an efficient implementation

of a simulation scheme is about H(Y n|Xm) bits output per

symbol [6]. Therefore, our goal of maximizing H(Y n|Xm)
will necessarily imply a maximization of the required expected

key rate.

In the next three sections, we will study this problem for

three different distortion functions ρn(Pn, Qn): (i) a gener-

alized notion of the divergence between two distributions,

(ii) the ρ̄ distance function (see, e.g., [5]), and (iii) the

distance function associated with the so called ǫ–contaminated

model [8],[9].

III. THE GENERALIZED DIVERGENCE DISTANCE

Let ρ(P,Q) denote a distance function (not necessarily a

metric) between two probability measures on A, and define

the distance between Pn and Qn as

ρn(Pn, Qn) =
1

n

n
∑

i=1

∑

ai−1

Q(ai−1)ρ(P (·|ai−1), Q(·|ai−1)).

For example, if

ρ(P (·|ai−1), Q(·|ai−1)) =
∑

ai

Q(ai|ai−1) log
Q(ai|ai−1)

P (ai|ai−1)
,

then ρn is the normalized divergence between Qn and Pn,

hence the name “generalized divergence.” In general, such ad-

ditive distance functions between the conditional distributions

{P (·|ai−1)} and {Q(·|ai−1)} may arise naturally in prediction

and sequential decision problems, as they reflect the penalty

for mismatch between the assumed probability law and the

underlying one.

A. Main Result

Let us define the function:

φ(D) = sup{H(Q) : ρ(P,Q) ≤ D}. (1)

We shall assume that ρ(P, ·) is convex in Q (which is the case

for many useful distance functions), and then it is easily seen

that φ is concave. Our main result, in this section, is that φ(D)
is the single–letter characterization of the highest possible

normalized conditional entropy of Y n given Xm subject to the

constraint ρn(Pn, Qn) ≤ D. Theorem 1 below is the converse

theorem and Theorem 2 is the direct (achievability) theorem.

Notice that if ρ induces compact level sets {Q : ρ(P,Q) ≤
D}, then the supremum that defines φ(D) is actually a

maximum. As we will assume throughout that ρ(P, ·) is

continuous, this will indeed be the case. Note that when

ρ(P,Q) is convex in Q for fixed P , the computation of

φ(D) is a convex program, and hence can be solved by

standard convex programming methods. Moreover, in some

cases, the maximization can be carried out in closed form. A

few examples will be outlined in Subsection III.B.

Theorem 1: (Converse): Let ρ(P,Q) be convex in Q for

fixed P . Then, for every simulation scheme W that satisfies

condition C1, H(Y n|Xm) ≤ nφ(D).

Proof. Consider first the conditional entropy of the i–th output

symbol, Yi, given Y i−1. Then, we have:

H(Yi|Y i−1) =
∑

ai−1∈Ai−1

Q(ai−1)H(Q(·|ai−1))

≤
∑

ai−1∈Ai−1

Q(ai−1)φ(ρ(P (·), Q(·|ai−1))

≤ φ

(

∑

ai−1∈Ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

)

,

where in the last step we have used the concavity of φ (which

follows from the postulated convexity of ρ) and Jensen’s

inequality. Thus, we obtain:

1

n
H(Y n|Xm)

≤ 1

n
H(Y n)

=
1

n

n
∑

i=1

H(Yi|Y i−1)

≤ 1

n

n
∑

i=1

φ

(

∑

ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

)

≤ φ

(

1

n

n
∑

i=1

∑

ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

)

= φ(ρn(Pn, Qn))

≤ φ(D), (2)

where the third inequality is again an application of Jensen’s

inequality. This completes the proof of Theorem 1.

We now move on to the achievability part, which is essen-

tially based on estimating P by the empirical distribution of

xm, finding the optimum Q that achieves φ(D) with respect

to the estimated source rather than the unknown true source,

and drawing Y n according to Qn. Although this approach

seems natural and straightforward, there are nevertheless two

non-trivial points to emphasize in this context.

The first point is the following: As can easily be seen

from the proof of Theorem 1, even the unconditional entropy

H(Y n) is upper bounded by nφ(D) (and even if the source is

known). As we shall see below in Theorem 2 (the direct part),

the fact that H(Y n|Xm), which is smaller, can still approach

nφ(D) has to do with the fact that our proposed scheme

assigns an output probability distribution that: (i) depends on

xm only via its type class Tx, and (ii) given Tx the output

distribution is memoryless and hence given an input type class

Tx and an output type class Tyn , the distribution within Tyn

is uniform, independently of Tx. These two facts imply that

TXm → TY n → Y n is a Markov chain, and so,

H(Y n|Xm)

= H(Y n|TXm)

= H(Y n) − I(TXm ;Y n)

= H(Y n) − I(TXm ;Y n, TY n)

= H(Y n) − I(TXm ;TY n)
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≥ H(Y n) − (|A| − 1) log(min{m,n} + 1), (3)

where in the last line we have used the fact that the number of

types of n–sequences does not exceed (n+1)|A|−1. Therefore,

if H(Y n) is linear in n, then H(Y n|Xm) is essentially as large

as H(Y n).
The second point is more related to the distance constraint

ρn(Pn, Qn) ≤ D: Note that as the DMS, Qxm , applied by

the proposed scheme, is estimated from training data xm, then

the overall induced probability distribution Qn is the mixture

of these DMS’s weighted by the probabilities of all possible

training sequences that could be emitted by the underlying

DMS P , i.e.,

Q(yn) =
∑

xm

P (xm)Qxm(yn) =
∑

Txm

P (Txm)Qxm(yn).

This mixture is, of course, no longer memoryless. Moreover,

among the components of this mixture, there are contributions

of type classes that correspond to empirical distributions that

are fairly close to P , so that their weights are appreciably

large, but since their associated DMS’s have somewhat differ-

ent single–letter probabilities than Q∗, the achiever of φ(D)
for P , these differences may accumulate when products of n
of these letter probabilities are taken to account for the n–

vectors that are generated. It is not a–priori obvious then that

these cumulative errors do not cause violation of the distance

constraint. It turns out, fortunately, that this is not the case.

The reason is rooted in a basic fact that is at the heart of the

distance analysis in the proof of Theorem 2 below: Although

the overall output probability distribution Q, induced by our

scheme, is not memoryless, it has the property that Q(yi|yi−1)
is close to Q∗(yi) whenever yi−1 is typical to Q∗ (for large

i). Thus, there is an interesting regenerative mechanism here:

If the past is typical to Q∗, then subsequent symbols will

continue to be drawn essentially under Q∗, and will then

continue to create typical patterns (with high probability),

which in turn continue to induce conditional probabilities close

to Q∗, and so on.

Finally, a more technical note: In Theorem 2 below, we will

assume that logm = o(n). Operatively, this is, of course, not

really a limitation (one can always use only part of the training

sequence). But intuitively, it does not seem plausible that more

training can harm performance. We believe, therefore, that

the need for this technical assumption should be attributed

to possible limitations of the bounding techniques, rather than

to the real behavior of the simulation scheme (see also [12,

Theorem 3]).

Theorem 2: (Direct): Assume that:

(i) The function ρ(P,Q) is continuous at P uniformly in Q,

continuous and bounded in Q for a given P , and convex in Q.

(ii) The function ρ induces a unique achiever Q∗ of

supH(Q) subject to (s.t.) the constraints ρ(P,Q) ≤ D and

mina∈AQ(a) ≥ qmin for all qmin ∈ [0, q0] for some q0 > 0.

(iii) The mapping from P to Q∗ is continuous for all qmin ∈
[0, q0].
Finally, assume that logm = o(n). Then, there exists a

sequence of simulation schemes, independent of P , that

asymptotically (as m,n → ∞) satisfy Condition C1, and

whose normalized conditional entropies tend to φ(D) for all

P ∈ P .

Note that since the direct part guarantees that

H(Y n|Xm)/n approaches φ(D), which is in turn an

upper bound to H(Y n)/n, this means that the normalized

mutual information I(Xm;Y n)/n → 0 (cf. the discussion

after the proof of Theorem 1).

Proof of Theorem 2. Consider the following simulation

scheme: Given x = xm, extract its empirical distribution, Px,

and then find the achiever Qx of maxH(Q) s.t. ρ(Px, Q) ≤ D
and an additional constraint that minaQ(a) ≥ qmin for some

arbitrarily small qmin > 0.3 Obviously, by elementary conti-

nuity arguments, this additional constraint on minaQ(a) does

not have much effect. In particular, if qmin is sufficiently small,

this maximum is arbitrarily close, say, within µ(qmin), to the

one obtained without this constraint, and limqmin→0 µ(qmin) =
0. Finally, use Qx as the target memoryless source that governs

Y n.

We next analyze both the conditional entropy and the

distance level associated with the proposed scheme. For a

positive real δ, let TP (δ) denote the set of sequences for which

the empirical distribution satisfies D(Px‖P ) ≤ δ, where the

sequence length will be understood from the context.

As for the conditional output entropy, we have:

1

n
H(Y n|Xm)

= E{H(QX)}
≥

∑

Tx⊂TP (δ)

P (Tx)H(Qx)

=
∑

Tx⊂TP (δ)

P (Tx) ×

max{H(Q) : ρ(Px, Q) ≤ D, min
a
Q(a) ≥ qmin}

≥
∑

Tx⊂TP (δ)

P (Tx) ×

max{H(Q) : ρ(P,Q) + ǫ(δ) ≤ D, min
a
Q(a) ≥ qmin}

= P (TP (δ)) · [φ(D − ǫ(δ)) − µ(qmin)]

≥ (1 − αm(δ)) · [φ(D − ǫ(δ)) − µ(qmin)], (4)

where in the second inequality, we have used the uniform

continuity of ρ(·, Q) to argue that D(P ′‖P ) ≤ δ implies

|ρ(P,Q) − ρ(P ′, Q)| ≤ ǫ(δ), with limδ→0 ǫ(δ) = 0 in-

dependently of Q, and in the last inequality we used the

weak law of large numbers (or, the asymptotic equipartition

property (AEP)) to argue that αm(δ) tends to zero as m→ ∞
for every positive δ. Now, since φ is concave, it is also

continuous (except, perhaps for the edgepoints), and thus φ(D)
is asymptotically achieved for large m and small δ and qmin.

It remains to show that ρn(Pn, Qn) is essentially less than

D for large n (and m). To this end, we will need the following

3The reason for this additional constraint will become apparent in the
sequel.

4



lemma:

Lemma 1: Let

Q(ai|ai−1)
∆
=

∑

Tx
P (Tx)Qx(ai)

∑

Tx
P (Tx)Qx(ai−1)

. (5)

For a given ǫ > 0, let i > ǫn and let ai−1 ∈ TQ∗(ǫ) where

(with a slight abuse of notation), Q∗ is the maximizer of H(Q)
s.t. ρ(P,Q) ≤ D and the additional constraint mina∈AQ(a) ≥
qmin. Then,

max
ai∈A

|Q(ai|ai−1) −Q∗(ai)| ≤ η(m,n, qmin, ǫ), (6)

where for every given qmin > 0,

lim
ǫ→0

lim
n,m→∞

η(n,m, qmin, ǫ) = 0,

with m and n tending to infinity under the regime logm =
o(n).

The proof of Lemma 1 appears in the Appendix.

Now, recall that ρ is assumed uniformly continuous in Q.

Since Lemma 1 tells us that Q(·|ai−1) is close to Q∗ for

a typical ai−1 and for small (but positive) ǫ and qmin and

large enough n and m, then ρ(P,Q(·|ai−1)) ≤ ρ(P,Q∗) +
γ(n,m, qmin, ǫ), where limǫ→0 limn,m→∞ γ(n,m, qmin, ǫ) =
0 under the regime logm = o(n). Consider now the i–th term

of the distance function ρn, where i > ǫn. Then,

∑

ai−1

Q(ai−1)ρ(P (·), Q(·|ai−1))

=
∑

Tx

P (Tx)
∑

ai−1

Qx(ai−1)ρ(P (·), Q(·|ai−1))

=
∑

Tx⊆TP (δ)

P (Tx)
∑

ai−1

Qx(ai−1)ρ(P (·), Q(·|ai−1)) +

∑

Tx⊆T c
P

(δ)

P (Tx)
∑

ai−1

Qx(ai−1)ρ(P (·), Q(·|ai−1)),

where the second term vanishes, for any fixed δ > 0, as

P (T c
P (δ)) vanishes by the weak law of large numbers and ρ is

assumed bounded. Let us focus then on the first term, where

we upper bound P (TP (δ)) by unity. For each x ∈ TP (δ),

∑

ai−1

Qx(ai−1)ρ(P (·), Q(·|ai−1))

=
∑

ai−1∈TQ∗ (ǫ)

Qx(ai−1)ρ(P (·), Q(·|ai−1)) +

∑

ai−1∈T c
Q∗ (ǫ)

Qx(ai−1)ρ(P (·), Q(·|ai−1))

∆
= S1 + S2. (7)

Once again, the second term S2 on the right–most side of (7)

vanishes as it pertains to a–typical sequences, provided that δ
is chosen sufficiently small relative to ǫ. Specifically, denoting

ρmax
∆
= supQ ρ(P,Q), S2 is upper bounded as follows:

S2 =
∑

ai−1∈T c
Q∗ (ǫ)

Qx(ai−1)ρ(P (·), Q(·|ai−1))

≤ ρmax ·
∑

Ta⊂T c
Q∗ (ǫ)

Qx(Ta)

≤ ρmax ·
∑

Ta⊂T c
Q∗ (ǫ)

2−(i−1)D(Pa‖Qx)

≤ ρmax · i|A|−12−(i−1){D(Pa‖Q∗)−maxa log[Qx(a)/Q∗(a)]}.

Now, since a ∈ T c
Q∗(ǫ) we have D(Pa‖Q∗) > ǫ. In addition,

max
a

log
Qx(a)

Q∗(a)
≤ max

a

|Q∗(a) −Qx(a)|
min{Q∗(a), Qx(a)} ln 2

≤ max
a

|Q∗(a) −Qx(a)|
qmin ln 2

(8)

where we used the fact that the logarithmic function is concave

and both Qx(a) and Q∗(a) are lower bounded by qmin >
0. Letting ξ(δ) designate the maximum variational distance

between Qx and Q∗ when D(Px‖P ) ≤ δ (so that ξ(δ) → 0
as δ → 0 by the postulated continuity of the mapping from P
to the maximum–entropy achiever Q), we conclude

S2 ≤ ρmax · n|A|−12−nǫ[ǫ−ξ(δ)/(qmin ln 2)].

Thus, if δ is sufficiently small such that ξ(δ) < ǫqmin ln 2, this

expression vanishes as n grows large. As for the first term S1

on the right–most side of eq. (7), we have:

S1
∆
=

∑

ai−1∈TQ∗ (ǫ)

Qx(ai−1)ρ(P (·), Q(·|ai−1))

≤
∑

ai−1∈TQ∗ (ǫ)

Qx(ai−1)[ρ(P (·), Q∗(·)) + γ(n,m, qmin, ǫ)]

≤ ρ(P (·), Q∗(·)) + γ(n,m, qmin, ǫ)

≤ D + γ(n,m, qmin, ǫ). (9)

Finally, we should add to the distance yet another term that

is proportional to ǫ to account for all i < ǫn. This completes

the proof of Theorem 2.

In the setting of [12], in which there is a “hard limit”

nR to the number of key bits available to the simulation

scheme, the optimal scheme of Theorem 2 can be faithfully

approximated provided that R > φ(D) [7]. It can be shown

that this approximation does not affect, asymptotically, the

conditional entropy and the distance bound. On the other

hand, if R < φ(D), since nR is an obvious upper bound

to H(Y n|Xm), then it makes sense to decrease D to the

level that gives φ(D) = R, because larger values of D mean

degrading the fidelity of the output distribution with respect to

P , without any gain in the conditional entropy of the output.

B. Examples

We next provide three examples of sources, distortion

measures, and their corresponding functions, φ(D).

5



1) The Binary Source and Absolute Difference Distortions:

The first example is that of the binary source P , characterized

by the symbol probabilities p and 1 − p, i.e., P = {p, 1 −
p}. If ρ(P,Q) = |p − q|, with Q = {q, 1 − q}, then it is

straightforward to see that Q∗ = {q∗, 1 − q∗} where

q∗ =











p+D p ≤ 1
2 −D

1
2 |p− 1

2 | ≤ D

p−D p > 1
2 +D

(10)

Thus,

φ(D) =

{

h(p̂+D) D < 1
2 − p̂

1 D ≥ 1
2 − p̂

(11)

where p̂ = min{p, 1−p} and h is the binary entropy function,

h(u) = −u log u− (1 − u) log(1 − u), u ∈ [0, 1]. (12)

As can be seen, since ρ(P,Q) = |p− q| is convex in q, then

φ(D) is indeed concave in this example. If, however, we define

ρ(P,Q) =
√

|p− q|, which is not convex in q, then φ(D) =
h(p̂+D2) for p̂ < 1

2 −D2 and φ(D) = 1 otherwise, which is

not concave in the entire range. For example, if p = 0, then

φ(D) = h(D2) is non–concave (actually, it is even convex) in

the interval [0,∆], where ∆ is the solution to the equation4

ln
1 −D2

D2
=

2

1 −D2
.

which is ∆ ≈ 0.316.

2) A General DMS with the Divergence Distortion Mea-

sure: In our second example, P is a general DMS and

ρ(P,Q) = D(Q‖P )
∆
=
∑

a

Q(a) log
Q(a)

P (a)
. (13)

Using a simple Lagrange multiplier, the achiever Q∗ of φ(D)
is seen to take the form:

Q∗(a) =
P (a)θ

∑

a′∈A P (a′)θ
, a ∈ A

where 0 ≤ θ ≤ 1 is chosen to meet the distance constraint

with equality, i.e., D(Q‖P ) = D. The two extremes are

θ = 1, corresponding to D = 0, and θ = 0, corresponding to

D = D(PU‖P ), PU being the uniform probability distribution

on A. In this case, there is no apparent closed–form expression

for φ(D), but we can easily express both D and φ(D)
parametrically via θ, by

Dθ = − log Γθ −
1 − θ

Γθ

∑

a

P (a)θ logP (a)

φ(Dθ) = log Γθ −
θ

Γθ

∑

a

P (a)θ logP (a)

where

Γθ =
∑

a

P (a)θ.

4The difference between the left–hand side and the right–hand side of this
equation is proportional to the second derivative of φ(D) = h(D2), and so,
the solution D = ∆ is the critical point below which the second derivative
is positive.

3) A General DMS and the Quadratic Distortion Measure:

The third and last example, is again for a general DMS, but

now the distortion measure is quadratic, i.e.,

ρ(P,Q) =
∑

a∈A

[P (a) −Q(a)]2. (14)

We have not been able to find closed–form expressions for Q∗

and for φ(D) in general, but we can characterize the behavior

for small values of D. To this end, we will assume throughout

that P corresponds to an internal point in the simplex, i.e.,

P (a) > 0 for all a ∈ A. We will also assume that D is so

small so that Q is sufficiently close to P , and then H(Q) can

be approximated by

H(Q) ≈ H(P ) + ∇H · (Q− P ) (15)

where ∇H is the gradient of H(·) at P . I.e., labeling the

alphabet letters by 1, 2, . . . ,K
∆
= |A|, we define:

∇H = −(log[eP (1)], . . . , log[eP (K)])
∆
= (g1, . . . , gK). (16)

Denoting ei = Q(i) − P (i), i = 1, . . . ,K, the problem of

finding Q∗ is, to the first order approximation, equivalent to

maximizing
∑

i giei subject to the constraints
∑

i e
2
i ≤ D and

∑

i ei = 0. This is a standard convex program, which is easily

solved using Lagrange multipliers, and the solution is given

by

e∗i =

√

D
∑

j(gj − ḡ)2
· (gi − ḡ), (17)

where

ḡ =
1

K

∑

i

gi. (18)

Substituting this into (15), we get the small distortion approx-

imation:

φ(D) ≈ H(P ) +

√

D ·
∑

i

(gi − ḡ)2, (19)

that is, for small D, φ(D) exceeds H(P ) by an amount that

is proportional to
√
D, and the constant of proportionality

depends only on the “variance” of {gi}, which is large

for very skewed distributions and becomes smaller, as the

uniform distribution is approached, since there is less room

for enlarging the entropy as P is closer to be uniform.

C. Outline of an Extension to Markov Sources

Generalizing Theorem 1 and Theorem 2 to the Markov case

requires some more caution. The converse part is fairly simple,

as we show next. As for the direct part, we have not carried

out an extension of Theorem 2 to the Markov case in full

detail, but we will briefly outline how, we believe, this can be

handled for first–order Markov sources (further extension to

higher orders is then straightforward).

For simplicity, let us assume that Y n is required to be

stationary, which is a reasonable assumption when the input
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is stationary. We will also assume now that ρ is convex in Q.

Let us now define

φ(D) = max{H(Y1|Y0) : dist{Y0} = dist{Y1},
∑

a

Q(a)ρ(P (·|a), Q(·|a)) ≤ D}, (20)

where H(Y1|Y0) is the conditional entropy of Y1 given

Y0 under the first–order Markov probability measure Q,

and the maximization is over the transition probabilities

{Q(b|a), a, b ∈ A} and the unconditional marginal distri-

butions, {Q(a), a ∈ A}, subject to the constraints that the

unconditional marginal distributions of Y0 and Y1 are the same

(i.e.,
∑

a∈AQ(a)Q(b|a) = Q(b) for all b ∈ A), and the

weighted distance constraint between the transition probability

distributions {Q(·|a)} and {P (·|a)} is maintained. Also, let

φ(D;Q0) = max{H(Y1|Y0) : dist{Y0} = dist{Y1} = Q0,
∑

a

Q0(a)ρ(P (·|a), Q(·|a)) ≤ D}, (21)

and observe that for a given Q0, φ(·;Q0) is concave (due to

the convexity of ρ in Q).

As for the converse part, first observe that for every i =
2, . . . , n, we have

Di
∆
=

∑

ai−1

Q(ai−1)ρ(P (·|ai−1), Q(·|ai−1))

=
∑

ai−1

Q(ai−1)
∑

ai−2

Q(ai−2|ai−1) ×

ρ(P (·|ai−1), Q(·|ai−1, a
i−2))

≥
∑

ai−1

Q(ai−1) ×

ρ(P (·|ai−1),
∑

ai−2

Q(ai−2|ai−1)Q(·|ai−1, a
i−2))

=
∑

ai−1

Q(ai−1)ρ(P (·|ai−1), Q(·|ai−1))
∆
= D′

i, (22)

where the inequality follows from the assumed convexity of

ρ. Thus, for any simulation scheme with a given marginal Q0

of each Yi, we have

H(Y n|Xm) ≤
∑

i

H(Yi|Yi−1)

≤
∑

i

φ(D′
i;Q0)

≤ nφ

(

1

n

∑

i

D′
i;Q0

)

≤ nφ(D;Q0) ≤ nφ(D), (23)

where the second to the last inequality follows from (22).

The achievability scheme may be constructed and analyzed

in the same spirit as in Theorem 2 except that the memoryless

structure is replaced by the Markov one: First, compute φ(D)
of eq. (20) with P being replaced by the empirical Markov

source extracted from xm. Then, draw Y n according to the

achiever Q of φ(D). Here we impose the qmin constraints

on the transition probabilities and hence they are met also

by unconditional marginals of single symbols associated with

Qx. This should apparently have an arbitrarily small effect on

both the entropy and on the distance from P when qmin > 0
is sufficiently small. Once again, since the details of this have

not been worked out, we make no formal claims about this

extension, but we find it plausible.

IV. THE ρ̄ DISTANCE MEASURE

A related result is now developed for the ρ̄ distance measure

considered in [16] and [13], where distances between proba-

bility measures are induced by distortion measures between

sequences of random variables (see, e.g., [5]). The results in

this section apply to the memoryless case, and do not seem to

lend themselves easily to extensions to sources with memory.

Let ρ : A2 → IR+ be a given single–letter distortion

measure, and consider the Ornstein ρ̄ distance, ρ̄n(Pn, Qn),
between two measures Pn and Qn of n–vectors in An, i.e., the

infimum of 1
n

∑n
i=1 Eρ(X̃i, Ỹi) across all joint distributions

of (X̃n, Ỹ n) for which the marginal of X̃n is Pn and the

marginal of Ỹ n is Qn.5 Thus, loosely speaking, the ρ̄ distance

gives the best explanation of Ỹ n ∼ Qn as a distorted version

of X̃n ∼ Pn via some channel. Notice that, as shown in [5,

Theorem 8.3.1], the infimum in the definition of the ρ̄ distance

is always achieved. For a given distortion level D, we will

allow the probability law Qn of Y n to be at ρ̄ distance at

most D from Pn, i.e., ρ̄n(Pn, Qn) ≤ D.

Define the single–letter function:

γ(D) = max{H(Y ) : Eρ(X,Y ) ≤ D} (24)

where X ∼ P and the maximization is across conditional

distributions {W (y|x), x, y ∈ A} that satisfy the distortion

constraint. It is easy to see that γ(·) is concave (simply because

the entropy is concave).

For example, referring to the first example in Subsec-

tion III.B, if P is binary with parameter p, and ρ is the

Hamming distortion measure, then γ(D) = h(p̂ + D) for

D < 1/2− p̂ and γ(D) = 1 otherwise, where h is the binary

entropy function defined in (12), and p̂ = min{p, 1−p} (thus,

γ(D) = φ(D) in this example).

Our converse theorem asserts that γ(D) is an upper bound

to the per–symbol conditional entropy.

Theorem 3: (Converse): For every simulation scheme that

satisfies ρ̄n(Pn, Qn) ≤ D, we have H(Y n|Xm) ≤ nγ(D).

Proof. Given a simulation scheme W with Y n ∼ Qn that

satisfies the ρ̄ distance constraint, then by definition, there must

exist random vectors X̃n ∼ Pn and Ỹ n ∼ Qn linked by a

5We are deliberately denoting here the random vector corresponding to P

by X̃n, because it may not coincide with the training sequence although

both are governed by P . Similarly, Ỹ n may not coincide with the simulated
sequence although it is also governed by Qn.
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channel W̃ such that 1
n

∑n
i=1Eρ(X̃i, Ỹi) ≤ D. Thus,

H(Y n|Xm) ≤
n
∑

i=1

H(Yi) =
n
∑

i=1

H(Ỹi)

≤
n
∑

i=1

γ(Eρ(X̃i, Ỹi))

≤ nγ

(

1

n

n
∑

i=1

Eρ(X̃i, Ỹi)

)

≤ nγ(D), (25)

where the first inequality is because conditioning reduces

entropy, the second is by definition of γ(·), the third is due to

the concavity of γ(·), and the fourth is due to its monotonicity

and the aforementioned distortion constraint. This completes

the proof of Theorem 3.

Theorem 4: (Direct): There exists a sequence of simulation

schemes, independent of P , that asymptotically (as m,n →
∞) satisfy ρ̄n(Pn, Qn) ≤ D (Condition C1), and whose

normalized conditional entropies H(Y n|Xm) tend to γ(D)
for all P ∈ P .

Proof. If m > n, we will ignore the training samples

Xn+1, . . . , Xm, and so, reduce m to the value of n. Thus, from

this point, we will assume m = n and denote both integers

by n. For a given P , let f(P ) denote the output marginal

induced by P and by the channel WP that attains γ(D). For

a given training sequence xn = x, let Qn = [f(Px)]n, where

the operation [·]n means quantization to a rational distribution

with denominator n, in the following manner: Given Px, find

the channel {WPx
(y|x), x, y ∈ A} that maximizes H(Ŷ )

subject to the constraint Eρ(X̂, Ŷ ) ≤ D, where X̂ is a

random variable drawn according to Px. Next, for each a ∈ A,

quantize the transition probabilities {WPx
(b|a), b ∈ A} to the

nearest rational numbers (say, in the Euclidean sense) with

denominator n(a|xn) – the number of occurrences of a in xn,

keeping the constraint that they sum up to unity. This deter-

mines a channel Wn and guarantees that the output marginal

Qn induced by Px and Wn will be rational with denominator

n. According to the proposed simulation scheme, Y n is drawn

uniformly from the type class T (Qn) corresponding to Qn.6

We now have to show that: (i) the output distribution of Y n

is within ρ̄–distance D from Pn, and (ii) the performance is

close to γ(D) for large enough n.

As for (i), consider the following argument: For a given

yn = y, let Ty denote its type class and let Qy denote

its empirical distribution. Let f−1(Qy) denote the set of

{Tx} such that Qy = [f(Px)]n. Then, on the one hand, we

obviously have:

Pr{Y n = y} =
∑

Tx∈f−1(Qy)

P (Tx) · 1

|Ty|

=
∑

Tx∈f−1(Qy)

P (x) · |Tx|
|Ty|

. (26)

6Here the proposed approach is somewhat different from the one in Section
3, the reason being mostly convenience and simplicity of the proof.

On the other hand, we would like to show that this distribution

of Y n can be represented as the distribution of the output Ỹ n

of a channel W̃ (ỹn|x̃n), whose input X̃n is drawn by P ,

and which satisfies 1
n

∑n
i=1 E{ρ(X̃i, Ỹi)} ≤ D. Consider the

channel W̃ (ỹn|x̃n) that puts all its mass uniformly within the

conditional type class T (Wn) corresponding to the quantized

channel Wn described in the previous paragraph. Since T (Wn)
depends on x̃ only through Tx̃, we have

Pr{Ỹ n = y} =
∑

Tx

P (x)

|T (Wn)|
∑

x̃∈Tx

1{x̃ : Ty|x̃ = T (Wn)} .

Clearly, the set {x̃ ∈ Tx : Ty|x̃ = T (Wn)} is empty

if Tx 6∈ f−1(Qy), or, by Bayes’ rule, has cardinality

|T (Wn)||Tx|/|Ty| otherwise. Therefore,

Pr{Ỹ n = y} =
∑

Tx∈f−1(Qy)

P (x) · |Tx|
|Ty|

= Pr{Y n = y} .

Since joint typicality guarantees that the distortion between

X̃n and Ỹ n, induced by this channel, is always within D
(hence, a–fortiori its expectation), this means that the distri-

bution of Y n satisfies the ρ̄ distance constraint.

As for (ii), we have:

H(Y n|Xn) = E{log |T (Qn)|}
= nE{H([f(PXn)]n)} −O(logn)

= n[γ(D) − ǫn] (27)

where ǫn tends to 0 as n grows without bound and where the

last passage is due to the law of large numbers, the continuity

of f , the vanishing effect of the operation [·]n, and the fact that

H(f(P )) = γ(D). This completes the proof of Theorem 4.

The following comments are in order regarding the scheme

of Theorem 4:

1) The scheme is different from the one that was described

in [13] in the context of the ρ̄ distance measure. As

discussed in the Introduction, the scheme in [13] aims

at minimizing the mutual information between the input

training vector and the output vector. While both schemes

guarantee a vanishingly small mutual information as

n (and m) grow without bound, the scheme proposed

in [13] is inferior to the one proposed herein in terms of

the conditional output entropy (about nR(D) as opposed

to nγ(D), respectively, where R(D) is the rate–distortion

function of the source). On the other hand, the scheme

in [13] is more economical in terms of consuming key

bits, an aspect of the problem that we do not study in

this work.

2) Our comment in Section III regarding the behavior of the

simulation scheme in case only nR key bits are available

remains valid for the ρ̄ distance measure. Here, a uni-

formly random draw from a type must be approximated

following the ideas in [12], provided R > γ(D).
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V. THE ǫ–CONTAMINATED MODEL

Consider now another distortion function between two prob-

ability distributions of n–vectors, Pn and Qn:

ρn(Pn, Qn) = 1 − min
yn∈An

Q(yn)

P (yn)
, (28)

where 0/0
∆
= 1. Our first observation is that ρn(Pn, Qn) ≤ D

if and only if Q(yn) can be represented in the form

Q(yn) = (1 −D)P (yn) +D ·R(yn), (29)

where R(·) is an arbitrary probability distribution on An. The

“if” part follows immediately since (29) implies that Q(yn) ≥
(1−D)P (yn), and so, 1−Q(yn)/P (yn) ≤ D for all yn ∈ An.

The “only if” part follows from the fact that ρn(Pn, Qn) ≤ D
implies that

D ·R(yn)
∆
= Q(yn) − (1 −D)P (yn) ≥ 0 ∀yn ∈ An (30)

and moreover, taking the summation over all yn ∈ An, we get

D ·
∑

yn

R(yn) = 1 − (1 −D) = D, (31)

that is,
∑

yn R(yn) = 1. Since R(yn) is non–negative and it

sums up to unity, it is a probability distribution.

Having established this equivalence, we will refer, from now

on, to eq. (29) as our model, which is well–known as the ǫ–
contaminated model (with the notation D being replaced by

ǫ) in the literature of robust statistics (see, e.g., [8], [9] and

references therein) and it is customarily used for describing

a small uncertainty with regard to the actual probability

distribution Q about the nominal (desired) distribution P .

Eq. (29) can be interpreted as the result of the action of an

underlying switch, i.e., a binary random variable, S, taking the

values g and b (standing for “good” and “bad”, respectively)

with probabilities 1 − D and D, respectively. This switch

multiplexes between two distributions of yn, namely, Pr{Y n =
yn|S = g} = P (yn) and Pr{Y n = yn|S = b} = R(yn).
Thus, Q(yn) is the marginal of yn derived from the joint

distribution of Y n and S.

When a simulation system enters the picture, we will have in

mind a joint distribution of (Xm, Y n, S), which is, in general,

given by

Pr(Xm = xm, Y n = yn, S = s)

= P (xm)M(s|xm)W (yn|xm, s) , (32)

with the interpretation that the simulator, upon receiving

xm, first randomly chooses either S = g or S = b, with

probabilities M(g|xm) and M(b|xm) = 1−M(g|xm), respec-

tively, and then applies the corresponding simulation channel

Wg(y
n|xm) = W (yn|xm, g) or Wb(y

n|xm) = W (yn|xm, b).
A simulation scheme, ψ, in this setting, is then defined by

the choice of M(g|xm) (or, equivalently, M(b|xm)) for every

xm ∈ Am as well as the channels Wg(y
n|xm) and Wb(y

n|xm)
under the constraint that M(b) =

∑

xm P (xm)M(b|xm) ≤ D.

We would like then to select these ingredients in a way that

is independent of the unknown source P , and that maxi-

mizes H(Y n|Xm) without violating the distortion constraint

ρn(Pn, Qn) ≤ D, or equivalently, keeping Q(yn) in the

form (29). As in Sections II–IV, we will assume that the

distribution P that governs Xm is i.i.d. Extensions to more

general families of sources are quite straightforward. We will

also assume here that m ≥ n.

Theorem 5 below characterizes the best achievable perfor-

mance and suggests a conceptually simple way to approach

it.

Theorem 5: Let Xm be drawn from a memoryless source

P with entropy H , and define

ψ(D) = (1 −D)H +D log |A| . (33)

(a) (Converse part): For any simulation scheme that satisfies

ρn(Pn, Qn) ≤ D, we have

H(Y n|Xm) ≤ nψ(D) + 1. (34)

(b) (Direct part): There exists a sequence of simulation

schemes, independent of P , that asymptotically satisfy

ρn(Pn, Qn) ≤ D, and at the same time:

H(Y n|Xm) ≥ nψ(D) − µn,m + C + o(1) (35)

where C is a constant and

µm,n =

{

|A|−1
2 log m

m−n m > n
|A|−1

2 logn m = n.
(36)

Proof. As for part (a), we have:

H(Y n|Xm)

≤ H(Y n)

= H(Y n|S) + I(S;Y n)

≤ H(Y n|S) + 1

= (1 −D)H(Y n|S = g) +D ·H(Y n|S = b) + 1

= (1 −D)nH +D ·H(Y n|S = b) + 1

≤ n[(1 −D)H +D log |A|] + 1

= nψ(D) + 1, (37)

where the second inequality is due to the fact that S is binary.

For part (b), consider the following simulation scheme: Let

M∗(b|xm) = D for all xm (i.e., S is independent of Xm),

W ∗
b (yn|xm) = 1/|A|n for all xm ∈ Am and yn ∈ An, and

let W ∗
g (yn|xm) be the optimum simulation channel derived in

[12], which preserves the input distribution P in the case of

unlimited key rate, that is, the channel induced by letting Y n

be the first n symbols of a random permutation of Xm. The

induced output distribution will then be

Q(yn) = (1 −D)P (yn) +D · 1

|A|n , (38)

9



which complies with (29). As for the conditional output

entropy, we have

H(Y n|Xm)

≥ H(Y n|Xm, S)

= (1 −D)H(W ∗
g (·|Xm)) +D ·H(W ∗

b (·|Xm))

= (1 −D)H(W ∗
g (·|Xm)) +D · n log |A|. (39)

The proof is completed by using two facts shown in [12, eqs.

(26)–(28)]: The first fact is that

E{H(W ∗
g (·|Xm))} = E log |TXm | − E log |TXm−n |, (40)

where if m = n the second term is defined to be zero, and

the second fact is that for a general positive integer k, when

k → ∞,

E log |TXk | = kH− |A| − 1

2
log(2πek)+ const+o(1). (41)

Therefore, (35) follows both for (m − n) → ∞ and when

(m− n) is bounded by a constant.

APPENDIX

Proof of Lemma 1.

For a given ǫ > 0 and a positive integer i > nǫ, let ai−1 ∈
TQ∗(ǫ), i.e., a = ai−1 has an empirical distribution Pa that

satisfies D(Pa‖Q∗) ≤ ǫ. Next define the set Sǫ (depending on

ai−1) as the set of types {Tx} for which:

P (Tx)Qx(ai−1) ≥ 2−nǫ2 max
x′

[P (Tx′)Qx′(ai−1)]. (A.1)

Generally speaking, Sǫ contains the dominant terms of the

denominator of the right–hand side of eq. (5). Obviously, it

contains at least the largest term, maxx P (Tx)Qx(ai−1). It

follows then, by definition, that

∑

Tx∈Sc
ǫ

P (Tx)Qx(ai−1)

≤ 2−nǫ2 · |Sc
ǫ |max

x
P (Tx)Qx(ai−1)

≤ 2−nǫ2(m+ 1)|A|−1 ·
∑

Tx∈Sǫ

P (Tx)Qx(ai−1)

∆
= ζn,m ·

∑

Tx∈Sǫ

P (Tx)Qx(ai−1), (A.2)

where we have again used the fact [4] that the number of type

classes of m–sequences does not exceed (m + 1)|A−1, and

where ζn,m → 0 as m,n → ∞ because logm = o(n) as

postulated. Thus,

∑

Tx

P (Tx)Qx(ai−1)

=
∑

Tx∈Sǫ

P (Tx)Qx(ai−1) +
∑

Tx∈Sc
ǫ

P (Tx)Qx(ai−1)

≤ (1 + ζn,m) ·
∑

Tx∈Sǫ

P (Tx)Qx(ai−1). (A.3)

In a similar manner, referring to the numerator of (5), we have:
∑

Tx∈Sc
ǫ

P (Tx)Qx(ai)

≤
∑

Tx∈Sc
ǫ

P (Tx)Qx(ai−1)

≤ ζn,m ·
∑

Tx∈Sǫ

P (Tx)Qx(ai−1)

≤ ζn,m

qmin
·
∑

Tx∈Sǫ

P (Tx)Qx(ai−1)Qx(ai)

=
ζn,m

qmin
·
∑

Tx∈Sǫ

P (Tx)Qx(ai) (A.4)

and similarly as before, we now get
∑

Tx

P (Tx)Qx(ai)

≤
(

1 +
ζn,m

qmin

)

·
∑

Tx∈Sǫ

P (Tx)Qx(ai). (A.5)

We therefore obtain the following upper and lower bounds to

Q(ai|ai−1):

Q(ai|ai−1) =

∑

Tx
P (Tx)Qx(ai)

∑

Tx
P (Tx)Qx(ai−1)

≤
(1 + ζn,m/qmin) ·∑Tx∈Sǫ

P (Tx)Qx(ai)
∑

Tx∈Sǫ
P (Tx)Qx(ai−1)

≤
(

1 +
ζn,m

qmin

)

· max
Tx∈Sǫ

P (Tx)Qx(ai)

P (Tx)Qx(ai−1)

=

(

1 +
ζn,m

qmin

)

· max
Tx∈Sǫ

Qx(ai), (A.6)

where we have used the inequality [2, Lemma 1]
∑N

i=1 αi
∑N

i=1 βi

≤ max
1≤i≤N

αi

βi
(A.7)

for a positive integer N and for positive {αi}N
i=1 and {βi}N

i=1.

On the other hand,

Q(ai|ai−1) =

∑

Tx
P (Tx)Qx(ai)

∑

Tx
P (Tx)Qx(ai−1)

≥
∑

Tx∈Sǫ
P (Tx)Qx(ai)

(1 + ζn,m) ·∑Tx∈Sǫ
P (Tx)Qx(ai−1)

≥ 1

1 + ζn,m
· min

Tx∈Sǫ

P (Tx)Qx(ai)

P (Tx)Qx(ai−1)

=
1

1 + ζn,m
· min

Tx∈Sǫ

Qx(ai), (A.8)

where we have now used the inequality
∑N

i=1 αi
∑N

i=1 βi

≥ min
1≤i≤N

αi

βi
, (A.9)

which is obviously equivalent to (A.7).

Next, we argue that for a = ai−1 ∈ TQ∗(ǫ), i > ǫn, every

Tx ∈ Sǫ must induce Qx which is close to Q∗, and so, in

10



particular, the minimizer and the maximizer of Qx(ai) within

Sǫ must be close to Q∗(ai). To see why this is true, observe

that since [4]

(m+ 1)−|A|+12−mD(Px‖P ) ≤ P (Tx) ≤ 2−mD(Px‖P ),

and since Qx(a) = 2−(i−1)[H(Pa)+D(Pa‖Qx)], the condition

that defines Sǫ implies that

mD(Px‖P ) + (i− 1)D(Pa‖Qx) ≤
min
x′

[mD(Px′‖P ) + (i− 1)D(Pa‖Qx′)] + nǫ2 + ξm,

where ξm = (|A| − 1) log(m + 1). The left–hand side is, of

course, lower bounded by (i−1)D(Pa‖Qx). As for the right–

hand side, let Px∗ = argminPx
D(Px‖P ), where the minimum

obviously exists since Px belongs to a finite set. Then,

min
x′

[mD(Px′‖P ) + (i− 1)D(Pa‖Qx′)]

≤ mD(Px∗‖P ) + (i− 1)D(Pa‖Qx∗)

≤ mE{D(PX‖P )} + (i− 1)D(Pa‖Q∗) +

(i− 1) ·
∑

a

Pa(a) log
Q∗(a)

Qx∗(a)

≤ (|A| − 1) log e+ (i− 1)ǫ+

(i− 1) · max
a

log
Q∗(a)

Qx∗(a)
, (A.10)

where, in the last passage, we have used the inequality

mE{D(PX‖P )} ≤ (|A| − 1) log e (see [1] and ref. [19,

Proposition 5.2 therein]) for the first term, and the assumption

a ∈ TQ∗(ǫ) for the second term, ǫ. As for the third term, we

have the following consideration: Under the assumptions of

the theorem, the maximizer of H(Q) subject to the constraints

ρ(P,Q) ≤ D and minaQ(a) ≥ qmin is unique and continuous

in P . Since D(Px∗‖P ) ≤ [(|A| − 1) log e]/m as we have just

shown, and hence the variational distance between Px∗ and P
vanishes with m (by Pinsker’s inequality [3, Lemma 11.6.1]),

then so does the variational distance
∑

a |Qx∗(a)−Q∗(a)| ∆
=

δm as well. Now, similarly as in (8),

max
a

log
Q∗(a)

Qx∗(a)
≤ δm
qmin ln 2

. (A.11)

Putting all these facts together, we obtain

(i− 1)D(Pa‖Qx) ≤ (|A| − 1) log e+ (i− 1)ǫ+ nǫ2 +

(i− 1)
δm

qmin ln 2
+ ξm, (A.12)

and so,

D(Pa‖Qx)

≤ ǫ+
δm

qmin ln 2
+

(|A| − 1) log e+ nǫ2 + ξm
i− 1

≤ ǫ+
δm

qmin ln 2
+

(|A| − 1) log e+ nǫ2 + ξm
ǫn

= 2ǫ+
δm

qmin ln 2
+

(|A| − 1) log e+ ξm
ǫn

(A.13)

which is arbitrarily small for sufficiently small ǫ and suffi-

ciently large n, since logm = o(n). Hence, also the variational

distance between Qx and Pa is bounded by a small quantity

depending on ǫ, qmin, ξm/n, and δm. In turn, the divergence

(as well as the variational distance) between Pa and Q∗ is

bounded in terms of ǫ for a ∈ TQ∗(ǫ). It follows then by

the triangle inequality that the variational distance between

Qx and Q∗ is upper bounded by the sum of these two

terms. In particular, as claimed earlier, the maximizer and

the minimizer in eqs. (A.6) and (A.8) are close to Q∗(ai),
implying that the variational distance between Q(·|ai−1) and

Q∗(·) is upper bounded in terms of the above terms as well

as ζn,m/qmin. This bound, denoted η(n,m, qmin, ǫ), vanishes

under the regime specified in the assertion of the lemma, which

completes the proof of Lemma 1.
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